TWI665869B - Input receiver circuit and adaptive feedback method - Google Patents
Input receiver circuit and adaptive feedback method Download PDFInfo
- Publication number
- TWI665869B TWI665869B TW107125279A TW107125279A TWI665869B TW I665869 B TWI665869 B TW I665869B TW 107125279 A TW107125279 A TW 107125279A TW 107125279 A TW107125279 A TW 107125279A TW I665869 B TWI665869 B TW I665869B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- input receiver
- control signal
- clock signal
- inverter
- Prior art date
Links
Landscapes
- Dram (AREA)
- Amplifiers (AREA)
Abstract
本發明提供一種適應性回授方法,用於一記憶體裝置,該記憶體裝置包括一第一輸入接收器電路及複數個第二輸入接收器電路,該方法包括:提供一時脈信號及一反相時脈信號至該第一輸入接收器電路;利用該第一輸入接收器電路產生一致能控制信號以控制在該第一輸入接收器電路中之回授路徑;當該時脈信號及該反相時脈信號之頻率高於或等於一預定頻率,依據該致能控制信號開啟該第一輸入接收器電路中之回授路徑;以及當該時脈信號及該反相時脈信號之頻率低於一預定頻率,依據該致能控制信號關閉該第一輸入接收器電路中之回授路徑。The invention provides an adaptive feedback method for a memory device. The memory device includes a first input receiver circuit and a plurality of second input receiver circuits. The method includes: providing a clock signal and an inverse Phase clock signal to the first input receiver circuit; use the first input receiver circuit to generate a uniform energy control signal to control the feedback path in the first input receiver circuit; when the clock signal and the feedback The frequency of the phase clock signal is higher than or equal to a predetermined frequency, and the feedback path in the first input receiver circuit is turned on according to the enable control signal; and when the frequency of the clock signal and the inverted clock signal is low At a predetermined frequency, the feedback path in the first input receiver circuit is closed according to the enable control signal.
Description
本發明係有關於電子電路,特別是有關於一種輸入接收器電路(input receiver circuit)及適應性回授方法。The present invention relates to electronic circuits, and in particular, to an input receiver circuit and an adaptive feedback method.
隨著科技發展,現今的記憶體之操作頻率已愈來愈高,例如雙倍資料率同步動態隨機存取記憶體(Double Data Rate Synchronous Dynamic Random Access Memory,DDR SDRAM),其操作頻率可在數百MHz以上。此外,記憶體裝置所接收之各個信號均有相應的高速輸入接收器。然而,當操作在低頻率的時脈信號或是時脈信號的轉換率很低時,這些高速輸入接收器之輸出信號會產生振盪,所以後端電路很容易無法擷取到相應的指令、位址、及資料信號,進而造成記憶體裝置無法正確運作或是功能失效。With the development of technology, the operating frequency of today's memory has become higher and higher, such as Double Data Rate Synchronous Dynamic Random Access Memory (DDR SDRAM). Above 100 MHz. In addition, each signal received by the memory device has a corresponding high-speed input receiver. However, when operating on low-frequency clock signals or when the conversion rate of the clock signals is very low, the output signals of these high-speed input receivers will oscillate, so the back-end circuits will not easily be able to capture the corresponding instructions and bits. Address, and data signals, causing the memory device to fail to function properly or to malfunction.
因此,需要一種輸入接收器電路及適應性回授方法以解決上述問題。Therefore, an input receiver circuit and an adaptive feedback method are needed to solve the above problems.
本發明係提供一種輸入接收器電路,包括:一第一輸入接收器、一第二輸入接收器、及一控制信號輸出級。該第一輸入接收器包括:一第一差動放大器,用以接收一時脈信號,並輸出一放大時脈信號;一第一緩衝器電路,用以緩衝該放大時脈信號,並輸出一輸出時脈信號,其中該第一緩衝器電路及該第一差動放大器之間係具有一第一回授路徑;以及一第一延遲電路,用以將該放大時脈信號進行一時間延遲以產生一第一延遲信號。該第二輸入接收器包括:一第二差動放大器,用以接收一反相時脈信號,並輸出一放大反相時脈信號;一第二緩衝器電路,用以緩衝該放大反相時脈信號,並輸出一輸出反相時脈信號,其中該第二緩衝器電路及該第二差動放大器之間係具有一第二回授路徑;以及一第二延遲電路,用以將該放大反相時脈信號進行該時間延遲以產生一第二延遲信號。該控制信號輸出級係依據該第一延遲信號及該第二延遲信號以產生一致能控制信號,其中該致能控制信號係控制該第一回授路徑及該第二回授路徑之開啟或關閉。 The invention provides an input receiver circuit, which includes a first input receiver, a second input receiver, and a control signal output stage. The first input receiver includes: a first differential amplifier for receiving a clock signal and outputting an amplified clock signal; a first buffer circuit for buffering the amplified clock signal and outputting an output A clock signal, wherein a first feedback path is provided between the first buffer circuit and the first differential amplifier; and a first delay circuit for delaying the amplified clock signal to generate a A first delayed signal. The second input receiver includes: a second differential amplifier for receiving an inverting clock signal and outputting an amplified inverting clock signal; and a second buffer circuit for buffering the amplified inverting clock signal. Pulse signal and output an inverting clock signal, wherein a second feedback path is provided between the second buffer circuit and the second differential amplifier; and a second delay circuit is used for the amplification The inverse clock signal performs the time delay to generate a second delayed signal. The control signal output stage generates a uniform energy control signal according to the first delay signal and the second delay signal, wherein the enable control signal controls the opening or closing of the first feedback path and the second feedback path. .
本發明更提供一種適應性回授方法,用於一記憶體裝置,該記憶體裝置包括一第一輸入接收器電路及複數個第二輸入接收器電路,該方法包括:提供一時脈信號及一反相時脈信號至該第一輸入接收器電路;利用該第一輸入接收器電路產生一致能控制信號以控制在該第一輸入接收器電路中之回授路徑;當該時脈信號及該反相時脈信號之頻率高於或等於一預定頻率,依據該致能控制信號開啟該第一輸入接收器電路中之回授路徑;以及當該時脈信號及該反相時脈信號之頻率低於該預定頻率,依據該致能控制信號關閉該第一輸入接收器電路中之回授路徑。 The invention further provides an adaptive feedback method for a memory device. The memory device includes a first input receiver circuit and a plurality of second input receiver circuits. The method includes: providing a clock signal and a Invert the clock signal to the first input receiver circuit; use the first input receiver circuit to generate a uniform energy control signal to control the feedback path in the first input receiver circuit; when the clock signal and the The frequency of the inverted clock signal is higher than or equal to a predetermined frequency, and the feedback path in the first input receiver circuit is turned on according to the enable control signal; and when the clock signal and the frequency of the inverted clock signal are Below the predetermined frequency, the feedback path in the first input receiver circuit is closed according to the enable control signal.
為使本發明之上述目的、特徵和優點能更明顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下。In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below and described in detail with reference to the accompanying drawings.
