TWI665538B - A vehicle performing obstacle avoidance operation and recording medium storing computer program thereof - Google Patents

A vehicle performing obstacle avoidance operation and recording medium storing computer program thereof Download PDF

Info

Publication number
TWI665538B
TWI665538B TW106143624A TW106143624A TWI665538B TW I665538 B TWI665538 B TW I665538B TW 106143624 A TW106143624 A TW 106143624A TW 106143624 A TW106143624 A TW 106143624A TW I665538 B TWI665538 B TW I665538B
Authority
TW
Taiwan
Prior art keywords
path
detour
obstacle
moving
moving body
Prior art date
Application number
TW106143624A
Other languages
Chinese (zh)
Other versions
TW201833702A (en
Inventor
赤松政弘
佐藤俊太
阪井健
大野良治
Original Assignee
日商日本電產新寶股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本電產新寶股份有限公司 filed Critical 日商日本電產新寶股份有限公司
Publication of TW201833702A publication Critical patent/TW201833702A/en
Application granted granted Critical
Publication of TWI665538B publication Critical patent/TWI665538B/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一種移動體,具有:複數個驅動輪,以複數個馬達來驅動;障礙物感測器;外界感測器,重複掃瞄環境並按每次掃瞄來輸出感測器資料;位置推定裝置,根據感測器資料,依序生成並輸出移動體的位置資訊;控制電路,一邊參考該位置資訊一邊控制移動體的移動;及儲存裝置,儲存規定基準迂迴路徑的迂迴路徑資料,該基準迂迴路徑是有關於第1方向的第1路徑、以及有關於和第1方向不同的第2方向之第2路徑的組合。於移動體沿著事先設定的移動路徑移動的期間,藉由障礙物感測器的輸出,而在第1位置上檢測到在行進方向上存在有障礙物時,控制電路會利用迂迴路徑資料,來設定由事先設定之移動路徑上的第1位置到第2位置的迂迴路徑,並使移動體沿著迂迴路徑移動。 A moving body includes: a plurality of driving wheels, which are driven by a plurality of motors; an obstacle sensor; an external sensor, which repeatedly scans the environment and outputs sensor data in each scan; According to the sensor data, sequentially generate and output the position information of the moving body; the control circuit controls the movement of the moving body while referring to the position information; and the storage device stores the detour path data defining the reference detour path, the reference detour path It is a combination of a first path related to the first direction and a second path related to the second direction different from the first direction. While the moving body is moving along a preset movement path, the output of the obstacle sensor detects an obstacle in the traveling direction at the first position, and the control circuit uses the detour path data. A detour path from a first position to a second position on a previously set movement path is set, and the moving body is moved along the detour path.

Description

進行障礙物之迴避動作的移動體及記錄其之電腦程式的記錄媒體 Moving body performing obstacle avoidance action and recording medium of computer program recording the same 發明領域 Field of invention

本揭示是有關於一種進行障礙物之迴避動作的移動體。 The present disclosure relates to a moving body that performs an avoidance action of an obstacle.

發明背景 Background of the invention

無人搬送車或移動機器人等之移動體的研究及開發正持續進行中。例如日本專利特開2009-223634號公報、日本專利特開2009-205652號公報、及日本專利特開2005-242489號公報揭示有控制各移動體的移動之系統,該系統是將各移動體的移動控制成不使複數個自主移動體彼此衝撞。 Research and development of moving bodies such as unmanned transport vehicles and mobile robots are ongoing. For example, Japanese Patent Laid-Open No. 2009-223634, Japanese Patent Laid-Open No. 2009-205652, and Japanese Patent Laid-Open No. 2005-242489 disclose systems that control the movement of each moving body. The movement is controlled so that a plurality of autonomous moving bodies do not collide with each other.

專利文獻 Patent literature

專利文獻1:日本專利特開2009-223634號公報 Patent Document 1: Japanese Patent Laid-Open No. 2009-223634

專利文獻2:日本專利特開2009-205652號公報 Patent Document 2: Japanese Patent Laid-Open No. 2009-205652

專利文獻3:日本專利特開2005-242489號公報 Patent Document 3: Japanese Patent Laid-Open No. 2005-242489

發明概要 Summary of invention

本揭示的並非限定性之例示性的某個實施形態,是提供下述之技術:在移動路徑上存在有障礙物的情況下,讓移動體順暢地迴避障礙物。 The present disclosure does not limit a certain exemplary embodiment, but provides a technique for allowing a moving body to smoothly avoid obstacles when there are obstacles on a moving path.

本揭示之例示性的實施形態之移動體,是可自主地移動之移動體,該移動體具備有:複數個驅動輪;複數個馬達,各自連接於前述複數個驅動輪;障礙物感測器,檢測障礙物;外界感測器,重複掃瞄環境,且按每次掃瞄而輸出感測器資料;位置推定裝置,根據前述感測器資料,依序生成並輸出位置資訊,該位置資訊是表示前述移動體的位置及朝向方向的推定值之資訊;控制電路,一邊參考由前述位置推定裝置所輸出的前述位置資訊,一邊使前述複數個馬達旋轉,以控制前述移動體的移動;及儲存裝置,儲存規定有基準迂迴路徑的迂迴路徑資料,該基準迂迴路徑是有關於第1方向的第1路徑、以及有關於和前述第1方向不同的第2方向的第2路徑之組合,前述移動體於沿著事先設定的移動路徑移動的期 間,藉由前述障礙物感測器的輸出,而在第1位置上檢測到在行進方向上存在有障礙物時,前述控制電路會利用前述迂迴路徑資料,來設定從前述事先設定之移動路徑上的前述第1位置到第2位置的迂迴路徑,並使前述移動體沿著前述迂迴路徑移動。 The moving body of the exemplary embodiment of the present disclosure is a moving body that can move autonomously, and the moving body is provided with: a plurality of driving wheels; a plurality of motors, each of which is connected to the plurality of driving wheels; an obstacle sensor , Detecting obstacles; external sensors, repeatedly scanning the environment, and outputting sensor data for each scan; position estimation device, based on the aforementioned sensor data, sequentially generates and outputs position information, the position information Is information indicating estimated values of the position and orientation of the moving body; the control circuit controls the movement of the moving body while rotating the plurality of motors while referring to the position information output by the position estimating device; and The storage device stores detour data defining a reference detour, which is a combination of a first path in a first direction and a second path in a second direction different from the first direction. Period during which the moving body moves along a preset movement path In the meantime, when an obstacle is detected in the traveling direction at the first position based on the output of the obstacle sensor, the control circuit uses the circuitous path data to set a movement path from the previously set path. A detour path from the first position to the second position above, and the moving body is moved along the detour path.

根據本揭示的實施形態,於移動體沿著事先設定的移動路徑來移動的期間,藉由障礙物感測器的輸出,而在第1位置上檢測到在行進方向上存在有障礙物時,控制電路會利用迂迴路徑資料,來設定由事先設定之移動路徑上的第1位置到第2位置的迂迴路徑,並使移動體沿著迂迴路徑移動。迂迴路徑是藉由基準迂迴路徑而規定,該基準迂迴路徑是有關於第1方向的第1路徑、以及有關於和第1方向不同的第2方向之第2路徑的組合。藉此,可將迂迴路徑的設定簡單化。 According to the embodiment of the present disclosure, when an obstacle is detected at the first position at the first position by the output of the obstacle sensor while the mobile body is moving along a preset movement path, The control circuit uses the detour path data to set a detour path from the first position to the second position on the previously set movement path, and moves the moving body along the detour path. The detour path is defined by a reference detour path, which is a combination of a first path related to the first direction and a second path related to the second direction different from the first direction. This simplifies the setting of the detour.

1‧‧‧使用者 1‧‧‧ users

2、2a、2b‧‧‧存取點 2, 2a, 2b ‧‧‧ access points

3‧‧‧交換式集線器 3‧‧‧ Switching Hub

4‧‧‧反射點 4‧‧‧ reflection point

5‧‧‧牽引台車 5‧‧‧traction trolley

6‧‧‧板件 6‧‧‧ plates

7‧‧‧導軌 7‧‧‧rail

10、10a、10b、10c‧‧‧AGV(移動體) 10, 10a, 10b, 10c‧‧‧AGV (moving body)

11a、11b‧‧‧驅動輪(車輪) 11a, 11b‧‧‧Drive wheel (wheel)

11c、11d、11e、11f‧‧‧腳輪 11c, 11d, 11e, 11f

12‧‧‧框架 12‧‧‧Frame

13‧‧‧搬送台 13‧‧‧ transfer station

14‧‧‧行走控制裝置 14‧‧‧ Walking control device

14a‧‧‧微電腦 14a‧‧‧Microcomputer

14b、52‧‧‧記憶體 14b, 52‧‧‧Memory

14c‧‧‧儲存裝置 14c‧‧‧Storage Device

14d、54‧‧‧通訊電路 14d, 54‧‧‧communication circuit

14e‧‧‧位置推定裝置 14e‧‧‧Position estimation device

14f、57‧‧‧通訊匯流排 14f, 57‧‧‧communication bus

14g‧‧‧晶片電路 14g‧‧‧chip circuit

14h‧‧‧雷射定位系統 14h‧‧‧laser positioning system

14j‧‧‧障礙物感測器 14j‧‧‧obstacle sensor

15‧‧‧雷射測距儀 15‧‧‧laser rangefinder

15a‧‧‧雷射光束 15a‧‧‧laser beam

16a、16b‧‧‧馬達 16a, 16b‧‧‧motor

17‧‧‧驅動裝置 17‧‧‧Drive

17a、17b‧‧‧馬達驅動電路 17a, 17b‧‧‧motor drive circuit

18‧‧‧編碼單元 18‧‧‧ coding unit

18a‧‧‧第1旋轉編碼器 18a‧‧‧1st rotary encoder

18b‧‧‧第2旋轉編碼器 18b‧‧‧2nd rotary encoder

20‧‧‧終端裝置(平板電腦等之移動式電腦) 20‧‧‧Terminal devices (mobile computers such as tablets)

40‧‧‧地圖 40‧‧‧ Map

50‧‧‧運行管理裝置 50‧‧‧operation management device

51‧‧‧CPU 51‧‧‧CPU

53‧‧‧位置資料庫(位置DB) 53‧‧‧Location database (location DB)

55‧‧‧地圖資料庫(地圖DB) 55‧‧‧Map Database (Map DB)

56‧‧‧圖像處理電路 56‧‧‧Image Processing Circuit

58‧‧‧監視器 58‧‧‧Monitor

70、70a、70b、70p、70q‧‧‧障礙物 70, 70a, 70b, 70p, 70q‧‧‧ obstacles

100‧‧‧移動體管理系統 100‧‧‧ Mobile Management System

a、a0、a1‧‧‧判定動作 a, a0, a1‧‧‧ Judgment action

b、b1、b2‧‧‧移動動作 b, b1, b2‧‧‧ move action

B、Bright、Bleft、b1~b3‧‧‧迂迴路徑 B, B right , B left , b1 ~ b3‧‧‧ detour

Bd‧‧‧迂迴路徑資料 Bd‧‧‧ Detour data

c、c1‧‧‧方向轉換動作 c, c1‧‧‧ Direction change action

D1、D2‧‧‧距離 D1, D2‧‧‧ distance

Dmax1‧‧‧第1最大容許距離 Dmax1‧‧‧The first maximum allowable distance

Dmax2‧‧‧第2最大容許距離 Dmax2‧‧‧2nd maximum allowable distance

G‧‧‧終點 G‧‧‧ Finish

M‧‧‧地圖資料 M‧‧‧Map Information

M1、M2、M3、M4‧‧‧局部地圖資料 M1, M2, M3, M4 ‧‧‧ partial map data

M1、M2、M3、Mn、Mn+1、P1~P4‧‧‧位置 M 1 、 M 2 、 M 3 、 M n 、 M n + 1 、 P1 ~ P4‧‧‧Position

R‧‧‧移動路徑 R‧‧‧moving path

RD‧‧‧移動路徑資料 RD‧‧‧Movement data

S‧‧‧起點 S‧‧‧ starting point

S’‧‧‧移動空間 S’‧‧‧ mobile space

S10、S12、S14、S16、S18、S20、S22、S24、S26、S28、S30、S32、S34、S36、S38、S40、S50、S52、S54‧‧‧步驟 S10, S12, S14, S16, S18, S20, S22, S24, S26, S28, S30, S32, S34, S36, S38, S40, S50, S52, S54‧‧‧ steps

圖1A是顯示AGV的一般行走時的移動路徑之圖。 FIG. 1A is a diagram showing a movement path during general walking of the AGV.

圖1B是顯示AGV檢測到障礙物時的停止動作之圖。 FIG. 1B is a diagram showing a stop operation when an AGV detects an obstacle.

圖1C是顯示AGV的障礙物迴避動作之圖。 FIG. 1C is a diagram showing an obstacle avoidance operation of the AGV.

圖1D是用於說明基準迂迴路徑的圖。 FIG. 1D is a diagram for explaining a reference detour.

圖2是顯示移動體管理系統100之基本構成例的圖。 FIG. 2 is a diagram showing a basic configuration example of the mobile management system 100.

圖3是顯示AGV存在的移動空間S’之一例的圖。 Fig. 3 is a diagram showing an example of a moving space S 'where an AGV exists.

圖4A是顯示連接前的AGV及牽引台車的圖。 FIG. 4A is a diagram showing an AGV and a traction trolley before connection.

圖4B是顯示已連接的AGV及牽引台車的圖。 FIG. 4B is a diagram showing a connected AGV and a traction trolley.

圖5是本實施形態之例示性的AGV之外觀圖。 FIG. 5 is an external view of an exemplary AGV according to this embodiment.

圖6A是顯示AGV的第1硬體構成例之圖。 FIG. 6A is a diagram showing a first hardware configuration example of an AGV.

圖6B是顯示AGV的第2硬體構成例之圖。 6B is a diagram showing a second hardware configuration example of the AGV.

圖7A是顯示一邊移動一邊生成地圖的AGV之圖。 FIG. 7A is a diagram showing an AGV that generates a map while moving.

圖7B是顯示一邊移動一邊生成地圖的AGV之圖。 FIG. 7B is a diagram showing an AGV that generates a map while moving.

圖7C是顯示一邊移動一邊生成地圖的AGV之圖。 FIG. 7C is a diagram showing an AGV that generates a map while moving.

圖7D是顯示一邊移動一邊生成地圖的AGV之圖。 FIG. 7D is a diagram showing an AGV that generates a map while moving.

圖7E是顯示一邊移動一邊生成地圖的AGV之圖。 FIG. 7E is a diagram showing an AGV that generates a map while moving.

圖7F是示意地顯示已完成的地圖的一部分之圖。 FIG. 7F is a diagram schematically showing a part of the completed map.

圖8是顯示藉由複數個局部地圖來構成1個樓層的地圖的例子之圖。 FIG. 8 is a diagram showing an example of a map constituting one floor by a plurality of partial maps.

圖9是顯示運行管理裝置的硬體構成例之圖。 FIG. 9 is a diagram showing an example of a hardware configuration of the operation management device.

圖10是示意地顯示藉由運行管理裝置決定的AGV的移動路徑之一例的圖。 FIG. 10 is a diagram schematically showing an example of an AGV movement path determined by the operation management device.

圖11A是顯示在移動路徑R上存在有障礙物70的情況之迂迴路徑B的例子之圖。 FIG. 11A is a diagram showing an example of a detour route B when an obstacle 70 is present on the movement route R. FIG.

圖11B是用於說明有關於移動體10進行的障礙物檢測動作及迂迴動作之圖式上的表記之圖。 FIG. 11B is a diagram for describing notations on the diagram regarding the obstacle detection operation and the detour operation performed by the mobile body 10.

圖12是顯示存在有複數個障礙物70a的情況之迂迴路徑的例子之圖。 FIG. 12 is a diagram showing an example of a roundabout path when a plurality of obstacles 70a are present.

圖13是顯示存在有複數個障礙物70a的情況之迂迴路徑的例子之圖。 FIG. 13 is a diagram showing an example of a roundabout path when a plurality of obstacles 70a are present.

圖14是顯示存在有複數個障礙物70a的情況之迂迴路 徑的例子之圖。 FIG. 14 is a circuit diagram showing a case where a plurality of obstacles 70a are present. Illustration of trail example.

圖15是顯示無法進行返回到當初的移動路徑R之3個例子的圖。 FIG. 15 is a diagram showing three examples of the movement path R that cannot be returned to the original.

圖16是顯示無法進行返回到當初的移動路徑R之3個例子的圖。 FIG. 16 is a diagram showing three examples of the movement path R that cannot be returned to the original.

圖17是顯示無法進行返回到當初的移動路徑R之3個例子的圖。 FIG. 17 is a diagram showing three examples of the movement path R that cannot be returned to the original.

圖18A是顯示由例示性的實施形態所進行之微電腦14a的處理之順序的流程圖。 FIG. 18A is a flowchart showing a processing procedure of the microcomputer 14a performed by the exemplary embodiment.

圖18B是顯示由例示性的實施形態所進行之微電腦14a的處理之順序的流程圖。 FIG. 18B is a flowchart showing a processing procedure of the microcomputer 14a performed by the exemplary embodiment.

圖19A是用於說明由其他例子所進行的移動體10之動作例的圖。 FIG. 19A is a diagram for explaining an operation example of the mobile body 10 performed by another example.

