TWI665302B - Genetically modified microorganisms for producing long-chain dicarboxylic acid and method of using thereof - Google Patents

Genetically modified microorganisms for producing long-chain dicarboxylic acid and method of using thereof Download PDF

Info

Publication number
TWI665302B
TWI665302B TW104121064A TW104121064A TWI665302B TW I665302 B TWI665302 B TW I665302B TW 104121064 A TW104121064 A TW 104121064A TW 104121064 A TW104121064 A TW 104121064A TW I665302 B TWI665302 B TW I665302B
Authority
TW
Taiwan
Prior art keywords
genetically modified
microorganism
nucleic acid
modified microorganism
long
Prior art date
Application number
TW104121064A
Other languages
Chinese (zh)
Other versions
TW201606080A (en
Inventor
謝欣如
簡良榮
王嘉宏
林玉如
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to US14/802,282 priority Critical patent/US9695404B2/en
Publication of TW201606080A publication Critical patent/TW201606080A/en
Priority to US15/394,047 priority patent/US10174350B2/en
Application granted granted Critical
Publication of TWI665302B publication Critical patent/TWI665302B/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

所描述為用以產生長鏈二羧酸之經基因修飾的微生物與使用其之方法。本發明提供一種經基因修飾之微生物,包括一第一核酸,其編碼一加州月桂(Umbellularia californica)月桂醯基-醯基載體蛋白硫酯酶(lauroyl-acyl carrier protein(ACP)thioesterase)(BTE),可操作(operably)地連接至一啟動子;與一第二核酸,其編碼一椰子(Cocos nucifera)月桂醯基-醯基載體蛋白硫酯酶(FatB3),可操作地連接至一啟動子,其中相較於此微生物之未經修飾的親代,此微生物產生一增量的長鏈二羧酸(dicarboxylic acids). It is described as a genetically modified microorganism for producing a long-chain dicarboxylic acid and a method of using the same. The present invention provides a genetically modified microorganism comprising a first nucleic acid encoding a Umbellularia californica lauroyl-acyl carrier protein (ACP) thioesterase (BTE) Operates operably to a promoter; and a second nucleic acid encoding a Cocos nucifera lauryl-mercapto carrier protein thioesterase (FatB3) operably linked to a promoter Wherein the microorganism produces an increasing amount of long-chain dicarboxylic acids compared to the unmodified parent of the microorganism.

Description

用以產生長鏈二羧酸之經基因修飾的微生物與使用其之方法 Genetically modified microorganism for producing long-chain dicarboxylic acid and method of using same

本發明係關於用以產生長鏈二羧酸之經基因修飾的微生物與使用其之方法。 The present invention relates to genetically modified microorganisms for producing long chain dicarboxylic acids and methods of using the same.

長碳鏈尼龍(nylon)為一高性能與高價值化學材料,由於其獨特之熱、物理、化學與機械特性。尼龍12(nylon 12)為一特殊樹脂,被設計來製造燃料管線(fuel line)與剎車系統(brake system)。尼龍12一般定價於10-12歐元/kg。對於高等級尼龍12而言,價格通常高於15歐元/kg。由於最近世界最大之尼龍12供應商,Evonik,在德國工廠的毀滅性爆炸,至少在長碳鏈尼龍之短期供應匱乏似乎是不可避免的。化學製程的回顧顯示由高活性催化劑(Et2AlCl)與水之接觸所引起的爆炸是主要的風險因子。因此,需要用以產生長鏈二羧酸的一安全製程。 Long carbon chain nylon (nylon) is a high performance and high value chemical due to its unique thermal, physical, chemical and mechanical properties. Nylon 12 (nylon 12) is a special resin designed to make fuel lines and brake systems. Nylon 12 is generally priced at 10-12 Euro/kg. For high grade nylon 12, the price is usually higher than 15 Euro/kg. Due to the recent devastating explosion of the world's largest nylon 12 supplier, Evonik, at a German plant, at least the lack of short-term supply of long carbon chain nylon seems inevitable. A review of the chemical process shows that the explosion caused by the contact of high activity catalyst (Et 2 AlCl) with water is the main risk factor. Therefore, a safe process for producing long chain dicarboxylic acids is needed.

於下方所描述為一種經基因修飾之微生物,包括 一第一核酸,其編碼一加州月桂(Umbellularia californica)月桂醯基-醯基載體蛋白硫酯酶(lauroyl-acyl carrier protein(ACP)thioesterase)(BTE),可操作(operably)地連接至一啟動子;與一第二核酸,其編碼一椰子(Cocos nucifera)月桂醯基-醯基載體蛋白硫酯酶(FatB3),可操作地連接至一啟動子,其中相較於此微生物之未經修飾的親代,此微生物產生一增量的長鏈二羧酸(dicarboxylic acids)。 Described below as a genetically modified microorganism comprising a first nucleic acid encoding a Umbellularia californica lauroyl-acyl carrier protein (ACP) thioesterase ( BTE) operably linked to a promoter; and a second nucleic acid encoding a Cocos nucifera lauryl-mercapto carrier protein thioesterase (FatB3) operably linked to a A promoter in which the microorganism produces an increasing number of long-chain dicarboxylic acids compared to the unmodified parent of the microorganism.

相較於此微生物之未經修飾的親代,此微生物可更表現一較低程度之棕櫚醯基-醯基載體蛋白硫酯酶(palmitoyl-acyl carrier protein(ACP)thioesterase)。例如,該微生物可包括一表現構築體(expression construct),其表現用以抑制棕櫚醯基-醯基載體蛋白硫酯酶表現的一siRNA。 Compared to the unmodified parent of the microorganism, the microorganism exhibits a lower degree of palmitoyl-acyl carrier protein (ACP) thioesterase. For example, the microorganism can include an expression construct that exhibits an siRNA for inhibiting the expression of the palmitoyl-thiol carrier protein thioesterase.

此微生物可更包括一或多個額外之核酸,其各編碼一乙醯輔酶A羧化酶(acetyl-coenzyme A carboxylase,ACC)、一脂肪酸合成酶(fatty acid synthase,FSA)次單元、一細胞色素P450還原酶(cytochrome P450 reductase,CPR)、一長鏈醇氧化酶(alcohol oxidase)(例如,FAO1)或一長鏈醇脫氫酶(alcohol dehydrogenase)(例如,FADH)。各個核酸為可操作地連接至一啟動子。 The microorganism may further comprise one or more additional nucleic acids each encoding a acetyl-coenzyme A carboxylase (ACC), a fatty acid synthase (FSA) subunit, a cell A cytochrome P450 reductase (CPR), a long chain alcohol oxidase (eg, FAO1) or a long chain alcohol dehydrogenase (eg, FADH). Each nucleic acid is operably linked to a promoter.

在一實施例中,此微生物在一醯基輔酶A氧化酶(acyl-coenzyme A oxidase)基因,例如pox2pox5,或fadD中,具有一功能喪失突變(loss-of-function mutation)。 In one embodiment, the microorganism has a loss-of-function mutation in an acyl-coenzyme A oxidase gene, such as pox2 or pox5 , or fadD .

此微生物可具有一經修飾之醯基輔酶A合成酶基因(acyl-coenzyme A synthetase gene),例如acs,其導致在此微 生物中減少三酸甘油脂(triglyceride)累積,以增加用來合成長鏈二羧酸的脂肪酸池(fatty acid pool)。 The microorganism may have a modified acyl-coenzyme A synthetase gene, such as acs , which results in a reduction in the accumulation of triglyceride in the microorganism to increase the synthesis of long chain two A fatty acid pool of carboxylic acid.

在一實施例中,此微生物具有一向下調整之檸檬酸循環(citric acid cycle)的檸檬酸合成酶基因(citric synthetase gene),例如gltA。此微生物具有用於增大脂肪酸合成的葡萄糖原料池。 In one embodiment, the microorganism has a downwardly adjusted citric acid cycle citric synthetase gene, such as gltA . This microorganism has a pool of glucose raw materials for increasing fatty acid synthesis.

在一實施例中,此微生物具有一向下調整之醋酸的單磷酸腺苷形成乙醯輔酶A合成酶(AMP(Adenosine monophosphate)-forming acetyl-coenzyme A synthetase)。此微生物具有用於脂肪酸合成的原料池。 In one embodiment, the microorganism has a downwardly adjusted acetic acid monophosphate adenosine to form AMP (Adenosine monophosphate-forming acetyl-coenzyme A synthetase). This microorganism has a pool of raw materials for fatty acid synthesis.

在一實施例中,此微生物為解脂耶氏酵母菌(Yarrowia lipolytica)或大腸桿菌(Escherichia coli)。 In one embodiment, the microorganism is Yarrowia lipolytica or Escherichia coli .

進一步於此描述的是,一種產生一長鏈二羧酸的方法。此方法包括提供於此描述之經基因修飾的微生物,於pH 6至8,在允許長鏈二羧酸的產生的情況下,於含有葡萄糖或甘油的一培養基中培養此微生物,藉此,此微生物產生該長鏈二羧酸。此方法可更包括收集長鏈二羧酸的一步驟。 Further described herein is a process for producing a long chain dicarboxylic acid. The method comprises providing the genetically modified microorganism described herein, at pH 6 to 8, in the case of allowing the production of a long chain dicarboxylic acid, culturing the microorganism in a medium containing glucose or glycerol, whereby The microorganism produces the long chain dicarboxylic acid. This method may further comprise a step of collecting the long chain dicarboxylic acid.

於一實施例中,長鏈二羧酸為C10-C18二羧酸,例如,C12二羧酸。 In one embodiment, the long chain dicarboxylic acid is a C10-C18 dicarboxylic acid, for example, a C12 dicarboxylic acid.

於以下伴隨圖式與說明提及一或多個實施例的細節。實施例之其他特徵、目的與優點,從說明書與圖式,以及從申請專利範圍是明顯的。 The details of one or more embodiments are set forth in the accompanying drawings and description. Other features, objects, and advantages of the embodiments are apparent from the description and drawings.

第1圖為一概要圖式,其顯示一經修飾之α、ω-二羧酸(dicarboxylic acid)新陳代謝途徑(metabolic pathway)。 Figure 1 is a schematic diagram showing a modified alpha, ω-dicarboxylic acid metabolic pathway.

第2圖為一概要圖,其顯示一經修飾之解脂耶氏酵母菌(Y.lipolytica)的構築(construction)。 Figure 2 is a schematic diagram showing the construction of a modified Y. lipolytica .

第3圖為一曲線圖,其顯示二羧酸標準品的HPLC分析。 Figure 3 is a graph showing HPLC analysis of a dicarboxylic acid standard.

第4圖為一曲線圖,其顯示△pox2與△pox5突變株的脂肪酸含量。 Figure 4 is a graph showing the fatty acid content of the Δ pox2 and Δ pox5 mutant strains.

第5圖為一概要圖,其顯示各種經修飾之解脂耶氏酵母菌菌株的構築。 Figure 5 is a schematic diagram showing the construction of various modified Yarrowia lipolytica strains.

第6圖為一概要圖,其顯示用以表現一加州月桂(Umbellularia californica)月桂醯基-醯基載體蛋白硫酯酶(lauroyl-acyl carrier protein(ACP)thioesterase)(BTE)與一椰子(Cocos nucifera)月桂醯基-醯基載體蛋白硫酯酶(FatB3)的一表現卡匣(expression cassette)。 6 a schematic view graph showing performance for a umbellularia (Umbellularia californica) lauryl acyl - acyl carrier protein thioesterase (lauroyl-acyl carrier protein (ACP ) thioesterase) (BTE) and a coconut (Cocos nucifera) lauryl acyl - acyl carrier protein thioesterase (FatB3) performance of a cassette (expression cassette).

