TWI664800B - Boost-type dc power converter and method for voltage ripple inhibition of pv module - Google Patents
Boost-type dc power converter and method for voltage ripple inhibition of pv module Download PDFInfo
- Publication number
- TWI664800B TWI664800B TW107107727A TW107107727A TWI664800B TW I664800 B TWI664800 B TW I664800B TW 107107727 A TW107107727 A TW 107107727A TW 107107727 A TW107107727 A TW 107107727A TW I664800 B TWI664800 B TW I664800B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- unit
- voltage
- ripple
- feedback
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000005764 inhibitory process Effects 0.000 title 1
- 238000006243 chemical reaction Methods 0.000 claims abstract description 83
- 238000012545 processing Methods 0.000 claims abstract description 30
- 239000003990 capacitor Substances 0.000 claims description 39
- 230000001965 increasing effect Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 16
- 230000001629 suppression Effects 0.000 description 9
- 230000008713 feedback mechanism Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本發明揭露一種升壓式直流電能轉換裝置。升壓式直流電能轉換裝置之一升壓控制單元接收太陽能模組輸出的一電壓訊號且產生一升壓訊號。一回授單元依據升壓訊號產生一回授訊號。一前饋單元依據電壓訊號產生一前饋訊號。一訊號處理單元依據前饋訊號與一參考訊號輸出一命令訊號。一補償放大單元依據回授訊號及命令訊號輸出一控制訊號;當命令訊號的漣波值大於回授訊號的漣波值時,一脈寬調變單元依據控制訊號增加一開關元件的一責任導通週期,以抑制電壓訊號的電壓漣波。本發明還揭露一抑制太陽能模組漣波的方法。 The invention discloses a step-up DC power conversion device. A boost control unit of a step-up DC power conversion device receives a voltage signal output from the solar module and generates a boost signal. A feedback unit generates a feedback signal based on the boost signal. A feedforward unit generates a feedforward signal according to the voltage signal. A signal processing unit outputs a command signal according to the feedforward signal and a reference signal. A compensation amplifier unit outputs a control signal according to the feedback signal and the command signal; when the ripple value of the command signal is greater than the ripple value of the feedback signal, a pulse width modulation unit adds a responsibility of conducting a switching element based on the control signal. Period to suppress the voltage ripple of the voltage signal. The invention also discloses a method for suppressing the ripple of the solar module.
Description
本發明係關於一種升壓式直流電能轉換裝置與抑制太陽能模組之電壓漣波(Ripple)的方法。 The invention relates to a step-up DC power conversion device and a method for suppressing voltage ripple of a solar module.
近年來,由於環保意識的抬頭和石化能源(例如石油、煤)的逐漸枯竭,讓世界各國察覺到新型能源開發的重要性。由於太陽光是取之不盡、用之不竭的天然能源,除了沒有能源耗盡的疑慮之外,也可以避免能源被壟斷的問題。因此,世界各國也積極地發展太陽能源的應用科技,期望由增加太陽能源的利用來減低對石化能源的依賴。其中,太陽能源的利用最主要的是太陽能電池(又稱光伏,Photovoltaic,PV),其係直接將光能轉換成電能,而輸出的電力經轉換後就可供應給負載設備使用。 In recent years, due to the rising awareness of environmental protection and the gradual depletion of petrochemical energy (such as oil and coal), countries around the world have realized the importance of new energy development. Because sunlight is an inexhaustible and inexhaustible natural energy source, in addition to no doubt of energy exhaustion, the problem of monopolized energy sources can also be avoided. Therefore, countries around the world are also actively developing the application of solar energy technology, and it is expected that by increasing the use of solar energy sources, we will reduce our dependence on petrochemical energy. Among them, the most important use of solar energy is solar cells (also called photovoltaics, photovoltaics), which directly convert light energy into electrical energy, and the output power can be supplied to load equipment after conversion.
圖1為傳統太陽能模組經變頻器轉換的系統示意圖。如圖1所示,太陽能模組輸出的直流電壓經DC/AC變頻器轉換成交流電壓後,可提供給負載電網使用。由於DC/AC變頻器的轉換作用,會反饋交流的電壓漣波到太陽能模組端,使得太陽能模組的輸出端具有漣波,此漣波除了增加太陽能模組與直流電容CBUS等效串聯電阻的功耗外,也會減短太陽能模組與電容CBUS的壽命。 FIG. 1 is a schematic diagram of a system in which a conventional solar module is converted by a frequency converter. As shown in Figure 1, after the DC voltage output by the solar module is converted into an AC voltage by a DC / AC inverter, it can be provided to the load grid. Due to the conversion effect of the DC / AC inverter, the AC voltage ripple is fed back to the solar module end, so that the output end of the solar module has a ripple. In addition to this ripple, the solar module is equivalent to the DC capacitor C BUS equivalent series In addition to the power consumption of the resistor, the life of the solar module and the capacitor C BUS will also be shortened.
為了抑制由變頻器反饋的漣波電壓,傳統上的一般作法是電容CBUS採用大電容值的電解電容(電容值越大,抑制效果越好),但是,這種作法除了增加電路體積與成本外,殘存的漣波電流也容易使電解電容的壽命降低。另一種作法是利用L-C串聯共振網路來旁路漣波電流的交流成份,或是利用半橋式或全橋式的電壓漣波消除電路來降低太陽能模組端的 漣波。但是,這些作法的電路元件數量多,控制電路也複雜,使得電路成本也相對較高。 In order to suppress the ripple voltage feedback from the inverter, the traditional general method is to use a large capacitance electrolytic capacitor for the capacitor C BUS (the larger the capacitance value, the better the suppression effect). However, this method has the effect of increasing the circuit size and cost. In addition, the residual ripple current easily reduces the life of the electrolytic capacitor. Another method is to use the LC series resonance network to bypass the AC components of the ripple current, or use a half-bridge or full-bridge voltage ripple cancellation circuit to reduce the ripple at the solar module end. However, these methods have a large number of circuit components, and the control circuit is also complicated, making the circuit cost relatively high.
本發明之目的為提供一種升壓式直流電能轉換裝置與抑制太陽能模組之電壓漣波的方法,除了可抑制後級變頻電路所造成的太陽能模組端的直流電壓漣波外,更具有直流升壓功能,可提高後級變頻電路的調變係數(Modulation Index)。 The purpose of the present invention is to provide a step-up DC power conversion device and a method for suppressing the voltage ripple of a solar module. In addition to suppressing the DC voltage ripple of the solar module end caused by a post-stage frequency conversion circuit, it also has a DC boost The voltage function can improve the Modulation Index (Modulation Index) of the post-stage frequency conversion circuit.
為達上述目的,本發明提出一種升壓式直流電能轉換裝置,其與一太陽能模組配合應用,並包括一升壓控制單元、一回授單元、一前饋單元、一訊號處理單元、一補償放大單元以及一脈寬調變單元。升壓控制單元接收太陽能模組輸出的一電壓訊號且產生一升壓訊號,升壓控制單元包括一開關元件。回授單元依據升壓訊號產生一回授訊號。前饋單元依據電壓訊號產生一前饋訊號。訊號處理單元依據前饋訊號與一參考訊號輸出一命令訊號。補償放大單元依據回授訊號及命令訊號輸出一控制訊號。脈寬調變單元依據控制訊號控制開關元件;其中,當命令訊號的漣波值大於回授訊號的漣波值時,脈寬調變單元依據控制訊號增加開關元件的一責任導通週期,以抑制電壓訊號的電壓漣波。 To achieve the above object, the present invention provides a step-up DC power conversion device, which is used in conjunction with a solar module and includes a step-up control unit, a feedback unit, a feed-forward unit, a signal processing unit, a Compensation amplifier unit and a pulse width modulation unit. The boost control unit receives a voltage signal output from the solar module and generates a boost signal. The boost control unit includes a switching element. The feedback unit generates a feedback signal according to the boost signal. The feedforward unit generates a feedforward signal according to the voltage signal. The signal processing unit outputs a command signal according to the feedforward signal and a reference signal. The compensation amplifier unit outputs a control signal according to the feedback signal and the command signal. The pulse width modulation unit controls the switching element according to the control signal; wherein, when the ripple value of the command signal is greater than the ripple value of the feedback signal, the pulse width modulation unit increases a duty cycle of the switching element according to the control signal to suppress Voltage ripple of the voltage signal.