圖19B是用於說明由其他例子所進行的移動體10之動作例的圖。 FIG. 19B is a diagram for explaining an operation example of the moving body 10 performed by another example.

圖19C是用於說明由其他例子所進行的移動體10之動作例的圖。 FIG. 19C is a diagram for explaining an operation example of the mobile body 10 performed by another example.

圖19D是用於說明由其他例子所進行的移動體10之動作例的圖。 FIG. 19D is a diagram for explaining an operation example of the moving body 10 performed by another example.

圖19E是用於說明由其他例子所進行的移動體10之動作例的圖。 FIG. 19E is a diagram for explaining an operation example of the moving body 10 performed by another example.

圖20是顯示由例示性的其他實施形態所進行之微電腦14a的處理之順序的流程圖。 FIG. 20 is a flowchart showing a procedure of processing performed by the microcomputer 14a according to another exemplary embodiment.

用以實施發明之形態 Forms used to implement the invention

<用語> <Terms>

「無人搬送車」(AGV)是指以人力或自動方式將貨物裝載到本體中,且自動行走到所指示的場所,再以人力或自動方式來進行卸貨的無軌道車輛。「無人搬送車」包含無人牽引車及無人叉架升降機(forklift)。 "Unmanned delivery vehicle" (AGV) refers to a trackless vehicle that loads goods into the body by human or automatic means, and automatically walks to the indicated location, and then unloads the goods by human or automatic means. "Unmanned transport vehicle" includes unmanned tractor and unmanned forklift.

「無人」的用語所指的是在車輛的操縱上設成不需要人來進行的情形,並不排除無人搬送車搬送「人(例如進行貨物的裝卸的人員)」之情形。 The term "unmanned" refers to a situation in which the operation of a vehicle is set up so that no one is required to perform it, and it does not exclude the case where an unmanned delivery vehicle transports "a person (such as a person performing loading and unloading of goods)".

「無人牽引車」是指牽引以人力或自動方式來進行貨物的裝載卸載的台車,並自動行走到所指示的場所之無軌道車輛。 "Unmanned tractor" refers to a trolley that pulls a cargo or unloaded cargo in a manual or automatic manner and automatically walks to the indicated location.

「無人叉架升降機」是指具備有使貨物移載用的叉架等上下移動的桅桿,且將貨物自動移載到叉架等並自動行走到所指示的場所,而進行自動貨運作業的無軌道車輛。 "Unmanned forklift" refers to a trackless track with automatic masts that has a mast that moves up and down the forklift and other goods, and automatically moves the goods to the forklift and the like and walks to the indicated place. vehicle.

「無軌道車輛」是指具備有車輪、及使車輪旋轉的電氣馬達或引擎之移動體(vehicle)。 A "trackless vehicle" refers to a vehicle having wheels and an electric motor or engine that rotates the wheels.

「移動體」是指裝載人或貨物而移動之裝置,並具備有產生移動用的驅動力(traction)之車輪、二足或多足步行裝置、及螺旋槳(propeller)等之驅動裝置。本揭示中的「移動體」之用語,不僅包含狹義的無人搬送車,還包含移動型機器人、服務型機器人、及無人機(drone)。 A "moving body" refers to a device that moves by carrying a person or a cargo, and includes a wheel, a biped or multipedestal walking device that generates a driving force for movement, a propeller, and a propeller. The term "mobile body" in this disclosure includes not only a narrow unmanned transport vehicle, but also a mobile robot, a service robot, and a drone.

「自動行走」包含下述兩種行走:無人搬送 車根據藉由通訊而連接的電腦之運行管理系統的指令之行走、及無人搬送車根據所具備的控制裝置進行之自主性的行走。在自主性的行走中,不僅包含無人搬送車沿著規定的路徑而朝向目的地之行走,也包含追隨於追踪目標的行走。又,無人搬送車也可以進行暫時根據作業人員的指示之手動行走。雖然「自動行走」一般而言包含「導引式」的行走及「無導引式」的行走之兩者,但在本揭示中是指「無導引式」的行走。 "Automatic walking" includes the following two types of walking: unmanned transport The vehicle walks according to the instructions of the computer's operation management system connected by communication, and the unmanned transport vehicle autonomously walks according to the control device it has. Autonomous walking includes not only walking by an unmanned transport vehicle along a predetermined path toward a destination, but also walking following a tracking target. In addition, the unmanned transport vehicle may perform manual walking temporarily in accordance with the instructions of the operator. Although "automatic walking" generally includes both "guided" walking and "unguided" walking, in this disclosure it refers to "unguided" walking.

「導引式」是連續地或間斷地設置誘導體,以利用誘導體來誘導無人搬送車的方式。 "Guided" is a method of continuously or intermittently setting an inducer to use the inducer to induce an unmanned transport vehicle.

「無導引式」是在不設置誘導體的情形下來進行誘導之方式。本揭示的實施形態中的無人搬送車具備有本身位置推定裝置,且能夠以無導引式方式來行走。 "Non-guided" is a method of induction without setting an inducer. The unmanned transport vehicle according to the embodiment of the present disclosure is equipped with its own position estimation device, and can walk in a non-guided manner.

「本身位置推定裝置」是根據感測器資料來推定環境地圖上的本身位置之裝置,其中該感測器資料是藉由雷射測距儀(laser range finder)等之外界感測器所取得的資料。 "Self-position estimation device" is a device that estimates its own position on the environment map based on sensor data, where the sensor data is obtained by an outer-boundary sensor such as a laser range finder data of.

「外界感測器」是感測移動體之外部的狀態之感測器。在外界感測器中,有例如雷射測距儀(也稱為三維掃瞄儀)、相機(或影像感測器)、LIDAR(光學雷達,Light Detection and Ranging)、毫米波雷達、超音波感測器、及磁性感測器。 The "outside sensor" is a sensor that senses a state outside the moving body. Among the external sensors, there are, for example, a laser rangefinder (also called a three-dimensional scanner), a camera (or an image sensor), a LIDAR (Light Detection and Ranging), a millimeter-wave radar, and an ultrasonic wave. Sensors and magnetic sensors.

「內置感測器」是感測移動體之內部的狀態之感測器。在內置感測器中,有例如旋轉編碼器(以下有時 會簡稱為「編碼器」)、加速度感測器、及角加速度感測器(例如陀螺儀感測器)。 The "built-in sensor" is a sensor that senses the state inside the moving body. Examples of built-in sensors include rotary encoders (sometimes Will be referred to simply as "encoder"), acceleration sensors, and angular acceleration sensors (such as gyroscope sensors).

「SLAM(同步定位與地面建置)」是Simultaneous Localization and Mapping的簡稱,且是指同時進行本身位置推定及環境地圖製作之情形。 "SLAM (Simultaneous Positioning and Ground Construction)" is the abbreviation of Simultaneous Localization and Mapping, and refers to the situation of simultaneously performing its own position estimation and environmental map production.

<例示性的實施形態> <Illustrative embodiment>

以下,參考附加的圖式並且說明本揭示的地圖製作裝置及地圖製作系統之一例。再者,有時會將超出必要地詳細的說明省略。例如,有時會將已為眾所皆知的事項之詳細說明或對於實質上相同構成的重複說明省略。這是因為要避免以下的說明不必要地變得冗長,以讓本領域之技術人員容易理解之故。本發明之發明人們為了讓本發明所屬技術領域中具有通常知識者可以充分地理解本揭示,而提供附加圖式及以下的說明。但並非意欲藉由其等來限定於申請專利之範圍記載的主題。 Hereinafter, an example of a map making device and a map making system of the present disclosure will be described with reference to additional drawings. Furthermore, detailed explanations that are not necessary may be omitted. For example, detailed descriptions of well-known matters or repeated descriptions of substantially the same configuration may be omitted. This is because it is necessary to avoid the following description from becoming unnecessarily verbose so as to be easily understood by those skilled in the art. The inventors of the present invention provided additional drawings and the following description so that those having ordinary knowledge in the technical field to which the present invention pertains can fully understand the present disclosure. It is not intended to limit the subject matter described in the scope of a patent application by them.

圖1A~圖1C所顯示的是由本揭示之例示性的實施形態所進行的移動體10的基本的動作例。在圖1A~圖1C中,顯示有連結於起點S及終點G之間的移動路徑R。在本說明書中,作為移動體之一例是例示「無人搬送車」(AGV)。在此情況下,有時會將移動路徑稱為「行走路徑」。在圖示的例子中移動路徑R為直線。如後所述,移動體10具有障礙物感測器,該障礙物感測器是至少對移動體10的行進方向之障礙物進行檢測。 FIGS. 1A to 1C show basic operation examples of the mobile body 10 performed by the exemplary embodiment of the present disclosure. In FIGS. 1A to 1C, a movement path R connected between the start point S and the end point G is shown. In this specification, as an example of a moving body, an "unmanned transport vehicle" (AGV) is illustrated. In this case, the moving path is sometimes called a "walking path". In the illustrated example, the movement path R is a straight line. As will be described later, the moving body 10 includes an obstacle sensor that detects at least an obstacle in the moving direction of the moving body 10.

圖1A所顯示的是沿著移動路徑R行走的移 動體10。 FIG. 1A shows a movement walking along a movement path R Moving body 10.

圖1B所顯示的是,藉由障礙物感測器而在移動路徑R上檢測出存在有障礙物70的情況下,停止行走的移動體10。移動體10在將障礙物70去除時會重新開始進行行走。 FIG. 1B shows a moving body 10 that stops walking when an obstacle 70 is detected on the movement path R by the obstacle sensor. When the moving body 10 removes the obstacle 70, it resumes walking.

圖1C所顯示的是,藉由障礙物感測器而在移動路徑R上檢測出存在有障礙物70的情況下,設定迴避障礙物70的迂迴路徑而行走的移動體10。在圖1C中顯示有障礙物70的迴避方向以行進方向為基準而為在移動路徑R的右側之迂迴路徑Bright、以及在左側之迂迴路徑Bleft。要將迴避方向設為右側或左側的哪一側,可以事先設定在移動體10中。 FIG. 1C shows a moving body 10 that avoids the tortuous path of the obstacle 70 when the obstacle 70 is detected on the movement path R by the obstacle sensor. FIG. 1C shows that the avoidance direction of the obstacle 70 is a detour route B right on the right side of the movement path R and a detour route B left on the left side based on the traveling direction. To set the avoidance direction to the right or left, it can be set in the moving body 10 in advance.

在本揭示中,迂迴路徑B是利用「基準迂迴路徑」來設定。 In the present disclosure, the detour route B is set using a "reference detour route".

圖1D所顯示的是典型的基準迂迴路徑之例子。「基準迂迴路徑」是藉由至少2個方向的路徑之組合來規定的路徑。亦即,基準迂迴路徑是藉由有關於第1方向之第1路徑、及有關於和第1方向不同的第2方向之第2路徑的組合來規定之路徑。在圖1C的例子中,第1方向是垂直於路徑R的方向(紙面的上下方向),第2方向是平行於移動路徑R的方向。 Figure 1D shows an example of a typical detour path. The "reference detour path" is a path defined by a combination of paths in at least two directions. That is, the reference detour path is a path defined by a combination of a first path related to the first direction and a second path related to the second direction different from the first direction. In the example of FIG. 1C, the first direction is a direction perpendicular to the path R (the vertical direction on the paper surface), and the second direction is a direction parallel to the moving path R.

為了障礙物70的迴避而設定迂迴路徑時,移動體10是例如將第1路徑設為1個單位而朝第1方向移動,且將第2路徑設為1個單位而朝第2方向移動。 When a bypass route is set for avoiding the obstacle 70, the moving body 10 moves the first route in one unit and moves in the first direction, and sets the second route into one unit and moves in the second direction, for example.

如圖1D所示,雖然在較佳的實施形態中基準迂迴路徑的第1方向及第2方向為彼此正交,但也可以不正交。在不正交的情況下,也可以具有下述路徑:有關於和第1方向及第2方向不同的另1個或複數個方向之路徑。從而,雖然在圖1D所示的例子中,迂迴路徑為「ㄈ」字形,但亦可讓例如將6角形以通過其中心的直線來平分而成時的外周形成為路徑的形狀。 As shown in FIG. 1D, although the first direction and the second direction of the reference bypass path are orthogonal to each other in the preferred embodiment, they may not be orthogonal. In the case of non-orthogonal, there may be a path having a path in another direction or a plurality of directions different from the first direction and the second direction. Therefore, although in the example shown in FIG. 1D, the circuitous path is a "ㄈ" shape, the shape of the path may be formed, for example, when the hexagonal shape is bisected by a straight line passing through its center.

又,在圖1D的例子中,第1路徑的距離及第2路徑的距離都是固定值且相等。但是兩者並不需要是相同的值。在之後說明的實施形態中,針對第2路徑是舉出第2路徑的距離並非固定值的例子。 In the example of FIG. 1D, the distance of the first path and the distance of the second path are both fixed values and equal. But they do not need to be the same value. In the embodiment described later, the second path is an example in which the distance of the second path is not a fixed value.

雖然為了說明的方便,在本說明書中是說明於右側迂迴的例子,但只要是本發明所屬技術領域中具有通常知識者應可清楚得知針對左側也可以和右側完成同樣地來設定迂迴路徑。在以下的說明中,迂迴路徑的參考符號Bright是將表示其為右側的附加字"right”的記載省略。 Although for the convenience of explanation, this example is described as an example of a right-side detour, as long as those with ordinary knowledge in the technical field to which the present invention pertains should clearly understand that the detour can be set for the left side as well as the right side. In the following description, the reference sign B right of the detour is omitted from the description of the additional word "right" indicating that it is the right side.

以下,說明移動體為無人搬送車的情況之更具體的例子。在本說明書中,有時會利用縮寫而將無人搬送車記述為「AGV」。再者,在以下的說明中,只要沒有矛盾,對於AGV以外的移動體,例如移動機器人、無人機、或有人的車輛等也可以同樣地應用。 A more specific example of a case where the moving body is an unmanned transport vehicle will be described below. In this manual, the abbreviation may be used to describe an unmanned transport vehicle as "AGV". In addition, in the following description, as long as there is no contradiction, the same applies to moving bodies other than the AGV, such as a mobile robot, a drone, or a manned vehicle.

(1)系統的基本構成 (1) The basic structure of the system

圖2所顯示的是本揭示之例示性的移動體管理系統100的基本構成例。移動體管理系統100包含至少1 台AGV10、以及進行AGV10的運行管理之運行管理裝置50。在圖2中,也記載有可由使用者1操作的終端裝置20。 FIG. 2 shows a basic configuration example of an exemplary mobile body management system 100 of the present disclosure. The mobile management system 100 contains at least 1 An AGV10, and an operation management device 50 that performs operation management of the AGV10. In FIG. 2, a terminal device 20 that can be operated by the user 1 is also described.

AGV10是可進行在行走中不需要磁帶等之誘導體的「無導引式」行走之無人搬送台車。AGV10能夠進行本身位置推定,並將推定的結果發送到終端裝置20及運行管理裝置50。AGV10可依照來自運行管理裝置50的指令而在移動空間S’內自動行走。AGV10也可進一步做到以追隨於人或其他移動體而移動的「追蹤模式」來動作。 AGV10 is an "unguided" unmanned transfer trolley that can be used without an inducer such as a magnetic tape during walking. The AGV 10 can perform its own position estimation and send the results of the estimation to the terminal device 20 and the operation management device 50. The AGV 10 can automatically walk in the moving space S 'in accordance with an instruction from the operation management device 50. AGV10 can also be operated in a "tracking mode" that follows a person or other moving body.

運行管理裝置50是對各AGV10的位置進行追蹤(tracking),且管理各AGV10的行走之電腦系統。運行管理裝置50可以是桌上型個人電腦、筆記型個人電腦、及/或伺服器電腦。運行管理裝置50是透過複數個存取點2來與各AGV10通訊。例如,運行管理裝置50是將各AGV10接下來應前往的位置之座標的資料發送給各AGV10。各AGV10是定期地,例如每100毫秒來將顯示本身的位置及朝向方向(orientation)的資料發送至運行管理裝置50。當AGV10到達所指示的位置時,運行管理裝置50即會進一步傳送接下來應前往的位置之座標的資料。AGV10亦可因應於已輸入至終端裝置20的使用者1之操作,在移動空間S’內行走。終端裝置20的一例為平板電腦。典型地,利用了終端裝置20的AGV10之行走是在地圖製作時進行,利用了運行管理裝置50的AGV10之行走是在地圖製作後進行。 The operation management device 50 is a computer system that tracks the position of each AGV 10 and manages the walking of each AGV 10. The operation management device 50 may be a desktop personal computer, a notebook personal computer, and / or a server computer. The operation management device 50 communicates with each AGV 10 through a plurality of access points 2. For example, the operation management device 50 sends the data of the coordinates of the position to which each AGV 10 should go next to each AGV 10. Each AGV 10 periodically transmits, for example, every 100 milliseconds, data showing the position and orientation of the display itself to the operation management device 50. When the AGV10 arrives at the indicated position, the operation management device 50 will further transmit the data of the coordinates of the position to be next. The AGV 10 can also walk in the moving space S 'in response to the operation of the user 1 who has been input to the terminal device 20. An example of the terminal device 20 is a tablet computer. Typically, the walking of the AGV10 using the terminal device 20 is performed at the time of map production, and the walking of the AGV10 using the operation management device 50 is performed after the map production.