第7圖為一概要圖,其顯示用以靜默棕櫚醯基-醯基載體蛋白硫酯酶(palmitoyl-acyl carrier protein(ACP)thioesterase)基因之表現的一RNAi表現卡匣的構築。 Figure 7 is a schematic diagram showing the construction of an RNAi-expressing cassette for quenching the expression of the palmitoyl-acyl carrier protein (ACP) thioesterase gene.

第8圖為一組曲線圖,其顯示藉由兩個經修飾之解脂耶氏酵母菌菌株所產生的二羧酸。 Figure 8 is a set of graphs showing the dicarboxylic acid produced by two modified Yarrowia lipolytica strains.

第9圖為一概要圖,其顯示經修飾之用以表現大腸桿菌菌株的構築。一修飾核苷酸之加州月桂月桂醯基-醯基載體蛋白硫酯酶(BTE)與一修飾核苷酸之椰子月桂醯基-醯基載體蛋白硫酯酶(FatB3)的一表現卡匣(expression cassette)。 Figure 9 is a schematic diagram showing the modification to characterize the construction of E. coli strains. A modified nucleotide of the California laurel laurel-mercapto-carrier protein thioesterase (BTE) and a modified nucleotide of the coconut laurel-mercapto-carrier protein thioesterase (FatB3) Expression cassette).

第10圖為一曲線圖,其顯示二羧酸樣本的HPLC分析。 Figure 10 is a graph showing HPLC analysis of a dicarboxylic acid sample.

第11圖為一概要圖,其顯示經修飾之用以表現大腸桿菌菌株的構築。左圖:菌株E2中的一表現卡匣;右圖:菌株E3中的一表現卡匣。 Figure 11 is a schematic diagram showing the modification to characterize the construction of E. coli strains. Left panel: a performance cassette in strain E2; right panel: a performance cassette in strain E3.

第12圖顯示菌株E2與菌株E3產生之TCA循環產物的量。 Figure 12 shows the amount of TCA cycle product produced by strain E2 and strain E3.

第13圖為一概要圖,其顯示經修飾之用以表現大腸桿菌菌株E4的中的表現卡匣。 Figure 13 is a schematic diagram showing the modified performance of the expression in E. coli strain E4.

第14圖顯示菌株E2與菌株E4之二羧酸產生量。 Figure 14 shows the amount of dicarboxylic acid produced by strain E2 and strain E4.

第15A圖顯示菌株E5的構築方法。 Figure 15A shows the construction method of strain E5.

第15B圖為一概要圖,其顯示經修飾之用以表現大腸桿菌菌株E5的中的表現卡匣。 Figure 15B is a schematic diagram showing the performance of the modified cassette for expression of E. coli strain E5.

第15C圖顯示Red/ET經增強之FLP表現質體(Red/ET enhanced FLP expression plasmid),707-FLPe的概要圖。 Figure 15C shows a schematic diagram of the Red/ET enhanced FLP expression plasmid, 707-FLPe.

第16圖顯示菌株E5與菌株E6之二羧酸產生量。 Figure 16 shows the amount of dicarboxylic acid produced by strain E5 and strain E6.

第17A圖顯示菌株E6的構築方法。 Figure 17A shows the construction method of strain E6.

第17B圖為一概要圖,其顯示經修飾之用以表現大腸桿菌菌株E6的中的表現卡匣。 Figure 17B is a schematic diagram showing the modified performance of the expression in E. coli strain E6.

在下方細部敘述中,為了說明目的,提及為數眾多的特定細節以提供所揭露之實施例的徹底瞭解。然而,明顯的是,可實施一或多個實施例而不須這些細節。在其他例子中,為了簡化圖式,概要地顯示熟知的結構或裝置。 In the following detailed description, numerous specific details are set forth However, it will be apparent that one or more embodiments may be implemented without these details. In other instances, well-known structures or devices are shown for the purpose of illustration.

下方所描述為,用以產生長鏈二羧酸之經基因修飾的微生物與使用其之方法。 Described below are genetically modified microorganisms for producing long chain dicarboxylic acids and methods of using the same.

為了改善二羧酸的產生,我們以一微生物之α、ω- 二羧酸新陳代謝途徑(metabolic pathway)為目標。參見第1圖。我們的策略包括,例如,增加游離脂肪酸含量、增強ω-氧化(ω-oxidation)酵素的受質專一性(substrate specificity)、增加在脂肪酸合成中之關鍵基因(乙醯輔酶A羧化酶(acetyl-coenzyme A carboxylase,ACC)基因、脂肪酸合成酶(fatty acid synthase,FAS)基因)的表現、剔除β-氧化(β-oxidation)基因(poxfadD)的上游基因,減少脂肪酸降解、剔除檸檬酸合成酶基因(citric synthetase gene,gltA),增加脂肪酸合成、剔除醯基輔酶A合成酶基因(acyl-coenzyme A synthetase gene,acs),減少三酸甘油脂(triglyceride)累積、增加醋酸的單磷酸腺苷形成乙醯輔酶A合成酶(AMP(Adenosine monophosphate)-forming acetyl-coenzyme A synthetase,AceCS),增加脂肪酸合成、增強月桂醯基-醯基蛋白硫酯酶(lauroyl-acyl carrier protein(ACP)thioesterase)基因(例如,椰子(Cocos nucifera)FatB3基因與加州月桂(Umbellularia californica)BTE基因的表現、減少/靜默棕櫚醯基-醯基載體蛋白硫酯酶(palmitoyl-acyl carrier protein(ACP)thioesterase)的表現,與建立ω-氧化新陳代謝途徑基因(例如,cpr、fao1fadH)。我們構築了一個穩定之酵母菌與大腸桿菌蛋白質表現系統,以改善尼龍原料-α、ω-二羧酸的產生。 In order to improve the production of dicarboxylic acids, we aim at a microbial alpha, omega-dicarboxylic acid metabolic pathway. See Figure 1. Our strategies include, for example, increasing free fatty acid content, enhancing the substrate specificity of ω-oxidation enzymes, and increasing key genes in fatty acid synthesis (acetamide coenzyme A carboxylase (acetyl) -coenzyme A carboxylase (ACC) gene, fatty acid synthase (FAS) gene expression, knockout upstream genes of β-oxidation ( pox or fadD ), reduce fatty acid degradation, eliminate citric acid The citric synthetase gene ( gltA ) increases fatty acid synthesis and eliminates the acyl-coenzyme A synthetase gene ( acs ), reduces the accumulation of triglyceride, and increases the monophosphate of acetic acid. Glycosides form AMP (Adenosine monophosphate-forming acetyl-coenzyme A synthetase, AceCS), increase fatty acid synthesis, and enhance lauroyl-acyl carrier protein (ACP) thioesterase Genes (eg, Cocos nucifera FatB3 gene and Umbellularia californica BTE gene expression, reduction / silence palm 醯 - 醯The performance of the palmitoyl-acyl carrier protein (ACP) thioesterase and the establishment of ω-oxidation metabolic pathway genes (eg, cpr, fao1 and fadH ). We constructed a stable yeast and E. coli protein. A performance system to improve the production of nylon-α,ω-dicarboxylic acid.

因此,一經基因修飾之微生物可包含編碼一加州月桂月桂醯基-醯基載體蛋白硫酯酶(BTE)的一核酸。其可更包括編碼椰子月桂醯基-醯基載體蛋白硫酯酶(FatB3)的一核酸。 Thus, a genetically modified microorganism can comprise a nucleic acid encoding a California laurel laurel-mercapto carrier protein thioesterase (BTE). It may further comprise a nucleic acid encoding a coconut laurel-mercapto carrier protein thioesterase (FatB3).

經基因修飾之微生物也可具有一核酸,其編碼一 乙醯輔酶A羧化酶(ACC)、一脂肪酸合成酶(FAS)次單元、一細胞色素P450還原酶(CPR)、一長鏈醇氧化酶(alcohol oxidase)(例如,FAO1),或一長鏈醇脫氫酶(alcohol dehydrogenase)(例如,FADH)。 The genetically modified microorganism may also have a nucleic acid encoding one Acetyl-CoA carboxylase (ACC), a fatty acid synthase (FAS) subunit, a cytochrome P450 reductase (CPR), a long-chain alcohol oxidase (eg, FAO1), or a long Alcohol dehydrogenase (eg, FADH).

各個上述之核酸為可操作地連接至一適合啟動子以在經修飾之微生物中基因表現。若合適或需要的話,為了在經基因修飾之微生物中表現,核酸的序列也可被密碼子最適化(codon-optimized)。 Each of the above nucleic acids is operably linked to a suitable promoter for gene expression in the modified microorganism. The sequence of the nucleic acid may also be codon-optimized for expression in a genetically modified microorganism, as appropriate or desired.

棕櫚醯基-醯基載體蛋白硫酯酶的表現在經修飾之微生物中可被減少或靜默。此類微生物可於棕櫚醯基-醯基載體蛋白硫酯酶基因中具有一突變(例如,刪除),或可具有一表現構築體,其表現以此基因為目標的一RNAi分子。 The performance of the palmitoyl-mercapto carrier protein thioesterase can be reduced or silenced in the modified microorganism. Such a microorganism may have a mutation (eg, deletion) in the palmitoyl-thiol carrier protein thioesterase gene, or may have a representation construct that exhibits an RNAi molecule targeted for this gene.

經基因修飾之微生物也可包括一功能喪失突變(loss-of-function mutation)在一醯基輔酶A氧化酶(acyl-CoA oxidase)基因(例如,解脂耶氏酵母菌pox2pox5,大腸桿菌fadD)中。例如,此微生物於這些基因之一中可具有一個刪除。 Genetically modified microorganisms may also include a loss-of-function mutation in an acyl-CoA oxidase gene (eg, Yarrowia lipolytica pox2 or pox5 , Escherichia coli fadD ). For example, the microorganism may have a deletion in one of these genes.

又,經基因修飾之微生物也可包括一功能喪失突變在一醯基輔酶A合成酶(acyl-CoA synthetase)基因中。上述醯基輔酶A合成酶基因的例子可包括,但不限於,acsFurther, the genetically modified microorganism may also include a loss of function mutation in an acyl-CoA synthetase gene. Examples of the above-mentioned 醯Kytozyme A synthetase gene may include, but are not limited to, acs .

再者,經基因修飾之微生物也可包括一功能喪失突變在一檸檬酸合成酶(citric synthetase)基因中。上述檸檬酸合成酶基因的例子可包括,gltA,但不限於此。 Furthermore, the genetically modified microorganism may also include a loss of function mutation in a citric synthetase gene. Examples of the above citrate synthase gene may include , but are not limited to, gltA .

示例之上述酵素的核酸序列與胺基酸序列,如下所示。 The nucleic acid sequence of the above-mentioned enzyme and the amino acid sequence are shown below.