在一實施例中,升壓式直流電能轉換裝置更包括一變頻單元,升壓控制單元更包括一電感、一電容與一二極體,電感的第一端分別電連接電容的第一端與太陽能模組的一電壓輸出端,電感的第二端分別電連接開關元件的一端與二極體的第一端,電容的第二端分別電連接二極體的第二端與變頻單元。 In an embodiment, the step-up DC power conversion device further includes a frequency conversion unit, and the step-up control unit further includes an inductor, a capacitor, and a diode. The first end of the inductor is electrically connected to the first end of the capacitor and A voltage output terminal of the solar module, a second terminal of the inductor are electrically connected to one end of the switching element and the first terminal of the diode, and a second terminal of the capacitor is electrically connected to the second terminal of the diode and the frequency conversion unit.
在一實施例中,當命令訊號的漣波值大於回授訊號的漣波值時,控制訊號使脈寬調變單元輸出的一脈寬調變訊號的責任導通週期增加,進而增加流過電感的電流。 In an embodiment, when the ripple value of the command signal is greater than the ripple value of the feedback signal, the control signal increases the duty cycle of a pulse width modulation signal output by the pulse width modulation unit, thereby increasing the flow-through inductance. Of current.
在一實施例中,升壓控制單元的直流升壓比等於1/(1-D),其中,D為開關元件的責任導通週期。 In one embodiment, the DC boost ratio of the boost control unit is equal to 1 / (1-D), where D is the duty cycle of the switching element.
在一實施例中,訊號處理單元包括一濾波器,濾波器濾除電 壓訊號中的直流成份,使濾波器產生的一濾波訊號包括120Hz的漣波。 In one embodiment, the signal processing unit includes a filter. The DC component in the compression signal causes a filtered signal generated by the filter to include a ripple of 120 Hz.
在一實施例中,訊號處理單元更包括一加法器電路,加法器電路使濾波訊號與參考訊號相加而輸出命令訊號。 In one embodiment, the signal processing unit further includes an adder circuit. The adder circuit adds the filtered signal to the reference signal and outputs a command signal.
在一實施例中,補償放大單元包括一運算放大器,命令訊號輸入運算放大器的正端,回授訊號輸入運算放大器的負端,且運算放大器的輸出端輸出控制訊號。 In one embodiment, the compensation amplifier unit includes an operational amplifier, a command signal is input to a positive terminal of the operational amplifier, a feedback signal is input to a negative terminal of the operational amplifier, and an output terminal of the operational amplifier outputs a control signal.
在一實施例中,升壓訊號包括有120Hz的交流訊號。 In one embodiment, the boost signal includes an AC signal at 120 Hz.
在一實施例中,升壓式直流電能轉換裝置更包括一變頻單元,其將升壓訊號轉換且濾除高頻雜訊而輸出60Hz的一交流負載訊號。 In one embodiment, the step-up DC power conversion device further includes a frequency conversion unit that converts the step-up signal and filters out high-frequency noise to output an AC load signal at 60 Hz.
為達上述目的,本發明提出一種抑制太陽能模組之電壓漣波的方法,其係由一升壓式直流電能轉換裝置來執行,升壓式直流電能轉換裝置包括一升壓控制單元、一回授單元、一前饋單元、一訊號處理單元、一補償放大單元以及一脈寬調變單元,方法包括:由升壓控制單元接收太陽能模組輸出的一電壓訊號且產生一升壓訊號;由回授單元依據升壓訊號產生一回授訊號;由前饋單元依據電壓訊號產生一前饋訊號;由訊號處理單元依據前饋訊號與一參考訊號輸出一命令訊號;由補償放大單元依據回授訊號及命令訊號輸出一控制訊號;以及由脈寬調變單元依據控制訊號控制開關元件;其中,當命令訊號的漣波值大於回授訊號的漣波值時,脈寬調變單元依據控制訊號增加升壓控制單元之一開關元件的一責任導通週期,以抑制電壓訊號的電壓漣波。 To achieve the above object, the present invention provides a method for suppressing voltage ripple of a solar module, which is performed by a step-up DC power conversion device. The step-up DC power conversion device includes a boost control unit, A boosting unit, a feedforward unit, a signal processing unit, a compensation amplifier unit, and a pulse width modulation unit. The method includes: a boost control unit receives a voltage signal output from the solar module and generates a boost signal; The feedback unit generates a feedback signal based on the boost signal; the feedforward unit generates a feedforward signal based on the voltage signal; the signal processing unit outputs a command signal based on the feedforward signal and a reference signal; and the compensation amplifier unit responds to the feedback The signal and the command signal output a control signal; and the switching element is controlled by the pulse width modulation unit based on the control signal; wherein, when the ripple value of the command signal is greater than the ripple value of the feedback signal, the pulse width modulation unit is based on the control signal A duty cycle of one of the switching elements of the boost control unit is increased to suppress the voltage ripple of the voltage signal.
承上所述,在本發明之升壓式直流電能轉換裝置與抑制太陽能模組之電壓漣波的方法中,當訊號處理單元依據前饋訊號與參考訊號輸出的命令訊號的漣波值,大於回授單元依據升壓訊號所產生回授訊號的漣波值時,脈寬調變單元可依據補償放大單元輸出的控制訊號增加升壓控制單元之開關元件的責任導通週期,藉此可抑制太陽能模組輸出的電壓訊號的電壓漣波。因此,本發明是透過前饋與回授機制來抑制後級變頻電路的反饋漣波電流所造成的太陽能模組端的直流電壓漣波。另外,本發明之升壓式直流電能轉換裝置的直流升壓轉換比,可將太陽能模組端的直流電壓升壓,藉此提高後級變頻電路的調變係數,以便使用比較低電壓的太陽能 模組,使得設備成本可以比較低。 As mentioned above, in the step-up DC power conversion device and the method for suppressing the voltage ripple of the solar module of the present invention, when the signal processing unit outputs a ripple value of the command signal according to the feedforward signal and the reference signal, the ripple value is greater than When the feedback unit is based on the ripple value of the feedback signal generated by the boost signal, the pulse width modulation unit can increase the duty cycle of the switching element of the boost control unit according to the control signal output from the compensation amplifier unit, thereby suppressing solar energy. Voltage ripple of the voltage signal output by the module. Therefore, the present invention suppresses the DC voltage ripple of the solar module end caused by the feedback ripple current of the post-stage frequency conversion circuit through the feedforward and feedback mechanism. In addition, the DC step-up conversion ratio of the step-up DC power conversion device of the present invention can boost the DC voltage at the solar module end, thereby increasing the modulation coefficient of the post-stage frequency conversion circuit, so as to use relatively low-voltage solar energy. Module, making the equipment cost relatively low.