第1A圖係顯示依據本發明一實施例中之記憶體裝置的示意圖。FIG. 1A is a schematic diagram showing a memory device according to an embodiment of the present invention.
如第1A圖所示,記憶體裝置100包括複數個輸入接收器電路110、一輸入接收器電路200、一控制邏輯120、及複數個記憶單元陣列130。As shown in FIG. 1A, the memory device 100 includes a plurality of input receiver circuits 110, an input receiver circuit 200, a control logic 120, and a plurality of memory cell arrays 130.
在一實施例中,記憶體裝置100係由一主機端(例如為一中央處理器)接收時脈信號、指令信號、位址信號、及資料信號。時脈信號例如包括時脈信號CK_t、反相時脈信號CK_c及時脈致能信號CKE,其中時脈信號CK_t及反相時脈信號CK_c係相應於輸入接收器電路200。In one embodiment, the memory device 100 receives a clock signal, an instruction signal, an address signal, and a data signal from a host (for example, a central processing unit). The clock signals include, for example, a clock signal CK_t, an inverted clock signal CK_c, and a clock enable signal CKE. The clock signal CK_t and the inverted clock signal CK_c correspond to the input receiver circuit 200.
指令信號例如包括晶片選擇(Chip Select,CS)信號、列地址選通(Row Address Strobe,RAS)信號、行地址選通(Column Address Strobe,CAS)信號及寫入致能(Write Enable,WE)信號等等。位址信號例如包括指令位址A[13:0]及記憶體組(bank address)位址BA[2:0],其中N之大小可視實際情況而定。資料信號例如包括資料信號DQ[31:0]及資料選通信號DQS[3:0],其中資料信號DQ及資料選通信號DQS之位元數亦可視實際情況而定,本發明並不限定於上述數量的指令信號、位址信號、及資料信號。The command signals include, for example, a Chip Select (CS) signal, a Row Address Strobe (RAS) signal, a Row Address Strobe (CAS) signal, and a Write Enable (WE) Signals and more. The address signal includes, for example, an instruction address A [13: 0] and a bank address address BA [2: 0], where the size of N can be determined according to the actual situation. The data signals include, for example, a data signal DQ [31: 0] and a data strobe signal DQS [3: 0]. The number of bits of the data signal DQ and the data strobe signal DQS may also depend on actual conditions, and the present invention is not limited thereto. The above-mentioned number of command signals, address signals, and data signals.
詳細而言,除了時脈信號CK_t及反相時脈信號CK_c之外,上述信號之每一個位元均需要一個相應的輸入接收器電路110以將相應位元之信號之電壓擺幅調整為適合記憶體裝置100之電壓擺幅,以利後續電路之操作。時脈信號例如包括時脈信號CK_t及反相時脈信號CK_c,其係相應於輸入接收器電路200。輸入接收器電路200可控制在範圍10中之各輸入接收器電路110之回授路徑的開啟或關閉,其細節將詳述於後。In detail, in addition to the clock signal CK_t and the inverted clock signal CK_c, each bit of the above signals requires a corresponding input receiver circuit 110 to adjust the voltage swing of the corresponding bit signal to suit The voltage swing of the memory device 100 is convenient for subsequent circuit operations. The clock signal includes, for example, a clock signal CK_t and an inverted clock signal CK_c, which correspond to the input receiver circuit 200. The input receiver circuit 200 can control the opening or closing of the feedback path of each input receiver circuit 110 in the range 10, the details of which will be described later.
控制邏輯120係用以依據來自主機端之命令以控制記憶單元陣列130。記憶單元陣列130例如為動態隨機存取記憶體(DRAM)單元陣列,且可分為複數個記憶體組(memory bank)。The control logic 120 is used to control the memory cell array 130 according to a command from the host. The memory cell array 130 is, for example, a dynamic random access memory (DRAM) cell array, and can be divided into a plurality of memory banks.
第1B圖係顯示依據本發明一實施例中之輸入接收器電路110的示意圖。第1C圖係顯示依據本發明一實施例中之差動放大器111的電路圖。FIG. 1B is a schematic diagram showing an input receiver circuit 110 according to an embodiment of the present invention. FIG. 1C is a circuit diagram showing a differential amplifier 111 according to an embodiment of the present invention.
輸入接收器電路110係包括一差動放大器111及一緩衝器電路112。差動放大器111係接收輸入信號IN及一參考電壓Vref,並在其輸出端(例如節點N1)產生一第一信號。舉例來說,差動放大器110例如為一寬擺幅差動放大器(wide-swing differential amplifier),其中輸入信號IN例如為指令信號、位址信號、或資料信號之其中一個位元。The input receiver circuit 110 includes a differential amplifier 111 and a buffer circuit 112. The differential amplifier 111 receives an input signal IN and a reference voltage Vref, and generates a first signal at its output terminal (for example, the node N1). For example, the differential amplifier 110 is, for example, a wide-swing differential amplifier. The input signal IN is, for example, one bit of a command signal, an address signal, or a data signal.
差動放大器111例如可為第1C圖中之差動放大器電路,其係由電晶體M0~M10及反相器1101~1103所組成,其中輸入信號DQ(即第1B圖中之輸入信號IN)可為指令信號、位址信號、或資料信號之其中一個位元,經過差動放大器110後會產生輸出信號DQo。其中致能信號EN例如可為一反相時脈致能信號CKE_c。本發明領域中具有通常知識者當可了解第1C圖中之寬擺幅差動放大器電路之操作,故其細節於此不再贅述。The differential amplifier 111 may be, for example, the differential amplifier circuit in FIG. 1C, which is composed of transistors M0 to M10 and inverters 1101 to 1103, where the input signal DQ (that is, the input signal IN in FIG. 1B) It can be one of the command signal, the address signal, or the data signal. After passing through the differential amplifier 110, the output signal DQo is generated. The enable signal EN may be, for example, an inverted clock enable signal CKE_c. Those with ordinary knowledge in the field of the present invention can understand the operation of the wide-swing differential amplifier circuit in FIG. 1C, so details thereof will not be repeated here.
緩衝器電路112係包括反相器1121及1122,如第1B圖所示。在節點N1之第一信號經過反相器1121及1122後即產生輸出信號INo。舉例來說,若輸入接收器電路110之輸入信號IN為指令信號CAS,則其產生的輸出信號為CASo。若輸入接收器電路110之輸入信號IN為位址信號A[0](或A0),則其產生的輸出信號為Ao[0],依此類推。The buffer circuit 112 includes inverters 1121 and 1122, as shown in FIG. 1B. The output signal INo is generated after the first signal of the node N1 passes through the inverters 1121 and 1122. For example, if the input signal IN of the input receiver circuit 110 is a command signal CAS, the output signal generated by it is CASo. If the input signal IN of the input receiver circuit 110 is the address signal A [0] (or A0), the output signal generated by it is Ao [0], and so on.
需注意的是,差動放大器111及緩衝器電路112之間係具有一回授路徑(或可稱為回授電路)113,其中回授路徑113例如包括一三態反相器1123及一電阻R1。It should be noted that there is a feedback path (or a feedback circuit) 113 between the differential amplifier 111 and the buffer circuit 112. The feedback path 113 includes, for example, a three-state inverter 1123 and a resistor. R1.