解脂耶氏酵母菌乙醯輔酶A羧化酶/生物素羧化酶(biotin carboxylase)(ACC) Yarrowia lipolytica, coenzyme A carboxylase, biotin carboxylase (ACC)

核酸序列(序列辨識號:1) Nucleic acid sequence (sequence identification number: 1)

胺基酸序列(序列辨識號:2) Amino acid sequence (sequence identification number: 2)

大腸桿菌乙醯輔酶A羧化酶/羧基轉移酶次單元α (Acetyl-CoA carboxylase carboxyl transferase subunit α,AccA) Escherichia coli acetaminophen coenzyme A carboxylase/carboxytransferase subunit α (Acetyl-CoA carboxylase carboxyl transferase subunit α, AccA)

核酸序列(序列辨識號:3) Nucleic acid sequence (sequence identification number: 3)

胺基酸序列(序列辨識號:4) Amino acid sequence (sequence identification number: 4)

大腸桿菌乙醯輔酶A羧化酶/生物素羧基載體蛋白(Acetyl-CoA carboxylase biotin carboxyl carrier protein,AccB)(BCCP) Acetyl-CoA carboxylase biotin carboxyl carrier protein (AccB) (BCCP)

核酸序列(序列辨識號:5) Nucleic acid sequence (sequence identification number: 5)

胺基酸序列(序列辨識號:6) Amino acid sequence (sequence identification number: 6)

大腸桿菌乙醯輔酶A生物素羧化酶(Acetyl-CoA biotin carboxylase,AccC) Acetyl-CoA biotin carboxylase (Accyl)

核酸序列(序列辨識號:7) Nucleic acid sequence (sequence identification number: 7)

胺基酸序列(序列辨識號:8) Amino acid sequence (sequence identification number: 8)

大腸桿菌乙醯輔酶A羧化酶/羧基轉移酶次單元β(Acetyl-CoA carboxylase transferase subunit β,AccD) Acetyl-CoA carboxylase transferase subunit β (Accyl)

核酸序列(序列辨識號:9) Nucleic acid sequence (sequence identification number: 9)

胺基酸序列(序列辨識號:10) Amino acid sequence (sequence identification number: 10)

解脂耶氏酵母菌脂肪酸合成酶次單元α(fatty acid synthase subunit alpha,FASA) Fatty acid synthase subunit alpha (FASA)

核酸序列(序列辨識號:11) Nucleic acid sequence (sequence identification number: 11)

胺基酸序列(序列辨識號:12) Amino acid sequence (sequence identification number: 12)

解脂耶氏酵母菌脂肪酸合成酶次單元β(fatty acid synthase subunit beta,FASB) Fatty acid synthase subunit beta (FASB)

核酸序列(序列辨識號:13) Nucleic acid sequence (sequence identification number: 13)

胺基酸序列(序列辨識號:14) Amino acid sequence (sequence identification number: 14)

解脂耶氏酵母菌乙醯輔酶A羧化酶/羧基轉移酶次單元β(Acetyl-CoA carboxylase transferase subunit β,AccD) Acetyl-CoA carboxylase transferase subunit β (Accyl)

核酸序列(序列辨識號:15) Nucleic acid sequence (sequence identification number: 15)

胺基酸序列(序列辨識號:16) Amino acid sequence (sequence identification number: 16)

解脂耶氏酵母菌脂肪酸合成酶次單元α活性位1(fatty acid synthase subunit alpha-active site 1,FASA-1) Fatty acid synthase subunit alpha-active site 1, FASA-1

核酸序列(序列辨識號:17) Nucleic acid sequence (sequence identification number: 17)

胺基酸序列(序列辨識號:18) Amino acid sequence (sequence identification number: 18)

加州月桂月桂醯基-醯基載體蛋白硫酯酶(BTE) California Laurel Lauryl-Based Carrier Protein Thioesterase (BTE)

核酸序列(解脂耶氏酵母菌屬(Yarrowia)密碼子最適化)(序列辨識號:19) Nucleic acid sequence ( Yarrowia codon optimization) (SEQ ID NO: 19)

胺基酸序列(序列辨識號:20) Amino acid sequence (sequence identification number: 20)

改良型加州月桂月桂醯基-醯基載體蛋白硫酯酶(BTE△NC) Modified California Laurel Laurel-Based Carrier Protein Thioesterase (BTE△NC)

核酸序列(大腸桿菌(Escherichia coli)密碼子最適化)(序列辨識號:21) Nucleic acid sequence ( Escherichia coli codon optimization) (SEQ ID NO: 21)

胺基酸序列(序列辨識號:22) Amino acid sequence (SEQ ID NO: 22)

椰子月桂醯基-醯基載體蛋白硫酯酶(FatB3) Coconut Laurel-Based Carrier Protein Thioesterase (FatB3)

核酸序列(解脂耶氏酵母屬(Yarrowia)密碼子最適化)(序列辨識號:23) Nucleic acid sequence ( Yarrowia codon optimization) (SEQ ID NO: 23)

胺基酸序列(序列辨識號:24) Amino acid sequence (sequence identification number: 24)

改良型椰子月桂醯基-醯基載體蛋白硫酯酶(FatB3△NC) Modified coconut laurel-mercapto carrier protein thioesterase (FatB3△NC)

核酸序列(大腸桿菌(Escherichia coli)密碼子最適化)(序列辨識號:25) Nucleic acid sequence ( Escherichia coli codon optimization) (SEQ ID NO: 25)

胺基酸序列(序列辨識號:26) Amino acid sequence (sequence identification number: 26)

解脂耶氏酵母菌棕櫚醯基-醯基載體蛋白硫酯酶 Yarrowia lipolytica palmitoyl-mercapto carrier protein thioesterase

核酸序列(序列辨識號:27) Nucleic acid sequence (sequence identification number: 27)

胺基酸序列(序列辨識號:28) Amino acid sequence (sequence identification number: 28)

假絲酵母菌(Candida tropicalis)細胞色素P450還原酶(cytochrome P450 reductase,CPR)(CTP 00485) Candida tropicalis cytochrome P450 reductase (CPR) (CTP 00485)

核酸序列(序列辨識號:29) Nucleic acid sequence (sequence identification number: 29)

胺基酸序列(序列辨識號:30) Amino acid sequence (sequence identification number: 30)

假絲酵母菌細胞色素P450還原酶(cytochrome P450 reductase,CPR) Candida cytochrome P450 reductase (CPR)

核酸序列(大腸桿菌(Escherichia coli)密碼子最適化)(序列辨識號:31) Nucleic acid sequence ( Escherichia coli codon optimization) (SEQ ID NO: 31)

胺基酸序列(序列辨識號:32) Amino acid sequence (sequence identification number: 32)

假絲酵母菌長鏈醇氧化酶(fatty alcohol oxgenase,FAO1) Candida albicans oxidase (FAO1)

核酸序列(序列辨識號:33) Nucleic acid sequence (sequence identification number: 33)

胺基酸序列(序列辨識號:34) Amino acid sequence (sequence identification number: 34)

假絲酵母菌長鏈醇氧化酶(fatty alcohol oxgenase,FAO1) Candida albicans oxidase (FAO1)

核酸序列(序列辨識號:35)(大腸桿菌(Escherichia coli)密碼子最適化) Nucleic acid sequence (SEQ ID NO: 35) ( Escherichia coli codon optimization)

胺基酸序列(序列辨識號:36) Amino acid sequence (sequence identification number: 36)

白假絲酵母菌(Candida albicans)長鏈醇脫氫酶(fatty aldehyde dehydrogenase,FADH) Candida albicans long-chain alcohol dehydrogenase (FADH)

核酸序列(序列辨識號:37) Nucleic acid sequence (sequence identification number: 37)

胺基酸序列(序列辨識號:38) Amino acid sequence (sequence identification number: 38)

白假絲酵母菌長鏈醇脫氫酶(fatty aldehyde dehydrogenase,FADH) Candida aldehyde dehydrogenase (FADH)

核酸序列(大腸桿菌(Escherichia coli)密碼子最適化)(序列辨識號:39) Nucleic acid sequence ( Escherichia coli codon optimization) (SEQ ID NO: 39)

胺基酸序列(序列辨識號:40) Amino acid sequence (SEQ ID NO: 40)

解脂耶氏酵母菌醯基輔酶A氧化酶(acyl-coenzyme A oxidase,POX2) Acyl-coenzyme A oxidase (POX2)

核酸序列(序列辨識號:41) Nucleic acid sequence (SEQ ID NO: 41)

胺基酸序列(序列辨識號:42) Amino acid sequence (SEQ ID NO: 42)

解脂耶氏酵母菌醯基輔酶A氧化酶(acyl-coenzyme A oxidase,POX5) Acyl-coenzyme A oxidase (POX5)

核酸序列(序列辨識號:43) Nucleic acid sequence (sequence identification number: 43)

胺基酸序列(序列辨識號:44) Amino acid sequence (SEQ ID NO: 44)

大腸桿菌醯基輔酶A氧化酶(acyl-coenzyme A oxidase,FadD) Acyl-coenzyme A oxidase (FadD)

核酸序列(序列辨識號:45) Nucleic acid sequence (sequence identification number: 45)

胺基酸序列(序列辨識號:46) Amino acid sequence (sequence identification number: 46)

大腸桿菌單磷酸腺苷形成乙醯輔酶A合成酶Adenosine monophosphate(AMP)-forming acetyl-CoA synthetase Escherichia coli ATP forms Adenosine monophosphate (AMP)-forming acetyl-CoA synthetase

核酸序列(序列辨識號:47) Nucleic acid sequence (SEQ ID NO: 47)

胺基酸序列(序列辨識號:48) Amino acid sequence (sequence identification number: 48)

大腸桿菌醯基輔酶A合成酶(acyl-CoA synthetase) Escherichia coli, acyl-CoA synthetase

核酸序列(序列辨識號:49) Nucleic acid sequence (SEQ ID NO: 49)

胺基酸序列(序列辨識號:50) Amino acid sequence (sequence identification number: 50)

大腸桿菌檸檬酸合成酶(citric synthetase) E. coli citrate synthetase

核酸序列(序列辨識號:51) Nucleic acid sequence (sequence identification number: 51)

胺基酸序列(序列辨識號:52) Amino acid sequence (sequence identification number: 52)

如於此所使用,用語“啟動子”意指一核苷酸序列,其包含一要素,此要素在一希望的宿主細胞中起始一經可操作地連接之核酸序列的轉錄。至少,一啟動子包含一RNA聚合酶結合位(RNA polymerase binding site)。其可更包含一或多個,根據定義,為增強轉錄的增強子(enhancer)要素,或一或多個控制啟動子開/關之狀態的調控要素。一啟動子可為一可誘導(inducible)或持續型(constitutive)啟動子,即,GAP(甘油醛-3-磷酸去氫酶(glyceraldehyde-3-phosphate dehydrogenase))與FBAin(果糖-1,6-二磷酸醛缩酶內含子(fructose 1,6-bisphosphate aldolase intron))與beta-lactamase(bla,conferring ampicillin resistance)(乙內醯胺分解酶)與lac operon(lactose operon)(乳糖操縱子)啟動子與兩種噬菌體(bacteriophage),即,T7與SP6。 As used herein, the term "promoter" means a nucleotide sequence comprising an element that initiates transcription of an operably linked nucleic acid sequence in a desired host cell. At least, a promoter comprises an RNA polymerase binding site. It may further comprise one or more, by definition, an enhancer element that enhances transcription, or one or more regulatory elements that control the state of the promoter on/off. A promoter can be an inducible or constitutive promoter, ie, GAP (glyceraldehyde-3-phosphate dehydrogenase) and FBAin (fructose-1,6) -6-bisphosphate aldolase intron) and beta-lactamase (bla, conferring ampicillin resistance) and lac operon (lactose operon) (lactose operon) The promoter is bacteriophage with two bacteriophages, namely, T7 and SP6.

使用本技術領域已知與於此敘述的方法,可將用以表現任何上述酵素之一表現卡匣(expression cassette)引入一適合的宿主細胞,以產生一經基因修飾的微生物。 Using a method known in the art and described herein, one of the expression enzymes used to express any of the above enzymes can be introduced into a suitable host cell to produce a genetically modified microorganism.

為了長鏈二羧酸產生,之後可將經修飾之微生物培養於一適合之培養基中。例如,培養基可包含葡萄糖與甘油為碳源。在一足夠的培養期間後,可將二羧酸,特別是DCA12,從培養基分離出。 For long chain dicarboxylic acid production, the modified microorganism can then be cultured in a suitable medium. For example, the medium may contain glucose and glycerol as a carbon source. The dicarboxylic acid, particularly DCA12, can be separated from the culture medium after a sufficient period of cultivation.