圖3所顯示的是3台AGV10a、10b、及10c存在的移動空間S’之一例。所有的AGV都是設成朝圖中的 進深方向行走。AGV10a及10b是對載置於頂板的貨物進行搬送中。AGV10c是正追隨於前方的AGV10b而行走。再者,為了說明的方便,雖然在圖3中附上了參考符號10a、10b、及10c,但是在以下是記述為「AGV10」。 Fig. 3 shows an example of the moving space S 'where three AGVs 10a, 10b, and 10c exist. All AGVs are set in the map Walk deeper. AGV10a and 10b are used to transport the goods placed on the roof. AGV10c walks following AGV10b ahead. In addition, for convenience of explanation, although reference characters 10a, 10b, and 10c are attached to FIG. 3, they are described below as "AGV10".

AGV10除了搬送載置於頂板的貨物之方法以外,也可利用與本身連接的牽引台車來搬送貨物。圖4A所顯示的是連接前的AGV10及牽引台車5。牽引台車5的各腳下設置有腳輪。AGV10是與牽引台車5機械性地連接。圖4B所顯示的是已連接的AGV10及牽引台車5。當AGV10行走時,牽引台車5會被AGV10牽引。藉由對牽引台車5進行牽引,AGV10就可以搬送載置於牽引台車5的貨物。 In addition to the method of transporting the goods placed on the roof, the AGV10 can also use a traction trolley connected to itself to transport the goods. FIG. 4A shows the AGV10 and the traction trolley 5 before connection. Casters are provided under each foot of the traction trolley 5. The AGV10 is mechanically connected to the traction trolley 5. FIG. 4B shows the AGV10 and the traction trolley 5 connected. When AGV10 is walking, traction trolley 5 will be towed by AGV10. By towing the traction trolley 5, the AGV 10 can carry the goods placed on the traction trolley 5.

AGV10與牽引台車5的連接方法可為任意方法。在此說明其中一例。在AGV10的頂板上固定有板件6。在牽引台車5上設置有具有狹縫的導軌7。AGV10是接近於牽引台車5,而將板件6插入導軌7的狹縫中。當插入完成時,AGV10是使未圖示的電磁鎖式插銷貫通於板件6及導軌7,並鎖上電磁鎖。藉此,即可用物理方式來連接AGV10與牽引台車5。 The connection method between the AGV 10 and the traction trolley 5 may be any method. Here is an example. A plate member 6 is fixed to the top plate of the AGV10. The traction trolley 5 is provided with a guide rail 7 having a slit. The AGV 10 is close to the traction trolley 5, and the plate 6 is inserted into the slit of the guide rail 7. When the insertion is completed, the AGV10 penetrates the plate 6 and the guide rail 7 by an electromagnetic lock pin (not shown), and locks the electromagnetic lock. With this, the AGV 10 and the traction trolley 5 can be physically connected.

再次參考圖2。各AGV10與終端裝置20能夠例如以1對1方式來連接並進行依循藍芽(Bluetooth,註冊商標)規格的通訊。各AGV10與終端裝置20也能夠利用1個或複數個存取點2來進行依循Wi-Fi(註冊商標)的通訊。複數個存取點2是透過例如交換式集線器3而相互地連 接。在圖2中記載有2台存取點2a、2b。AGV10是以無線方式與存取點2a相連接。終端裝置20是以無線方式與存取點2b相連接。AGV10所發送的資料是在存取點2a被接收,且透過交換式集線器3而被轉送到存取點2b,並從存取點2b發送到終端裝置20。又,終端裝置20所發送的資料是在存取點2b被接收,且透過交換式集線器3而被轉送到存取點2a,並從存取點2a發送到AGV10。藉此,可實現AGV10及終端裝置20之間的雙方向通訊。複數個存取點2也可透過交換式集線器3而與運行管理裝置50相連接。藉此,在運行管理裝置50與各AGV10之間也可實現雙方向通訊。 Refer to Figure 2 again. Each AGV 10 and the terminal device 20 can be connected in a one-to-one manner, for example, and perform communication in accordance with the Bluetooth (registered trademark) standard. Each AGV 10 and the terminal device 20 can also perform communication in accordance with Wi-Fi (registered trademark) using one or a plurality of access points 2. The plurality of access points 2 are connected to each other through, for example, a switching hub 3. Pick up. In FIG. 2, two access points 2 a and 2 b are described. The AGV10 is wirelessly connected to the access point 2a. The terminal device 20 is wirelessly connected to the access point 2b. The data transmitted by the AGV 10 is received at the access point 2a, transferred to the access point 2b through the switching hub 3, and transmitted from the access point 2b to the terminal device 20. The data transmitted by the terminal device 20 is received at the access point 2b, transferred to the access point 2a through the switching hub 3, and transmitted from the access point 2a to the AGV 10. Thereby, bidirectional communication between the AGV 10 and the terminal device 20 can be realized. The plurality of access points 2 may be connected to the operation management device 50 through the switching hub 3. Thereby, bidirectional communication can also be achieved between the operation management device 50 and each AGV 10.

(2)環境地圖的製作 (2) Production of environmental maps

為了形成為讓AGV10可以一邊推定本身位置一邊行走,可製作移動空間S’內的地圖。在AGV10中搭載有位置推定裝置及雷射測距儀,可以利用雷射測距儀的輸出來製作地圖。 In order to allow the AGV10 to walk while estimating its own position, a map in the moving space S 'can be created. The AGV10 is equipped with a position estimation device and a laser rangefinder, and can use the output of the laser rangefinder to create a map.

AGV10是藉由使用者的操作來轉移到資料取得模式。在資料取得模式中,AGV10是開始進行利用了雷射測距儀的感測器資料之取得。雷射測距儀是週期性地將例如紅外線或可見光的雷射光束發射到周圍,而對周圍的空間S進行掃瞄。雷射光束是在例如牆壁、柱子等的構造物、放置在地板上的物體等之表面反射。雷射測距儀是接收雷射光束的反射光而計算到各反射點的距離,並輸出顯示有各反射點的位置之測定結果的資料。在各反射點的 位置中,反映有反射光的到來方向及距離。有時會將由1次掃瞄所得到的測定結果之資料稱為「測量資料」或「感測器資料」。 AGV10 is transferred to the data acquisition mode by the user's operation. In the data acquisition mode, the AGV10 started acquiring sensor data using a laser rangefinder. The laser rangefinder periodically emits a laser beam such as infrared or visible light to the surroundings, and scans the surrounding space S. The laser beam is reflected on the surface of a structure such as a wall, a pillar, or an object placed on the floor. The laser range finder receives the reflected light of the laser beam, calculates the distance to each reflection point, and outputs data showing the measurement result of the position of each reflection point. At each reflection point The position reflects the arrival direction and distance of the reflected light. The data of the measurement results obtained by one scan may be referred to as "measurement data" or "sensor data".

位置推定裝置是將感測器資料積存於儲存裝置。當移動空間S’內的感測器資料的取得完成時,會將已積存於儲存裝置的感測器資料發送到外部裝置。外部裝置可為例如具有訊號處理器,並且安裝有地圖製作程式的電腦。 The position estimation device stores sensor data in a storage device. When the acquisition of the sensor data in the moving space S 'is completed, the sensor data that has been stored in the storage device is sent to the external device. The external device may be, for example, a computer having a signal processor and a map making program installed.

外部裝置的訊號處理器會將每次掃瞄所得到的感測器資料彼此重合。訊號處理器可以藉由重複進行重合的處理,以製作空間S的地圖。外部裝置會將已製作的地圖之資料發送給AGV10。AGV10會將已製作的地圖之資料保存在內部的儲存裝置中。外部裝置亦可為運行管理裝置50,亦可為其他裝置。 The signal processor of the external device overlaps the sensor data obtained from each scan. The signal processor can make a map of space S by repeating the overlap processing. The external device will send the information of the created map to AGV10. AGV10 will save the data of the created map in the internal storage device. The external device may be the operation management device 50 or other devices.

由AGV10而非外部裝置來進行地圖的製作亦可。只要AGV10的微控制器單元(微電腦)等之電路可進行上述之外部裝置的訊號處理器所進行的處理即可。在AGV10內製作地圖的情況下,會變得毋須將已積存的感測器資料發送到外部裝置。可考慮為,感測器資料的資料容量一般來說是較大的。由於毋須將感測器資料發送到外部裝置,因此可以避免通訊線路的佔據。 It is also possible to make maps by AGV10 instead of external devices. As long as the circuit such as the microcontroller unit (microcomputer) of the AGV10 can perform the processing performed by the signal processor of the external device described above. When making a map in AGV10, it becomes unnecessary to send the accumulated sensor data to an external device. It can be considered that the data capacity of the sensor data is generally large. Since it is not necessary to send the sensor data to an external device, occupation of a communication line can be avoided.

再者,用於取得感測器資料的移動空間S’內之移動,是藉由AGV10依照使用者的操作來行走而得以實現。例如,AGV10是透過終端裝置20以無線方式從使用者 接收行走指令,該行走指令是指示往前後左右之各方向的移動之指令。AGV10是依照行走指令而在移動空間S’內朝前後左右行走,並製作地圖。在AGV10與搖桿等之操縱裝置以有線方式來連接的情況下,也可以依照來自該操縱裝置的控制訊號而在移動空間S’內朝前後左右行走,並製作地圖。亦可藉由人推行搭載有雷射測距儀的測量台車,而取得感測器資料。 Furthermore, the movement in the movement space S 'for acquiring the sensor data is realized by the AGV10 walking according to the user's operation. For example, the AGV10 is A walking instruction is received, and this walking instruction is a command which instructs a movement to the front-back, left-right, and left-right directions. The AGV10 walks forward, backward, left, and right in the moving space S 'in accordance with a walking instruction, and creates a map. When the AGV10 is connected to a control device such as a joystick in a wired manner, it is also possible to walk forward, backward, left, and right in the moving space S 'according to a control signal from the control device, and create a map. The sensor data can also be obtained by a person pushing a measurement trolley equipped with a laser rangefinder.

再者,雖然在圖2及圖3中顯示有複數台AGV10,但AGV亦可為1台。在存在有複數台AGV10的情況下,使用者1可以利用終端裝置20,從已登錄的複數個AGV當中選擇一台AGV10,並使其製作移動空間S’的地圖。 In addition, although a plurality of AGV10 are shown in FIGS. 2 and 3, the AGV may be one. When there are a plurality of AGV10s, the user 1 may use the terminal device 20 to select one AGV10 from the registered plurality of AGVs, and make the map of the moving space S '.

當製作地圖時,可以在以後讓各AGV10利用該地圖來一邊推定本身位置一邊進行自動行走。推定本身位置的處理之說明容後敘述。 When making a map, each AGV10 can use this map to automatically walk while estimating its own position. The description of the process of estimating its own position will be described later.

(3)AGV的構成 (3) The composition of AGV

圖5是本實施形態之例示性的AGV10之外觀圖。AGV10具有2個驅動輪11a及11b、4個腳輪11c、11d、11e及11f、框架12、搬送台13、行走控制裝置14、及雷射測距儀15。2個驅動輪11a及11b是各自設置在AGV10的右側及左側。4個腳輪11c、11d、11e及11f是配置在AGV10的4個角落。再者,雖然AGV10也具有連接於2個驅動輪11a及11b的複數個馬達,但複數個馬達並未顯示在圖5中。又,在圖5中,雖然顯示有位於AGV10之右側的1個驅 動輪11a及2個腳輪11c及11e、與位於左後部的腳輪11f,但由於左側的驅動輪11b及左前部的腳輪11d是藏在框架12的背後,因此並未明示。4個腳輪11c、11d、11e及11f是可以自由地旋繞。在以下的說明中,也將驅動輪11a及驅動輪11b各自稱為車輪11a及車輪11b。 FIG. 5 is an external view of an exemplary AGV10 according to this embodiment. The AGV10 has two driving wheels 11a and 11b, four casters 11c, 11d, 11e, and 11f, a frame 12, a transport table 13, a travel control device 14, and a laser rangefinder 15. The two driving wheels 11a and 11b are each Set to the right and left of the AGV10. The four casters 11c, 11d, 11e, and 11f are arranged at the four corners of the AGV10. In addition, although the AGV10 also has a plurality of motors connected to the two driving wheels 11a and 11b, the plurality of motors are not shown in FIG. 5. In addition, in FIG. 5, one driver located on the right side of AGV10 is shown. The moving wheels 11a and the two casters 11c and 11e and the casters 11f on the left rear part are not shown because the left driving wheels 11b and the left front casters 11d are hidden behind the frame 12. The four casters 11c, 11d, 11e and 11f can be freely wound. In the following description, the driving wheels 11 a and 11 b are also referred to as wheels 11 a and 11 b, respectively.

行走控制裝置14是控制AGV10的動作之裝置,且包含:主要包含微電腦(後述)的積體電路、電子零件、及搭載有其等的基板。行走控制裝置14會進行上述之與終端裝置20的資料的發送接收、以及前處理運算。 The walking control device 14 is a device that controls the operation of the AGV 10, and includes an integrated circuit mainly including a microcomputer (to be described later), an electronic component, and a substrate on which it is mounted. The walking control device 14 performs the above-mentioned transmission and reception of data with the terminal device 20 and pre-processing calculations.

雷射測距儀15是藉由發射例如紅外線或可見光的雷射光束15a,且檢測該雷射光束15a的反射光,以測定到反射點的距離之光學機器。在本實施形態中,AGV10的雷射測距儀15是以例如AGV10的正面為基準來對左右135度(總計270度)的範圍之空間,一邊以每0.25度來改變方向一邊發射脈衝狀的雷射光束15a,並檢測各雷射光束15a的反射光。藉此,可以得到按每0.25度、而在總計1081步進量的角度上決定的方向中的到反射點的距離之資料。再者,在本實施形態中,雷射測距儀15所進行的周圍的空間之掃瞄實質上是平行於地板面,且是平面的(二維的)。但是,雷射測距儀15亦可進行高度方向的掃瞄。 The laser rangefinder 15 is an optical device that measures a distance to a reflection point by emitting a laser beam 15a such as infrared or visible light, and detecting the reflected light of the laser beam 15a. In this embodiment, the laser rangefinder 15 of the AGV10 uses, for example, the front side of the AGV10 as a reference to illuminate a space in a range of 135 degrees to the left and right (270 degrees in total), and emit pulses while changing the direction by 0.25 degrees The laser beam 15a detects the reflected light of each laser beam 15a. With this, data on the distance to the reflection point in a direction determined at an angle of 1081 steps in total every 0.25 degrees can be obtained. Furthermore, in this embodiment, the scanning of the surrounding space by the laser rangefinder 15 is substantially parallel to the floor surface and is planar (two-dimensional). However, the laser rangefinder 15 can also perform scanning in the height direction.

AGV10可以藉由AGV10的位置及朝向方向(方向)、以及雷射測距儀15的掃瞄結果,來製作空間S的地圖。在地圖中,可以反映AGV的周圍之牆壁、柱子等構造物、及載置在地板上的物體之配置。地圖的資料是保存 在設置於AGV10內的儲存裝置中。 The AGV10 can make a map of the space S based on the position and direction (direction) of the AGV10 and the scanning results of the laser rangefinder 15. The map can reflect the configuration of walls, pillars, and other structures placed on the floor, as well as the objects placed on the floor. Map data is saved In a storage device provided in the AGV10.

一般而言,是將移動體的位置及朝向方向稱為姿勢(pose)。二維面內的移動體之位置及朝向方向,是藉由XY直角座標系統中的位置座標(x,y)、及相對於X軸的角度θ來表現。以下,有時會將AGV10的位置及朝向方向,亦即姿勢(x,y,θ)簡稱為「位置」。 Generally, the position and direction of a moving body are called a pose. The position and direction of a moving body in a two-dimensional plane are expressed by a position coordinate (x, y) in an XY rectangular coordinate system and an angle θ with respect to the X axis. Hereinafter, the position and direction of the AGV10, that is, the posture (x, y, θ) may be simply referred to as "position".

從雷射光束15a的發射位置來看的反射點之位置,可以利用由角度及距離所決定之極座標來表現。在本實施形態中,雷射測距儀15是輸出以極座標來表現的感測器資料。但是,雷射測距儀15亦可將以極座標表現的位置轉換成直角座標來輸出。 The position of the reflection point viewed from the emission position of the laser beam 15a can be represented by polar coordinates determined by the angle and distance. In the present embodiment, the laser rangefinder 15 outputs sensor data expressed in polar coordinates. However, the laser rangefinder 15 may convert a position represented by a polar coordinate into a right-angle coordinate and output it.

由於雷射測距儀的構造及動作原理是公知的,因此在本說明書中省略更加詳細的說明。可以藉由雷射測距儀15來檢測的物體之例子為人、貨物、層架、及牆壁。 Since the structure and operation principle of the laser rangefinder are well known, a more detailed description is omitted in this specification. Examples of objects that can be detected by the laser rangefinder 15 are people, goods, shelves, and walls.

雷射測距儀15是用於感測周圍的空間來取得感測器資料的外界感測器之一例。作為那樣的外界感測器的其他例子,可考慮影像感測器及超音波感測器。 The laser rangefinder 15 is an example of an external sensor for sensing the surrounding space to obtain sensor data. As another example of such an external sensor, an image sensor and an ultrasonic sensor can be considered.