舉例來說,在節點N1第一信號經過反相器1121後在節點N2產生一第二信號,其中第二信號係透過三態反相器1123及電阻R1回授至節點N1。需注意的是,三態反相器1123之控制信號En_c及反向控制信號En_t係來自輸入接收器電路200所產生之致能控制信號ENext_t經由信號產生電路250(如第2C圖所示)所產生。For example, after the first signal at the node N1 passes through the inverter 1121, a second signal is generated at the node N2. The second signal is fed back to the node N1 through the tri-state inverter 1123 and the resistor R1. It should be noted that the control signal En_c and the reverse control signal En_t of the tri-state inverter 1123 are from the enable control signal ENext_t generated by the input receiver circuit 200 via the signal generation circuit 250 (as shown in FIG. 2C). produce.
第2A圖係顯示依據本發明一實施例中之輸入接收器電路的示意圖。第2B圖係顯示依據本發明第2A圖之實施例中之差動放大器的電路圖。第2C圖係顯示依據本發明一實施例中之信號產生電路的示意圖。FIG. 2A is a schematic diagram showing an input receiver circuit according to an embodiment of the present invention. Fig. 2B is a circuit diagram showing a differential amplifier in the embodiment according to Fig. 2A of the present invention. FIG. 2C is a schematic diagram showing a signal generating circuit according to an embodiment of the present invention.
如第2A圖所示,輸入接收器電路200包括輸入接收器210及220、及一控制信號輸出級230。As shown in FIG. 2A, the input receiver circuit 200 includes input receivers 210 and 220 and a control signal output stage 230.
輸入接收器210係包括一差動放大器211、一緩衝器電路212、及一延遲電路214。舉例來說,差動放大器211例如為一寬擺幅差動放大器,其輸入為時脈信號CK_t及一參考電壓Vref,並在節點N11輸出一第一時脈信號。舉例來說,差動放大器211例如可由第2B圖之電路所實現,其包括電晶體M51-M67、電阻R51~R56、及複數個反相器2110。其中電晶體M51~M53及電阻R51~R52係構成一靜電放電保護電路(electrostatic-discharge(ESD) protection circuit)),且電晶體M56及電晶體M57之輸入分別為時脈信號CK_t及反相時脈信號CK_c。The input receiver 210 includes a differential amplifier 211, a buffer circuit 212, and a delay circuit 214. For example, the differential amplifier 211 is, for example, a wide-swing differential amplifier. The inputs are a clock signal CK_t and a reference voltage Vref, and a first clock signal is output at the node N11. For example, the differential amplifier 211 can be implemented by the circuit of FIG. 2B, which includes transistors M51-M67, resistors R51-R56, and a plurality of inverters 2110. The transistors M51 to M53 and resistors R51 to R52 form an electrostatic-discharge (ESD) protection circuit, and the inputs of the transistor M56 and the transistor M57 are the clock signal CK_t and the reverse phase, respectively. Pulse signal CK_c.
需注意的是,差動放大器221之電路係與差動放大器211相同,其差別在於差動放大器221中之電晶體M56及電晶體M57之輸入分別為反相時脈信號CK_c及參考電壓Vref。致能信號EN*例如可為時脈致能信號CKE。本發明領域中具有通常知識者當可了解第2B圖中之寬擺幅差動放大器電路之操作,故其細節於此不再贅述。It should be noted that the circuit of the differential amplifier 221 is the same as the differential amplifier 211. The difference is that the inputs of the transistor M56 and the transistor M57 in the differential amplifier 221 are the inverted clock signal CK_c and the reference voltage Vref, respectively. The enable signal EN * may be, for example, a clock enable signal CKE. Those with ordinary knowledge in the field of the present invention can understand the operation of the wide-swing differential amplifier circuit in FIG. 2B, so details thereof will not be repeated here.
緩衝器電路212係包括一反相器2121及2122,在節點N11之第一信號經過反相器2121及2122後即產生輸出時脈信號CKo_t。The buffer circuit 212 includes an inverter 2121 and 2122. After the first signal of the node N11 passes through the inverters 2121 and 2122, an output clock signal CKo_t is generated.
需注意的是,差動放大器211及緩衝器電路212之間係具有一回授路徑(或稱為一回授電路)213,其中回授路徑213係包括一三暫反相器2123及一電阻R11。It should be noted that there is a feedback path (or a feedback circuit) 213 between the differential amplifier 211 and the buffer circuit 212. The feedback path 213 includes a three-phase inverter 2123 and a resistor. R11.
舉例來說,在節點N11之第一信號經過反相器2121會在節點N12產生一第二時脈信號,且第二時脈信號會透過三態反相器2123及電阻R11回授至節點N11。三態反相器2123係由控制信號EN_c及EN_t所控制。舉例來說,控制信號EN_c及EN_t係由致能控制信號ENext_t所產生,例如致能控制信號ENext_t可經由第2C圖中所示之信號產生電路250以產生控制信號EN_c及EN_t,其中控制信號En_c為反相器251之輸出,且控制信號EN_t為控制信號En_c經過反相器252之輸出信號。在一些實施例中,第2C圖中之信號產生電路250係整合至輸入接收器電路200。For example, the first signal at the node N11 passes through the inverter 2121 to generate a second clock signal at the node N12, and the second clock signal is fed back to the node N11 through the tri-state inverter 2123 and the resistor R11. . The three-state inverter 2123 is controlled by the control signals EN_c and EN_t. For example, the control signals EN_c and EN_t are generated by the enable control signal ENext_t. For example, the enable control signal ENext_t can generate the control signals EN_c and EN_t through the signal generation circuit 250 shown in FIG. 2C, where the control signal En_c Is the output of the inverter 251, and the control signal EN_t is the output signal of the control signal En_c through the inverter 252. In some embodiments, the signal generating circuit 250 in FIG. 2C is integrated into the input receiver circuit 200.
需注意的是,當控制信號EN_c為低邏輯狀態且控制信號EN_t為高邏輯狀態時,三態反相器2123才會開啟。當控制信號EN_c為高邏輯狀態且控制信號EN_t為低邏輯狀態時,三態反相器2123則會關閉(例如為高阻抗狀態),故三態反相器2123可視為開路。It should be noted that when the control signal EN_c is in a low logic state and the control signal EN_t is in a high logic state, the tri-state inverter 2123 is turned on. When the control signal EN_c is in a high logic state and the control signal EN_t is in a low logic state, the tri-state inverter 2123 is turned off (for example, a high-impedance state), so the tri-state inverter 2123 can be regarded as an open circuit.