適合之宿主細胞包括,但不限於,假絲酵母菌 (Candida tropicalis)、白假絲酵母菌(Candida albicans)、陰溝假絲酵母菌(Candida cloacae)、大腸桿菌(Escherichia coli)與解脂耶氏酵母菌(Yarrowia lipolytica)。 Suitable host cells include, but are not limited to, Candida tropicalis , Candida albicans , Candida cloacae , Escherichia coli , and Y. Yeast ( Yarrowia lipolytica ).

藉由本技術領域已知方法,例如,重組技術(recombinant technology),可構築上述經基因修飾之微生物。編碼任何之上述酵素的一序列可被可操作地連接至一適合之啟動子,以產生之後可被引入一宿主細胞中的一表現卡匣。 The above genetically modified microorganism can be constructed by methods known in the art, for example, recombinant technology. A sequence encoding any of the above enzymes can be operably linked to a suitable promoter to produce a performance cassette which can then be introduced into a host cell.

本技術領域中已知與前述之方法,可被用來在經基因修飾之微生物中剔除一基因或減少一基因之表現。 Methods known in the art and described above can be used to eliminate a gene or reduce the performance of a gene in a genetically modified microorganism.

以下特定實施例被解釋為僅為說明性,且不以任何方式為揭露之其他部分的限制。不須更進一步之細節,相信該技術領域中具有通常知識者,根據於此之說明,可利用本說明書至其最大程度。 The following specific examples are to be construed as illustrative only and not in any way limiting the scope of the disclosure. Without further elaboration, it is believed that those of ordinary skill in the art have the <RTIgt;

實施例 Example

材料與方法 Materials and Methods

耶氏酵母菌屬(Yarrowia)表現系統的構築 Construction of the Yarrowia expression system

由於耶氏酵母菌屬表現系統與畢赤酵母菌屬(Pichia sp.)表現系統為相似的,所以於此研究中所使用的耶氏酵母菌屬表現系統為根據一巴斯德畢赤酵母菌(Pichia pastoris)表現系統所設計。用於單/雙交換同源重組(single/double-crossover homologous recombination)的一構築體被設計來將一ω-氧化基因插入一耶氏酵母菌屬菌株的醯基輔酶A氧化酶(acyl coenzyme A oxidase)基因(pox1-5),以剔除菌株之β-氧化活性。將遺傳霉素(geneticin)使用為篩選標 記。構築體的一概要圖被顯示於第2圖中。 Since the Yersinia expression system is similar to the Pichia sp . expression system, the Yarrowia genus expression system used in this study is based on P. pastoris. ( Pichia pastoris ) designed by the performance system. A construct for single/double-crossover homologous recombination is designed to insert an ω-oxidation gene into a Y. cerevisiae strain acyl coenzyme A oxidase (acyl coenzyme A) The oxidase gene ( pox1-5 ) is used to eliminate the β-oxidation activity of the strain. Geneticin was used as a screening marker. A schematic view of the structure is shown in Fig. 2.

使用重疊延伸拼接(splice overlap extension,SOE)聚合酶鏈鎖反應(polymerase chain reaction,PCR)來構築一融合構築體,其包含pox2pox5與篩選標記(Kan::G418)(參見第2圖)。將融合構築體選殖(clone)進pUC19載體。使用此融合構築體來產生pox2pox5-缺陷菌株。我們的分析顯示,此策略顯著降低了非必須之菌株複製(strain replication)與DNA純化步驟。可使用聚合酶鏈鎖反應產物直接將一菌株轉形(transform)並增加效率。 A fusion construct using a splice overlap extension (SOE) polymerase chain reaction (PCR) to construct a fusion construct comprising pox2 or pox5 and a screening marker (Kan::G418) (see Figure 2) . The fusion construct was cloned into the pUC19 vector. This fusion construct was used to generate pox2 and pox5 -deficient strains. Our analysis shows that this strategy significantly reduces the need for strain strain replication and DNA purification steps. The polymerase chain reaction product can be used to directly transform a strain and increase efficiency.

大腸桿菌屬(Escherichia coli)表現系統的構築 Construction of the Escherichia coli expression system

此研究中所使用的大腸桿菌屬表現系統為利用載體複製來達到蛋白表現,被設計為剔除大腸桿菌屬菌株的醯基輔酶A氧化酶(acyl coenzyme A oxidase)基因(fadD)以使菌株之β-氧化活性喪失,且將其放線菌素(spectinomycin)與卡那霉素(kanamycin)使用為篩選標記。構築體的一概要圖被顯示於第9圖中。 The E. coli expression system used in this study used vector replication to achieve protein expression and was designed to knock out the acyl coenzyme A oxidase gene ( fadD ) of the Escherichia coli strain to make the strain β - Oxidative activity is lost, and spectinomycin and kanamycin are used as screening markers. A schematic view of the structure is shown in Fig. 9.

經基因修飾之大腸桿菌屬菌株的構築 Construction of genetically modified strains of Escherichia

使用電穿孔(electroporation)方法來將構築體引入細胞。首先,將耶氏酵母菌屬細胞培養於TE/LiAc/H2O反應30分鐘,之後以山梨醇(sorbitol)清洗以獲得勝任(competent)耶氏酵母菌屬細胞。之後經由電穿孔將構築體引入細胞。使用50-500μg/mL遺傳霉素(geneticin)來篩選出抗-抗生素轉形體(transformant)。 An electroporation method is used to introduce the construct into the cell. First, Yarrowia cells were cultured in TE/LiAc/H 2 O for 30 minutes, and then washed with sorbitol to obtain competent Yarrowia cells. The construct is then introduced into the cells via electroporation. Anti-antibiotic transformants were screened using 50-500 [mu]g/mL geneticin.

培養基與條件 Medium and conditions

YNB培養條件-0.17% YNB而無胺基酸、0.5%硫酸銨(ammonium sulphate)、2%葡萄糖、0.15%酵母菌萃取物(yeast extract)、0.5% NH4Cl、0.01%尿嘧啶(uracil)、2%酪蛋白胺基酸(casamino acids)與0.02% Tween-80。 YNB culture conditions - 0.17% YNB without amino acid, 0.5% ammonium sulfate (sammonium sulphate), 2% glucose, 0.15% yeast extract, 0.5% NH 4 Cl, 0.01% uracil (uracil) 2% casein amino acids and 0.02% Tween-80.

1.起始pH於6.0,並於26℃培養48小時(未控制pH)。 1. The initial pH was at 6.0 and was incubated at 26 ° C for 48 hours (no pH control).

2.添加額外之2%葡萄糖以維持培養基之pH值於7.5±0.1(控制pH,每6小時調整一次)。 2. Add an additional 2% glucose to maintain the pH of the medium at 7.5 ± 0.1 (control pH, adjusted every 6 hours).

3.於此方式中,控制二羧酸產生,且也監測葡萄糖程度(維持於約0.5%)、培養5天,並收集細胞與培養之培養基用以分析。 3. In this manner, dicarboxylic acid production was controlled, and the degree of glucose (maintained at about 0.5%) was monitored, cultured for 5 days, and cells and culture medium were collected for analysis.

NL培養條件-10%葡萄糖、0.85%酵母菌萃取物與0.3%蛋白腖(peptone)。 NL culture conditions - 10% glucose, 0.85% yeast extract and 0.3% peptone.

1.起始pH於6.2(甘油,6.4),並於28℃培養3天(未控制pH)。 1. The initial pH was at 6.2 (glycerol, 6.4) and incubated at 28 °C for 3 days (uncontrolled pH).

2.收集細胞用於溶劑萃取與二羧酸分析。 2. Collect cells for solvent extraction and dicarboxylic acid analysis.

LB培養條件-1%葡萄糖、1%酵母菌萃取物。 LB culture conditions - 1% glucose, 1% yeast extract.

1.起始pH於6.0,並於30℃培養3天(第2天開始控制pH7.5)。 1. The initial pH was 6.0 and cultured for 3 days at 30 ° C (pH 7.5 was started on day 2).

2.收集細胞用於溶劑萃取與二羧酸分析。 2. Collect cells for solvent extraction and dicarboxylic acid analysis.

DCA分析-GC DCA Analysis - GC

1.將5mL培養物調整至pH 10.0且之後將其離心。收集上清液並將pH調整為pH 2.0。收集沉澱物(pellet)。 1. Adjust 5 mL culture to pH 10.0 and then centrifuge it. The supernatant was collected and the pH was adjusted to pH 2.0. A pellet was collected.

2.將14% BF3-甲醇(0.1mL)與0.2mL己烷添加至樣本並加熱於80-90℃,60分鐘。添加0.2mL之鹽溶液(saline solution),之後添加0.5mL己烷。執行GC分析。 2. Add 14% BF3-methanol (0.1 mL) and 0.2 mL hexane to the sample and heat at 80-90 °C for 60 minutes. Add 0.2mL of salt solution (saline Solution), followed by the addition of 0.5 mL of hexane. Perform a GC analysis.

DCA分析-HPLC DCA analysis-HPLC

1.將5mL之乙酸乙酯(ethyl acetate)添加至5mL之培養物,於Beatbeader超音波震盪器中打破細胞約1分鐘,並以6000rpm離心。收集上清液。 1. 5 mL of ethyl acetate was added to 5 mL of the culture, and the cells were disrupted in a Beatbeader Ultrasonic Vibrator for about 1 minute and centrifuged at 6000 rpm. Collect the supernatant.

2.使溶劑自上清液蒸發。添加1mL 99.5%乙醇以溶解萃取物。之後以HPLC來分析樣本。參見第3圖。 2. Evaporate the solvent from the supernatant. 1 mL of 99.5% ethanol was added to dissolve the extract. The samples were then analyzed by HPLC. See Figure 3.

儀器:Shimadzu 20ALC Instrument: Shimadzu 20ALC

管柱:Vercogel 120-5 C8,5um,4.6×250mm(Vercopak no.15835) Column: Vercogel 120-5 C8, 5um, 4.6×250mm (Vercopak no.15835)

洗提液(Eluent): Eluent:

A:0.1%TFA於H2O中 A: 0.1% TFA in H 2 O

B:AeCN B: AeCN

流速:1.0ml/分鐘 Flow rate: 1.0ml/min

管柱恆溫器(column oven):30℃ Column oven: 30 ° C

偵測:UV 220nm Detection: UV 220nm

樣本:檸檬酸(citric acid)(CA)、癸二酸(sebacic acid)(C10 DCA)、十二烷二酸(dodecanedioic acid)(C12 DCA)、十四烷二酸(tetradecanedioic acid)(C14 DCA)、十六烷二酸(hexadecanedioic acid)(C16 DCA)、十八烷二酸 (octanedecanedioic acid)(C18 DCA) Samples: citric acid (CA), sebacic acid (C10 DCA), dodecanedioic acid (C12 DCA), tetradecanedioic acid (C14 DCA) ), hexadecanedioic acid (C16 DCA), octadecanedioic acid (octanedecanedioic acid)(C18 DCA)

注入:10μl Injection: 10μl

結果 result

(1)在剔除醯基輔酶A氧化酶(acyl coenzyme A oxidase)基因(pox2或pox5)方面,我們的資料顯示,相較於pox5突變株,pox2突變株累積較多的脂肪酸。相較於野生型,具有20%增加。參見第4圖。 (1) in the removed acyl coenzyme A oxidase (acyl coenzyme A oxidase) gene (pox 2 or pox 5), our data show that, compared to pox5 mutant strain, a mutant strain accumulated more POX2 fatty acids. It has a 20% increase compared to the wild type. See Figure 4.