1‧‧‧升壓式直流電能轉換裝置 1‧‧‧ Boost DC Power Conversion Device
11‧‧‧升壓控制單元 11‧‧‧Boost control unit
111‧‧‧開關元件 111‧‧‧switching element
12‧‧‧回授單元 12‧‧‧ feedback unit
13‧‧‧前饋單元 13‧‧‧ Feedforward Unit
14‧‧‧訊號處理單元 14‧‧‧Signal Processing Unit
141、172‧‧‧濾波器 141, 172‧‧‧ Filter
142‧‧‧加法器電路 142‧‧‧adder circuit
1421、151‧‧‧運算放大器 1421, 151‧‧‧ Operational Amplifiers
15‧‧‧補償放大單元 15‧‧‧Compensation amplification unit
16‧‧‧脈寬調變單元 16‧‧‧ Pulse Width Modulation Unit
161‧‧‧比較器 161‧‧‧ Comparator
17‧‧‧變頻單元 17‧‧‧Frequency conversion unit
171‧‧‧開關電路 171‧‧‧Switch circuit
AC‧‧‧交流 AC‧‧‧AC
C1、CBUS、Cb、Cc1、Cc2、Cc3、Cf、Ch‧‧‧電容 C 1 , C BUS , C b , C c1 , C c2 , C c3 , C f , C h ‧‧‧ capacitor
D1、D2‧‧‧二極體 D 1 , D 2 ‧‧‧ Diode
DC‧‧‧直流 DC‧‧‧DC
iinv、iL、iPV、IPV,avg、Δiinv、IINV,avg、Δipv‧‧‧電流 i inv , i L , i PV , I PV, avg , Δi inv , I INV, avg , Δi pv ‧‧‧ current
ISC‧‧‧電流源 I SC ‧‧‧ Current source
L1、Lf‧‧‧電感 L 1 , L f ‧‧‧ Inductance
PV‧‧‧太陽能模組 PV‧‧‧Solar Module
Ra、Rac、Rb、Rc、Rc1、Rc2、Rc3、Rd、RDC、RFB1、RFB2、RFF1、RFF2、Rh、RS、RSH‧‧‧電阻 R a , R ac , R b , R c , R c1 , R c2 , R c3 , R d , R DC , R FB1 , R FB2 , R FF1 , R FF2 , R h , R S , R SH ‧‧‧ resistance
S01~S06‧‧‧步驟 S01 ~ S06‧‧‧step
S1、S2、S3、S4、S5‧‧‧開關 S 1 , S 2 , S 3 , S 4 , S 5 ‧‧‧ Switch
t‧‧‧時間 t‧‧‧time
va‧‧‧濾波訊號 v a ‧‧‧ filtered signal
vB‧‧‧命令訊號 v B ‧‧‧ Order signal
vC‧‧‧控制訊號 v C ‧‧‧Control signal
vFB‧‧‧回授訊號 v FB ‧‧‧ feedback signal
vFF‧‧‧前饋訊號 v FF ‧‧‧ feedforward signal
vg‧‧‧脈寬調變訊號 v g ‧‧‧Pulse width modulation signal
vINV‧‧‧升壓訊號 v INV ‧‧‧Boost signal
VINV、VPV‧‧‧直流電壓 V INV , V PV ‧‧‧ DC voltage
VL‧‧‧電感的跨壓 V L ‧‧‧Inductive voltage across
vPV‧‧‧電壓訊號 v PV ‧‧‧ Voltage signal
VREF‧‧‧參考訊號 V REF ‧‧‧Reference signal
△vinv、VINV,avg、△vpv、VPV,avg‧‧‧電壓差 △ v inv , V INV, avg , △ v pv , V PV, avg ‧‧‧Voltage difference
圖1為傳統太陽能模組經變頻器轉換的系統示意圖。 FIG. 1 is a schematic diagram of a system in which a conventional solar module is converted by a frequency converter.
圖2為本發明一實施例之一種升壓式直流電能轉換裝置的功能方塊示意圖。 FIG. 2 is a functional block diagram of a step-up DC power conversion device according to an embodiment of the present invention.
圖3A為本發明一實施例之升壓式直流電能轉換裝置的電路示意圖。 3A is a schematic circuit diagram of a step-up DC power conversion device according to an embodiment of the present invention.
圖3B為圖3A之升壓控制單元的電路升壓比分析示意圖。 FIG. 3B is a schematic diagram illustrating a step-up ratio analysis of the circuit of the step-up control unit of FIG. 3A.
圖4A與圖4B分別為一實施例之升壓式直流電能轉換裝置的升壓訊號與電壓訊號的電壓波形示意圖。 4A and 4B are schematic diagrams of voltage waveforms of a boost signal and a voltage signal of a boost DC power conversion device according to an embodiment.
圖4C與圖4D分別為一實施例之升壓式直流電能轉換裝置的升壓訊號與電壓訊號的電流波形示意圖。 4C and 4D are schematic diagrams of current waveforms of a boost signal and a voltage signal of a boost DC power conversion device according to an embodiment.
圖5為在一實施例的升壓式直流電能轉換裝置中,在不同控制模式下,平均輸出功率對太陽能模組端電壓漣波率的曲線示意圖。 FIG. 5 is a schematic diagram of a curve of average output power vs. voltage ripple rate of a solar module terminal under different control modes in a step-up DC power conversion device according to an embodiment.
圖6為太陽能模組在不同直流電容值下,負載的電流峰值與直流電容的端電壓漣波值的關係曲線圖。 FIG. 6 is a graph showing a relationship between a peak value of a load current and a terminal voltage ripple value of a DC capacitor under different DC capacitor values of a solar module.
圖7為本發明一實施例之抑制太陽能模組之電壓漣波的方法的流程步驟示意圖。 FIG. 7 is a schematic flow chart of a method for suppressing voltage ripple of a solar module according to an embodiment of the present invention.
以下將參照相關圖式,說明依本發明較佳實施例之升壓式直流電能轉換裝置與抑制太陽能模組之電壓漣波的方法,其中相同的元件將以相同的參照符號加以說明。先說明的是,以下出現的訊號中,若是小寫+大寫的下標(例如vPV),表示其為具有交流漣波的直流電壓訊號,或為具有直流電壓的交流訊號;若是大寫+大寫的下標(例如VREF),表示其為直流電壓訊號;若是小寫+小寫的下標(例如vinv),表示其為交流電壓訊號。 In the following, a step-up DC power conversion device and a method for suppressing voltage ripple of a solar module according to a preferred embodiment of the present invention will be described with reference to related drawings. The same components will be described with the same reference symbols. It is explained first that if the lower-case + upper-case subscripts (for example, v PV ) appear in the following signals, it means that it is a DC voltage signal with AC ripple, or an AC signal with DC voltage; if it is uppercase + uppercase A subscript (for example, V REF ) indicates that it is a DC voltage signal; if it is a lowercase + lowercase index (for example, v inv ), it indicates that it is an AC voltage signal.
圖2為本發明一實施例之一種升壓式直流電能轉換裝置1的功能方塊示意圖。如圖2所示,本實施例之升壓式直流電能轉換裝置1與一太陽能模組PV配合應用。其中,太陽能模組PV可輸出一電壓訊號 vPV。理論上來說,電壓訊號vPV是直流電壓訊號,但是由於後級變頻電路的反饋電流,將造成太陽能模組PV輸出的電壓訊號vPV為包括有交流漣波的直流電壓訊號。 FIG. 2 is a functional block diagram of a step-up DC power conversion device 1 according to an embodiment of the present invention. As shown in FIG. 2, the step-up DC power conversion device 1 of this embodiment is applied in cooperation with a solar module PV. Among them, the solar module PV can output a voltage signal v PV . Theoretically, the voltage signal v PV is a DC voltage signal, but the voltage signal v PV output by the solar module PV will be a DC voltage signal including AC ripple due to the feedback current of the post-stage frequency conversion circuit.