此外,信號產生電路250所產生的控制信號EN_c及EN_t除了提供至三態反相器2123及2223以控制三態反相器2123及2223之開啟或關閉之外,還提供至記憶體裝置100中之各輸入接收器電路110之三態反相器1123以控制其開啟或關閉。詳細而言,在輸入接收器電路200及各輸入接收器電路110中之回授路徑之開啟或關閉均是由輸入接收器電路200所產生的致能控制信號ENext_t所同步控制。In addition, the control signals EN_c and EN_t generated by the signal generating circuit 250 are provided to the tri-state inverters 2123 and 2223 to control the tri-state inverters 2123 and 2223 to be turned on or off, and are also provided to the memory device 100 The tri-state inverter 1123 of each input receiver circuit 110 controls its turning on or off. In detail, the opening or closing of the feedback path in the input receiver circuit 200 and each input receiver circuit 110 is controlled synchronously by the enable control signal ENext_t generated by the input receiver circuit 200.
延遲電路214例如可將節點N11之第一時脈信號經過一RC延遲後在節點N15產生一第一延遲信號,並輸出至控制信號輸出級230。延遲電路224例如可將節點N21之第二時脈信號經過與延遲電路214相同的RC延遲後在節點N25產生一第二延遲信號,並輸出至控制信號輸出級230。延遲電路214係包括一P型電晶體M11、一N型電晶體M12、一電阻R12、一電容C11、及一反相器2141。The delay circuit 214 may, for example, generate a first delayed signal at the node N15 after the RC delay of the first clock signal of the node N11, and output the first delayed signal to the control signal output stage 230. The delay circuit 224 may, for example, generate a second delay signal at the node N25 after outputting the second clock signal of the node N21 through the same RC delay as the delay circuit 214, and output the second delay signal to the control signal output stage 230. The delay circuit 214 includes a P-type transistor M11, an N-type transistor M12, a resistor R12, a capacitor C11, and an inverter 2141.
舉例來說,當節點N11之第一時脈信號位於低邏輯狀態時,則N型電晶體M12會處於開路,且節點N13會處於高邏輯狀態,經過反相器2141後,節點N15會處於低邏輯狀態。此時,電源VDD係經由電阻R12對電容C11充電。For example, when the first clock signal of the node N11 is in a low logic state, the N-type transistor M12 will be open, and the node N13 will be in a high logic state. After the inverter 2141, the node N15 will be in a low logic state. Logical state. At this time, the power source VDD charges the capacitor C11 via the resistor R12.
當節點N11之第一時脈信號位於高邏輯狀態時,則N型電晶體M12會導通,且節點N13及N14會處於低邏輯狀態,經過反相器2141後,節點N15會處於高邏輯狀態。此時,電容C11係經由N型電晶體M2放電。When the first clock signal of the node N11 is in a high logic state, the N-type transistor M12 will be turned on, and the nodes N13 and N14 will be in a low logic state. After the inverter 2141, the node N15 will be in a high logic state. At this time, the capacitor C11 is discharged through the N-type transistor M2.
此外,輸入接收器220中之各元件之操作係與輸入接收器210類似,其差別在於輸入接收器210係接收一時脈信號CK_t,輸入接收器220則接收其反相時脈信號CK_c,故其細節於此不再贅述。In addition, the operation of each element in the input receiver 220 is similar to that of the input receiver 210. The difference is that the input receiver 210 receives a clock signal CK_t, and the input receiver 220 receives its inverted clock signal CK_c. Details are not repeated here.
控制信號輸出級230係包括一反互斥或閘(XNOR gate)X1、一P型電晶體M31、一N型電晶體M32、一電阻R31、一電容C31、及一反相器2301。The control signal output stage 230 includes an XNOR gate X1, a P-type transistor M31, an N-type transistor M32, a resistor R31, a capacitor C31, and an inverter 2301.
反互斥或閘X1之輸入分別為輸入接收器210之延遲電路214在節點N15所輸出的第一延遲信號、以及輸入接收器220之延遲電路224在節點N25所輸出的信號第二延遲信號。第一延遲信號及第二延遲信號經過反互斥或閘X1在節點N31產生一運算信號,且運算信號會經過由P型電晶體M31及N型電晶體M32所構成的CMOS反相器,並在節點N32輸出一反相運算信號。在節點N32的反相運算信號經過RC延遲(例如由電阻R31及電容C31所組成)及反相器2301後,在反相器2301之輸出端產生致能控制信號ENext_t。The inputs of the anti-mutual OR gate X1 are the first delayed signal output from the delay circuit 214 of the input receiver 210 at node N15, and the second delayed signal output from the delay circuit 224 of the input receiver 220 at node N25. The first delay signal and the second delay signal generate an operation signal at the node N31 through the anti-mutex OR gate X1, and the operation signal passes through a CMOS inverter composed of a P-type transistor M31 and an N-type transistor M32, and An inverted operation signal is output at the node N32. After the inverting operation signal of the node N32 has undergone the RC delay (for example, composed of the resistor R31 and the capacitor C31) and the inverter 2301, an enable control signal ENext_t is generated at the output of the inverter 2301.
舉例來說,當反互斥或閘X1在節點N31之輸出信號位於低邏輯狀態,則P型電晶體M31會導通,且節點N32會位於高邏輯狀態,且透過電阻R31對電容C31充電。最後,節點N33會處於高邏輯狀態,經過反相器2301後會得到位於低邏輯狀態的致能控制信號ENext_t。For example, when the output signal of the anti-mutex or gate X1 at the node N31 is in a low logic state, the P-type transistor M31 is turned on, and the node N32 is in a high logic state, and the capacitor C31 is charged through the resistor R31. Finally, the node N33 will be in a high logic state, and after passing the inverter 2301, an enable control signal ENext_t in a low logic state will be obtained.
當反互斥或閘X1在節點N31之輸出信號位於高邏輯狀態,則N型電晶體M32會導通,且節點N32會位於低邏輯狀態,且電容C31係透過電阻R31放電。最後,節點N33會處於低邏輯狀態,經過反相器2301後會得到位於高邏輯狀態的致能控制信號ENext_t。需注意的是,在上述實施例中之RC延遲電路之操作均是在穩態下。When the output signal of the anti-mutex or gate X1 at the node N31 is in a high logic state, the N-type transistor M32 is turned on, the node N32 is in a low logic state, and the capacitor C31 is discharged through the resistor R31. Finally, the node N33 will be in a low logic state. After passing the inverter 2301, an enable control signal ENext_t in a high logic state will be obtained. It should be noted that the operations of the RC delay circuits in the above embodiments are in a steady state.
在一實施例中,輸入接收器電路200所輸出的致能控制信號ENext_t可控制在輸入接收器電路200中之回授路徑(例如回授路徑213及223)、以及記憶體裝置100中之各組輸入接收器電路110之回授路徑(例如第1B圖中之回授路徑113)的開啟或關閉。In one embodiment, the enable control signal ENext_t output by the input receiver circuit 200 can control the feedback paths (such as the feedback paths 213 and 223) in the input receiver circuit 200 and each of the memory devices 100. The feedback path of the group input receiver circuit 110 (for example, the feedback path 113 in FIG. 1B) is turned on or off.