(2)使用前方所述靶向基因剔除(targeted gene knockout)方法,我們構築了四種解脂耶氏酵母菌(Y.lipolytica)菌株(ω1、ω2、ω3與ω4)。參見第5圖。 (2) Using the targeted gene knockout method described above, we constructed four strains of Y. lipolytica (ω1, ω2, ω3, and ω4). See Figure 5.

(3)將野生型解脂耶氏酵母菌培養於YPD培養基1天,之後將其接種進250ml之YNB培養基(10%葡萄糖或甘油),於起始pH為6.18或6.42,並培養於一搖瓶(shaker bottle)中5天,而未控制pH。測量二羧酸產生。參見表1。 (3) The wild type Yarrowia lipolytica was cultured in YPD medium for 1 day, and then inoculated into 250 ml of YNB medium (10% glucose or glycerol) at a starting pH of 6.18 or 6.42, and cultured in a shake. The bottle was shaken for 5 days without pH control. The dicarboxylic acid production was measured. See Table 1.

(4)將菌株ω4培養於YPD培養基1天,之後將其接種進500ml之NL培養基,於起始pH為5.0,並培養於一發酵槽 (fermenter)中而未控制pH。測量二羧酸產生。參見表2。 (4) The strain ω4 was cultured in YPD medium for 1 day, and then inoculated into 500 ml of NL medium at an initial pH of 5.0, and cultured in a fermentation tank. Not in the (fermenter) pH. The dicarboxylic acid production was measured. See Table 2.

(5)我們構築了三種解脂耶氏酵母菌菌株yBF(分別為野生型加入BTE、野生型加入FatB3以及野生型加入BTE與FatB3),其表現單一或混合月桂醯基-醯基載體蛋白硫酯酶(lauroyl-acyl carrier protein(ACP)thioesterase)(BTE,來自加州月桂(Umbellularia californica))與月桂醯基-醯基載體蛋白硫酯酶(FatB3,來自椰子(Cocos nucifera))。參見第6圖。 (5) We constructed three Yarrowia lipolytica strains yBF (wild type added BTE, wild type added to FatB3 and wild type added BTE and FatB3, respectively), which showed single or mixed lauryl-mercapto carrier protein sulfur Lauroyl-acyl carrier protein (ACP) thioesterase (BTE, from Umbellularia californica ) and lauryl-mercapto carrier protein thioesterase (FatB3 from Cocos nucifera ). See Figure 6.

將菌株yBF培養於YPD培養基1天,之後將其接種進250ml之NL或BMGY培養基,並培養於一搖瓶中7天。BMGY培養基-2%蛋白腖、1%酵母菌萃取物、100mM磷酸鉀(potassium phosphate)pH 6.0、1.34%酵母氮源(yeast nitrogen base)(w/o AA)、0.4μg/mL生物素(biotin)與1%甘油。測量游離 脂肪酸產生。參見表3。 The strain yBF was cultured in YPD medium for 1 day, after which it was inoculated into 250 ml of NL or BMGY medium, and cultured in a shake flask for 7 days. BMGY medium - 2% peptone, 1% yeast extract, 100 mM potassium phosphate pH 6.0, 1.34% yeast nitrogen base (w/o AA), 0.4 μg/mL biotin (biotin) With 1% glycerol. Measurement free Fatty acid production. See Table 3.

野生型-B、F、B/F分別代表野生型加入BTE、野生型加入FatB3以及野生型加入BTE與FatB3 Wild type - B, F, B / F represent wild type added BTE, wild type added to FatB3 and wild type added BTE and FatB3 respectively

1:NL培養基;2:BMGY培養基/3天;3:BMGY培養基/7天 1 : NL medium; 2 : BMGY medium / 3 days; 3 : BMGY medium / 7 days

(6)將菌株ω5(民國103年12月10日寄存於中華民國食品工業發展研究所生物資源保存及研究中心,寄存編號為BCRC 920096)(ω4菌株加入BTE與FatB3)培養於YNB培養基,於起始pH為6.18,並培養於一發酵槽中6天,而未控制pH。測量二羧酸產生。參見表4。 (6) The strain ω5 (stored in the Bioresource Conservation and Research Center of the Republic of China Food Industry Development Institute on December 10, 1983, with the registration number BCRC 920096) (ω4 strain added to BTE and FatB3) was cultured in YNB medium. The initial pH was 6.18 and was cultured in a fermenter for 6 days without pH control. The dicarboxylic acid production was measured. See Table 4.

(7)藉由使用RNA干擾(RNA interference)(△棕櫚醯基-醯基載體蛋白硫酯酶(palmitoyl ACP-thioesterase),第7圖),我們構築了ω5::△棕櫚醯基-醯基載體蛋白硫酯酶(菌株ω6,民國103年12月10日寄存於中華民國食品工業發展研究所生物資源保存及研究中心,寄存編號為BCRC 920097),以減少DCA12降解。 (7) By using RNA interference (palmitoyl ACP-thioesterase, Figure 7), we constructed ω5:: △ palmitoyl-fluorenyl The carrier protein thioesterase (strain ω6, deposited at the Bioresource Conservation and Research Center of the Republic of China Food Industry Development Institute on December 10, 1983, with accession number BCRC 920097) to reduce DCA12 degradation.

(8)將菌株ω6培養於YNB培養基中,於起始pH為6.18,並培養於一搖瓶中5天,而未控制pH。測量二羧酸產生。參見表5。 (8) The strain ω6 was cultured in YNB medium at an initial pH of 6.18, and cultured in a shake flask for 5 days without pH control. The dicarboxylic acid production was measured. See Table 5.

表5 table 5

(9)將菌株ω5與ω6培養於YPD培養基中1天,之後將其接種進在一搖瓶中之250ml的YNB培養基(2%葡萄糖)。將pH維持於6.0達2天。且之後每6小時添加額外之2%葡萄糖以維持pH於7.5達5天。於ω5方面,相較於ω4,DCA12的產生自12.9%增加至51.2%(1.23g/L)。在ω6方面,DCA12的產生增加至59.8%(2.35g/L)。參見第8圖與表6。 (9) The strains ω5 and ω6 were cultured in YPD medium for 1 day, and then inoculated into 250 ml of YNB medium (2% glucose) in a shake flask. The pH was maintained at 6.0 for 2 days. Additional 2% glucose was added every 6 hours to maintain the pH at 7.5 for 5 days. In terms of ω5, the production of DCA12 increased from 12.9% to 51.2% (1.23 g/L) compared to ω4. In terms of ω6, the production of DCA12 increased to 59.8% (2.35 g/L). See Figure 8 and Table 6.

(10)我們構築了菌株ω6::AccD::FASA-1(ω7)(民國103年12月10日寄存於中華民國食品工業發展研究所生物資源保存及研究中心,寄存編號為BCRC 920098)。將菌株ω7培養於YNB培養基中6天,而未控制pH。測量二羧酸產生。參見表7。 (10) We constructed the strain ω6::AccD::FASA-1(ω7) ( deposited on December 10, 103, the National Center for Bioresource Conservation and Research of the Republic of China Food Industry Development Institute, the registration number is BCRC 920098). The strain ω7 was cultured in YNB medium for 6 days without pH control. The dicarboxylic acid production was measured. See Table 7.

(11)於一發酵槽中,在300rpm攪拌與1vvm通氣之條件下,將菌株ω7培養於YNB培養基中,將pH維持於6.0達2天,且之後每6小時添加額外之2%葡萄糖以維持pH於6.0,達5天。測量二羧酸產生。參見表8。 (11) The strain ω7 was cultured in YNB medium under stirring at 300 rpm and 1 vvm in a fermenter, maintaining the pH at 6.0 for 2 days, and then adding an additional 2% glucose every 6 hours to maintain The pH is 6.0 for 5 days. The dicarboxylic acid production was measured. See Table 8.

(12)於一發酵槽中,在300rpm攪拌與1vvm通氣之條件下,將菌株ω7培養於YNB培養基中,將pH維持於6.0達2天,且之後每6小時添加額外之2%葡萄糖以維持pH於7.5達5天。測量二羧酸產生。參見表9。 (12) The strain ω7 was cultured in YNB medium under stirring at 300 rpm and 1 vvm in a fermenter, maintaining the pH at 6.0 for 2 days, and then adding an additional 2% glucose every 6 hours to maintain The pH is 7.5 for 5 days. The dicarboxylic acid production was measured. See Table 9.

其他實施例 Other embodiments

1.菌株BTE△NC::FatB3::CPR::FAO::FADH(E1) 1. Strain BTE△NC::FatB3::CPR::FAO::FADH(E1)

我們構築了菌株BTE△NC::FatB3::CPR::FAO::FADH(E1)。參見第9圖,pHS-B+F為在pHS載體中分別於Acc65I/SalI與HindIII/BamHI插入BTE△NC與FatB3,pHR-CFF為在pHR載體中分別於BamHI/EcoRI與SalI/HindIII與XhoI插入CPR與FAO與FADH。 We constructed the strain BTE△NC::FatB3::CPR::FAO::FADH(E1). Referring to Figure 9, pHS-B+F is inserted into BTE△NC and FatB3 in Acc6I/SalI and HindIII/BamHI in pHS vector, and pHR-CFF is in BpHHI/EcoRI and SalI/HindIII and XhoI in pHR vector respectively. Insert CPR with FAO and FADH.

一發酵槽中,在300rpm攪拌與1vvm通氣之條件下,將菌株E1培養於YNB與LB培養基中,將pH維持於6.0達1天,且之後每6小時添加額外之1%葡萄糖以維持pH於7.5達2 天。測量二羧酸產生,而二羧酸產生達0.2g。參見第10圖。 In a fermenter, strain E1 was cultured in YNB and LB medium under stirring at 300 rpm and 1 vvm to maintain the pH at 6.0 for 1 day, and then add 1% glucose every 6 hours to maintain the pH. 7.5 up to 2 day. The dicarboxylic acid production was measured, and the dicarboxylic acid was produced to 0.2 g. See Figure 10.

2.菌株BTE△NC::CPR::FAO::FADH(E2)及菌株BTE△NC::AceCS::CPR::FAO::FADH(E3) 2. Strain BTE△NC::CPR::FAO::FADH(E2) and strain BTE△NC::AceCS::CPR::FAO::FADH(E3)

我們構築了菌株BTE△NC::CPR::FAO::FADH(E2)及菌株BTE△NC::AceCS::CPR::FAO::FADH(E3)。參見第11圖,pHS-B為在pHS載體中分別於Acc65I/BamHI插入BTE△NC,pHS-B+AceCS為在pHS載體中分別於Acc65I/SalI與HindIII/BamHI插入BTE△NC與AceCS,pHR-CFF為在pHR載體中分別於BamHI/EcoRI與SalI/HindIII與XhoI插入CPR與FAO與FADH。 We constructed the strain BTE△NC::CPR::FAO::FADH(E2) and the strain BTE△NC::AceCS::CPR::FAO::FADH(E3). Referring to Fig. 11, pHS-B is inserted into BTE△NC in Acc65I/BamHI in pHS vector, pHS-B+AceCS is inserted into BTE△NC and AceCS, pHR in Acc6I/SalI and HindIII/BamHI in pHS vector respectively. -CFF is the insertion of CPR and FAO and FADH in BamHI/EcoRI and SalI/HindIII and XhoI, respectively, in a pHR vector.