升壓式直流電能轉換裝置1為一直流轉交流(DC/AC)的升壓電能轉換器,其可包括一升壓控制單元11、一回授單元12、一前饋單元13、一訊號處理單元14、一補償放大單元15以及一脈寬調變單元16。另外,升壓式直流電能轉換裝置1更可包括一變頻單元17。 The step-up DC power conversion device 1 is a DC / AC step-up power converter, which may include a boost control unit 11, a feedback unit 12, a feedforward unit 13, and a signal processing unit. 14. A compensation amplifier unit 15 and a pulse width modulation unit 16. In addition, the step-up DC power conversion device 1 may further include a frequency conversion unit 17.
升壓控制單元11與太陽能模組PV電性連接,並可接收太陽能模組PV輸出的電壓訊號vPV。升壓控制單元11可將電壓訊號vPV轉換與升壓後產生一升壓訊號vINV。其中,升壓控制單元11可包括一開關元件111藉由開關元件111的控制,可將電壓訊號vPV轉換與升壓後產生升壓訊號vINV。 The boost control unit 11 is electrically connected to the solar module PV, and can receive a voltage signal v PV output from the solar module PV . The boost control unit 11 can convert and boost the voltage signal v PV to generate a boost signal v INV . The boosting control unit 11 may include a switching element 111 which can control the switching element 111 to convert and boost the voltage signal v PV to generate a boosted signal v INV .
變頻單元17為一直流/交流轉換器(Digital-to-Analog Converter,DAC),並與升壓控制單元11電性連接,以接收升壓控制單元11產生的升壓訊號vINV,並經轉換且濾除高頻雜訊後輸出60Hz的一交流負載訊號而提供給一負載。於此,變頻單元17為單相的DAC,因此,升壓訊號vINV將包括有120Hz的交流漣波,此交流漣波會反饋到太陽能模組PV端。 The frequency conversion unit 17 is a digital-to-analog converter (DAC), and is electrically connected to the boost control unit 11 to receive the boosted signal v INV generated by the boost control unit 11 and convert it And after filtering the high frequency noise, an AC load signal of 60 Hz is output and provided to a load. Here, the frequency conversion unit 17 is a single-phase DAC. Therefore, the boosted signal v INV will include an AC ripple of 120 Hz, and this AC ripple will be fed back to the PV end of the solar module.
回授單元12分別與升壓控制單元11及變頻單元17電性連接,回授單元12可依據升壓控制單元11之輸出端的升壓訊號vINV產生一回授訊號vFB。 The feedback unit 12 is electrically connected to the boost control unit 11 and the frequency conversion unit 17, respectively. The feedback unit 12 can generate a feedback signal v FB according to the boost signal v INV at the output end of the boost control unit 11.
前饋單元13分別與太陽能模組PV及升壓控制單元11電性連接,前饋單元13可依據太陽能模組PV輸出之電壓訊號vPV產生一前饋訊號vFF。 The feedforward unit 13 is electrically connected to the solar module PV and the boost control unit 11 respectively. The feedforward unit 13 can generate a feedforward signal v FF according to the voltage signal v PV output from the solar module PV.
訊號處理單元14與前饋單元13電性連接,並可依據前饋單元13的前饋訊號vFF與一參考訊號VREF輸出一命令訊號vB。其中,訊號處理單元14可包括一濾波器與一加法器,濾波器可濾除前饋訊號vFF的低頻訊號,而加法器可依據濾除低頻的前饋訊號vFF與參考訊號VREF輸出命令訊號vB。 Signal processing unit 14 is electrically connected to the feed forward unit 13, and based on the feedforward signal v feedforward FF unit 13 with a reference signal V REF outputs a command signal v B. The signal processing unit 14 may include a filter and an adder. The filter may filter the low-frequency signal of the feed-forward signal v FF , and the adder may output the low-frequency feed-forward signal v FF and the reference signal V REF . Command signal v B.
補償放大單元15分別與回授單元12及訊號處理單元14電 性連接,並可依據回授單元12的回授訊號vFB及訊號處理單元14的命令訊號vB輸出一控制訊號vC。其中,補償放大單元15為一誤差訊號補償放大器,可將想要的頻率的訊號放大後輸出。 The compensation amplifying unit 15 is electrically connected to the feedback unit 12 and the signal processing unit 14 respectively, and can output a control signal v C according to the feedback signal v FB of the feedback unit 12 and the command signal v B of the signal processing unit 14. The compensation amplifier unit 15 is an error signal compensation amplifier, which can amplify signals of a desired frequency and output the signals.
脈寬調變單元16與補償放大單元15及升壓控制單元11電性連接,其中,脈寬調變單元16為脈寬調變(Pulse Width Modulation,PWM)產生電路,其可依據控制訊號vC輸出一脈寬調變訊號vg,以控制升壓控制單元11的開關元件111的導通或截止。其中,當訊號處理單元14的命令訊號vB的漣波值大於回授單元12的回授訊號vFB的漣波值時,則脈寬調變單元16可依據控制訊號vC增加開關元件111的一責任導通週期,以抑制太陽能模組PV端之電壓訊號vPV的電壓漣波,藉此降低太陽能模組PV端的直流電壓漣波。此外,升壓式直流電能轉換裝置1也具直流升壓功能,可將太陽能模組PV端的直流電壓升壓,以提高後級變頻單元17的調變係數。以下,以圖3A與圖3B的實施電路來詳細說明圖2之各單元的技術內容。 The pulse width modulation unit 16 is electrically connected to the compensation amplifier unit 15 and the boost control unit 11. The pulse width modulation unit 16 is a Pulse Width Modulation (PWM) generation circuit, which can be based on the control signal v C outputs a pulse width modulation signal v g to control the on or off of the switching element 111 of the boost control unit 11. Wherein, when the ripple value of the command signal v B of the signal processing unit 14 is greater than the ripple value of the feedback signal v FB of the feedback unit 12, the pulse width modulation unit 16 may increase the switching element 111 according to the control signal v C One duty cycle is to suppress the voltage ripple of the voltage signal v PV at the PV end of the solar module, thereby reducing the DC voltage ripple at the PV end of the solar module. In addition, the step-up DC power conversion device 1 also has a DC step-up function, which can step up the DC voltage at the PV end of the solar module to increase the modulation coefficient of the post-stage frequency conversion unit 17. Hereinafter, the technical content of each unit in FIG. 2 will be described in detail with the implementation circuits of FIGS. 3A and 3B.
請參照圖3A所示,其為本發明一實施例之升壓式直流電能轉換裝置1的電路示意圖。先說明的是,本領域技術人員由圖3A的電路示意圖中可看出各單元的元件與其相對連接關係是毫無疑義的。因此,以下元件的連接關係只說明較重要的部分,其餘請參照圖3A的元件連接關係。 Please refer to FIG. 3A, which is a schematic circuit diagram of a step-up DC power conversion device 1 according to an embodiment of the present invention. It is first explained that those skilled in the art can see from the circuit diagram in FIG. 3A that the components of each unit and their relative connection relationships are indisputable. Therefore, the connection relationship of the following components will only explain the more important parts, and the rest please refer to the connection relationship of the components in FIG. 3A.
太陽能模組PV經照光後可輸出電壓訊號vPV。太陽能模組PV的等效電路可包括一電流源ISC、一二極體D2及二電阻RSH、RS,這些元件的具體連接關係可參照圖示,不再多作說明。 The solar module PV can output a voltage signal v PV after being illuminated. The equivalent circuit of the solar module PV may include a current source I SC , a diode D 2, and two resistors R SH and R S. The specific connection relationship of these elements can be referred to the diagram, and will not be described further.