在一實施例中,以輸入接收器210為例,假定輸入接收器210之輸入時脈信號CK_t的頻率相當高(例如為400MHz,非限定),在延遲電路214中之電容C11會因為節點N11之邏輯狀態快速轉換而來不及充分放電,故節點N13會一直處於高邏輯狀態。類似地,輸入接收器220之輸入反相時脈信號CK_c也同樣具有相當高的頻率,在延遲電路224中之電容C21也同樣會來不及充分放電,故節點N23會同樣一直處於高邏輯狀態。In an embodiment, taking the input receiver 210 as an example, assuming that the frequency of the input clock signal CK_t of the input receiver 210 is quite high (for example, 400 MHz, unlimited), the capacitance C11 in the delay circuit 214 will be due to the node N11 The logic state of the fast transition is too late to fully discharge, so node N13 will always be in a high logic state. Similarly, the input inverted clock signal CK_c of the input receiver 220 also has a relatively high frequency, and the capacitor C21 in the delay circuit 224 will also have no time to fully discharge, so the node N23 will also always be in a high logic state.
此時,節點N15及N25均會處於低邏輯狀態,且反互斥或閘X1之輸出即為高邏輯狀態,致使N型電晶體M32會導通且電容C31會透過R31充分放電。因此,節點N33會處於低邏輯狀態,故經過反相器2301後所產生的致能控制信號ENext_t會處於高邏輯狀態。意即,在各組輸入接收器電路中的三態反相器被開啟,故回授路徑會導通。At this time, the nodes N15 and N25 will be in a low logic state, and the output of the anti-mutex or gate X1 will be a high logic state, causing the N-type transistor M32 to be turned on and the capacitor C31 to be fully discharged through R31. Therefore, the node N33 will be in a low logic state, so the enable control signal ENext_t generated after passing through the inverter 2301 will be in a high logic state. This means that the tri-state inverters in the input receiver circuits are turned on, so the feedback path will be turned on.
在一實施例中,以輸入接收器210為例,假定輸入接收器210之輸入時脈信號CK_t的頻率相當低(例如小於一預定頻率,如50MHz)且轉換率(slew rate)正常(例如高於一預定轉換率)。若時脈信號CK_t在低邏輯狀態,則節點N11亦處於低邏輯狀態,進而使延遲電路214中之P型電晶體M11導通。因此,節點N13會處於高邏輯狀態,且經過反相器2141後,節點N15會處於高邏輯狀態。In an embodiment, taking the input receiver 210 as an example, it is assumed that the frequency of the input clock signal CK_t of the input receiver 210 is relatively low (for example, less than a predetermined frequency, such as 50 MHz) and the slew rate is normal (for example, high At a predetermined conversion rate). If the clock signal CK_t is in a low logic state, the node N11 is also in a low logic state, and then the P-type transistor M11 in the delay circuit 214 is turned on. Therefore, the node N13 will be in a high logic state, and after passing through the inverter 2141, the node N15 will be in a high logic state.
在同時間,輸入接收器220的輸入反相時脈信號CK_c會在高邏輯狀態,且節點N21亦處於高邏輯狀態,進而使延遲電路224中之N型電晶體M22導通並使電容C21充分放電。因此,節點N23會處於低邏輯狀態,且經過反相器2241後,節點N25會處於低邏輯狀態。At the same time, the input inverting clock signal CK_c of the input receiver 220 will be in a high logic state, and the node N21 is also in a high logic state, so that the N-type transistor M22 in the delay circuit 224 is turned on and the capacitor C21 is fully discharged. . Therefore, the node N23 will be in a low logic state, and after passing through the inverter 2241, the node N25 will be in a low logic state.
因此,反互斥或閘X1在節點N31之輸出為低邏輯狀態,致使P型電晶體M31導通,且節點N32會處於高邏輯狀態,並對電容C31充電。意即節點N33會處於高邏輯狀態,且經過反相器2301所產生的致能控制信號ENext_t會處於低邏輯狀態。意即,在各組輸入接收器電路110及200中的三態反相器是關閉(高阻抗狀態)的,故回授路徑會切斷。Therefore, the output of the anti-mutex OR gate X1 at the node N31 is in a low logic state, so that the P-type transistor M31 is turned on, and the node N32 is in a high logic state, and the capacitor C31 is charged. This means that the node N33 will be in a high logic state, and the enable control signal ENext_t generated by the inverter 2301 will be in a low logic state. That is, the tri-state inverters in the input receiver circuits 110 and 200 are turned off (high impedance state), so the feedback path is cut off.
類似地,在此實施例中,若時脈信號CK_t在低邏輯狀態且反相時脈信號CK_c在高邏輯狀態,則最後反互斥或閘X1在節點N31之輸出同樣是低邏輯狀態。此時,P型電晶體M31導通,且節點N32會處於高邏輯狀態,並對電容C31充電。意即節點N33會處於高邏輯狀態,且經過反相器2301所產生的致能控制信號ENext_t會處於低邏輯狀態。意即,在各組輸入接收器電路中的三態反相器是關閉(高阻抗狀態)的,故回授路徑會切斷。 Similarly, in this embodiment, if the clock signal CK_t is in a low logic state and the inverted clock signal CK_c is in a high logic state, then the output of the last anti-mutex OR gate X1 at the node N31 is also in a low logic state. At this time, the P-type transistor M31 is turned on, and the node N32 is in a high logic state, and the capacitor C31 is charged. This means that the node N33 will be in a high logic state, and the enable control signal ENext_t generated by the inverter 2301 will be in a low logic state. This means that the tri-state inverters in each input receiver circuit are turned off (high impedance state), so the feedback path will be cut off.
綜上所述,當時脈信號/反相時脈信號的頻率低且轉換率正常時,控制信號ENext_t均會處於低邏輯狀態,故各組輸入接收器電路中之回授路徑均會切斷。 In summary, when the frequency of the clock signal / inverted clock signal is low and the conversion rate is normal, the control signal ENext_t will be in a low logic state, so the feedback path in each input receiver circuit will be cut off.
在一實施例中,當記憶體裝置進入省電狀態時,時脈信號CK_t會停止(例如第1A圖中之時脈致能信號CKE為低邏輯狀態),且時脈信號CK_t係維持在低邏輯狀態,此時反相時脈信號CK_c係維持在高邏輯狀態。因此,可利用類似的方式推論得知節點N15會處於高邏輯狀態且節點N25會處於低邏輯狀態。因此,反互斥或閘X1在節點N31之輸出為低邏輯狀態,致使P型電晶體M31導通,且節點N32會處於高邏輯狀態,並對電容C31充電。意即節點N33會處於高邏輯狀態,且經過反相器2301所產生的致能控制信號ENext_t會處於低邏輯狀態。意即,在各組輸入接收器電路中的三態反相器是關閉(高阻抗狀態)的,故回授路徑會切斷。 In one embodiment, when the memory device enters a power-saving state, the clock signal CK_t stops (for example, the clock enable signal CKE in FIG. 1A is a low logic state), and the clock signal CK_t is maintained at a low level. Logic state. At this time, the inverted clock signal CK_c is maintained in a high logic state. Therefore, it can be deduced in a similar way that node N15 will be in a high logic state and node N25 will be in a low logic state. Therefore, the output of the anti-mutex OR gate X1 at the node N31 is in a low logic state, so that the P-type transistor M31 is turned on, and the node N32 is in a high logic state, and the capacitor C31 is charged. This means that the node N33 will be in a high logic state, and the enable control signal ENext_t generated by the inverter 2301 will be in a low logic state. This means that the tri-state inverters in each input receiver circuit are turned off (high impedance state), so the feedback path will be cut off.