行走控制裝置14可以將雷射測距儀15的測定結果、及本身保持的地圖資料作比較,來推定本身的現在位置。再者,所保持的地圖資料亦可為其他AGV10所製作出的地圖資料。 The walking control device 14 can compare the measurement result of the laser rangefinder 15 and the map data held by itself to estimate its current position. Furthermore, the map data maintained can also be map data produced by other AGV10.

圖6A所顯示的是AGV10的第1硬體構成例。又,圖6A也顯示有行走控制裝置14之具體的構成。 FIG. 6A shows a first hardware configuration example of the AGV10. FIG. 6A also shows a specific configuration of the walking control device 14.

AGV10具備有行走控制裝置14、雷射測距儀15、2台馬達16a及16b、驅動裝置17、車輪11a及11b、以及2個旋轉編碼器18a及18b。 The AGV10 includes a walking control device 14, a laser rangefinder 15, two motors 16a and 16b, a driving device 17, wheels 11a and 11b, and two rotary encoders 18a and 18b.

行走控制裝置14具有微電腦14a、記憶體14b、儲存裝置14c、通訊電路14d、位置推定裝置14e、及障礙物感測器14j。微電腦14a、記憶體14b、儲存裝置14c、通訊電路14d、及位置推定裝置14e是以通訊匯流排14f來連接,且可相互地交接資料。雷射測距儀15也是再透過通訊介面(圖未示)來連接於通訊匯流排14f,且將測量結果即測量資料發送到微電腦14a、位置推定裝置14e及/或記憶體14b。 The walking control device 14 includes a microcomputer 14a, a memory 14b, a storage device 14c, a communication circuit 14d, a position estimation device 14e, and an obstacle sensor 14j. The microcomputer 14a, the memory 14b, the storage device 14c, the communication circuit 14d, and the position estimation device 14e are connected by a communication bus 14f, and can transfer data to each other. The laser rangefinder 15 is also connected to the communication bus 14f through a communication interface (not shown), and sends the measurement result, that is, the measurement data, to the microcomputer 14a, the position estimation device 14e, and / or the memory 14b.

微電腦14a是進行用於控制包含行走控制裝置14的AGV10之整體的運算的處理器或控制電路(電腦)。典型地,微電腦14a是半導體積體電路。微電腦14a是將控制訊號即PWM(脈衝寬度調變,Pulse Width MModulation)訊號發送到驅動裝置17以控制驅動裝置17,並使其調整施加於馬達的電壓。藉此,馬達16a及16b的每一個即可用所期望的旋轉速度來旋轉。 The microcomputer 14 a is a processor or a control circuit (computer) that performs calculations for controlling the entire AGV 10 including the walking control device 14. The microcomputer 14a is typically a semiconductor integrated circuit. The microcomputer 14a sends a PWM (Pulse Width MModulation) signal, which is a control signal, to the driving device 17 to control the driving device 17 and adjusts the voltage applied to the motor. Thereby, each of the motors 16a and 16b can be rotated at a desired rotation speed.

亦可與微電腦14a獨立來設置用以控制左右的馬達16a及16b的驅動之1個以上的控制電路(例如微電腦)。例如,馬達驅動裝置17亦可具備有各自控制馬達16a及16b的驅動的2個微電腦。該等2個微電腦亦可各自進行利用了由編碼器18a及18b輸出的編碼資訊之座標計算,來推定AGV10從給定的初期位置之移動距離。又,該2個微 電腦亦可利用編碼資訊來控制馬達驅動電路17a及17b。 One or more control circuits (for example, a microcomputer) for controlling the driving of the left and right motors 16a and 16b may be provided independently of the microcomputer 14a. For example, the motor drive device 17 may be provided with two microcomputers each controlling the drive of the motors 16a and 16b. These two microcomputers can also perform coordinate calculations using the encoded information output by the encoders 18a and 18b to estimate the moving distance of the AGV10 from a given initial position. Again, the 2 micro The computer can also use the coded information to control the motor drive circuits 17a and 17b.

記憶體14b是儲存微電腦14a執行的電腦程式之揮發性的儲存裝置。記憶體14b也可以被利用作為微電腦14a及位置推定裝置14e進行運算時的工作記憶體。 The memory 14b is a volatile storage device that stores computer programs executed by the microcomputer 14a. The memory 14b may be used as a working memory when the microcomputer 14a and the position estimation device 14e perform calculations.

儲存裝置14c是非揮發性的半導體記憶體裝置。但是,儲存裝置14c亦可是以硬碟為代表的磁性記錄媒體、或以光碟為代表的光學式記錄媒體。再者,儲存裝置14c亦可包含用於對任一記錄媒體寫入及/或讀取資料的讀寫頭裝置、及該讀寫頭裝置的控制裝置。 The storage device 14c is a non-volatile semiconductor memory device. However, the storage device 14c may be a magnetic recording medium represented by a hard disk, or an optical recording medium represented by an optical disk. In addition, the storage device 14c may include a head device for writing and / or reading data to and from any recording medium, and a control device for the head device.

儲存裝置14c是儲存行走的空間S之地圖資料M、1個或複數個移動路徑的資料(移動路徑資料)RD、及迂迴路徑資料Bd。地圖資料M是藉由AGV10以地圖製作模式動作而製作,且是儲存在儲存裝置14c中。移動路徑資料RD可在已製作出地圖資料M後從外部發送。迂迴路徑資料Bd是為了規定基準迂迴路徑而事先準備,且是儲存於儲存裝置14c中。基準迂迴路徑可以作為第1路徑及第2路徑的組合來定義,其中該第1路徑是有關於第1方向之路徑,該第2路徑是有關於和前述第1方向不同的第2方向之路徑。在本實施形態中,雖然將地圖資料M、移動路徑資料RD及迂迴路徑資料Bd儲存在相同的儲存裝置14c中,但儲存在不同的儲存裝置中亦可。 The storage device 14c stores map data M of the walking space S, data of one or a plurality of moving paths (moving path data) RD, and detour path data Bd. The map data M is created by the AGV 10 operating in a map making mode, and is stored in the storage device 14c. The movement path data RD can be transmitted from the outside after the map data M has been created. The detour route data Bd is prepared in advance to define the reference detour route, and is stored in the storage device 14c. The reference roundabout path may be defined as a combination of a first path and a second path, where the first path is a path related to a first direction, and the second path is a path related to a second direction different from the first direction . In this embodiment, although the map data M, the moving route data RD, and the detour route data Bd are stored in the same storage device 14c, they may be stored in different storage devices.

說明移動路徑資料RD的例子。 An example of the movement path data RD will be described.

在終端裝置20為平板電腦的情況下,AGV10會從平板電腦接收顯示移動路徑的移動路徑資料 RD。此時的移動路徑資料RD包含顯示複數個標記(mark)的位置之標記資料。「標記」是顯示行走的AGV10之通過位置(通過點)。移動路徑資料RD至少包含表示行走開始位置的開始標記、及表示行走結束位置的結束標記。移動路徑資料RD亦可更包含1個以上之中間通過點的標記之位置資訊。在移動路徑包含1個以上的中間通過點的情況下,是將從開始標記依序通過該行走通過點而到達結束標記的路徑定義作為移動路徑。各標記的資料除了該標記的座標資料之外,還可以包含移動到下一個標記以前的AGV10的方向(角度)及行走速度的資料。AGV10在各標記的位置上暫時停止,而進行本身位置推定及對終端裝置20的通知等的情況下,各標記的資料可以包含下述資料:至達到該行走速度為止的加速所需要的時間、及/或由該行走速度到下一個標記的位置停止為止的減速所需要的減速時間。 In the case where the terminal device 20 is a tablet computer, the AGV10 receives movement path data showing the movement path from the tablet computer RD. The movement path data RD at this time includes mark data showing positions of a plurality of marks. "Mark" shows the passing position (passing point) of the walking AGV10. The movement path data RD includes at least a start mark indicating a walking start position and an end mark indicating a walking end position. The movement path data RD may further include position information of a mark of one or more intermediate passing points. When the moving route includes one or more intermediate passing points, a moving route is defined as a route in which a start mark sequentially passes through the walking passing point to reach an end mark. In addition to the coordinate data of the mark, the data of each mark may also include data of the direction (angle) and walking speed of the AGV10 before moving to the next mark. When AGV10 temporarily stops at the position of each mark, and performs its own position estimation and notification to the terminal device 20, the data of each mark may include the following data: time required for acceleration to reach the walking speed, And / or the deceleration time required to decelerate from this walking speed until the next marked position stops.

不是終端裝置20而是運行管理裝置50(例如個人電腦及/或伺服器電腦)控制AGV10的移動亦可。在該情況下,運行管理裝置50亦可在AGV10每次到達標記時,對AGV10指示往下一個標記的移動。例如,AGV10會從運行管理裝置50將下述之資料作為表示移動路徑的移動路徑資料RD來接收:接下來應前往的目的位置之座標資料、或到該目的位置的距離及應前進的角度之資料。 Instead of the terminal device 20, the operation management device 50 (for example, a personal computer and / or a server computer) may control the movement of the AGV 10. In this case, the operation management device 50 may instruct the AGV 10 to move to the next mark each time the AGV 10 reaches the mark. For example, the AGV10 will receive the following data from the operation management device 50 as the movement path data RD indicating the movement path: the coordinate data of the destination position to be next, the distance to the destination position, and the angle of the forward angle. data.

AGV10可以利用已製作出的地圖、及於行走中取得之雷射測距儀15所輸出的感測器資料,來推定本身 位置,並且沿著所儲存的移動路徑來行走。 The AGV10 can use the created map and sensor data output by the laser rangefinder 15 obtained during walking to estimate itself Position and walk along the stored movement path.

通訊電路14d是例如無線通訊電路,該無線通訊電路是進行依循藍芽(Bluetooth,註冊商標)及/或Wi-Fi(註冊商標)規格的無線通訊。任一個規格都包含利用了2.4GHz頻段的頻率之無線通訊規格。例如在使AGV10行走來製作地圖的模式中,通訊電路14d是進行依循藍芽(Bluetooth,註冊商標)規格的無線通訊,且以1對1方式來與終端裝置20通訊。 The communication circuit 14d is, for example, a wireless communication circuit that performs wireless communication in accordance with Bluetooth (registered trademark) and / or Wi-Fi (registered trademark) specifications. All specifications include wireless communication specifications using frequencies in the 2.4 GHz band. For example, in the mode of making maps by walking the AGV10, the communication circuit 14d performs wireless communication according to the Bluetooth (registered trademark) standard, and communicates with the terminal device 20 in a 1: 1 manner.

位置推定裝置14e在地圖的製作處理、及行走時,是進行本身位置的推定處理。位置推定裝置14e是藉由AGV10的位置及朝向方向與雷射測距儀的掃瞄結果,來製作移動空間S’的地圖。在行走時,位置推定裝置14e是從雷射測距儀15接收感測器資料,又,讀取已儲存於儲存裝置14c的地圖資料M。藉由將由雷射測距儀15的掃瞄結果所製作出的局部之地圖資料(感測器資料),進行與更廣範圍的地圖資料M之匹配,以對地圖資料M上的本身位置(x,y,θ)進行標識。位置推定裝置14e是生成表示局部的地圖資料與地圖資料M一致的程度的「可靠度」之資料。本身位置(x,y,θ)、及可靠度的各資料,可以從AGV10來發送到終端裝置20或運行管理裝置50。終端裝置20或運行管理裝置50可以接收本身位置(x,y,θ)、及可靠度的各資料,並顯示到內建的或所連接的顯示裝置上。 The position estimation device 14e performs its own position estimation processing during map creation processing and walking. The position estimation device 14e creates a map of the moving space S 'based on the position and orientation of the AGV10 and the scanning results of the laser rangefinder. When walking, the position estimation device 14e receives sensor data from the laser rangefinder 15 and reads the map data M stored in the storage device 14c. The local map data (sensor data) produced by the scanning result of the laser rangefinder 15 is matched with a wider range of map data M to match its own position on the map data M ( x, y, θ). The position estimation device 14e is data that generates "reliability" that indicates the degree to which the local map data matches the map data M. Each data of the position (x, y, θ) and the reliability can be transmitted from the AGV 10 to the terminal device 20 or the operation management device 50. The terminal device 20 or the operation management device 50 can receive various data of its own position (x, y, θ) and reliability, and display it on the built-in or connected display device.

在本實施形態中,雖然是將微電腦14a與位置推定裝置14e設為個別的構成要素,但這只是一個例 子。亦可為可做到將微電腦14a及位置推定裝置14e的各動作獨立來進行之1個晶片電路或半導體積體電路。在圖6A中,顯示有包括微電腦14a及位置推定裝置14e的晶片電路14g。在以下,是說明個別獨立地設置有微電腦14a及位置推定裝置14e的例子。 In this embodiment, the microcomputer 14a and the position estimation device 14e are separate components, but this is only an example. child. It may also be a single chip circuit or a semiconductor integrated circuit that can perform each operation of the microcomputer 14a and the position estimation device 14e independently. FIG. 6A shows a chip circuit 14g including a microcomputer 14a and a position estimation device 14e. Hereinafter, an example will be described in which the microcomputer 14a and the position estimation device 14e are separately provided.

障礙物感測器14j是藉由例如發射紅外線,並檢測反射光來檢測障礙物的紅外線感測器。 The obstacle sensor 14j is an infrared sensor that detects an obstacle by, for example, emitting infrared rays and detecting reflected light.

2台馬達16a及16b是各自安裝在2個車輪11a及11b上,且使各車輪旋轉。也就是說,2個車輪11a及11b分別為驅動輪。在本說明書中,是設為馬達16a及16b是各自驅動AGV10的右輪及左輪之馬達來說明。 The two motors 16a and 16b are respectively mounted on two wheels 11a and 11b, and each wheel is rotated. That is, the two wheels 11a and 11b are driving wheels, respectively. In this specification, the motors 16a and 16b are assumed to be motors that drive the right and left wheels of the AGV 10, respectively.

移動體10更具備有編碼單元18,該編碼單元18是進一步地測定車輪11a及11b的旋轉位置或旋轉速度。編碼單元18包含第1旋轉編碼器18a及第2旋轉編碼器18b。第1旋轉編碼器18a是測量從馬達16a到車輪11a之動力傳達機構的某一位置上的旋轉。第2旋轉編碼器18b是測量從馬達16b到車輪11b之動力傳達機構的某一位置上的旋轉。編碼單元18會將藉由旋轉編碼器18a及18b所取得的訊號發送至微電腦14a。微電腦14a亦可不僅利用從位置推定裝置14e所接收到的訊號,還有從編碼單元18所接收到的訊號,來控制移動體10的移動。 The moving body 10 further includes a coding unit 18 that further measures the rotation position or rotation speed of the wheels 11 a and 11 b. The encoding unit 18 includes a first rotary encoder 18a and a second rotary encoder 18b. The first rotary encoder 18a measures the rotation at a certain position of the power transmission mechanism from the motor 16a to the wheel 11a. The second rotary encoder 18b measures the rotation at a certain position of the power transmission mechanism from the motor 16b to the wheel 11b. The encoding unit 18 sends the signals obtained by the rotary encoders 18a and 18b to the microcomputer 14a. The microcomputer 14a can also control the movement of the mobile body 10 using not only the signal received from the position estimation device 14e but also the signal received from the encoding unit 18.

驅動裝置17具有馬達驅動電路17a及17b,該馬達驅動電路17a及17b是用於調整施加在2台馬達16a及16b的每一個之電壓。馬達驅動電路17a及17b的每一個均 包含所謂的反向器電路(inverter circuit)。馬達驅動電路17a及17b是藉由從微電腦14a或馬達驅動電路17a內的微電腦所發送的PWM訊號,而將可流動至各馬達的電流開啟(on)或關閉(off),藉此來調整施加於馬達的電壓。 The drive device 17 includes motor drive circuits 17a and 17b for adjusting a voltage applied to each of the two motors 16a and 16b. Each of the motor driving circuits 17a and 17b is Contains a so-called inverter circuit. The motor drive circuits 17a and 17b adjust the application of the current that can flow to each motor by turning on or off the PWM signals sent from the microcomputer 14a or the microcomputer in the motor drive circuit 17a. Due to motor voltage.

圖6B所顯示的是AGV10的第2硬體構成例。第2硬體構成例在具有雷射定位系統14h之點、及微電腦14a是以1對1方式與各構成要素相連接之點上,與第1硬體構成例(圖6A)不同。 FIG. 6B shows a second hardware configuration example of the AGV10. The second hardware configuration example is different from the first hardware configuration example (FIG. 6A) in that the laser positioning system 14h and the microcomputer 14a are connected to each component in a one-to-one manner.

雷射定位系統14h具有位置推定裝置14e及雷射測距儀15。位置推定裝置14e及雷射測距儀15是以例如乙太網路(Ethernet,註冊商標)纜線來連接。位置推定裝置14e及雷射測距儀15的各動作如上所述。雷射定位系統14h是將顯示AGV10的姿勢(x,y,θ)之資訊輸出至微電腦14a。 The laser positioning system 14h includes a position estimation device 14e and a laser rangefinder 15. The position estimation device 14e and the laser rangefinder 15 are connected by, for example, an Ethernet (registered trademark) cable. The operations of the position estimation device 14e and the laser rangefinder 15 are as described above. The laser positioning system 14h outputs information showing the posture (x, y, θ) of the AGV10 to the microcomputer 14a.