升壓控制單元11:本實施例的升壓控制單元11的開關元件111是一主動開關S5,並以金屬氧化物半導體場效電晶體(MOSFET)為例。除此之外,本實施例的升壓控制單元11更可包括一電感L1、一電容C1與一二極體D1。電感L1為儲能元件,其第一端分別電連接電容C1的第一端與太陽能模組PV的電壓輸出端,電感L1的第二端分別電連接開關元件111(開關S5)的一端與二極體D1的第一端,電容C1的第二端分別電連接二極體D1的第二端與變頻單元17。此外,脈寬調變訊號vg可輸入開關S5的第二端(控制端),以控制開關S5的導通或截止,且開關S5的第三端為接地。此外,(直流)電容CBUS的一端分別電連接升壓控制單元11與變頻單 元17,其另一端為接地。其中,電容C1可提供一個與電容CBUS的電壓漣波反向的電壓,使電容CBUS的電壓與電容C1的電壓相加後接近一直流電壓,藉此來抑制(或消除)太陽能模組PV端電壓的電壓漣波。 Boost control means 11: control means boosting switching element 11 of the present embodiment is a 111 of active switch S 5, and is MOSFET (MOSFET) as an example. In addition, the boost control unit 11 in this embodiment may further include an inductor L 1 , a capacitor C 1, and a diode D 1 . Inductor L 1 is an energy storage element. The first end of the inductor L 1 is electrically connected to the first end of the capacitor C 1 and the voltage output terminal of the solar module PV, and the second end of the inductor L 1 is electrically connected to the switching element 111 (switch S 5 ). one end of the diode D 1 is a first end, a second end of the capacitor C are electrically connected a diode D 1 and the second end of the inverter unit 17. Further, the PWM signal can be input switch S v g a second end 5 (control terminal) to control the switch S 5 is turned on or off, and a third terminal of the switch S 5 is grounded. In addition, one end of the (DC) capacitor C BUS is electrically connected to the boost control unit 11 and the frequency conversion unit 17 respectively, and the other end thereof is grounded. Wherein the capacitor C 1 may provide a reverse voltage ripple voltage of the capacitor C BUS, BUS voltage of the capacitor C and the voltage of the capacitor C 1 after the addition of nearly DC voltage, thereby to suppress (or eliminate) the solar Voltage ripple of the PV terminal voltage of the module.
另外,請先參照圖3B所示,其為圖3A之升壓控制單元11的電路升壓比分析示意圖。 In addition, please refer to FIG. 3B, which is a schematic diagram of a step-up ratio analysis of the circuit of the boost control unit 11 in FIG. 3A.
升壓控制單元11進行直流升壓比的分析如下:0<D‧TS<TS(S5 on,D1 off) The analysis of the DC boost ratio performed by the boost control unit 11 is as follows: 0 <D‧T S <T S (S 5 on, D 1 off)
VL=VPV V L = V PV
0<(1-D)‧TS<TS(S5 off,D1 on) 0 <(1-D) ‧T S <T S (S 5 off, D 1 on)
VL=VPV-VINV V L = V PV -V INV
VPV‧D‧TS+(VINV-VPV)‧(1-D)‧TS=0 V PV ‧D‧T S + (V INV -V PV ) ‧ (1-D) ‧T S = 0
根據電感伏秒平衡定理的計算,可推導出於連續導通模式(CCM)下的直流電壓轉換比:VINV/VPV=1/(1-D);其中,D為開關S5的責任導通週期(一般小於1)。因此,升壓控制單元11可提升太陽能模組PV端至變頻單元17端(電容CBUS的一端)的直流平均電壓(即升壓),藉此可提高後級變頻單元17的調變係數。 According to the calculation of the inductance volt-second balance theorem, the DC voltage conversion ratio in the continuous conduction mode (CCM) can be derived: V INV / V PV = 1 / (1-D); where D is the responsible conduction of switch S 5 Period (generally less than 1). Therefore, the boost control unit 11 can increase the DC average voltage (ie, boost) of the solar module PV terminal to the inverter unit 17 (one end of the capacitor C BUS ), thereby increasing the modulation coefficient of the subsequent inverter unit 17.
變頻單元17:請再參照圖3A所示,本實施例的變頻單元17為單相的DAC,其可包括一開關電路171與一濾波器172,開關電路171可將升壓控制單元11的輸出端電壓(vINV)轉換成具高頻切換雜訊的60Hz方波雜訊,而濾波器172為一低通濾波器(Low-pass Filter),其可濾除高頻雜訊,使輸出的交流負載訊號為60Hz的交流訊號,以提供給負載(以電阻Rac代表)。其中,開關電路171與升壓控制單元11電性連接。本實施例的開關電路171具有4個開關S1、S2、S3、S4。開關S1、S2、S3、S4可分別為一功率電晶體,例如但不限於為MOSFET。於此,開關S1、S2、S3、S4可藉由一正弦波脈寬調變(Sinusoidal Pulse Width Modulation,SPWM)技術控制開關電路171之開關S1、S2、S3、S4導通或截止。另外,濾波器172與開關電路171電性連接。濾波器172可濾除開關電路171之開關S1、S2、S3、S4切換時所產生之高頻成分,以產生單相60Hz的正弦波訊號給電阻Rac。於此,濾波器172包括一電感Lf與一電容Cf的低通濾波器。 Frequency conversion unit 17: Please refer to FIG. 3A again. The frequency conversion unit 17 of this embodiment is a single-phase DAC, which may include a switching circuit 171 and a filter 172. The switching circuit 17 1 may The output terminal voltage (v INV ) is converted into a 60Hz square wave noise with high frequency switching noise, and the filter 172 is a low-pass filter, which can filter high frequency noise and make the output The AC load signal is an AC signal of 60Hz to provide to the load (represented by resistor R ac ). The switching circuit 171 is electrically connected to the boost control unit 11. The switch circuit 171 of this embodiment has four switches S 1 , S 2 , S 3 , and S 4 . The switches S 1 , S 2 , S 3 , and S 4 may be power transistors, such as but not limited to MOSFETs. Here, the switches S 1 , S 2 , S 3 , S 4 can control the switches S 1 , S 2 , S 3 , S of the switching circuit 171 by a sinusoidal pulse width modulation (SPWM) technology. 4 is on or off. In addition, the filter 172 is electrically connected to the switching circuit 171. The filter 172 can filter the high-frequency components generated when the switches S 1 , S 2 , S 3 , and S 4 of the switching circuit 171 are switched to generate a single-phase 60 Hz sine wave signal to the resistor R ac . Here, the filter 172 includes a low-pass filter having an inductor L f and a capacitor C f .
回授單元12:本實施例的回授單元12為一回授分壓電阻電路,並可偵測變頻單元17端的升壓訊號vINV,進行分壓後產生回授訊號vFB。本實施例的回授單元12包括二電阻RFB1及RFB2,因此,回授訊號vFB=vINV×RFB2/(RFB1+RFB2)。 Feedback unit 12: The feedback unit 12 of this embodiment is a feedback voltage-dividing resistor circuit, and can detect the boosted signal v INV at the end of the frequency conversion unit 17 to generate a feedback signal v FB after voltage division. The feedback unit 12 in this embodiment includes two resistors R FB1 and R FB2 . Therefore, the feedback signal v FB = v INV × R FB2 / (R FB1 + R FB2 ).
前饋單元13:本實施例的前饋單元13為一前饋分壓電阻電路,並可偵測太陽能模組PV的端電壓(即vPV),並依據此電壓訊號vPV分壓後產生前饋訊號vFF,因此,前饋訊號vFF=vPV×RFF2/(RFF1+RFF2)。 Feed-forward unit 13: The feed-forward unit 13 of this embodiment is a feed-forward voltage-dividing resistor circuit, and can detect the terminal voltage of the solar module PV (that is, v PV ) and generate the voltage according to the voltage signal v PV. The feedforward signal v FF , therefore, the feedforward signal v FF = v PV × R FF2 / (R FF1 + R FF2 ).