在一實施例中,延遲電路214及224中之RC延遲之設計是互相匹配的。若記憶體裝置例如是用於400MHz的操作頻率,則時脈信號的週期tCK=2.5ns。此時,例如可將RC延遲設計為1.25ns,其中電阻R(例如電阻R12及R22)可為2KΩ,且電容C(例如電容C11及C21)可為625fF,但本發明並不限定於上述數值。 In one embodiment, the RC delay designs in the delay circuits 214 and 224 are matched with each other. If the memory device is used for an operating frequency of 400 MHz, for example, the period of the clock signal tCK = 2.5 ns. At this time, for example, the RC delay can be designed to be 1.25ns, where the resistor R (such as resistors R12 and R22) can be 2KΩ, and the capacitor C (such as capacitors C11 and C21) can be 625fF, but the present invention is not limited to the above values .
一般來說,若時脈信號之頻率夠快,則其轉換率都不會太低。通常是頻率較低的時脈信號才會有較低的轉換率。舉例來說,本發明中之RC延遲之臨界值的設計例如可在使用一預定頻率的時脈信號時且其轉換率並未低至讓下一級的電路產生振盪,即使開啟或關閉回授路徑也不會影響到輸入接收器電路之效能。儘管致能控制信號ENext_t可能因為控制信號輸出級230之RC延遲而產生短暫的邏輯狀態變化,也不會影響到輸入接收器電路200之操作。Generally, if the frequency of the clock signal is fast enough, its conversion rate will not be too low. Usually a lower frequency clock signal will have a lower conversion rate. For example, the design of the critical value of the RC delay in the present invention can, for example, use a clock signal of a predetermined frequency and its conversion rate is not low enough to cause the next-stage circuit to oscillate, even if the feedback path is turned on or off It will not affect the performance of the input receiver circuit. Although the enable control signal ENext_t may cause a brief logic state change due to the RC delay of the control signal output stage 230, it will not affect the operation of the input receiver circuit 200.
第3圖係顯示依據本發明一實施例中之致能控制信號的時序圖。FIG. 3 is a timing diagram illustrating an enable control signal according to an embodiment of the present invention.
在前述實施例中,當時脈信號/反相時脈信號的頻率低且轉換率正常時,控制信號ENext_t均會處於低邏輯狀態,且各組輸入接收器電路中之回授路徑均會切斷。In the foregoing embodiment, when the frequency of the clock signal / inverted clock signal is low and the conversion rate is normal, the control signal ENext_t will be in a low logic state, and the feedback paths in each input receiver circuit will be cut off. .
在一實施例中,假定輸入接收器210及220之輸入時脈信號CK_t及反相時脈信號CK_c的頻率相當低(小於一預定頻率,例如50MHz)且轉換率小於一預定轉換率。在此實施例中,因為輸入時脈信號CK_t之轉換率相當低,再加上控制信號輸出級230之RC延遲之設計,所以控制信號ENext_t並無法一直維持在低邏輯狀態。In an embodiment, it is assumed that the frequencies of the input clock signal CK_t and the inverted clock signal CK_c of the input receivers 210 and 220 are relatively low (less than a predetermined frequency, such as 50 MHz) and the conversion rate is less than a predetermined conversion rate. In this embodiment, because the conversion rate of the input clock signal CK_t is quite low, and coupled with the design of the RC delay of the control signal output stage 230, the control signal ENext_t cannot always be maintained in a low logic state.
舉例來說,如第3圖所示,當輸出時脈信號CKo_t處於正緣變化時,在輸出時脈信號CKo_t之電壓上升的期間,輸出時脈信號CKo_t之電壓會因為回授路徑而產生振盪,例如在區間310為振盪範圍。類似地,當輸出時脈信號CKo_t處於負緣變化時,在輸出時脈信號CKo_t之電壓下降的期間,輸出時脈信號CKo_t之電壓會因為回授路徑而產生振盪,例如在區間320為振盪範圍。輸出反相時脈信號CKo_c亦有類似的情況發生。For example, as shown in Fig. 3, when the output clock signal CKo_t is at a positive edge change, during the voltage rise of the output clock signal CKo_t, the voltage of the output clock signal CKo_t will oscillate due to the feedback path. For example, in the interval 310, it is an oscillation range. Similarly, when the output clock signal CKo_t has a negative edge change, during the period when the voltage of the output clock signal CKo_t decreases, the voltage of the output clock signal CKo_t will oscillate due to the feedback path. For example, the interval 320 is the oscillation range. . A similar situation occurs with the output inverted clock signal CKo_c.
在控制信號輸出級230之RC延遲之設計,會讓致能控制信號ENext_t在輸出時脈信號CKo_t為高邏輯狀態(或輸出反相時脈信號CKo_c為低邏輯狀態)時,暫時地由低邏輯狀態切換至高邏輯狀態。然而,因為記憶體裝置是屬於數位電路,其指令、位址、及資料之擷取(latch)操作均是在輸出時脈信號CKo_t或輸出反相時脈信號CKo_c的正緣或負緣時進行。The design of the RC delay of the control signal output stage 230 will enable the control signal ENext_t to temporarily switch from the low logic when the output clock signal CKo_t is in a high logic state (or the output inverted clock signal CKo_c is in a low logic state). The state switches to a high logic state. However, because the memory device is a digital circuit, its instructions, addresses, and data acquisition operations are performed when the positive or negative edge of the clock signal CKo_t or the inverted clock signal CKo_c is output. .
詳細而言,當致能控制信號ENext_t暫時地由低邏輯狀態切換至高邏輯狀態,並不在輸出時脈信號CKo_t或輸出反相時脈信號CKo_c之正緣或負緣變化時,故後端電路在擷取指令、位址、及資料時並不會擷取到致能控制信號ENext_t暫時的高邏輯狀態,故不會對記憶體裝置100之操作造成影響。In detail, when the enable control signal ENext_t is temporarily switched from a low logic state to a high logic state, and does not change when the positive or negative edge of the clock signal CKo_t or the output inverted clock signal CKo_c is changed, the back-end circuit is at When the instructions, addresses, and data are retrieved, the temporary high logic state of the enable control signal ENext_t is not retrieved, so it will not affect the operation of the memory device 100.
第4圖係顯示依據本發明一實施例中之適應性回授方法的流程圖。請同時參考第4圖及第2A圖。FIG. 4 is a flowchart illustrating an adaptive feedback method according to an embodiment of the present invention. Please refer to Figure 4 and Figure 2A at the same time.
在步驟S410,提供一時脈信號及一反相時脈信號至一第一輸入接收器電路。第一輸入接收器電路例如為輸入時脈接收器電路200。In step S410, a clock signal and an inverted clock signal are provided to a first input receiver circuit. The first input receiver circuit is, for example, an input clock receiver circuit 200.