一發酵槽中,在300rpm攪拌與1vvm通氣之條件下,將菌株E2與E3培養於LB培養基中,將pH維持於6.0達1天,且之後每6小時添加額外之1%葡萄糖以維持pH於7.5達2天。測量醋酸產生,而E3醋酸產生較E2低0.14g。參見第12圖。 In a fermenter, strains E2 and E3 were cultured in LB medium under stirring at 300 rpm and 1 vvm to maintain the pH at 6.0 for 1 day, and then add 1% glucose every 6 hours to maintain the pH. 7.5 for 2 days. Acetic acid production was measured, while E3 acetic acid production was 0.14 g lower than E2. See Figure 12.

3.菌株BTE△NC::CPR::FAO::FADH(E2)及菌株ACC::BTE△NC::FatB3::CPR::FAO::FADH(E4) 3. Strain BTE△NC::CPR::FAO::FADH(E2) and strain ACC::BTE△NC::FatB3::CPR::FAO::FADH(E4)

我們構築了菌株BTE△NC::CPR::FAO::FADH(E2)及菌株ACC::BTE△NC::FatB3::CPR::FAO::FADH(E4)。參見第13圖,pHSR-ACC為在pHSR載體中分別於NdeI/SpeI、SpeI/EagI與EagI/XhoI插入AccA、AccBC與AccD。pHS-B+F為在pHS載體中分別於Acc65I/SaI與HindIII/BamHI插入BTE△NC與FatB3,pHR-CFF為在pHR載體中分別於BamHI/EcoRI、SalI/HindIII與XhoI插入CPR、FAO與FADH。 We constructed the strain BTE△NC::CPR::FAO::FADH(E2) and the strain ACC::BTE△NC::FatB3::CPR::FAO::FADH(E4). Referring to Figure 13, pHSR-ACC was inserted into AccA, AccBC, and AccD in NdI/SpeI, SpeI/EagI, and EagI/XhoI, respectively, in the pHSR vector. pHS-B+F is inserted into BTE△NC and FatB3 in Acc6I/SaI and HindIII/BamHI in pHS vector, and pHR-CFF is inserted into CPR, FAO and BamHI/EcoRI, SalI/HindIII and XhoI in pHR vector respectively. FADH.

一發酵槽中,在300rpm攪拌與1vvm通氣之條件 下,將菌株E2與E4培養於LB培養基中,將pH維持於6.0達1天,且之後每6小時添加額外之1%葡萄糖以維持pH於7.5達2天。測量醋酸產生,而二羧酸可達0.36g。參見第14圖。 Stirring at 300 rpm and 1 vvm aeration in a fermenter Next, strains E2 and E4 were cultured in LB medium, the pH was maintained at 6.0 for 1 day, and then an additional 1% glucose was added every 6 hours to maintain the pH at 7.5 for 2 days. The acetic acid production was measured while the dicarboxylic acid was up to 0.36 g. See Figure 14.

4.菌株△acs::CPR::FAO::FADH(E5) 4. Strain Δacs::CPR::FAO::FADH(E5)

我們構築了菌株△acs::CPR::FAO::FADH(E5)。參見第15A與15B圖。第15A圖顯示菌株E5的構築方法。步驟(1):來自具有同源臂(homology arm)與FRT位位於兩側之功能性卡匣之PCR產物的產生(菌種基因acs刪除之順向引子:atgcgctatgccgattttccaacgctggttgatgctttggactacgccgcaattaaccctcactaaagggcg(序列辨識號:53);逆向引子:tcatgccagggattcctgcacatgaagactggcagcataagccttctgattaatacgactcactatagggctc(序列辨識號:54));步驟(2):pRedET對大腸桿菌宿主的轉染;步驟(3):Red/ET重組基因之誘導與隨後之線性PCR產物對於大腸桿菌宿主的轉形;步驟(4):Red/ET重組物將功能性卡匣插入目標位點(locus);步驟(5):將Red/ET經增強之FLP表現質體(Red/ET enhanced FLP expression plasmid),707-FLPe(參見第15C圖),轉形到完成步驟(4)菌株;與步驟(5):菌株中的Red/ET與707-FLPe進行同源基因交換,進而把因Red/ET產生的kanamycin剃除,隨即完成不帶篩選標記(selection marker)的目標基因刪除(target gene deletion)菌株,以利後續再把帶有相同篩選標記之質體(參見第15B圖)轉形到前述目標基因刪除菌株,而不會因刪除菌株保留有kanamycin而使得相同帶有kanamycin的質體無法再轉形到目標基因刪除菌株。步驟(5)至(6)為利於後續基因工作實施之基 因操作手段,若不實施步驟(5)至(6),同樣是完成目標基因刪除。第15B圖顯示pHR-CFF為在pHR載體中分別於BamHI/EcoRI與SalI/HindIII與XhoI插入CPR與FAO與FADH。 We constructed the strain Δacs::CPR::FAO::FADH(E5). See Figures 15A and 15B. Figure 15A shows the construction method of strain E5. Step (1): production of a PCR product from a functional cassette having a homology arm and a FRT position on both sides (introduction of the strain gene acs deletion: atgcgctatgccgattttccaacgctggttgatgctttggactacgccgcaattaaccctcactaaagggcg (sequence identification number: 53); Reverse primer: tcatgccagggattcctgcacatgaagactggcagcataagccttctgattaatacgactcactatagggctc (SEQ ID NO: 54)); Step (2): transfection of pRedET to E. coli host; step (3): induction of Red/ET recombinant gene and subsequent linear PCR product for E. coli host Transformation; step (4): Red/ET recombinant inserts the functional cassette into the locus; step (5): Red/ET enhanced FLP expression plasmid (Red/ET enhanced FLP expression plasmid ), 707-FLPe (see Figure 15C), transformed to complete step (4) strain; and step (5): red/ET and 707-FLPe in the strain for homologous gene exchange, and then by Red/ET The resulting kanamycin is shaved, and the target gene deletion strain without the selection marker is completed, so as to facilitate the subsequent selection of the same screening marker. The body (see Figure 15B) is transformed into the aforementioned target gene deletion strain without leaving the kanamycin in the deletion strain, so that the same kanamycin-bearing plastid can no longer be transformed into the target gene deletion strain. Steps (5) to (6) are genetic manipulation means for facilitating the subsequent gene work, and if steps (5) to (6) are not carried out, the target gene deletion is also completed. Figure 15B shows that pHR-CFF is the insertion of CPR and FAO and FADH in BamHI/EcoRI and SalI/HindIII and XhoI, respectively, in the pHR vector.

一發酵槽中,在300rpm攪拌與1vvm通氣之條件下,將菌株E5培養於LB培養基中,將pH維持於6.5達1天,且之後每6小時添加額外之1%葡萄糖以維持pH於7.5達2天。測量二羧酸產生,而二羧酸產生達0.05g。參見第16圖。 In a fermenter, strain E5 was cultured in LB medium under stirring at 300 rpm and 1 vvm to maintain the pH at 6.5 for 1 day, and then add 1% glucose every 6 hours to maintain the pH at 7.5. 2 days. The dicarboxylic acid production was measured, and the dicarboxylic acid was produced to 0.05 g. See Figure 16.

5.菌株△gltA::CPR::FAO::FADH(E6) 5. Strain ΔgltA::CPR::FAO::FADH(E6)

我們構築了菌株△gltA::CPR::FAO::FADH(E6)。參見第17A與17B圖。第17A圖顯示菌株E5的構築方法。步驟(1):來自具有同源臂與FRT位位於兩側之功能性卡匣之PCR產物的產生(菌種基因gltA刪除之順向引子:atggctgatacaaaagcaaaactcaccctcaacggggatacagctgttgaaattaaccctcactaaagggcg(序列辨識號:55);逆向引子:taacgcttgatatcgcttttaaagtcgcgtttttcatatcctgtatacataatacgactcactatagggctc(序列辨識號:56));步驟(2):pRedET對大腸桿菌宿主的轉染;步驟(3):Red/ET重組基因之誘導與隨後之線性PCR產物對於大腸桿菌宿主的轉形;步驟(4):Red/ET重組物將功能性卡匣插入目標位點;步驟(5):將Red/ET經增強之FLP表現質體,707-FLPe(參見第15C圖),轉形到完成步驟(4)菌株;與步驟(5):菌株中的Red/ET與707-FLPe進行同源基因交換,進而把因Red/ET產生的kanamycin剃除,隨即完成不帶篩選標記的目標基因刪除菌株,以利後續再把帶有相同篩選標記之質體(參見第17B圖)轉形到前述目標基因刪除菌株,而不會因 刪除菌株保留有kanamycin而使得相同帶有kanamycin的質體無法再轉形到目標基因刪除菌株。步驟(5)至(6)為利於後續基因工作實施之基因操作手段,若不實施步驟(5)至(6),同樣是完成目標基因刪除。第17B圖顯示pHR-CFF為在pHR載體中分別於BamHI/EcoRI與SalI/HindIII與XhoI插入CPR與FAO與FADH。 We constructed the strain ΔgltA::CPR::FAO::FADH(E6). See Figures 17A and 17B. Figure 17A shows the construction method of strain E5. Step (1): Production of a PCR product derived from a functional cassette having a homologous arm and a FRT position on both sides (the forward gene of the strain gene gltA deletion: atggctgatacaaaagcaaaactcaccctcaacggggatacagctgttgaaattaaccctcactaaagggcg (SEQ ID NO: 55); reverse primer: taacgcttgatatcgcttttaaagtcggtttttttcatatcctgtatacataatacgactcactatagggctc (SEQ ID NO: 56)); Step (2): transfection of pRedET to E. coli host; step (3): induction of Red/ET recombinant gene and subsequent transformation of linear PCR product to E. coli host; (4): Red/ET recombinant inserts the functional cassette into the target site; step (5): Red/ET enhanced FLP expression plastid, 707-FLPe (see Figure 15C), transformed to completion Step (4) strain; and step (5): Red/ET and 707-FLPe in the strain are homologous gene exchange, and then the kanamycin produced by Red/ET is shaved, and then the target gene deletion without the screening marker is completed. The strain, in order to facilitate subsequent transformation of the plastid with the same screening marker (see Figure 17B) to the aforementioned target gene deletion strain, without retaining kanamy due to the deletion strain The cin makes the same kanamycin-bearing plastid no longer transformable to the target gene deletion strain. Steps (5) to (6) are genetic manipulation means for facilitating the subsequent gene work, and if steps (5) to (6) are not carried out, the target gene deletion is also completed. Figure 17B shows that pHR-CFF is the insertion of CPR and FAO and FADH in BamHI/EcoRI and SalI/HindIII and XhoI, respectively, in the pHR vector.

一發酵槽中,在300rpm攪拌與1vvm通氣之條件下,將菌株E5培養於LB培養基中,將pH維持於6.5達1天,且之後每6小時添加額外之1%葡萄糖以維持pH於7.5達2天。測量二羧酸產生,而二羧酸產生達0.02g。參見第16圖。 In a fermenter, strain E5 was cultured in LB medium under stirring at 300 rpm and 1 vvm to maintain the pH at 6.5 for 1 day, and then add 1% glucose every 6 hours to maintain the pH at 7.5. 2 days. The dicarboxylic acid production was measured, and the dicarboxylic acid was produced to 0.02 g. See Figure 16.

於此說明書中所揭露的所有特徵可被以任何組合形式來進行組合。於此說明書中所揭露的各個特徵,可以一適合相同、相等或相似目的之一替代特徵所取代。因此,除非特別以其他方式陳述,所揭露之各特徵僅為一般系列之相等或相似特徵的一個例子。 All of the features disclosed in this specification can be combined in any combination. Each feature disclosed in this specification can be replaced by an alternative feature that is suitable for the same, equal or similar purpose. Accordingly, unless expressly stated otherwise, the disclosed features are only one example of equivalent or similar features of the general series.