訊號處理單元14:本實施例的訊號處理單元14包括一濾波器141與一加法器電路142。濾波器141為一高通濾波器(High-pass Filter),其具有一電容Ch與一電阻Rh,並可濾除前饋訊號vFF中的直流成份,使濾波器141產生的一濾波訊號va(電阻Rh的一端電壓訊號)包括有120Hz的漣波,也就是說,濾波器141可濾出電壓訊號vPV的120Hz成份的漣波,以供後續加法器電路142的處理。另外,加法器電路142可依據前饋訊號vFF與參考訊號VREF輸出命令訊號vB,其中,加法器電路142可將太陽能模組PV端濾出的120Hz漣波成份(即濾波訊號va)與直流的參考訊號VREF相加而輸出命令訊號vB(即vB=va+VREF)。於此,加法器電路142可包括一運算放大器1421、四個電阻Ra、Rb、Rc、Rd與一電容Cb。其中,電阻Rb的兩端分別連接於參考訊號VREF與運算放大器1421的正端,電阻Ra的兩端分別連接於濾波訊號va端與運算放大器1421的正端,電容Cb與電阻Rd並聯後跨接於運算放大器1421的負端與輸出端,電阻Rc的二端跨接於運算放大器1421的負端與接地端,且運算放大器1421的輸出端的電壓為命令訊號vB。此外,加法器電路142的其他元件的相對連接關係可參照圖示。 Signal processing unit 14: The signal processing unit 14 in this embodiment includes a filter 141 and an adder circuit 142. The filter 141 is a high-pass filter, which has a capacitor C h and a resistor R h , and can filter the DC component in the feedforward signal v FF , so that the filter signal generated by the filter 141 is a filtering signal. v a (a voltage signal at one end of the resistor Rh ) includes a ripple of 120 Hz, that is, the filter 141 can filter the ripple of the 120 Hz component of the voltage signal v PV for subsequent processing by the adder circuit 142. In addition, the adder circuit 142 can output the command signal v B according to the feedforward signal v FF and the reference signal V REF . Among them, the adder circuit 142 can filter the 120 Hz ripple component (ie, the filtered signal v a ) Is added to the DC reference signal V REF to output a command signal v B (that is, v B = v a + V REF ). This, adder circuit 142 may include an operational amplifier 1421, four resistors R a, R b, R c , R d and a capacitor C b. The two ends of the resistor R b are respectively connected to the reference signal V REF and the positive end of the operational amplifier 1421, the two ends of the resistor R a are respectively connected to the filtered signal v a and the positive end of the operational amplifier 1421, and the capacitor C b and the resistance R d is connected in parallel across the negative terminal and the output terminal of the operational amplifier 1421, two ends of the resistor R c are connected across the negative terminal and the ground terminal of the operational amplifier 1421, and the voltage at the output terminal of the operational amplifier 1421 is the command signal v B. In addition, for the relative connection relationship of other components of the adder circuit 142, refer to the figure.
補償放大單元15:本實施例的補償放大單元15包括一運算放大器151、三個電阻(Rc1、Rc2、Rc3)、三個電容(Cc1、Cc2、Cc3)。運算放大器151可比較兩個輸入端的訊號(即vFB與vB)且輸出控制訊號vC。其中,命令訊號vB輸入運算放大器151的正端,而回授訊號vFB通過電容Cc1與電阻Rc1的串聯再並聯電阻Rc2後輸入運算放大器151的負端,電容Cc2與電阻Rc3串聯再並聯電容Cc3後跨接於運算放大器151的負端與輸出 端,且運算放大器151的輸出端輸出控制訊號vC。補償放大單元15的各元件的相對連接關係可參照圖示。於此,係由電阻Rc1~Rc3與電容Cc1~Cc3之參數值的設計來濾除不需要的頻率。當命令訊號vB的漣波值上升且大於回授訊號vFB的漣波值時,補償放大單元15可將想要的頻率訊號放大後輸出控制訊號vC(vC會上升)。 Compensation amplifier unit 15: The compensation amplifier unit 15 of this embodiment includes an operational amplifier 151, three resistors (R c1 , R c2 , R c3 ), and three capacitors (C c1 , C c2 , C c3 ). The operational amplifier 151 can compare signals at two input terminals (ie, v FB and v B ) and output a control signal v C. The command signal v B is input to the positive terminal of the operational amplifier 151, and the feedback signal v FB is input to the negative terminal of the operational amplifier 151 through the series connection of the capacitor C c1 and the resistor R c1 and then in parallel with the resistor Rc 2 , and the capacitor C c2 and the resistor R after a further series c3 c3 parallel capacitance C is connected across the negative terminal and an output terminal of the operational amplifier 151, and the output terminal of the operational amplifier 151 outputs the control signal v C. The relative connection relationship of the components of the compensation amplifying unit 15 can be referred to the figure. Here, the design of the parameter values of the resistors R c1 to R c3 and the capacitors C c1 to C c3 filters out unwanted frequencies. When the ripple value of the command signal v B rises and is greater than the ripple value of the feedback signal v FB , the compensation amplifying unit 15 can amplify the desired frequency signal and output the control signal v C (v C will rise).
脈寬調變單元16:本實施例的脈寬調變單元16可包括一比較器161,其將類比的控制訊號vC與一鋸齒波訊號比較後輸出脈寬調變訊號vg,並輸入升壓控制單元11的開關S5的控制端。於此,比較器161的增益為鋸齒波峰值的倒數。另外,在本實施例中,當訊號處理單元14的命令訊號vB的漣波值大於回授單元12的回授訊號vFB的漣波值時,則脈寬調變單元16可依據補償放大單元15輸出的控制訊號vC使輸出的脈寬調變訊號vg的責任導通週期增加(即加大開關S5的導通時間、降低截止時間),當開關S5的導通時間增加時可使流過電感L1的電流iL變大,進而使電壓訊號vPV可下降而降低太陽能模組PV端的直流電壓漣波。 Pulse width modulation unit 16: The pulse width modulation unit 16 of this embodiment may include a comparator 161, which compares the analog control signal v C with a sawtooth wave signal and outputs a pulse width modulation signal v g , and inputs Control terminal of the switch S 5 of the boost control unit 11. Here, the gain of the comparator 161 is the inverse of the peak value of the sawtooth wave. In addition, in this embodiment, when the ripple value of the command signal v B of the signal processing unit 14 is greater than the ripple value of the feedback signal v FB of the feedback unit 12, the pulse width modulation unit 16 may amplify the signal according to the compensation. The control signal v C output by the unit 15 increases the duty cycle of the output pulse width modulation signal v g (ie, increases the on-time of the switch S 5 and decreases the off-time). When the on-time of the switch S 5 increases, the The current i L flowing through the inductor L 1 becomes larger, thereby reducing the voltage signal v PV and reducing the DC voltage ripple at the PV end of the solar module.
具體來說,當太陽能模組PV端之電壓訊號vPV的漣波值上升時,則前饋訊號vFF的漣波值也上升,故濾波訊號va的漣波值也上升,使得訊號處理單元14輸出的命令訊號vB的漣波值也上升,透過補償放大單元15比較命令訊號vB與回授訊號vFB後,輸出的控制訊號vC則也會上升,使得脈寬調變訊號vg的責任導通週期增加,使流過電感L1的電流iL變大,進而使得電壓訊號vPV的漣波可被拉低而降低太陽能模組PV端的直流電壓漣波。 Specifically, when the ripple value of the voltage signal v PV at the PV end of the solar module rises, the ripple value of the feedforward signal v FF also rises, so the ripple value of the filtered signal v a also rises, making the signal processing The ripple value of the command signal v B output by the unit 14 also rises. After comparing the command signal v B with the feedback signal v FB through the compensation amplifying unit 15, the output control signal v C also rises, making the pulse width modulation signal The duty cycle of v g is increased, so that the current i L flowing through the inductor L 1 becomes larger, and the ripple of the voltage signal v PV can be pulled down to reduce the DC voltage ripple of the PV end of the solar module.