微電腦14a具有各種通用I/O介面或通用輸出入埠(圖未示)。微電腦14a是透過該通用輸出入埠,來與通訊電路14d、雷射定位系統14h等之行走控制裝置14內的其他構成要素直接連接。 The microcomputer 14a has various general-purpose I / O interfaces or general-purpose input / output ports (not shown). The microcomputer 14a is directly connected to other components in the walking control device 14 such as the communication circuit 14d and the laser positioning system 14h through the universal input / output port.

關於圖6B,在上述之構成以外,與圖6A的構成是共通的。據此,省略共通的構成之說明。 6B is the same as the configuration of FIG. 6A except for the configuration described above. Accordingly, description of the common configuration is omitted.

本揭示的實施形態中的AGV10亦可具備有未圖示的保險槓開關(bumper switch)等之安全感測器。AGV10亦可具備有陀螺儀感測器等之慣性測量裝置。只要利用由旋轉編碼器18a及18b或慣性測量裝置等之內置感 測器所測定的測定資料,就可以推定AGV10的移動距離及朝向方向的改變量(角度)。這些距離及角度的推定值被稱為量距資料(odometry data),且可以發揮輔助由位置推定裝置14e所得到的位置及朝向方向之資訊的功能。 The AGV10 in the embodiment of the present disclosure may be provided with a safety sensor such as a bumper switch (not shown). The AGV10 may also be provided with an inertial measurement device such as a gyro sensor. Just use the built-in sense of rotary encoders 18a and 18b or inertial measurement devices. With the measurement data measured by the measuring device, it is possible to estimate the moving distance of the AGV10 and the change amount (angle) of the direction. The estimated values of these distances and angles are called odometry data, and can function to assist the position and orientation information obtained by the position estimation device 14e.

(4)地圖資料 (4) Map information

圖7A~圖7F是示意地顯示一邊取得感測器資料一邊移動的AGV10。使用者1亦可一邊操作終端裝置20一邊以手動方式來使AGV10移動。或者,也可以將具備有圖6A及圖6B所示的行走控制裝置14之單元、或AGV10本身載置在台車上,且讓使用者1以手來推或拉台車,藉此取得感測器資料。 FIG. 7A to FIG. 7F schematically show the AGV10 moving while acquiring sensor data. The user 1 can also manually move the AGV 10 while operating the terminal device 20. Alternatively, the unit equipped with the walking control device 14 shown in FIGS. 6A and 6B or the AGV10 itself may be placed on a trolley and the user 1 may push or pull the trolley with his hand to obtain a sensor. data.

在圖7A中,所顯示的是利用雷射測距儀15來掃瞄周圍的空間的AGV10。在每個規定的步進角度發射雷射光束,以進行掃瞄。再者,圖示的掃瞄範圍是示意地顯示的例子,與上述之總計270度的掃瞄範圍不同。 In FIG. 7A, shown is an AGV 10 using the laser rangefinder 15 to scan the surrounding space. A laser beam is emitted at each prescribed step angle for scanning. The illustrated scanning range is a schematic display example, and is different from the scanning range of 270 degrees in total described above.

在圖7A~圖7F的每一個圖中,是利用以記號「‧」表示的複數個黑點4來示意地顯示雷射光束之反射點的位置。雷射光束的掃瞄是在雷射測距儀15的位置及朝向方向改變的期間中以較短的週期來執行。因此,真實之反射點的個數是比圖示的反射點4的個數多出很多。位置推定裝置14e是將伴隨於行走而得到的黑點4的位置積存在例如記憶體14b中。藉由讓AGV10一邊行走一邊繼續進行掃瞄,以逐漸完成地圖資料。在圖7B至圖7E中,為了簡化所顯示的是僅為掃瞄範圍。該掃瞄範圍為例示,與上述 之總計270度的例子不同。 In each of Figs. 7A to 7F, the position of the reflection point of the laser beam is schematically displayed by using a plurality of black dots 4 indicated by a symbol "‧". The laser beam scanning is performed in a short cycle during a period in which the position and direction of the laser rangefinder 15 are changed. Therefore, the number of real reflection points is much larger than the number of reflection points 4 shown in the figure. The position estimating device 14e accumulates, for example, the position of the black dot 4 obtained as a result of walking in the memory 14b. By letting the AGV10 continue scanning while walking, the map data is gradually completed. In FIGS. 7B to 7E, for simplicity, only the scanning range is shown. The scan range is for illustration, and the above The example of a total of 270 degrees is different.

地圖亦可在取得於地圖製作上所必要的量之感測器資料後,根據該感測器資料,利用此AGV10內的微電腦14a或外部的電腦來製作。或者,亦可根據正在移動的AGV10所取得的感測器資料,以即時的方式來製作地圖。 The map can also be made by using the microcomputer 14a in the AGV 10 or an external computer according to the sensor data after obtaining the sensor data necessary for map production. Alternatively, a map can be made in real time based on the sensor data obtained by the moving AGV10.

圖7F是示意地顯示已完成的地圖40的一部分。在圖7F所示的地圖中,是藉由相當於雷射光束的反射點之集合的點群(Point Cloud)來分隔自由空間。地圖的其他例子為格點佔據式地圖,該格點佔據式地圖是以格點單位來區別物體所佔據的空間與自由空間。位置推定裝置14e是將地圖的資料(地圖資料M)積存在記憶體14b或儲存裝置14c中。再者,圖示之黑點的數量或密度僅是一例。 FIG. 7F is a diagram schematically showing a part of the completed map 40. In the map shown in FIG. 7F, the free space is separated by a point cloud corresponding to a set of reflection points of the laser beam. Another example of a map is a grid-occupied map, which distinguishes the space occupied by an object from free space in grid units. The position estimation device 14e stores map data (map data M) in the memory 14b or the storage device 14c. It should be noted that the number or density of the black dots shown in the figure is only an example.

如此進行所得到的地圖資料可以由複數個AGV10來共享。 The map data obtained in this way can be shared by a plurality of AGV10.

AGV10根據地圖資料來推定本身位置的演算法之典型例為ICP(遞迴最近點,Iterative Closest Point)匹配。如前所述,藉由將由雷射測距儀15的掃瞄結果所製作出的局部之地圖資料(感測器資料),進行與更廣範圍的地圖資料M之匹配,可以推定地圖資料M上的本身位置(x,y,θ)。 A typical example of an algorithm in which AGV10 estimates its own position based on map data is ICP (Iterative Closest Point) matching. As described above, the map data M can be estimated by matching the local map data (sensor data) produced by the scanning results of the laser rangefinder 15 with a wider range of map data M. Position (x, y, θ) on itself.

AGV10行走的區域為較廣的情況下,地圖資料M的資料量會變多。因此,有地圖的製作時間增加、或在本身位置推定上需要極多的時間等之不方便產生的可能 性。在產生像那樣的不方便的情況下,亦可將地圖資料M分成複數個局部地圖之資料來製作並記錄。 When the area where AGV10 is walking is wide, the data amount of map data M will increase. Therefore, there may be inconveniences such as an increase in the production time of a map, or an excessive amount of time required for the estimation of its own position. Sex. In the case of inconvenience like that, the map data M may be divided into data of a plurality of local maps to be produced and recorded.

圖8所顯示的是下述之例子:藉由4個局部地圖資料M1、M2、M3、及M4的組合來涵蓋1個工廠的1個樓層之全區。在此例子中,1個局部地圖資料涵蓋有50m×50m的區域。在X方向及Y方向的每一個方向上且於相鄰的2個地圖之交界部分上,設置有寬度5m之矩形的重疊區域。將此重疊區域稱為「地圖切換區域」。當一邊參考1個局部地圖一邊行走的AGV10到達地圖切換區域時,會切換成參考相鄰的其他局部地圖之行走。局部地圖的張數並不限於4張,亦可因應於AGV10所行走的樓層之面積、及執行地圖製作及本身位置推定的電腦之性能來適當設定。局部地圖資料的尺寸及重疊區域的寬度也不限定於上述之例子,而是可任意地設定。 FIG. 8 shows an example in which the entire area of one floor of one factory is covered by a combination of four partial map data M1, M2, M3, and M4. In this example, a local map data covers an area of 50m × 50m. In each of the X direction and the Y direction, and at the boundary between two adjacent maps, a rectangular overlapping area with a width of 5 m is provided. This overlapping area is called a "map switching area". When the AGV10 walking while referring to a local map reaches the map switching area, it will switch to walking with reference to other neighboring local maps. The number of partial maps is not limited to four, and can be appropriately set according to the area of the floor on which the AGV10 walks, and the performance of the computer that performs map production and its own position estimation. The size of the partial map data and the width of the overlapping area are not limited to the examples described above, but can be arbitrarily set.

(5)運行管理裝置的構成例 (5) Configuration example of operation management device

圖9所顯示的是運行管理裝置50的硬體構成例。運行管理裝置50具有CPU51、記憶體52、位置資料庫(位置DB)53、通訊電路54、地圖資料庫(地圖DB)55、及圖像處理電路56。 FIG. 9 shows an example of a hardware configuration of the operation management device 50. The operation management device 50 includes a CPU 51, a memory 52, a position database (position DB) 53, a communication circuit 54, a map database (map DB) 55, and an image processing circuit 56.

CPU51、記憶體52、位置DB53、通訊電路54、地圖DB55、及圖像處理電路56是以通訊匯流排57來連接,且可相互地交接資料。 The CPU 51, the memory 52, the location DB 53, the communication circuit 54, the map DB 55, and the image processing circuit 56 are connected by a communication bus 57 and can transfer data to each other.

CPU51是控制運行管理裝置50的動作之訊號處理電路(電腦)。典型地,CPU51是半導體積體電路。 The CPU 51 is a signal processing circuit (computer) that controls the operation of the operation management device 50. Typically, the CPU 51 is a semiconductor integrated circuit.

記憶體52是儲存CPU51執行的電腦程式之揮發性的儲存裝置。記憶體52也可以被利用作為CPU51進行運算時的工作記憶體。 The memory 52 is a volatile storage device that stores a computer program executed by the CPU 51. The memory 52 may be used as a working memory when the CPU 51 performs calculations.

位置DB53會保存位置資料,該位置資料是顯示可以成為各AGV10的目的地之各位置的資料。位置資料可以藉由例如由管理人員在工廠內虛擬地設定的座標來表示。位置資料是藉由管理人員而決定的。 The position DB53 stores position data, which is data showing each position that can be a destination of each AGV10. The position data can be represented by, for example, coordinates set virtually by a manager in a factory. Location data is determined by management.

通訊電路54是進行例如依循乙太網路(註冊商標)規格的有線通訊。通訊電路54是以有線方式與存取點2(圖1)相連接,且可以透過存取點2來與AGV10通訊。通訊電路54是透過匯流排57而從CPU51接收應傳送至AGV10的資料。又,通訊電路54是將從AGV10接收到的資料(通知),透過匯流排57來發送至CPU51及/或記憶體52。 The communication circuit 54 performs wired communication in accordance with an Ethernet (registered trademark) standard, for example. The communication circuit 54 is connected to the access point 2 (FIG. 1) in a wired manner, and can communicate with the AGV 10 through the access point 2. The communication circuit 54 receives data to be transmitted to the AGV 10 from the CPU 51 through the bus 57. The communication circuit 54 transmits data (notification) received from the AGV 10 to the CPU 51 and / or the memory 52 via the bus 57.

地圖DB55會保存AGV10行走的工廠等之內部的地圖之資料。該地圖亦可和地圖40(圖7F)相同,亦可為不同。只要是以1對1方式和各AGV10的位置具有對應關係的地圖即可,資料的形式不拘。例如保存在地圖DB55的地圖,亦可為藉由CAD而製作出的地圖。 The map DB55 stores data on maps inside factories such as the AGV10. The map may be the same as the map 40 (FIG. 7F) or may be different. As long as the map has a correspondence relationship with the position of each AGV10 on a one-to-one basis, the format of the data is not limited. For example, the map stored in the map DB 55 may be a map created by CAD.

位置DB53及地圖DB55亦可在非揮發性的半導體記憶體上建構,亦可在以硬碟為代表的磁性記錄媒體、或以光碟為代表的光學式記錄媒體上建構。 The position DB53 and the map DB55 can also be constructed on a non-volatile semiconductor memory, or on a magnetic recording medium represented by a hard disk, or an optical recording medium represented by an optical disk.

圖像處理電路56是生成可顯示於監視器58的影像之資料的電路。圖像處理電路56只在管理人員操作 運行管理裝置50時動作。在本實施形態中是特意省略更加詳細的說明。再者,監視器58亦可與運行管理裝置50一體化。又,亦可由CPU51進行圖像處理電路56的處理。 The image processing circuit 56 is a circuit that generates data that can be displayed on the monitor 58. The image processing circuit 56 is operated only by a manager It operates when the management device 50 is operated. In this embodiment, a more detailed description is intentionally omitted. The monitor 58 may be integrated with the operation management device 50. The processing of the image processing circuit 56 may be performed by the CPU 51.

(6)運行管理裝置的動作 (6) Operation of the operation management device

參考圖10來說明運行管理裝置50的動作之概要。圖10是示意地顯示藉由運行管理裝置50所決定的AGV10之移動路徑的一例之圖。 An outline of the operation of the operation management device 50 will be described with reference to FIG. 10. FIG. 10 is a diagram schematically showing an example of a movement path of the AGV 10 determined by the operation management device 50.

AGV10及運行管理裝置50的動作之概要如以下所述。在以下,是說明下述之例子:某個AGV10現在是位於位置M1,且會通過若干個位置,以行走到最終的目的地即位置Mn+1(n:1以上的正整數)。再者,在位置DB53中記錄有顯示接在位置M1之後應通過的位置M2、接在位置M2之後應通過的位置M3等之各位置的座標資料。 The outline of the operations of the AGV 10 and the operation management device 50 is as follows. In the following, the following example is explained: A certain AGV10 is now located at the position M 1 and will pass through several positions to walk to the final destination, which is the position M n + 1 (n: a positive integer greater than 1). Furthermore, a display connected to the recording position after M 1 M 2 should pass, then at each position to be adopted after the position M 2 M 3, etc. the position coordinate information on the position DB53.

運行管理裝置50的CPU51是參考位置DB53並讀取位置M2的座標資料,而生成朝向位置M2的行走指令。通訊電路54是透過存取點2來將行走指令發送至AGV10。 CPU51 running management apparatus 50 is the reference position and the reading position M DB53 2 coordinate data, to generate a traveling instruction toward the position M 2. The communication circuit 54 sends a walking instruction to the AGV 10 through the access point 2.

CPU51是透過存取點2而從AGV10定期地接收顯示現在位置及朝向方向的資料。如此進行,讓運行管理裝置50可以追蹤各AGV10的位置。CPU51在判定AGV10的現在位置已與位置M2一致時,會讀取位置M3的座標資料,且生成朝向位置M3的行走指令並發送至AGV10。也就是說,運行管理裝置50在判定為AGV10為已到達某個位置時,會發送朝向接下來應通過的位置之行 走指令。藉此,AGV10可以到達最終之目的位置Mn+1。有時將上述之AGV10的通過位置及目的位置稱為「標記」。 The CPU 51 periodically receives data showing the current position and the direction from the AGV 10 through the access point 2. In this way, the operation management device 50 can track the position of each AGV 10. When CPU51 M 2 coincides with the position has been determined that the current position of the AGV 10, reads the coordinates of the position data M 3, and generates traveling toward the position M 3 and sent to the command AGV10. In other words, when the operation management device 50 determines that the AGV 10 has reached a certain position, it sends a walking instruction toward the position to be passed next. With this, AGV10 can reach the final destination position M n + 1 . The passing position and destination position of the AGV10 mentioned above are sometimes referred to as "markers".

(7)由第1例之移動體10所進行的障礙物之迴避動作 (7) Obstacle avoidance action by the moving body 10 of the first example

以下,說明檢測到移動路徑R上存在有障礙物的情況下之移動體10的迴避動作之各種例子。 Hereinafter, various examples of the avoidance operation of the mobile body 10 when an obstacle is detected on the movement path R will be described.

圖11A所顯示的是在移動路徑R上存在障礙物70的情況下之迂迴路徑B的例子。 FIG. 11A shows an example of a roundabout path B when an obstacle 70 is present on the moving path R.

現在,可考慮下述情況:移動體10從起點S沿著事先設定的移動路徑R而移動的期間,在位置P1上檢測到在行進方向上存在障礙物70的情況。此時,微電腦14a是利用迂迴路徑資料Bd,來設定從移動路徑上的位置P1到位置P4的迂迴路徑B,且使移動體10沿著迂迴路徑B來移動。 Now, a case may be considered in which the obstacle 70 is detected in the traveling direction at the position P1 while the moving body 10 is moving from the starting point S along the previously set movement path R. At this time, the microcomputer 14a uses the detour path data Bd to set the detour path B from the position P1 to the position P4 on the movement path, and moves the mobile body 10 along the detour path B.

圖11A所示的迂迴路徑B是藉由最基本的1個基準迂迴路徑所構成。「基準迂迴路徑」是藉由第1移動路徑與第2移動路徑來規定。當利用圖11A所示的位置P1、P2、P3及P4時,在本實施形態中可將基準迂迴路徑規定為如下。首先,第1方向及第2方向為相互地正交。並且,基準迂迴路徑是藉由從位置P1到位置P2的第1路徑、從位置P2到位置P3的第2路徑、及從位置P3到位置P4的第1路徑來規定。 The detour route B shown in FIG. 11A is constituted by the most basic reference detour route. The "reference detour path" is defined by the first movement path and the second movement path. When the positions P1, P2, P3, and P4 shown in FIG. 11A are used, the reference bypass route can be defined as follows in this embodiment. First, the first direction and the second direction are orthogonal to each other. The reference detour path is defined by a first path from the position P1 to the position P2, a second path from the position P2 to the position P3, and a first path from the position P3 to the position P4.