在步驟S420,利用該第一輸入接收器電路產生一致能控制信號以控制在該第一輸入接收器電路之回授路徑。舉例來說,輸入時脈接收器電路200包括輸入接收器210及220,且輸入接收器210及220係分別透過其延遲電路214及224將差動放大器211及221之輸出信號經過RC延遲後分別產生第一延遲信號及第二延遲信號再傳送至控制信號輸出級230。第一延遲信號及第二延遲信號並經過控制信號輸出級230中之反互斥或閘X1及RC延遲以產生致能控制信號ENext_t。其中,致能控制信號例如可經由第2C圖中之信號產生電路250以產生控制信號EN_c及EN_t。In step S420, the first input receiver circuit is used to generate a uniform energy control signal to control the feedback path in the first input receiver circuit. For example, the input clock receiver circuit 200 includes input receivers 210 and 220, and the input receivers 210 and 220 respectively delay the output signals of the differential amplifiers 211 and 221 through their delay circuits 214 and 224, respectively, after RC delay. The first delay signal and the second delay signal are generated and then transmitted to the control signal output stage 230. The first delay signal and the second delay signal are delayed by the anti-mutex OR gate X1 and RC in the control signal output stage 230 to generate the enable control signal ENext_t. The enable control signal may be generated by the signal generating circuit 250 in FIG. 2C to generate the control signals EN_c and EN_t.
在步驟S430,當該時脈信號及該反相時脈信號之頻率高於或等於一預定頻率,該致能控制信號係開啟該第一輸入接收器電路及各第二輸入接收器電路之回授路徑。In step S430, when the frequencies of the clock signal and the inverted clock signal are higher than or equal to a predetermined frequency, the enable control signal turns on the first input receiver circuit and the second input receiver circuit. Grant path.
在步驟S440,當該時脈信號及該反相時脈信號之頻率低於預定頻率,該致能控制信號係關閉該第一輸入接收器電路及各第二輸入接收器電路之回授路徑。In step S440, when the frequencies of the clock signal and the inverted clock signal are lower than a predetermined frequency, the enable control signal closes the feedback paths of the first input receiver circuit and each second input receiver circuit.
綜上所述,本發明係提供一種輸入接收器電路及適應性回授方法,其中輸入接收器電路可利用時脈信號及反向時脈信號產生相應的延遲信號,再經過邏輯運算及適當的RC延遲後可產生致能控制信號,且當時脈信號之頻率高於或等於預定頻率時,可依據致能控制信號以開啟輸入接收器電路及在記憶體裝置中之其他接收器電路之回授路徑。當時脈信號之頻率低於預定頻率時,可依據致能控制信號以關閉輸入接收器電路及在記憶體裝置中之其他接收器電路之回授路徑,使得記憶體裝置中之後端裝置在時脈信號之頻率低時不會在時脈信號產生振盪的期間擷取到相應的輸入信號,以確保記憶體裝置能夠正常運作。In summary, the present invention provides an input receiver circuit and an adaptive feedback method, wherein the input receiver circuit can use the clock signal and the reverse clock signal to generate a corresponding delayed signal, and then perform logical operations and appropriate After the RC delay, an enabling control signal can be generated, and when the frequency of the clock signal is higher than or equal to the predetermined frequency, the feedback of the input receiver circuit and other receiver circuits in the memory device can be turned on according to the enabling control signal. path. When the frequency of the clock signal is lower than the predetermined frequency, the feedback path of the input receiver circuit and other receiver circuits in the memory device can be closed according to the enable control signal, so that the rear device in the memory device is in the clock When the frequency of the signal is low, the corresponding input signal will not be captured during the period when the clock signal is oscillating to ensure that the memory device can operate normally.
於權利要求中使用如"第一"、"第二"、"第三"等詞係用來修飾權利要求中的元件,並非用來表示之間具有優先權順序,先行關係,或者是一個元件先於另一個元件,或者是執行方法步驟時的時間先後順序,僅用來區別具有相同名字的元件。The use of words such as "first", "second", "third" in claims is used to modify elements in the claims, and is not used to indicate that there is a priority order, antecedent relationship, or an element between claims Preceding another element, or chronological order when performing a method step, is only used to distinguish elements with the same name.
本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed as above with a preferred embodiment, it is not intended to limit the scope of the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Retouching, so the scope of protection of the present invention shall be determined by the scope of the attached patent application.
100‧‧‧記憶體裝置100‧‧‧Memory device
110‧‧‧輸入接收器電路 110‧‧‧input receiver circuit
120‧‧‧控制邏輯 120‧‧‧Control logic
130‧‧‧記憶單元陣列 130‧‧‧memory cell array
200‧‧‧輸入接收器電路 200‧‧‧ input receiver circuit
250‧‧‧信號產生電路 250‧‧‧ signal generating circuit
CK_t‧‧‧時脈信號 CK_t‧‧‧clock signal
CK_c‧‧‧反相時脈信號 CK_c‧‧‧ Inverted clock signal
CKE‧‧‧時脈致能信號 CKE‧‧‧Clock enable signal
CS‧‧‧晶片選擇信號 CS‧‧‧Chip Select Signal
RAS‧‧‧列地址選通信號 RAS‧‧‧column address strobe signal
CAS‧‧‧行地址選通信號 CAS‧‧‧row address strobe signal
WE‧‧‧寫入致能信號 WE‧‧‧ write enable signal
A0-A13‧‧‧指令位址 A0-A13‧‧‧Command address
BA0-BA2‧‧‧記憶體組位址 BA0-BA2‧‧‧Memory group address
DQ0-DQ31‧‧‧資料信號 DQ0-DQ31‧‧‧Data signal
DQS0-DQS3‧‧‧資料選通信號 DQS0-DQS3‧‧‧Data strobe signal
IN‧‧‧輸入信號 IN‧‧‧Input signal
INo‧‧‧輸出信號 INo‧‧‧ output signal
Vref‧‧‧參考電壓 Vref‧‧‧Reference voltage
111‧‧‧差動放大器 111‧‧‧ Differential Amplifier
112‧‧‧緩衝器電路 112‧‧‧Buffer circuit
1121、1122‧‧‧反相器 1121, 1122‧‧‧ Inverter
1123‧‧‧三態反相器 1123‧‧‧Three-state inverter
N1、N2‧‧‧節點 N1, N2‧‧‧nodes
113‧‧‧回授路徑 113‧‧‧ Feedback Path
R1‧‧‧電阻 R1‧‧‧ resistance
EN_c‧‧‧控制信號 EN_c‧‧‧Control signal
EN_t‧‧‧反向控制信號 EN_t‧‧‧Reverse control signal
M0-M10‧‧‧電晶體 M0-M10‧‧‧Transistors
VDD‧‧‧電壓 VDD‧‧‧Voltage
EN‧‧‧致能信號 EN‧‧‧Enable signal
1101-1103‧‧‧反相器 1101-1103‧‧‧ Inverter
DQ‧‧‧輸入信號 DQ‧‧‧ input signal
DQo‧‧‧輸出信號 DQo‧‧‧ output signal
210、220‧‧‧輸入接收器 210, 220‧‧‧ input receiver
211、221‧‧‧差動放大器 211, 221‧‧‧ Differential amplifier
212、222‧‧‧緩衝器電路 212, 222‧‧‧Buffer circuit
213、223‧‧‧回授路徑 213, 223‧‧‧ feedback path
214、224‧‧‧延遲電路 214, 224‧‧‧ Delay circuit
230‧‧‧控制信號輸出級 230‧‧‧Control signal output stage
2121-2122、2221-2222、2141、2241、2301、251、252‧‧‧反相器 2121-2122, 2221-2222, 2141, 2241, 2301, 251, 252‧‧‧ inverters