承上,在本實施例的升壓式直流電能轉換裝置1中,透過前饋與回授機制的處理後,可抑制變頻單元17的反饋漣波電流所造成的太陽能模組PV端的直流電壓漣波。此外,本實施例的升壓式直流電能轉換裝置1的直流升壓轉換比可將太陽能模組PV端的直流電壓升壓,藉此提高後級變頻單元17的調變係數,以便使用比較低壓的太陽能模組。 In conclusion, in the step-up DC power conversion device 1 of this embodiment, after processing by the feedforward and feedback mechanism, the DC voltage ripple at the PV end of the solar module caused by the feedback ripple current of the frequency conversion unit 17 can be suppressed. wave. In addition, the DC step-up conversion ratio of the step-up DC power conversion device 1 of this embodiment can step up the DC voltage at the PV end of the solar module, thereby increasing the modulation coefficient of the post-stage frequency conversion unit 17 in order to use a relatively low-voltage Solar modules.
在一實施例中,升壓式直流電能轉換裝置1中的各電阻、電容、電感的規格可如下:L1=40μH,C1=33μF,CBUS=47μF,Lf=10mH,Cf=1μF,RFB1=36kΩ,RFB2=1.5kΩ,RFF1=RFF2=1kΩ,Ch=160nF,Rh= 150kΩ,Cb=160nF,Ra=Rb=Rc=Rd=1MΩ,VREF=4V,Cc1=560pF,Cc2=10nF,Cc3=680pF,Rc1=3kΩ,Rc2=50kΩ,Rc3=2.7kΩ。 In one embodiment, the specifications of each resistor, capacitor, and inductor in the step-up DC power conversion device 1 may be as follows: L 1 = 40 μH, C 1 = 33 μF, C BUS = 47 μF, L f = 10 mH, and C f = 1μF, R FB1 = 36kΩ, R FB2 = 1.5kΩ, R FF1 = R FF2 = 1kΩ, C h = 160nF, R h = 150kΩ, C b = 160nF, R a = R b = R c = R d = 1MΩ, V REF = 4V, C c1 = 560pF, C c2 = 10nF, C c3 = 680pF, R c1 = 3kΩ, R c2 = 50kΩ, R c3 = 2.7kΩ.
另外,請參照圖4A至圖4D所示,其中,圖4A與圖4B分別為一實施例之升壓式直流電能轉換裝置1的升壓訊號vINV與電壓訊號vPV的電壓波形示意圖,而圖4C與圖4D分別為一實施例之升壓式直流電能轉換裝置1的升壓訊號vINV與電壓訊號vPV的電流波形示意圖。 In addition, please refer to FIG. 4A to FIG. 4D, wherein FIG. 4A and FIG. 4B are schematic diagrams of voltage waveforms of the boost signal v INV and the voltage signal v PV of the boost DC power conversion device 1 according to an embodiment, and 4C and FIG. 4D are schematic diagrams of current waveforms of the boosted signal v INV and the voltage signal v PV of the boosted DC power conversion device 1 according to an embodiment.
經時域模擬驗證電壓漣波抑制效果分析後可得到圖4A至圖4D。由圖4A中可看出,Δvinv/VINV,avg=31%,變頻單元17端的電壓(即升壓訊號vINV)的電壓漣波相當大;但是,經本實施例的升壓式直流電能轉換裝置1的前饋與回授機制的處理與抑制後,如圖4B所示,Δvpv/VPV,avg=4.5%,可見其漣波電壓的抑制效果相當顯著。另外,由圖4C中可看出,Δiinv/IINV,avg=431%,變頻單元17端的電壓(升壓訊號vINV)的電流漣波也相當大;但是,經本實施例的升壓式直流電能轉換裝置1的前饋與回授機制的處理與抑制後,如圖4D所示,Δipv/IPV,avg=7%,可見其漣波電流的抑制效果也相當顯著。 Figure 4A to Figure 4D can be obtained after analyzing the voltage ripple suppression effect by time-domain simulation. It can be seen from FIG. 4A that Δv inv / V INV, avg = 31%, the voltage ripple of the voltage at the 17 end of the frequency conversion unit (that is, the boosted signal v INV ) is quite large; however, the boosted DC power of this embodiment After processing and suppression of the feedforward and feedback mechanism of the conversion device 1, as shown in FIG. 4B, Δv pv / V PV, avg = 4.5%, it can be seen that the ripple voltage suppression effect is quite significant. In addition, it can be seen from FIG. 4C that Δi inv / I INV, avg = 431%, and the current ripple of the voltage (boost signal v INV ) at the end of the frequency conversion unit 17 is also quite large; however, the boost type of this embodiment After processing and suppression of the feedforward and feedback mechanism of the DC power conversion device 1, as shown in FIG. 4D, Δi pv / I PV, avg = 7%, it can be seen that the ripple current suppression effect is also quite significant.
另外,圖5為在一實施例的升壓式直流電能轉換裝置1中,在不同控制模式下,平均輸出功率對太陽能模組端電壓漣波率的曲線示意圖。於此,在開迴路模式與採用電壓回授控制下,若輸出負載大於68W時,則太陽能模組無法輸出功率。另外,在升壓式直流電能轉換裝置1採用前饋與回授控制下的太陽能模組端電壓漣波抑制力明顯可提高,於滿載下可將太陽能模組端電壓漣波率降低至4.5%左右,而且負載越輕,消除漣波的效果越好。 In addition, FIG. 5 is a schematic diagram of the curve of the average output power versus the voltage ripple rate of the solar module terminal under different control modes in the step-up DC power conversion device 1 of an embodiment. Here, under open loop mode and voltage feedback control, if the output load is greater than 68W, the solar module cannot output power. In addition, in the step-up DC power conversion device 1 using the feedforward and feedback control of the solar module terminal voltage ripple suppression force can be significantly improved, under full load can reduce the solar module terminal voltage ripple rate to 4.5% Right and left, and the lighter the load, the better the effect of eliminating ripples.
另外,圖6為太陽能模組在不同直流電容值(CBUS)下,負載的電流峰值與直流電容的端電壓漣波值的關係曲線圖。由圖6中可知,以不同電容值的電容CBUS來抑制電壓漣波時,當電容值越大,其直流電容端電壓漣波值的抑制效果則越好,不過,即使電容CBUS的電容值加大到220μF,其電壓漣波值也會超過5V(電流峰值等於2.5A時)。但是,如上述,採用本實施例的升壓式直流電能轉換裝置1時,電容CBUS只需採用47μF,即使加上升壓控制單元11的電容C1的33μF時,總電容也不過80μF, 並不需使用很大電容值的電解電容就可有良好的漣波抑制效果。 In addition, FIG. 6 is a graph showing the relationship between the peak value of the load current and the terminal voltage ripple value of the DC capacitor under different DC capacitor values (C BUS ) of the solar module. It can be seen from FIG. 6 that when the voltage ripple is suppressed by the capacitance C BUS with different capacitance values, the larger the capacitance value, the better the suppression effect of the voltage ripple value at the DC capacitor end. However, even the capacitance of the capacitor C BUS When the value is increased to 220μF, the voltage ripple value will also exceed 5V (when the current peak is equal to 2.5A). However, as described above, when using the step-up DC power conversion device 1 of this embodiment, the capacitor C BUS only needs to be 47 μF. Even when 33 μF of the capacitor C 1 of the boost control unit 11 is added, the total capacitance is only 80 μF, and It does not require the use of a large capacitance electrolytic capacitor to have a good ripple suppression effect.