位置P1到位置P2的第1路徑是平行於第1方向,且使移動體10朝從移動路徑R遠離的方向移動相當於距離D1的路徑。當到達位置P2時,移動體10是朝逆時針 方向旋轉,而將朝向方向從第1方向轉換成第2方向。位置P2到位置P3的第2路徑是平行於第2方向,且使移動體10移動相當於距離D2的路徑。當到達位置P3時,移動體10是朝逆時針方向旋轉,而將朝向方向從第2方向轉換成第1方向。位置P3到位置P4的第1路徑是平行於第1方向,且使移動體10朝接近移動路徑R的方向移動相當於距離D1的路徑。當到達位置P4時,移動體10是朝順時針旋轉,而將朝向方向從第1方向轉換成第2方向。藉此,就可以迂迴繞過障礙物70並返回到當初的移動路徑R,且在之後沿著移動路徑R移動。 The first path from the position P1 to the position P2 is a path parallel to the first direction, and the moving body 10 is moved in a direction away from the moving path R, which is equivalent to a distance D1. When reaching position P2, the moving body 10 is counterclockwise The direction is rotated, and the direction is changed from the first direction to the second direction. The second path from the position P2 to the position P3 is a path parallel to the second direction, and the moving body 10 is moved corresponding to the distance D2. When the position P3 is reached, the moving body 10 rotates in the counterclockwise direction, and changes the direction from the second direction to the first direction. The first path from the position P3 to the position P4 is a path parallel to the first direction, and the moving body 10 moves in a direction close to the moving path R corresponding to the distance D1. When the position P4 is reached, the moving body 10 rotates clockwise, and changes the orientation from the first direction to the second direction. Thereby, it is possible to bypass the obstacle 70 and return to the original movement path R, and then move along the movement path R afterwards.

在圖11A中所顯示的是有關於第1方向的第1最大容許距離Dmax1、及有關於第2方向的第2最大容許距離Dmax2。迂迴路徑B是設定成:離移動路徑R的第1方向之距離落在第1最大容許距離Dmax1以內,且有關於第2方向的移動距離落在第2最大容許距離Dmax2以內。第1最大容許距離Dmax1及第2最大容許距離Dmax2的各資料是藉由例如移動體10的管理人員來事先儲存在儲存裝置14c中。再者,在利用複數個移動體10的環境中,亦可按每個移動體10來獨立設定基準迂迴路徑、第1最大容許距離Dmax1及第2最大容許距離Dmax2之各資料。 FIG. 11A shows a first maximum allowable distance Dmax1 related to the first direction and a second maximum allowable distance Dmax2 related to the second direction. The detour path B is set such that the distance from the first direction of the movement path R falls within the first maximum allowable distance Dmax1, and the movement distance in the second direction falls within the second maximum allowable distance Dmax2. The data of the first maximum allowable distance Dmax1 and the second maximum allowable distance Dmax2 are stored in the storage device 14c in advance by, for example, an administrator of the mobile body 10. Furthermore, in an environment using a plurality of moving bodies 10, each of the data of the reference detour path, the first maximum allowable distance Dmax1, and the second maximum allowable distance Dmax2 may be independently set for each moving body 10.

在此,參考圖11B來說明有關於移動體10進行的障礙物檢測動作及迂迴動作之圖式上的表記。在圖11B中作為範例而顯示有記號a~c的各動作之意義。亦即,作為範例而記載有障礙物的判定動作a、移動動作b、第1 路徑及第2路徑間的方向轉換動作c。在本說明書中,有時將藉由移動動作b而移動的距離稱為「最小迴避距離」。「最小迴避距離」是指從原本的路徑遠離之最小的距離。 Here, reference will be made to FIG. 11B, and descriptions on the drawings regarding the obstacle detection operation and the detour operation performed by the mobile body 10 will be described. The meaning of each operation of the symbols a to c is shown as an example in FIG. 11B. That is, the obstacle determination operation a, the movement operation b, and the first Direction change operation c between the path and the second path. In this specification, the distance moved by the movement b may be referred to as a "minimum avoidance distance". The "minimum avoidance distance" refers to the minimum distance away from the original path.

在圖12以後也是對各動作附加相同的符號,而省略動作a~c之各個動作的說明。再者,為了說明的方便,有時會將要特別注意的動作a~c記載成「動作a1」等。 After FIG. 12, the same symbols are assigned to the respective operations, and descriptions of the respective operations a to c are omitted. In addition, for the convenience of explanation, actions a to c that require special attention are sometimes described as "action a1" or the like.

圖12、圖13、及圖14是顯示存在有複數個障礙物70a的情況之迂迴路徑的例子。藉由以最初的障礙物之判定動作a而檢測出障礙物70a,微電腦14a即會設定基準迂迴路徑。 FIG. 12, FIG. 13, and FIG. 14 are examples of detours when a plurality of obstacles 70 a are present. When the obstacle 70a is detected by the first obstacle determination operation a, the microcomputer 14a sets a reference circuitous path.

在圖12中,微電腦14a是為了迂迴而進行最初的移動動作b。距離D1的移動後,微電腦14a是藉由障礙物的判定動作a1,在行進方向即第2方向的迂迴路徑上檢測出另一個障礙物70b。藉此,微電腦14a是進一步地繼續進行沿著第1方向的移動動作b1。在進一步之距離D1的移動後之動作,與圖11A的位置P2之後的例子是相同的。但是,由最後的移動動作b2所進行的移動為D2*2。 In FIG. 12, the microcomputer 14 a performs the first movement operation b for detours. After the movement of the distance D1, the microcomputer 14a detects another obstacle 70b on the tortuous path in the second direction by the obstacle determining action a1. Accordingly, the microcomputer 14a further continues the movement operation b1 in the first direction. The movement after the further distance D1 is the same as the example after the position P2 in FIG. 11A. However, the movement performed by the last movement b2 is D2 * 2.

在圖13中,微電腦14a是為了迂迴而進行最初的移動動作b,且在距離D1的移動後進行方向轉換動作c。在行進方向即第2方向的迂迴路徑上進行移動動作b1時,微電腦14a是藉由障礙物的判定動作a1,而在行進方向即第2方向的迂迴路徑上檢測出另一個障礙物70b。藉此,微電腦14a是進一步地沿著第1方向而朝從當初的移動 路徑R遠離的方向進行移動動作b2。在進一步之距離D1的移動後,與圖12的例子是相同的。 In FIG. 13, the microcomputer 14a performs the first movement operation b for detours, and performs the direction switching operation c after the movement of the distance D1. When the moving action b1 is performed on the detour in the second direction, which is the traveling direction, the microcomputer 14a detects another obstacle 70b on the detour in the second direction, which is the obstacle determining action a1. Thereby, the microcomputer 14a moves further along the first direction toward the original direction. The moving action b2 is performed in a direction in which the path R moves away. After the further distance D1 is moved, it is the same as the example of FIG. 12.

再者,在圖12及圖13中,雖然均顯示有複數個障礙物70a及70b,但這只是一個例子。在將長條物配置成於沿著第2方向的複數個迂迴路徑上橫穿過的情況下,也可以進行上述之處理。 In addition, although the obstacles 70a and 70b are each shown in FIG. 12 and FIG. 13, this is only an example. The above-mentioned processing may be performed when the long object is arranged to traverse on a plurality of detours along the second direction.

在圖14中,所顯示的是在複數個移動動作b之間檢測到障礙物的情況之移動體10的動作。檢測到各障礙物時的動作,是比照圖12及圖13的例子。 In FIG. 14, the movement of the mobile body 10 when an obstacle is detected between the plurality of movement movements b is shown. The operation when each obstacle is detected is compared with the examples of FIGS. 12 and 13.

特別針對障礙物的判定動作a1來說明。進行障礙物的判定動作a1之位置,是對應於下述位置:針對第2方向來看時,從進行最初的判定動作a0之位置起算移動相當於距離D2的位置。微電腦14a會判斷是否可從進行最初的判定動作a0之位置起算以距離D2為單位,來回到(返回)移動路徑R的方向。在此例的情況下,由於已藉由判定動作a1檢測到障礙物,因此會繼續進行往第2方向的移動動作b1。再者,方向轉換動作c1是藉由判定動作的結果,即障礙物不存在的情形來進行的動作。藉此,微電腦14a是使移動體10沿著第1方向朝接近移動路徑R的方向移動。 In particular, the obstacle determining operation a1 will be described. The position at which the obstacle determination operation a1 is performed corresponds to the position where, when viewed in the second direction, the position corresponding to the distance D2 is moved from the position at which the first determination operation a0 was performed. The microcomputer 14a determines whether it is possible to return (return) to the direction of the movement path R in units of distance D2 from the position where the first determination action a0 was performed. In the case of this example, since an obstacle has been detected by the determination action a1, the movement action b1 in the second direction is continued. In addition, the direction switching action c1 is an action performed by determining the result of the action, that is, when the obstacle does not exist. Thereby, the microcomputer 14a moves the moving body 10 in a direction close to the moving path R in the first direction.

圖15至圖17所顯示的是無法進行往當初的移動路徑R之返回的3個例子。從最初的判定動作a0起算,在針對第1方向並無法在第1最大容許距離Dmax1以內來設定迂迴路徑的情況下(圖15),微電腦14a是判斷為無法進行往移動路徑R的返回而使移動體10停止。又,在針對 第2方向並無法在第2最大容許距離Dmax2以內來設定迂迴路徑的情況下(圖16),微電腦14a也會使移動體10停止。此外,如圖17所示,在往移動路徑R的全部返回方向上已檢測到障礙物的存在之情況下,微電腦14a也會使移動體10停止。 15 to 17 show three examples in which the return to the original movement path R cannot be performed. Counting from the first determination operation a0, when the detour path cannot be set within the first maximum allowable distance Dmax1 for the first direction (FIG. 15), the microcomputer 14a determines that the return to the moving path R cannot be performed, and The moving body 10 stops. Again, against In the case where the detour cannot be set within the second maximum allowable distance Dmax2 in the second direction (FIG. 16), the microcomputer 14 a also stops the moving body 10. In addition, as shown in FIG. 17, when the presence of an obstacle has been detected in all the return directions of the movement path R, the microcomputer 14 a also stops the moving body 10.

在移動體10的停止後,例如管理人員將移動體10搬運到不同的位置上,並將移動體10再起動即可。 After the moving body 10 is stopped, for example, a manager may move the moving body 10 to a different position and restart the moving body 10.

圖18A及圖18B是顯示由本實施形態所進行的微電腦14a之處理的順序的流程圖。 18A and 18B are flowcharts showing the processing procedure of the microcomputer 14a according to this embodiment.

在步驟S10中,微電腦14a會開始進行一般的行走。在圖18A中是將行走於移動路徑R上的狀態表記成「正常動作」。 In step S10, the microcomputer 14a starts normal walking. In FIG. 18A, the state table walking on the movement path R is described as "normal operation".

在步驟S12中,微電腦14a是由障礙物感測器14j的輸出來判定是否已檢測到障礙物。在未檢測到障礙物的情況下是繼續進行步驟S10中的正常動作,在已檢測到障礙物的情況下是讓處理前進到步驟S14。 In step S12, the microcomputer 14a determines whether an obstacle has been detected from the output of the obstacle sensor 14j. When an obstacle is not detected, the normal operation in step S10 is continued, and when an obstacle is detected, the process is advanced to step S14.

在步驟S14中,微電腦14a會判定是否已到達第1最大容許距離Dmax1。此處理是藉由例如下述作法來實現:利用位置推定裝置14e之已輸出的位置資訊來儲存脫離移動路徑R的時間點之位置,且微電腦14a就有關於第1方向,計算該位置與現在位置之差。在判定為未到達的情況下,處理是前進到步驟S16,在判定為已到達的情況下處理是前進到步驟S26。 In step S14, the microcomputer 14a determines whether the first maximum allowable distance Dmax1 has been reached. This process is achieved by, for example, using the output position information of the position estimating device 14e to store the position at the time point when the path of departure from the moving path R is stored, and the microcomputer 14a calculates the position and the current direction Position difference. If it is determined not to have arrived, the process proceeds to step S16, and if it is determined to have arrived, the process proceeds to step S26.

在步驟S16中,微電腦14a是將移動方向控制 成使移動體10沿著第1方向且朝從移動路徑R遠離的方向行走。接著,處理是前進到步驟S18。 In step S16, the microcomputer 14a controls the movement direction The moving body 10 is caused to travel in a direction away from the moving path R in the first direction. Then, the process proceeds to step S18.

步驟S18的處理是從移動體10剛開始移動之前開始進行。在步驟S18中,微電腦14a會再次藉由和步驟S12同樣的處理,來判定是否已檢測到障礙物。在未檢測到障礙物的情況下是前進至步驟S20,在已檢測到障礙物的情況下處理是前進到步驟S22。 The processing of step S18 is performed immediately before the mobile body 10 starts to move. In step S18, the microcomputer 14a again determines whether an obstacle has been detected by the same process as in step S12. If an obstacle is not detected, the process proceeds to step S20, and if an obstacle is detected, the process proceeds to step S22.

在步驟S20中,微電腦14a是判定以相當於最小迴避距離沿著第1方向的移動是否已完成。移動距離的資訊與在步驟S14中說明的方法是同樣的。 In step S20, the microcomputer 14a determines whether or not the movement in the first direction at the minimum avoidance distance has been completed. The moving distance information is the same as the method described in step S14.

在步驟S22中,微電腦14a會判定是否已到達第2最大容許距離DmaX2。此處理也是藉由與步驟S14同樣的處理來實現。亦即是藉由下述作法來實現:利用位置推定裝置14e之已輸出的位置資訊來儲存脫離移動路徑R的時間點之位置,且微電腦14a就有關於第2方向,計算該位置與現在位置之差。在判定為未到達的情況下,處理是前進到步驟S24,在判定為已到達的情況下,處理是前進到步驟S26。 In step S22, the microcomputer 14a determines whether the second maximum allowable distance DmaX2 has been reached. This process is also implemented by the same process as that of step S14. That is, it is achieved by using the output position information of the position estimating device 14e to store the position at the point in time when it is away from the moving path R, and the microcomputer 14a calculates the position and the current position regarding the second direction. Difference. If it is determined not to have arrived, the process proceeds to step S24, and if it is determined to have arrived, the process proceeds to step S26.

在步驟S24中,微電腦14a是將移動方向控制成使移動體10在沿著第2方向的方向上行走。接著,處理是前進到步驟S20(圖18B)。再者,步驟S18的處理是從移動體10剛開始移動之前開始進行。 In step S24, the microcomputer 14a controls the moving direction so that the moving body 10 moves in a direction along the second direction. Next, the process proceeds to step S20 (FIG. 18B). The processing in step S18 is performed immediately before the mobile body 10 starts to move.

在步驟S26中,微電腦14a是使移動體10的移動動作停止。其理由是因為障礙物70的迴避已失敗。其結 果,在進行了動作停止的判斷以後,在例如由管理人員將移動體10再起動以前,會停止障礙物偵測,以抑制電力的消耗。 In step S26, the microcomputer 14a stops the moving operation of the mobile body 10. The reason is because the avoidance of the obstacle 70 has failed. Its knot As a result, after the operation stop is determined, the obstacle detection is stopped before the mobile body 10 is restarted by a manager, for example, so as to suppress power consumption.

在圖18B的步驟S28中,微電腦14a會再次藉由和步驟S12同樣的處理,來判定是否已檢測到障礙物。在未檢測到障礙物的情況下是前進至步驟S30,在已檢測到障礙物的情況下處理是回到步驟S14。 In step S28 in FIG. 18B, the microcomputer 14a again determines whether an obstacle has been detected by the same process as in step S12. When an obstacle is not detected, the process proceeds to step S30, and when an obstacle is detected, the process returns to step S14.

在步驟S30中,微電腦14a是判定以相當於最小迴避距離沿著第2方向的移動是否已完成。移動距離的資訊是以和步驟S14、S20中所說明的方法同樣的方法來取得。 In step S30, the microcomputer 14a determines whether or not the movement in the second direction at the minimum avoidance distance has been completed. The moving distance information is obtained in the same manner as the method described in steps S14 and S20.

在步驟S32中,微電腦14a是將移動方向控制成使移動體10沿著第1方向且朝接近移動路徑R的方向行走。接著,處理是前進到步驟S34。 In step S32, the microcomputer 14a controls the moving direction so that the moving body 10 moves in the first direction and in a direction close to the moving path R. Then, the process proceeds to step S34.

在步驟S34中,微電腦14a是再次藉由和步驟S12同樣的處理,來判定是否已檢測到障礙物。在未檢測到障礙物的情況下,是前進至步驟S36,在已檢測到障礙物的情況下,處理是回到步驟S22。 In step S34, the microcomputer 14a again determines whether or not an obstacle has been detected by the same process as in step S12. When an obstacle is not detected, the process proceeds to step S36. When an obstacle is detected, the process returns to step S22.