自上方說明,該技術領域中具有通常知識者可輕易地確認所述實施例之必要特徵,且不超出其精神與範圍的情況下而可做出實施例之各種改變與修飾,以使其適合各種用途與情況。因此,其他實施例也在申請專利範圍之中。對於該技術領域中具有通常知識者而言,可對所揭露之實施例做出各種修飾與變化是明顯的。所意指為,說明書與實施例僅被視為示例,伴隨所揭露的實際範圍係由下方申請專利範圍及其等同務所指出。 From the above, those skilled in the art can easily identify the necessary features of the embodiments, and various changes and modifications of the embodiments can be made to the present invention without departing from the spirit and scope thereof. Various uses and situations. Therefore, other embodiments are also within the scope of the patent application. It will be apparent to those skilled in the art that various modifications and changes can be made to the disclosed embodiments. It is intended that the specification and embodiments be regarded as illustrative only

【生物材料寄存】【Biomaterial Storage】

國內寄存資訊【請依寄存機構、日期、號碼順序註記】 Domestic registration information [please note according to the registration authority, date, number order]

1. ω5菌株 Ω5 strain

中華民國食品工業發展研究所生物資源保存及研究中心 Bioresource Conservation and Research Center of the Republic of China Food Industry Development Institute

民國103年12月10日 December 10, 103, Republic of China

BCRC 920096 BCRC 920096

2. ω6菌株 2. ω6 strain

中華民國食品工業發展研究所生物資源保存及研究中心 Bioresource Conservation and Research Center of the Republic of China Food Industry Development Institute

民國103年12月10日 December 10, 103, Republic of China

BCRC 920097 BCRC 920097

3. ω7菌株 3. ω7 strain

中華民國食品工業發展研究所生物資源保存及研究中心 Bioresource Conservation and Research Center of the Republic of China Food Industry Development Institute

民國103年12月10日 December 10, 103, Republic of China

BCRC 920098 BCRC 920098

<110> 財團法人工業技術研究院 <110> Institute of Industrial Technology

<120> 用以產生長鏈二羧酸之經基因修飾的微生物與使用其之方法 <120> Genetically modified microorganism for producing long-chain dicarboxylic acid and method of using the same

<130> 0954-A24600TW <130> 0954-A24600TW

<150> US 62/032,956 <150> US 62/032,956

<151> 2014-08-04 <151> 2014-08-04

<160> 56 <160> 56

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 6801 <211> 6801

<212> DNA <212> DNA

<213> 解脂耶氏酵母菌(Yarrowia lipolytica) <213> Yarrowia lipolytica

<400> 1 <400> 1

<210> 2 <210> 2

<211> 2266 <211> 2266

<212> PRT <212> PRT

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 2 <400> 2

<210> 3 <210> 3

<211> 960 <211> 960

<212> DNA <212> DNA

<213> 大腸桿菌(Escherichia coli) <213> Escherichia coli

<400> 3 <400> 3

<210> 4 <210> 4

<211> 319 <211> 319

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<400> 4 <400> 4

<210> 5 <210> 5

<211> 471 <211> 471

<212> DNA <212> DNA

<213> 大腸桿菌 <213> E. coli

<400> 5 <400> 5

<210> 6 <210> 6

<211> 156 <211> 156

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<400> 6 <400> 6

<210> 7 <210> 7

<211> 1350 <211> 1350

<212> DNA <212> DNA

<213> 大腸桿菌 <213> E. coli

<400> 7 <400> 7

<210> 8 <210> 8

<211> 449 <211> 449

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<400> 8 <400> 8

<210> 9 <210> 9

<211> 915 <211> 915

<212> DNA <212> DNA

<213> 大腸桿菌 <213> E. coli

<400> 9 <400> 9

<210> 10 <210> 10

<211> 304 <211> 304

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<400> 10 <400> 10

<210> 11 <210> 11

<211> 5553 <211> 5553

<212> DNA <212> DNA

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 11 <400> 11

<210> 12 <210> 12

<211> 1850 <211> 1850

<212> PRT <212> PRT

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 12 <400> 12

<210> 13 <210> 13

<211> 6261 <211> 6261

<212> DNA <212> DNA

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 13 <400> 13

<210> 14 <210> 14

<211> 2086 <211> 2086

<212> PRT <212> PRT

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 14 <400> 14

<210> 15 <210> 15

<211> 1635 <211> 1635

<212> DNA <212> DNA

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 15 <400> 15

<210> 16 <210> 16

<211> 544 <211> 544

<212> PRT <212> PRT

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 16 <400> 16

<210> 17 <210> 17

<211> 792 <211> 792

<212> DNA <212> DNA

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 17 <400> 17

<210> 18 <210> 18

<211> 263 <211> 263

<212> PRT <212> PRT

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 18 <400> 18

<210> 19 <210> 19

<211> 903 <211> 903

<212> DNA <212> DNA

<213> 加州月桂(Umbellularia californica) <213> California Laurel ( Umbellularia californica )

<400> 19 <400> 19

<210> 20 <210> 20

<211> 300 <211> 300

<212> PRT <212> PRT

<213> 加州月桂 <213> California Laurel

<400> 20 <400> 20

<210> 21 <210> 21

<211> 831 <211> 831

<212> DNA <212> DNA

<213> 加州月桂 <213> California Laurel

<400> 21 <400> 21

<210> 22 <210> 22

<211> 276 <211> 276

<212> PRT <212> PRT

<213> 加州月桂 <213> California Laurel

<400> 22 <400> 22

<210> 23 <210> 23

<211> 1245 <211> 1245

<212> DNA <212> DNA

<213> 椰子(Cocos nucifera) <213> Coconut ( Cocos nucifera )

<400> 23 <400> 23

<210> 24 <210> 24

<211> 414 <211> 414

<212> PRT <212> PRT

<213> Cocos nucifera <213> Cocos nucifera

<400> 24 <400> 24

<210> 25 <210> 25

<211> 894 <211> 894

<212> DNA <212> DNA

<213> Cocos nucifera <213> Cocos nucifera

<400> 25 <400> 25

<210> 26 <210> 26

<211> 297 <211> 297

<212> PRT <212> PRT

<213> Cocos nucifera <213> Cocos nucifera

<400> 26 <400> 26

<210> 27 <210> 27

<211> 930 <211> 930

<212> DNA <212> DNA

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 27 <400> 27

<210> 28 <210> 28

<211> 309 <211> 309

<212> PRT <212> PRT

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 28 <400> 28

<210> 29 <210> 29

<211> 2043 <211> 2043

<212> DNA <212> DNA

<213> 假絲酵母菌(Candida tropicalis) <213> Candida tropicalis

<400> 29 <400> 29

<210> 30 <210> 30

<211> 680 <211> 680

<212> PRT <212> PRT

<213> 假絲酵母菌 <213> Candida

<400> 30 <400> 30

<210> 31 <210> 31

<211> 2043 <211> 2043

<212> DNA <212> DNA

<213> 假絲酵母菌 <213> Candida

<400> 31 <400> 31

<210> 32 <210> 32

<211> 680 <211> 680

<212> PRT <212> PRT

<213> 假絲酵母菌 <213> Candida

<400> 32 <400> 32

<210> 33 <210> 33

<211> 2115 <211> 2115

<212> DNA <212> DNA

<213> 假絲酵母菌 <213> Candida

<400> 33 <400> 33

<210> 34 <210> 34

<211> 704 <211> 704

<212> PRT <212> PRT

<213> 假絲酵母菌 <213> Candida

<400> 34 <400> 34

<210> 35 <210> 35

<211> 2115 <211> 2115

<212> DNA <212> DNA

<213> 假絲酵母菌 <213> Candida

<400> 35 <400> 35

<210> 36 <210> 36

<211> 704 <211> 704

<212> PRT <212> PRT

<213> 假絲酵母菌 <213> Candida

<400> 36 <400> 36

<210> 37 <210> 37

<211> 768 <211> 768

<212> DNA <212> DNA

<213> 白假絲酵母菌(Candida albicans) <213> Candida albicans

<400> 37 <400> 37

<210> 38 <210> 38

<211> 255 <211> 255

<212> PRT <212> PRT

<213> 白假絲酵母菌 <213> Candida albicans

<400> 38 <400> 38

<210> 39 <210> 39

<211> 768 <211> 768

<212> DNA <212> DNA

<213> 白假絲酵母菌 <213> Candida albicans

<400> 39 <400> 39

<210> 40 <210> 40

<211> 255 <211> 255

<212> PRT <212> PRT

<213> 白假絲酵母菌 <213> Candida albicans

<400> 40 <400> 40

<210> 41 <210> 41

<211> 2103 <211> 2103

<212> DNA <212> DNA

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 41 <400> 41

<210> 42 <210> 42

<211> 700 <211> 700

<212> PRT <212> PRT

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 42 <400> 42

<210> 43 <210> 43

<211> 2100 <211> 2100

<212> DNA <212> DNA

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 43 <400> 43

<210> 44 <210> 44

<211> 699 <211> 699

<212> PRT <212> PRT

<213> 解脂耶氏酵母菌 <213> Yarrowia lipolytica

<400> 44 <400> 44

<210> 45 <210> 45

<211> 1752 <211> 1752

<212> DNA <212> DNA

<213> 大腸桿菌 <213> E. coli

<400> 45 <400> 45

<210> 46 <210> 46

<211> 583 <211> 583

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<400> 46 <400> 46

<210> 47 <210> 47

<211> 1959 <211> 1959

<212> DNA <212> DNA

<213> 大腸桿菌 <213> E. coli

<400> 47 <400> 47

<210> 48 <210> 48

<211> 652 <211> 652

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<400> 48 <400> 48

<210> 49 <210> 49

<211> 1689 <211> 1689

<212> DNA <212> DNA

<213> 大腸桿菌 <213> E. coli

<400> 49 <400> 49

<210> 50 <210> 50

<211> 562 <211> 562

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<400> 50 <400> 50

<210> 51 <210> 51

<211> 1284 <211> 1284

<212> DNA <212> DNA

<213> 大腸桿菌 <213> E. coli

<400> 51 <400> 51

<210> 52 <210> 52

<211> 427 <211> 427

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<400> 52 <400> 52

<210> 53 <210> 53

<211> 72 <211> 72

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 順向引子 <223> Forward introduction

<400> 53 <400> 53

<210> 54 <210> 54

<211> 73 <211> 73

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 逆向引子 <223> Reverse primer

<400> 54 <400> 54

<210> 55 <210> 55

<211> 72 <211> 72

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 順向引子 <223> Forward introduction

<400> 55 <400> 55

<210> 56 <210> 56

<211> 72 <211> 72

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 逆向引子 <223> Reverse primer

<400> 56 <400> 56

Claims (24)