2123、2223‧‧‧三態反相器 2123, 2223‧‧‧ three-state inverter
R11、R12、R21、R22、R31‧‧‧電阻 R11, R12, R21, R22, R31‧‧‧ resistance
N11-N15、N21-N25、N31-N33‧‧‧節點 N11-N15, N21-N25, N31-N33‧‧‧nodes
M11、M12、M21、M22、M31、M32‧‧‧電晶體 M11, M12, M21, M22, M31, M32 ‧‧‧ Transistors
CKo_t‧‧‧輸出時脈信號 CKo_t‧‧‧Output clock signal
CKo_c‧‧‧輸出反相時脈信號 CKo_c‧‧‧ output inverted clock signal
X1‧‧‧反互斥或閘 X1‧‧‧Anti-mutual exclusion or brake
C11、C21、C31‧‧‧電容 C11, C21, C31‧‧‧Capacitors
EN*‧‧‧致能信號 EN * ‧‧‧Enable signal
M51-M67‧‧‧電晶體 M51-M67‧‧‧Transistors
R51-R56‧‧‧電阻 R51-R56‧‧‧Resistor
21‧‧‧靜電放電保護電路 21‧‧‧ Electrostatic discharge protection circuit
ENext_t‧‧‧致能控制信號 ENext_t‧‧‧ Enable control signal
310、320‧‧‧區間 310, 320‧‧‧ range
S410-S440‧‧‧步驟 S410-S440‧‧‧Steps
第1A圖係顯示依據本發明一實施例中之記憶體裝置的示意圖。 FIG. 1A is a schematic diagram showing a memory device according to an embodiment of the present invention.
第1B圖係顯示依據本發明一實施例中之輸入接收器電路110的示意圖。 第1C圖係顯示依據本發明一實施例中之差動放大器111的電路圖。 第2A圖係顯示依據本發明一實施例中之輸入接收器電路200的示意圖。 第2B圖係顯示依據本發明第2A圖之實施例中之差動放大器的電路圖。 第2C圖係顯示依據本發明一實施例中之信號產生電路的示意圖。 第3圖係顯示依據本發明一實施例中之致能控制信號的時序圖。 第4圖係顯示依據本發明一實施例中之適應性回授方法的流程圖。FIG. 1B is a schematic diagram showing an input receiver circuit 110 according to an embodiment of the present invention. FIG. 1C is a circuit diagram showing a differential amplifier 111 according to an embodiment of the present invention. FIG. 2A is a schematic diagram showing an input receiver circuit 200 according to an embodiment of the present invention. Fig. 2B is a circuit diagram showing a differential amplifier in the embodiment according to Fig. 2A of the present invention. FIG. 2C is a schematic diagram showing a signal generating circuit according to an embodiment of the present invention. FIG. 3 is a timing diagram illustrating an enable control signal according to an embodiment of the present invention. FIG. 4 is a flowchart illustrating an adaptive feedback method according to an embodiment of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107125279A TWI665869B (en) | 2018-07-23 | 2018-07-23 | Input receiver circuit and adaptive feedback method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107125279A TWI665869B (en) | 2018-07-23 | 2018-07-23 | Input receiver circuit and adaptive feedback method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI665869B true TWI665869B (en) | 2019-07-11 |
TW202008722A TW202008722A (en) | 2020-02-16 |
Family
ID=68049619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107125279A TWI665869B (en) | 2018-07-23 | 2018-07-23 | Input receiver circuit and adaptive feedback method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI665869B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7668567B2 (en) * | 1999-10-20 | 2010-02-23 | Toupin Paul M | Single action audio prompt interface utilising binary state time domain multiple selection protocol |
US8827166B2 (en) * | 2009-06-12 | 2014-09-09 | Keio University | Sealed semiconductor recording medium and sealed semiconductor memory |
-
2018
- 2018-07-23 TW TW107125279A patent/TWI665869B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7668567B2 (en) * | 1999-10-20 | 2010-02-23 | Toupin Paul M | Single action audio prompt interface utilising binary state time domain multiple selection protocol |
US8827166B2 (en) * | 2009-06-12 | 2014-09-09 | Keio University | Sealed semiconductor recording medium and sealed semiconductor memory |
Also Published As
Publication number | Publication date |
---|---|
TW202008722A (en) | 2020-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8891318B2 (en) | Semiconductor device having level shift circuit | |
US7512033B2 (en) | Apparatus and method for controlling clock signal in semiconductor memory device | |
US8953409B2 (en) | Semiconductor device capable of minimizing mutual effects between two different operations therein | |
JP4040140B2 (en) | Semiconductor device and access time adjustment method thereof | |
US8503256B2 (en) | Column command buffer and latency circuit including the same | |
US10762950B2 (en) | Buffer control circuit of memory device | |
CN111149163B (en) | Apparatus and method for data transmission offset value in burst transmission | |
US7394707B2 (en) | Programmable data strobe enable architecture for DDR memory applications | |
JP4263818B2 (en) | Semiconductor integrated circuit | |
US5999483A (en) | Semiconductor circuit device operating in synchronization with clock signal | |
US7103126B2 (en) | Method and circuit for adjusting the timing of output data based on the current and future states of the output data | |
US8856577B2 (en) | Semiconductor device having multiplexer | |
US6973001B1 (en) | Semiconductor integrated circuit capable of adjusting the operation timing of an internal circuit based on operating environments | |
US9041436B2 (en) | Semiconductor device having pull-up circuit and pull-down circuit | |
US6952370B2 (en) | Data output buffer capable of controlling data valid window in semiconductor memory devices | |
US10778164B2 (en) | Input receiver circuit and adaptive feedback method | |
WO2000022626A1 (en) | Semiconductor device | |
US10985738B1 (en) | High-speed level shifter | |
TWI665869B (en) | Input receiver circuit and adaptive feedback method | |
US6922372B2 (en) | Synchronous semiconductor memory device having stable data output timing | |
CN110827885B (en) | Input receiver circuit and adaptive feedback method | |
US8653874B2 (en) | Semiconductor device generates complementary output signals | |
US20240248861A1 (en) | Current-Controlled Buffer Using Analog Bias | |
US11227650B1 (en) | Delay circuitry with reduced instabilities | |
US11276468B2 (en) | High-speed efficient level shifter |