在步驟S36中,微電腦14a是判定以相當於最小迴避距離沿著第1方向的移動是否已完成。移動距離的資訊是以和步驟S14、S20、S30中所說明的方法同樣的方法來取得。若移動未完成即回到步驟S32並繼續移動。若移動已完成,處理是前進到步驟S38。 In step S36, the microcomputer 14a determines whether or not the movement in the first direction at a distance equivalent to the minimum avoidance distance has been completed. The moving distance information is obtained in the same manner as the method described in steps S14, S20, and S30. If the movement is not completed, return to step S32 and continue the movement. If the movement has been completed, the process proceeds to step S38.

在步驟S38中,微電腦14a是判定移動體10是否已到達 移動路徑R。在此時,也是微電腦14a只要比較位置推定裝置14e輸出的現在之位置,與就有關於第1方向而脫離移動路徑R的時間點之位置是否相同即可。在移動體10已到達移動路徑R的情況下,處理是前進到步驟S40,在未到達的情況下,是一邊持續移動一邊執行步驟S32以後的處理。 In step S38, the microcomputer 14a determines whether or not the mobile body 10 has arrived. Movement path R. At this time, the microcomputer 14a only needs to compare whether the current position output from the position estimating device 14e is the same as the position at the time point when the first direction is separated from the movement path R. When the mobile body 10 has reached the movement path R, the process proceeds to step S40, and when it does not reach, the processes after step S32 are executed while continuing to move.

在步驟S40中,微電腦14a是判定為返回移動路徑R且迴避動作已完成。藉此,就可以重新開始進行移動路徑R上的移動(正常動作)。 In step S40, the microcomputer 14a determines that the movement path R has been returned and the avoidance operation has been completed. Thereby, the movement on the movement path R can be resumed (normal operation).

上述之圖12~圖14的動作,是有關於迂迴路徑的設定之一例。在一開始判定為障礙物存在,且在之後進一步地判定為障礙物存在的情況下,並毋須總是使移動體10朝從移動路徑R遠離的方向前進。只不過是說明了在可設定複數個迂迴路徑的狀況下,進行讓移動體10朝從移動路徑R遠離的方向前進之選擇的例子。又,即使是在已朝接近移動路徑R的方向前進的情況下,之後再次進行朝從移動路徑R遠離的方向前進之選擇亦可。又,往第2方向的移動也不僅是在從起點S朝向終點G的方向上前進,亦可為在從終點G回到起點S的方向上前進。 The above-mentioned operations of FIGS. 12 to 14 are examples of the setting of the detour route. When it is determined that an obstacle is present at first, and it is further determined that an obstacle is present later, it is not always necessary to move the moving body 10 in a direction away from the moving path R. This is merely an example of the selection of moving the moving body 10 in a direction away from the moving path R in a case where a plurality of detours can be set. In addition, even in a case where the vehicle is moving in a direction approaching the moving path R, the selection of moving in a direction away from the moving path R may be performed again afterwards. In addition, the movement in the second direction may not only proceed in the direction from the starting point S toward the end point G, but may also advance in the direction from the end point G to the starting point S.

(8)由第2例之移動體10所進行的障礙物之迴避動作 (8) Obstacle avoidance operation by the moving body 10 of the second example

本發明之發明人觀察了在移動體10的移動路徑R上載置有障礙物後的狀況。其結果,得到了下述之知識見解:障礙物的載置是暫時的,當經過某一定時間時大多為障礙物已被去除的情形。當歷經數次並設定迂迴路徑時,會使移動距離變長,且在移動上耗費時間。因此, 發現了下述課題:僅管實際上障礙物已被去除,移動體10仍持續行走於迂迴路徑上。 The inventor of the present invention observed the situation after an obstacle was placed on the movement path R of the mobile body 10. As a result, the following knowledge was obtained: the placement of obstacles is temporary, and when a certain period of time has passed, the obstacles are often removed. When going through several times and setting a detour, the moving distance becomes longer and it takes time to move. therefore, The following problem was found: the moving body 10 continued to walk on the circuitous path even though the obstacle was actually removed.

圖19A至圖19E是用於說明移動體10的不同的動作例之圖。以下所說明的動作,是圖12所示的狀況中的移動體10的不同的動作例。 19A to 19E are diagrams for explaining different operation examples of the mobile body 10. The operation described below is a different operation example of the mobile body 10 in the situation shown in FIG. 12.

如圖19A所示,移動體10在移動路徑R上行走中,微電腦14a是藉由位置P1上的動作a1,來檢測障礙物70p。其結果,設定迂迴路徑並進行移動動作b。接著,微電腦14a是藉由位置P2上的判定動作a2來檢測行進方向的障礙物70q。在圖12的例子中,微電腦14a是進行另一個移動動作b1來使移動體10移動。但是,實際上,移動體10也可選擇移動動作b2(圖19B),且也可選擇另外的其他移動動作b3(圖19B)。又,不只是2個方向(第1方向及第2方向),也可選擇其他方向的迂迴路徑。 As shown in FIG. 19A, while the mobile body 10 is walking on the movement path R, the microcomputer 14a detects the obstacle 70p by the action a1 at the position P1. As a result, a detour is set and the movement operation b is performed. Next, the microcomputer 14a detects the obstacle 70q in the traveling direction by the determination action a2 at the position P2. In the example of FIG. 12, the microcomputer 14 a performs another movement operation b1 to move the moving body 10. However, in reality, the moving body 10 may also select a moving action b2 (FIG. 19B), and may also select another other moving action b3 (FIG. 19B). In addition, not only two directions (the first direction and the second direction), but also alternative routes can be selected.

在本例中,微電腦14a是在複數個迂迴路徑當中,將使移動體10從位置P2再次移動到位置P1的路徑選擇作為迂迴路徑。圖19C所顯示的是進行移動動作b2回到位置P1的移動體10。 In this example, the microcomputer 14a selects, as a detour route, a route for moving the mobile body 10 from the position P2 to the position P1 among a plurality of detour routes. FIG. 19C shows the moving body 10 that has moved the movement b2 back to the position P1.

位置P1是在移動路徑R上已檢測到障礙物70p的位置。回到位置P1的移動體10之微電腦14a是在位置P1上再次對當初的移動路徑R上是否存在有障礙物70p進行判定。根據上述之知識見解,障礙物70p已被去除的可能性很高。可充分考慮的是,假設即使障礙物70p依然存在,只要待機一段時間,仍會有去除的情況。 The position P1 is a position where an obstacle 70p has been detected on the movement path R. The microcomputer 14a of the mobile body 10 returned to the position P1 determines again whether or not there is an obstacle 70p in the original movement path R at the position P1. According to the above-mentioned knowledge, the possibility that the obstacle 70p has been removed is high. What can be fully considered is that even if the obstacle 70p still exists, it will still be removed as long as it stands by for a period of time.

在位置P1上,障礙物70p已被去除的情況下,移動體10的微電腦14a是使移動體10沿著當初的移動路徑R來移動。在障礙物70p未被去除的情況下,移動體10的微電腦14a是使移動體10在位置P1上進行規定時間待機,等待障礙物70p被去除。之後,只要在障礙物70p已被去除的情況下,微電腦14a使移動體10沿著當初的移動路徑R移動即可。 When the obstacle 70p has been removed at the position P1, the microcomputer 14a of the mobile body 10 moves the mobile body 10 along the original movement path R. When the obstacle 70p is not removed, the microcomputer 14a of the mobile body 10 causes the mobile body 10 to wait at the position P1 for a predetermined time, and waits for the obstacle 70p to be removed. After that, as long as the obstacle 70p has been removed, the microcomputer 14a may move the mobile body 10 along the original movement path R.

根據以上的動作,可以做到讓移動體10暫且在迂迴路徑上行走,在迂迴路徑上沒有障礙物存在的情況下就利用迂迴路徑以比較迅速地返回移動路徑R。 According to the above operation, the moving body 10 can temporarily walk on the detour, and when there is no obstacle on the detour, the detour is used to return to the movement path R relatively quickly.

在迂迴路徑上也存在有障礙物的情況下,是回到原本的位置並判定障礙物是否已去除。在已去除的情況下,就可以迅速地開始進行移動路徑R的行走。另一方面,即使到去除以前已等待一定期間,相較於屢次重複設定迂迴路徑,仍有能夠在移動路徑R上較迅速地行走的情況。 When there is an obstacle on the detour, it is to return to the original position and determine whether the obstacle has been removed. If it has been removed, it is possible to quickly start walking on the moving path R. On the other hand, even if it waits for a certain period before the removal, it is possible to walk on the moving path R more quickly than to repeatedly set the detour path.

圖20是顯示圖19A~19E為止的處理之順序的流程圖。圖20所示的流程圖是圖18B的替代處理。原則上圖18A所示的處理是共通地進行。但是,在執行圖20所示的處理之情況下,並不包含圖18A之以圓圈包圍的「B」所示的處理。因為在圖20中,並未包含圖18B所包含之從步驟S28回到步驟S14的處理。 FIG. 20 is a flowchart showing a procedure of processing up to FIGS. 19A to 19E. The flowchart shown in FIG. 20 is an alternative process to FIG. 18B. In principle, the processing shown in FIG. 18A is performed in common. However, when the processing shown in FIG. 20 is executed, the processing shown by “B” surrounded by a circle in FIG. 18A is not included. This is because the processing from step S28 to step S14 included in FIG. 18B is not included in FIG. 20.

圖20的處理和圖18B的處理之不同點為:在圖20中設置有步驟S50、S52、及S54。在圖20中,對於和 圖18B相同的處理(步驟)是附加相同的編號,並省略其說明。再者,在本例中,步驟S28中的障礙物之檢測,是設為在欲進行沿著第2方向的移動之前進行。也就是說,是設想下述狀況:在有關於第2方向的行進方向上存在有障礙物70,且移動體10尚未進行往第2方向的移動之狀況。 The difference between the process of FIG. 20 and the process of FIG. 18B is that steps S50, S52, and S54 are provided in FIG. In Figure 20, for and The same processes (steps) in FIG. 18B are given the same reference numerals, and descriptions thereof are omitted. In this example, the obstacle detection in step S28 is performed before the movement in the second direction is intended. In other words, a situation is assumed in which an obstacle 70 is present in the direction of travel in the second direction and the mobile body 10 has not yet moved in the second direction.

在步驟S50中,微電腦14a是從可利用的複數個迂迴路徑之中,選擇返回的路徑。返回的路徑是指反過來沿著行走到此為止的路徑來行進之路徑。之後處理是前進到步驟S32。 In step S50, the microcomputer 14a selects a return path from among a plurality of available detour paths. The return path refers to the path followed by walking along the path to this point. After that, the process proceeds to step S32.

在步驟S52中,微電腦14a是判定是否已檢測到障礙物。此時的障礙物是指在移動路徑R上行走中,使其產生了必須設定迂迴路徑之障礙物70。在持續檢測到障礙物的情況下,是例如微電腦14a會待機到變得未檢測到障礙物為止。在未檢測到障礙物的情況下處理是前進到步驟S54。如上所述,根據本發明之發明人的知識見解,由於障礙物大多可在短時間內被去除,因此可設想為在步驟S52中在大多數的情況下,到變得未檢測到障礙物為止的時間是短的。 In step S52, the microcomputer 14a determines whether an obstacle has been detected. The obstacle at this time refers to an obstacle 70 that has to be set for a detour while walking on the moving path R. When an obstacle is continuously detected, for example, the microcomputer 14a waits until an obstacle is not detected. In the case where no obstacle is detected, the process proceeds to step S54. As described above, according to the knowledge and knowledge of the inventor of the present invention, since obstacles can be removed in a short period of time in most cases, it is conceivable that in most cases in step S52, no obstacle is detected The time is short.

在步驟S54中,微電腦14a是重新開始進行沿著移動路徑R的行走。 In step S54, the microcomputer 14a resumes walking along the movement path R.

以上,說明了本揭示的實施形態之移動體10的構成及動作。 The configuration and operation of the mobile body 10 according to the embodiment of the present disclosure have been described above.

上述之全面的或具體的態樣,亦可藉由系統、方法、積體電路、電腦程式、或記錄媒體來實現。或 者,藉由系統、裝置、方法、積體電路、電腦程式、及記錄媒體的任意之組合來實現亦可。具體而言,上述之圖18A、圖18B及圖20的處理可以作為可藉由電腦即微電腦14a執行的電腦程式而實現。電腦程式可以記錄於CD-ROM等之光碟、硬碟等之磁碟、及快閃記憶體等之半導體記憶體等的記錄媒體來流通。或者,電腦程式可以利用電氣通訊電路來發送接收而視為商業交易的對象。 The above-mentioned comprehensive or specific aspects can also be implemented by a system, a method, an integrated circuit, a computer program, or a recording medium. or Alternatively, it may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium. Specifically, the processing of FIGS. 18A, 18B, and 20 described above can be implemented as a computer program executable by a microcomputer 14a, which is a computer. Computer programs can be distributed on recording media such as CD-ROMs, magnetic disks such as hard disks, and semiconductor memories such as flash memories. Alternatively, a computer program can use an electrical communication circuit to send and receive as an object of a commercial transaction.

產業上之可利用性 Industrial availability

本揭示之移動體及移動體管理系統可以在工廠、倉庫、建設現場、物流、及醫院等理想地利用於貨物、零件、完成品等物的移動及搬送上。 The moving body and the moving body management system of the present disclosure can be ideally used for the movement and transportation of goods, parts, finished products and the like in factories, warehouses, construction sites, logistics, and hospitals.

Claims (14)