一種經基因修飾的微生物,包括:一第一核酸,其編碼一加州月桂(Umbellularia californica)月桂醯基-醯基載體蛋白硫酯酶(lauroyl-acyl carrier protein(ACP)thioesterase)(BTE),可操作地連接至一啟動子;與一第二核酸,其編碼一椰子(Cocos nucifera)月桂醯基-醯基載體蛋白硫酯酶(FatB3),可操作地連接至一啟動子,其中,相較於該微生物之未經修飾的親代,該微生物表現一較低程度之棕櫚醯基-醯基載體蛋白硫酯酶(palmitoyl-acyl carrier protein(ACP)thioesterase),又,其中相較於該微生物之未修飾的親代,該微生物產生一增量的長鏈二羧酸(dicarboxylic acids)。 A genetically modified microorganism comprising: a first nucleic acid encoding a Umbellularia californica lauroyl-acyl carrier protein (ACP) thioesterase (BTE), Operabically linked to a promoter; and a second nucleic acid encoding a Cocos nucifera lauryl-mercapto-carrier protein thioesterase (FatB3) operably linked to a promoter, wherein For the unmodified parent of the microorganism, the microorganism exhibits a lower degree of palmitoyl-acyl carrier protein (ACP) thioesterase, and wherein, compared to the microorganism The unmodified parent, the microorganism produces an incremental amount of long chain dicarboxylic acids. 如申請專利範圍第1項所述之經基因修飾的微生物,更包括,一表現構築體(expression construct),其表現用以抑制棕櫚醯基-醯基載體蛋白硫酯酶之表現的一siRNA。 The genetically modified microorganism of claim 1, further comprising an expression construct which exhibits an siRNA for inhibiting the expression of the palmitoyl-thiol carrier protein thioesterase. 如申請專利範圍第1項所述之經基因修飾的微生物,更包括,一第三核酸,其編碼一乙醯輔酶A羧化酶(acetyl-CoA carboxylase,ACC),可操作地連接至一啟動子。 The genetically modified microorganism of claim 1, further comprising a third nucleic acid encoding an acetyl-CoA carboxylase (ACC) operably linked to a start-up child. 如申請專利範圍第1項所述之經基因修飾的微生物,更包括,一額外之核酸,其編碼一脂肪酸合成酶(fatty acid synthase,FAS)次單元,可操作地連接至一啟動子。 The genetically modified microorganism of claim 1, further comprising an additional nucleic acid encoding a fatty acid synthase (FAS) subunit operably linked to a promoter. 如申請專利範圍第3項所述之經基因修飾的微生物,更包括,一第四核酸,其編碼一脂肪酸合成酶次單元,可操作地連接至一啟動子。 The genetically modified microorganism of claim 3, further comprising a fourth nucleic acid encoding a fatty acid synthase subunit operably linked to a promoter. 如申請專利範圍第1項所述之經基因修飾的微生物,更包括,一額外之核酸,其編碼一單磷酸腺苷形成乙醯輔酶A合成酶(adenosine monophosphate(AMP)-forming acetyl-CoA synthetase),可操作地連接至一啟動子。 The genetically modified microorganism of claim 1, further comprising an additional nucleic acid encoding adenosine monophosphate (AMP)-forming acetyl-CoA synthetase ), operatively connected to a promoter. 如申請專利範圍第5項所述之經基因修飾的微生物,更包括,一第五核酸,其編碼一單磷酸腺苷形成乙醯輔酶A合成酶,可操作地連接至一啟動子。 The genetically modified microorganism of claim 5, further comprising a fifth nucleic acid encoding adenosine monophosphate to form an acetamyl CoA synthetase operably linked to a promoter. 如申請專利範圍第1項所述之經基因修飾的微生物,其中該微生物在一醯基輔酶A氧化酶(acyl-CoA oxidase)基因中具有一功能喪失突變(loss-of-function mutation)。 The genetically modified microorganism of claim 1, wherein the microorganism has a loss-of-function mutation in an acyl-CoA oxidase gene. 如申請專利範圍第8項之所述之經基因修飾的微生物,其中該醯基輔酶A氧化酶基因為pox2pox5fadDThe genetically modified microorganism of claim 8, wherein the 醯Krebase A oxidase gene is pox2 , pox5 or fadD . 如申請專利範圍第1項所述之經基因修飾的微生物,其中該微生物在一醯基輔酶A合成酶(acyl-CoA synthetase)基因中具有一功能喪失突變。 The genetically modified microorganism of claim 1, wherein the microorganism has a loss-of-function mutation in an acyl-CoA synthetase gene. 如申請專利範圍第10項之所述之經基因修飾的微生物,其中該醯基輔酶A合成酶基因為acsThe genetically modified microorganism of claim 10, wherein the 醯Krebase A synthetase gene is acs . 如申請專利範圍第1項所述之經基因修飾的微生物,其中該微生物在一檸檬酸合成酶(citric synthetase)基因中具有一功能喪失突變。 The genetically modified microorganism of claim 1, wherein the microorganism has a loss-of-function mutation in a citric synthetase gene. 如申請專利範圍第12項之所述之經基因修飾的微生物,其中該檸檬酸合成酶基因為gltAThe genetically modified microorganism of claim 12, wherein the citrate synthase gene is gltA . 如申請專利範圍第1項所述之經基因修飾的微生物,更包括,一額外之核酸,其編碼一細胞色素P450還原酶 (cytochrome P450 reductase,CPR),可操作地連接至一啟動子。 The genetically modified microorganism of claim 1, further comprising an additional nucleic acid encoding a cytochrome P450 reductase (cytochrome P450 reductase, CPR), operably linked to a promoter. 如申請專利範圍第7項所述之經基因修飾的微生物,更包括,一第六核酸,其編碼一細胞色素P450還原酶,可操作地連接至一啟動子。 The genetically modified microorganism of claim 7, further comprising a sixth nucleic acid encoding a cytochrome P450 reductase operably linked to a promoter. 如申請專利範圍第1項所述之經基因修飾的微生物,更包括,一額外之核酸,其編碼一長鏈醇氧化酶(alcohol oxidase)(FAO1)。 The genetically modified microorganism of claim 1, further comprising an additional nucleic acid encoding a long chain alcohol oxidase (FAO1). 如申請專利範圍第15項所述之經基因修飾的微生物,更包括,一第七核酸,其編碼一長鏈醇氧化酶。 The genetically modified microorganism of claim 15, further comprising a seventh nucleic acid encoding a long-chain alcohol oxidase. 如申請專利範圍第1項所述之經基因修飾的微生物,更包括,一額外之核酸,其編碼一長鏈醇脫氫酶(alcohol dehydrogenase)(FADH)。 The genetically modified microorganism of claim 1, further comprising an additional nucleic acid encoding a long chain alcohol dehydrogenase (FADH). 如申請專利範圍第17項所述之經基因修飾的微生物,更包括,一第八核酸,其編碼一長鏈醇脫氫酶。 The genetically modified microorganism of claim 17, further comprising an eighth nucleic acid encoding a long-chain alcohol dehydrogenase. 如申請專利範圍第1項所述之經基因修飾的微生物,其中該微生物為解脂耶氏酵母菌(Yarrowia lipotica)或大腸桿菌(Escherichia coli)。 The genetically modified microorganism of claim 1, wherein the microorganism is Yarrowia lipotica or Escherichia coli . 一種產生一長鏈二羧酸的方法,該方法包括:提供如申請專利範圍第1-20項之任一項所述之經基因修飾的微生物;以及於pH 6至8,在允許長鏈二羧酸的產生的情況下,於含有葡萄糖的一培養基中培養該微生物;藉此,該微生物產生該長鏈二羧酸。 A method for producing a long-chain dicarboxylic acid, the method comprising: providing a genetically modified microorganism according to any one of claims 1 to 20; and allowing a long chain at pH 6 to 8 In the case of the production of a carboxylic acid, the microorganism is cultured in a medium containing glucose; whereby the microorganism produces the long-chain dicarboxylic acid. 如申請專利範圍第21項所述之產生一長鏈二羧酸的 方法,更包括收集該長鏈二羧酸。 Producing a long chain dicarboxylic acid as described in claim 21 The method further comprises collecting the long chain dicarboxylic acid. 如申請專利範圍第21項所述之產生一長鏈二羧酸的方法,其中該長鏈二羧酸為C10-C18二羧酸。 A process for producing a long-chain dicarboxylic acid as described in claim 21, wherein the long-chain dicarboxylic acid is a C10-C18 dicarboxylic acid. 如申請專利範圍第23項所述之產生一長鏈二羧酸的方法,其中該長鏈二羧酸為C12二羧酸。 A process for producing a long-chain dicarboxylic acid as described in claim 23, wherein the long-chain dicarboxylic acid is a C12 dicarboxylic acid.
TW104121064A 2014-07-18 2015-06-30 Genetically modified microorganisms for producing long-chain dicarboxylic acid and method of using thereof TWI665302B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/802,282 US9695404B2 (en) 2014-07-18 2015-07-17 Genetically modified microorganism for producing long-chain dicarboxylic acid and method of using thereof
US15/394,047 US10174350B2 (en) 2014-07-18 2016-12-29 Genetically modified microorganism for producing medium-chain lauric acid and/or dodecanedioic acid and method of using thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462032956P 2014-08-04 2014-08-04
US62/032,956 2014-08-04

Publications (2)

Publication Number Publication Date
TW201606080A TW201606080A (en) 2016-02-16
TWI665302B true TWI665302B (en) 2019-07-11

Family

ID=55809947

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104121064A TWI665302B (en) 2014-07-18 2015-06-30 Genetically modified microorganisms for producing long-chain dicarboxylic acid and method of using thereof

Country Status (1)

Country Link
TW (1) TWI665302B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011579B (en) * 2019-05-28 2021-12-03 上海凯赛生物技术股份有限公司 Method for reducing non-target carbon chain length diacid impurities in diacid production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110165637A1 (en) * 2010-01-07 2011-07-07 Pfleger Brian F Fatty acid-producing hosts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110165637A1 (en) * 2010-01-07 2011-07-07 Pfleger Brian F Fatty acid-producing hosts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
2013年6月09日,Lauroyl-Acyl Carrier Protein Thioesterase: a Key Enzyme for Regulation of Medium-Chain Fatty Acid Synthesis in E. Coli,2013 2nd International Conference on Environment, Energy and Biotechnology *

Also Published As

Publication number Publication date
TW201606080A (en) 2016-02-16

Similar Documents

Publication Publication Date Title
CN108271383B (en) Fungal cells and methods for producing very long chain fatty acid derivatives
US10982195B2 (en) Glycerol free ethanol production
Kanamasa et al. Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus
CA2526896A1 (en) Glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase promoters for gene expression in oleaginous yeast
JP2018519843A (en) High level production of long chain dicarboxylic acids using organisms
US10370686B2 (en) Yeast cell modified to overproduce fatty acid and fatty acid-derived compounds
JP2014506466A (en) Cells and methods for producing isobutyric acid
BR112014020852B1 (en) METHOD FOR THE PRODUCTION OF A HYDROCARBIDE
BR112020005278A2 (en) heterologous production of 10-methyl stearic acid by cells expressing recombinant methyl transferase
US20230193333A1 (en) Norcoclaurine Synthases With Increased Activity
TWI665302B (en) Genetically modified microorganisms for producing long-chain dicarboxylic acid and method of using thereof
US9695404B2 (en) Genetically modified microorganism for producing long-chain dicarboxylic acid and method of using thereof
CA2931591C (en) Fumarate reductases
JP6622564B2 (en) Method for producing 1,4-butanediol
US11634718B2 (en) Production of macrocyclic ketones in recombinant hosts
KR20140092950A (en) Preparation method of succinic acid using recombinant yeast having a resistance to succinic acid
US10174350B2 (en) Genetically modified microorganism for producing medium-chain lauric acid and/or dodecanedioic acid and method of using thereof
CA2980391A1 (en) Microbiological production of short fatty acids and uses thereof
TWI662127B (en) Process to increase the production of a succinyl-coa derived compound
JP3549551B2 (en) S. DNA compound encoding riboflavin synthetase activity of cerevisiae and recombinant DNA expression vector
US11692209B2 (en) Genetically modified fungal cells for overexpression of an acetyl-CoA carboxylase and a pyruvate carboxylase
JP2023007916A (en) Method for producing yeast body containing pyridoxal phosphate
WO2024100063A1 (en) Genetically modified benzylisoquinoline alkaloid-producing host cells with modified efflux transporter gene expression
WO2023093796A1 (en) Acid-resistant yeast strain for high-yield production of succinic acid, and construction method therefor and use thereof
Oura et al. Cloning and functional characterization of a fatty acid synthase component FAS2 gene from Saccharomyces kluyveri