一種移動體,是可自主地移動,且該移動體具備:複數個驅動輪;複數個馬達,各自連接於前述複數個驅動輪;障礙物感測器,檢測障礙物;外界感測器,重複掃瞄環境,且按每次掃瞄而輸出感測器資料;位置推定裝置,根據前述感測器資料,依序生成並輸出位置資訊,該位置資訊是表示前述移動體的位置及朝向方向(orientation)的推定值之資訊;控制電路,一邊參考由前述位置推定裝置所輸出的前述位置資訊,一邊使前述複數個馬達旋轉,以控制前述移動體的移動;及儲存裝置,儲存規定有基準迂迴路徑的迂迴路徑資料,該基準迂迴路徑是有關於第1方向的第1路徑、以及有關於和前述第1方向不同的第2方向的第2路徑之組合,前述移動體於沿著事先設定的移動路徑移動的期間,藉由前述障礙物感測器的輸出,而在第1位置上檢測到在行進方向上存在有障礙物時,前述控制電路會利用前述迂迴路徑資料,來設定從前述事先設定之移動路徑上的前述第1位置到第2位置的迂迴路徑,並使前述移動體沿著前述迂迴路徑移動。A moving body is capable of moving autonomously, and the moving body is provided with: a plurality of driving wheels; a plurality of motors each connected to the foregoing plurality of driving wheels; an obstacle sensor to detect an obstacle; an external sensor to repeat Scan the environment and output sensor data for each scan; the position estimation device sequentially generates and outputs position information based on the sensor data, which indicates the position and orientation of the moving body ( information about the estimated value of the orientation); the control circuit, while referring to the position information output by the position estimation device, rotates the plurality of motors to control the movement of the moving body; and a storage device that stores a predetermined reference circuit The detour route information of the route. The reference detour route is a combination of a first route in a first direction and a second route in a second direction different from the first direction. The moving body is set in advance along the route. While the movement path was moving, an obstacle was detected in the traveling direction at the first position by the output of the obstacle sensor. When obstructing an object, the control circuit uses the detour path data to set a detour path from the first position to the second position on the previously set movement path, and moves the moving body along the detour path. 如請求項1之移動體,其中,前述第1方向及前述第2方向是相互正交,前述迂迴路徑是使前述移動體依序移動如下之路徑:平行於前述第1方向且朝遠離前述事先設定的移動路徑的方向移動,平行於前述第2方向地移動,平行於前述第1方向且朝接近前述事先設定的移動路徑的方向移動。For example, the moving body of claim 1, wherein the first direction and the second direction are orthogonal to each other, and the detour path is a path in which the moving body sequentially moves as follows: parallel to the first direction and away from the prior The direction of the set moving path moves in parallel to the second direction, and moves in a direction parallel to the first direction and close to the previously set moving path. 如請求項2之移動體,其中,前述第1路徑具有第1規定距離,前述第2路徑具有第2規定距離,在將前述迂迴路徑稱為第1迂迴路徑時,前述移動體在前述第1迂迴路徑上移動相當於前述第1規定距離而到達第3位置後,藉由前述障礙物感測器的輸出,而檢測到前述第2方向的行進方向上存在有障礙物時,前述控制電路會利用前述迂迴路徑資料,來設定從前述第1迂迴路徑上的前述第3位置到第4位置的第2迂迴路徑,並使前述移動體沿著前述第2迂迴路徑移動。For example, the moving object of claim 2, wherein the first path has a first predetermined distance and the second path has a second predetermined distance. When the detour is referred to as a first detour, the moving object is at the first When moving on the detour path is equivalent to the first predetermined distance and reaching the third position, the output of the obstacle sensor detects an obstacle in the direction of travel in the second direction. Using the detour route data, a second detour route from the third position to the fourth position on the first detour route is set, and the moving body is moved along the second detour route. 如請求項2之移動體,其中,前述第1路徑具有第1規定距離,前述第2路徑具有第2規定距離,在將前述迂迴路徑稱為第1迂迴路徑時,前述移動體在前述第1迂迴路徑上移動相當於前述第1規定距離而到達第3位置,且在進一步沿著平行於前述第2方向的方向移動的期間的第4位置上,藉由前述障礙物感測器的輸出,而檢測到前述行進方向上存在有障礙物時,前述控制電路會設定從前述第1迂迴路徑上的前述第4位置到第5位置的第2迂迴路徑,並使前述移動體沿著前述第2迂迴路徑移動,前述第2迂迴路徑是使前述移動體從前述第4位置依序移動如下之路徑:在平行於前述第1方向,且朝遠離前述事先設定的移動路徑的方向移動相當於前述第1規定距離,平行於前述第2方向,且移動相當於比前述第2規定距離更短的距離,在平行於前述第1方向,且朝接近前述事先設定的移動路徑的方向移動相當於前述第1規定距離。For example, the moving object of claim 2, wherein the first path has a first predetermined distance and the second path has a second predetermined distance. When the detour is referred to as a first detour, the moving object is at the first The movement on the detour is equivalent to the first predetermined distance to reach the third position, and at the fourth position during a period of further movement in a direction parallel to the second direction, the output of the obstacle sensor is used, When an obstacle is detected in the traveling direction, the control circuit sets a second detour path from the fourth position to the fifth position on the first detour path, and causes the moving body to follow the second detour path. The second detour path is a path in which the moving body sequentially moves from the fourth position to a direction parallel to the first direction and moving away from the previously set movement path is equivalent to the first 1 A predetermined distance is parallel to the second direction, and the movement is equivalent to a shorter distance than the second predetermined distance, and is parallel to the first direction and close to the previously set Corresponds to the direction of movement path of the first predetermined distance. 如請求項2之移動體,其中,在前述行進方向為平行於前述第2方向的方向,且藉由前述障礙物感測器的輸出,而檢測到在前述行進方向上存在有障礙物時,前述控制電路會設定新的迂迴路徑,該新的迂迴路徑是從檢測到前述障礙物的位置,使移動體在平行於前述第1方向,且朝遠離前述事先設定的移動路徑的方向移動的迂迴路徑。If the moving object according to claim 2, wherein the traveling direction is a direction parallel to the second direction and the output of the obstacle sensor detects an obstacle in the traveling direction, The control circuit may set a new detour path. The new detour path is a detour that moves the moving body in a direction parallel to the first direction and away from the previously set movement path from the position where the obstacle is detected. path. 如請求項2至5中任一項之移動體,其中,在前述行進方向為平行於前述第2方向的方向,且前述移動體已行走了前述第2規定距離以上時,前述控制電路會設定在平行於前述第1方向,且使該移動體朝接近前述事先設定的移動路徑的方向移動的路徑。If the moving body according to any one of claims 2 to 5, wherein the moving direction is a direction parallel to the second direction and the moving body has walked more than the second predetermined distance, the control circuit sets A path parallel to the first direction and moving the moving body in a direction approaching the previously set moving path. 如請求項2至5中任一項之移動體,其中,前述儲存裝置保持有第1距離資料及第2距離資料,其中該第1距離資料是顯示有關於前述第1方向的第1最大容許距離之資料,該第2距離資料是顯示有關於前述第2方向的第2最大容許距離之資料,前述控制電路是參考前述第1距離資料及前述第2距離資料,來將下述路徑設定作為前述迂迴路徑:離前述事先設定的移動路徑之前述第1方向的距離落在前述第1最大容許距離以內,且有關於前述第2方向的移動距離落在前述第2最大容許距離以內的路徑。If the moving object according to any one of claims 2 to 5, wherein the storage device holds first distance data and second distance data, wherein the first distance data indicates a first maximum allowance regarding the first direction The distance data, the second distance data is information showing the second maximum allowable distance in the second direction, and the control circuit refers to the first distance data and the second distance data to set the following path as The detour path: a path in which the distance from the first direction of the previously set movement path is within the first maximum allowable distance and the movement distance in the second direction is within the second maximum allowable distance. 如請求項7之移動體,其中,在下述情況下,前述控制電路會使前述移動體停止:離前述事先設定的移動路徑之有關於前述第1方向的距離超過前述第1最大容許距離的情況下、有關於前述第2方向的移動距離超過前述第2最大容許距離的情況下、或者朝接近前述事先設定的移動路徑之方向及前述第2方向的雙方上存在有1個或複數個障礙物的情況下。The moving body according to claim 7, wherein the control circuit stops the moving body in a case where the distance from the movement path set in advance in the first direction exceeds the first maximum allowable distance In the case where the moving distance in the second direction exceeds the second maximum allowable distance, or there are one or more obstacles in the direction close to the previously set movement path and in the second direction in the case of. 一種記錄媒體,其記錄有用於控制可自主地移動的移動體之動作的電腦程式,前述移動體具備:複數個驅動輪;複數個馬達,各自連接於前述複數個驅動輪;障礙物感測器,檢測障礙物;外界感測器,重複掃瞄環境,且按每次掃瞄而輸出感測器資料;位置推定裝置,根據前述感測器資料,依序生成並輸出位置資訊,該位置資訊是表示前述移動體的位置及朝向方向的推定值之資訊;控制電路,是一邊參考由前述位置推定裝置所輸出的前述位置資訊,一邊使前述複數個馬達旋轉,以控制前述移動體的移動之電腦;及儲存裝置,儲存規定有基準迂迴路徑的迂迴路徑資料,該基準迂迴路徑是有關於第1方向的第1路徑、以及有關於和前述第1方向不同的第2方向的第2路徑之組合,前述移動體於沿著事先設定的移動路徑移動的期間,藉由前述障礙物感測器的輸出,而在第1位置上檢測到在行進方向上存在有障礙物時,前述電腦程式會令前述控制電路進行:利用前述迂迴路徑資料,來設定從前述事先設定之移動路徑上的前述第1位置到第2位置的迂迴路徑,並使前述移動體沿著前述迂迴路徑移動。A recording medium recorded with a computer program for controlling the movement of a mobile body that can move autonomously, the mobile body includes: a plurality of driving wheels; a plurality of motors, each of which is connected to the plurality of driving wheels; an obstacle sensor , Detecting obstacles; external sensors, repeatedly scanning the environment, and outputting sensor data for each scan; position estimation device, based on the aforementioned sensor data, sequentially generates and outputs position information, the position information It is information indicating estimated values of the position and direction of the moving body. The control circuit controls the movement of the moving body while rotating the plurality of motors while referring to the position information output by the position estimating device. A computer; and a storage device that stores detour data defining a reference detour, the reference detour being a first path related to a first direction and a second path related to a second direction different from the first direction In combination, while the moving body is moving along a preset movement path, the output of the obstacle sensor is used. When an obstacle is detected in the traveling direction at the first position, the computer program causes the control circuit to use the bypass path data to set the position from the first position on the previously set movement path to The detour in the second position moves the moving body along the detour. 一種移動體,是可自主地移動,且該移動體具備:複數個驅動輪;複數個馬達,各自連接於前述複數個驅動輪;障礙物感測器,檢測障礙物;外界感測器,重複掃瞄環境,且按每次掃瞄而輸出感測器資料;位置推定裝置,根據前述感測器資料,依序生成並輸出位置資訊,該位置資訊是表示前述移動體的位置及朝向方向的推定值之資訊;及控制電路,一邊參考由前述位置推定裝置所輸出的前述位置資訊,一邊使前述複數個馬達旋轉,以控制前述移動體的移動,於沿著事先設定的移動路徑之移動中,藉由前述障礙物感測器的輸出,而在第1位置上檢測到在行進方向上存在有障礙物時,前述控制電路會設定從前述第1位置開始的迂迴路徑且使前述移動體移動,於沿著前述迂迴路徑的移動中,藉由前述障礙物感測器的輸出,而在第2位置上檢測到在行進方向上還另外存在有障礙物時,前述控制電路會使前述移動體從前述第2位置再次移動到前述第1位置。A moving body is capable of moving autonomously, and the moving body is provided with: a plurality of driving wheels; a plurality of motors each connected to the foregoing plurality of driving wheels; an obstacle sensor to detect an obstacle; an external sensor to repeat Scan the environment and output sensor data for each scan; the position estimation device sequentially generates and outputs position information based on the sensor data, and the position information indicates the position and direction of the moving body Information of the estimated value; and a control circuit that rotates the plurality of motors while referring to the position information output by the position estimating device to control the movement of the moving body, while moving along the movement path set in advance When an obstacle is detected in the traveling direction at the first position based on the output of the obstacle sensor, the control circuit sets a detour path from the first position and moves the moving body. During the movement along the detour, the output of the obstacle sensor is used to detect the direction of travel at the second position. Further there is an obstacle, the control circuit causes the movable body is moved from the second position to the first position again. 如請求項10之移動體,其中,在前述第2位置上存在有複數個迂迴路徑,且該等迂迴路徑是可迴避在前述第2位置上檢測到的前述障礙物之迂迴路徑,前述控制電路是從前述複數個迂迴路徑當中,將使該移動體從前述第2位置再次移動到前述第1位置的路徑選擇作為迂迴路徑。For example, the moving object of claim 10, wherein there are a plurality of detour paths at the second position, and the detour paths are detour paths that can avoid the obstacle detected at the second position, and the control circuit Among the plurality of detours, a detour is selected as a path for moving the mobile body from the second position to the first position again. 如請求項11之移動體,其在從前述第2位置再次移動到前述第1位置後,前述障礙物感測器未檢測到前述第1路徑上的障礙物時,前述控制電路會使前述移動體再次沿著前述事先設定的移動路徑移動。For example, if the moving object of claim 11 moves from the second position to the first position again, when the obstacle sensor does not detect an obstacle on the first path, the control circuit causes the movement. The body moves again along the previously set movement path. 如請求項11之移動體,其在從前述第2位置再次移動到前述第1位置後,前述障礙物感測器檢測到前述第1路徑上的障礙物時,前述控制電路是使前述移動體待機到前述障礙物去除為止,在障礙物已去除時,前述控制電路使前述移動體再次沿著前述事先設定的移動路徑移動。For example, if the moving object of claim 11 moves from the second position to the first position again, when the obstacle sensor detects an obstacle on the first path, the control circuit causes the moving body to It waits until the obstacle is removed, and when the obstacle is removed, the control circuit moves the mobile body again along the previously set movement path. 一種記錄媒體,記錄有用於控制可自主地移動的移動體之動作的電腦程式,前述移動體具備:複數個驅動輪;複數個馬達,各自連接於前述複數個驅動輪;障礙物感測器,檢測障礙物;外界感測器,重複掃瞄環境,且按每次掃瞄而輸出感測器資料;位置推定裝置,根據前述感測器資料,依序生成並輸出位置資訊,該位置資訊是表示前述移動體的位置及朝向方向的推定值之資訊;及控制電路,一邊參考由前述位置推定裝置所輸出的前述位置資訊,一邊使前述複數個馬達旋轉,以控制前述移動體的移動,於沿著事先設定的移動路徑之移動中,藉由前述障礙物感測器的輸出,而在第1位置上檢測到在行進方向上存在有障礙物時,前述電腦程式會令前述控制電路進行:設定從前述第1位置開始的迂迴路徑且使前述移動體移動,於沿著前述迂迴路徑的移動中,藉由前述障礙物感測器的輸出,而在第2位置上檢測到在行進方向上還另外存在有障礙物時,使前述移動體從前述第2位置再次移動到前述第1位置。A recording medium is recorded with a computer program for controlling the movement of a mobile body that can move autonomously, the mobile body includes: a plurality of driving wheels; a plurality of motors, each of which is connected to the driving wheels; an obstacle sensor, Detect obstacles; external sensors repeatedly scan the environment, and output sensor data for each scan; position estimation device, based on the aforementioned sensor data, sequentially generates and outputs position information. The position information is Information indicating the estimated value of the position and direction of the moving body; and a control circuit, while referring to the position information output by the position estimating device, rotating the plurality of motors to control the movement of the moving body, in During the movement along the preset movement path, when an obstacle is detected in the traveling direction at the first position by the output of the obstacle sensor, the computer program causes the control circuit to perform: The detour is set from the first position and the moving body is moved. During the movement along the detour, Output by the obstacle sensor, and in the second position is detected in the traveling direction additionally there is an obstacle, so that the movable body is moved from the second position to the first position again.
TW106143624A 2016-12-12 2017-12-12 A vehicle performing obstacle avoidance operation and recording medium storing computer program thereof TWI665538B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662432750P 2016-12-12 2016-12-12
US62/432,750 2016-12-12

Publications (2)

Publication Number Publication Date
TW201833702A TW201833702A (en) 2018-09-16
TWI665538B true TWI665538B (en) 2019-07-11

Family

ID=62559626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106143624A TWI665538B (en) 2016-12-12 2017-12-12 A vehicle performing obstacle avoidance operation and recording medium storing computer program thereof

Country Status (3)

Country Link
JP (1) JP7168211B2 (en)
TW (1) TWI665538B (en)
WO (1) WO2018110568A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941258A (en) * 2018-09-21 2020-03-31 日本电产株式会社 Control method and control system for mobile body
JP7079945B2 (en) * 2018-09-27 2022-06-03 村田機械株式会社 Driving system and control method of driving system
JP7181097B2 (en) * 2019-01-10 2022-11-30 シャープ株式会社 Dolly and transport system
KR102379295B1 (en) * 2019-01-30 2022-03-25 바이두닷컴 타임즈 테크놀로지(베이징) 컴퍼니 리미티드 RGB point cloud-based map generation system for autonomous vehicles
JP7205310B2 (en) * 2019-03-04 2023-01-17 トヨタ自動車株式会社 How to use mobile
TWI729369B (en) * 2019-03-25 2021-06-01 佐臻股份有限公司 Virtual and real information integrated spatial positioning system
JP2020166633A (en) * 2019-03-29 2020-10-08 本田技研工業株式会社 Management device, management method and program
JP2020166734A (en) * 2019-03-29 2020-10-08 日本電産シンポ株式会社 Dolly
CN111800732A (en) * 2019-04-03 2020-10-20 佐臻股份有限公司 Virtual and real information integration space positioning system
TWI734465B (en) * 2020-02-11 2021-07-21 勝薪科技股份有限公司 Optical navigation apparatus
JP7381181B2 (en) * 2021-11-05 2023-11-15 三菱ロジスネクスト株式会社 remote control system
TWI790035B (en) * 2021-12-10 2023-01-11 神達電腦股份有限公司 Control method of automatic transport vehicle
CN116263600A (en) * 2021-12-14 2023-06-16 灵动科技(北京)有限公司 Method and device for controlling the travel of an autonomous mobile robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281748A (en) * 1994-04-15 1995-10-27 Nippondenso Co Ltd Method and system for self-propelled object operation
TW200800684A (en) * 2006-05-17 2008-01-01 Murata Machinery Ltd Travel device for self-propelled device
JP2012022467A (en) * 2010-07-13 2012-02-02 Murata Mach Ltd Autonomous mobile body
TWM468391U (en) * 2013-08-05 2013-12-21 台灣新光保全股份有限公司 Traffic safety guardian robot
TW201516348A (en) * 2013-10-29 2015-05-01 Mitsubishi Electric Corp Air cleaner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276232A (en) * 1999-03-25 2000-10-06 Fuji Heavy Ind Ltd Obstacle evasion controller for autonomous-travel working vehicle
JP5868788B2 (en) * 2012-06-13 2016-02-24 住友重機械工業株式会社 Moving body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281748A (en) * 1994-04-15 1995-10-27 Nippondenso Co Ltd Method and system for self-propelled object operation
TW200800684A (en) * 2006-05-17 2008-01-01 Murata Machinery Ltd Travel device for self-propelled device
JP2012022467A (en) * 2010-07-13 2012-02-02 Murata Mach Ltd Autonomous mobile body
TWM468391U (en) * 2013-08-05 2013-12-21 台灣新光保全股份有限公司 Traffic safety guardian robot
TW201516348A (en) * 2013-10-29 2015-05-01 Mitsubishi Electric Corp Air cleaner

Also Published As

Publication number Publication date
WO2018110568A1 (en) 2018-06-21
JP7168211B2 (en) 2022-11-09
TW201833702A (en) 2018-09-16
JPWO2018110568A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
TWI665538B (en) A vehicle performing obstacle avoidance operation and recording medium storing computer program thereof
JP6816830B2 (en) A position estimation system and a mobile body equipped with the position estimation system.
US20200110410A1 (en) Device and method for processing map data used for self-position estimation, mobile body, and control system for mobile body
JP6825712B2 (en) Mobiles, position estimators, and computer programs
JP2019168942A (en) Moving body, management device, and moving body system
JP7081881B2 (en) Mobiles and mobile systems
JPWO2019026761A1 (en) Mobile and computer programs
JP7136426B2 (en) Management device and mobile system
JP2019053391A (en) Mobile body
US11537140B2 (en) Mobile body, location estimation device, and computer program
WO2019054209A1 (en) Map creation system and map creation device
JP2019175137A (en) Mobile body and mobile body system
JP2019175136A (en) Mobile body
JP2019179497A (en) Moving body and moving body system
CN111971633B (en) Position estimation system, mobile body having the position estimation system, and recording medium
JP2020166702A (en) Mobile body system, map creation system, route creation program and map creation program
JP2019067001A (en) Moving body
JP7396353B2 (en) Map creation system, signal processing circuit, mobile object and map creation method
CN112578789A (en) Moving body
JPWO2019069921A1 (en) Mobile
WO2019059299A1 (en) Operation management device