另外,圖7為本發明一實施例之抑制太陽能模組之電壓漣波的方法的流程步驟示意圖。本實施例之抑制太陽能模組PV之電壓漣波的方法係可由升壓式直流電能轉換裝置1來執行。其中,升壓式直流電能轉換裝置1的技術特徵已於上述中詳述,於此不再贅述。 In addition, FIG. 7 is a schematic flow chart of a method for suppressing a voltage ripple of a solar module according to an embodiment of the present invention. The method for suppressing the voltage ripple of the PV of the solar module of this embodiment can be executed by a step-up DC power conversion device 1. The technical features of the step-up DC power conversion device 1 have been described in detail above, and will not be repeated here.
如圖7所示,抑制太陽能模組之電壓漣波的方法可包括:由升壓控制單元接收太陽能模組輸出的一電壓訊號且產生一升壓訊號(步驟S01);由回授單元依據升壓訊號產生一回授訊號(步驟S02);由前饋單元依據電壓訊號產生一前饋訊號(步驟S03);由訊號處理單元依據前饋訊號與一參考訊號輸出一命令訊號(步驟S04);由補償放大單元依據回授訊號及命令訊號輸出一控制訊號(步驟S05);以及由脈寬調變單元依據控制訊號控制開關元件;其中,當命令訊號的漣波值大於回授訊號的漣波值時,脈寬調變單元依據控制訊號增加升壓控制單元之一開關元件的一責任導通週期,以抑制電壓訊號的電壓漣波(步驟S06)。 As shown in FIG. 7, the method for suppressing the voltage ripple of the solar module may include: receiving a voltage signal output by the solar module and generating a boost signal by the boost control unit (step S01); The feedback signal generates a feedback signal (step S02); the feedforward unit generates a feedforward signal according to the voltage signal (step S03); the signal processing unit outputs a command signal according to the feedforward signal and a reference signal (step S04); The compensation amplifier unit outputs a control signal according to the feedback signal and the command signal (step S05); and the pulse width modulation unit controls the switching element according to the control signal; wherein when the ripple value of the command signal is greater than the ripple of the feedback signal When the value is equal to one, the pulse width modulation unit increases a duty cycle of one of the switching elements of the boost control unit according to the control signal to suppress the voltage ripple of the voltage signal (step S06).
此外,抑制太陽能模組之電壓漣波的方法的其它技術特徵已於上述中詳述,於此不再多作說明。 In addition, other technical features of the method for suppressing the voltage ripple of the solar module have been described in detail above, and will not be described further here.
綜上所述,在本發明之升壓式直流電能轉換裝置與抑制太陽能模組之電壓漣波的方法中,當訊號處理單元依據前饋訊號與參考訊號輸出的命令訊號的漣波值,大於回授單元依據升壓訊號所產生回授訊號的漣波值時,脈寬調變單元可依據補償放大單元輸出的控制訊號增加升壓控制單元之開關元件的責任導通週期,藉此可抑制太陽能模組輸出的電壓訊號的電壓漣波。因此,本發明是透過前饋與回授機制來抑制後級變頻電路的反饋漣波電流所造成的太陽能模組端的直流電壓漣波。另外,本發明之升壓式直流電能轉換裝置的直流升壓轉換比,可將太陽能模組端的直流電壓升壓,藉此提高後級變頻電路的調變係數,以便使用比較低電壓的太陽能模組,使得設備成本可以比較低。 In summary, in the step-up DC power conversion device and the method for suppressing the voltage ripple of the solar module of the present invention, when the signal processing unit outputs the ripple value of the command signal according to the feedforward signal and the reference signal, the ripple value is greater than When the feedback unit is based on the ripple value of the feedback signal generated by the boost signal, the pulse width modulation unit can increase the duty cycle of the switching element of the boost control unit according to the control signal output from the compensation amplifier unit, thereby suppressing solar energy. Voltage ripple of the voltage signal output by the module. Therefore, the present invention suppresses the DC voltage ripple of the solar module end caused by the feedback ripple current of the post-stage frequency conversion circuit through the feedforward and feedback mechanism. In addition, the DC step-up conversion ratio of the step-up DC power conversion device of the present invention can boost the DC voltage at the solar module end, thereby increasing the modulation coefficient of the post-stage frequency conversion circuit, so that a relatively low-voltage solar module is used. Group, so that equipment costs can be relatively low.
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above description is exemplary only, and not restrictive. Any equivalent modification or change made without departing from the spirit and scope of the present invention shall be included in the scope of the attached patent application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107107727A TWI664800B (en) | 2018-03-07 | 2018-03-07 | Boost-type dc power converter and method for voltage ripple inhibition of pv module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107107727A TWI664800B (en) | 2018-03-07 | 2018-03-07 | Boost-type dc power converter and method for voltage ripple inhibition of pv module |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI664800B true TWI664800B (en) | 2019-07-01 |
TW201939866A TW201939866A (en) | 2019-10-01 |
Family
ID=68049491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107107727A TWI664800B (en) | 2018-03-07 | 2018-03-07 | Boost-type dc power converter and method for voltage ripple inhibition of pv module |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI664800B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI758054B (en) * | 2020-01-15 | 2022-03-11 | 國立研究開發法人產業技術總合研究所 | Noise reduction circuit, circuit board and electronic apparatus |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030002300A1 (en) * | 2000-11-15 | 2003-01-02 | Toshiaki Nakamura | Dc-dc converter with reduced input current ripples |
CN202121514U (en) * | 2011-07-05 | 2012-01-18 | 浙江昱能光伏科技集成有限公司 | Single-phase inverter capable of eliminating direct current input terminal ripple and solar photovoltaic power generation system |
EP2530818A1 (en) * | 2010-01-25 | 2012-12-05 | Sanyo Electric Co., Ltd. | Power conversion apparatus, grid connection apparatus, and grid connection system |
TWI439023B (en) * | 2011-07-13 | 2014-05-21 | Wistron Corp | Low noise step-down converter and low noise voltage supply assembly |
CN104901523A (en) * | 2015-06-16 | 2015-09-09 | 矽力杰半导体技术(杭州)有限公司 | Control circuit based on ripple control, control method based on ripple control, and switching power supply |
TW201642562A (en) * | 2015-05-29 | 2016-12-01 | Chang-Chi Lee | Low input-output current ripple buck-boost power converter |
US20170126118A1 (en) * | 2015-10-29 | 2017-05-04 | Samsung Electronics Co., Ltd. | Regulator circuit |
CN106936300A (en) * | 2017-03-29 | 2017-07-07 | 中国矿业大学 | A kind of efficient high-gain DC_DC converters of low input current ripple of non-isolation type |
JP2017200385A (en) * | 2016-04-28 | 2017-11-02 | エスアイアイ・セミコンダクタ株式会社 | Dc/dc converter |
-
2018
- 2018-03-07 TW TW107107727A patent/TWI664800B/en not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030002300A1 (en) * | 2000-11-15 | 2003-01-02 | Toshiaki Nakamura | Dc-dc converter with reduced input current ripples |
EP2530818A1 (en) * | 2010-01-25 | 2012-12-05 | Sanyo Electric Co., Ltd. | Power conversion apparatus, grid connection apparatus, and grid connection system |
CN202121514U (en) * | 2011-07-05 | 2012-01-18 | 浙江昱能光伏科技集成有限公司 | Single-phase inverter capable of eliminating direct current input terminal ripple and solar photovoltaic power generation system |
TWI439023B (en) * | 2011-07-13 | 2014-05-21 | Wistron Corp | Low noise step-down converter and low noise voltage supply assembly |
TW201642562A (en) * | 2015-05-29 | 2016-12-01 | Chang-Chi Lee | Low input-output current ripple buck-boost power converter |
CN104901523A (en) * | 2015-06-16 | 2015-09-09 | 矽力杰半导体技术(杭州)有限公司 | Control circuit based on ripple control, control method based on ripple control, and switching power supply |
US20170126118A1 (en) * | 2015-10-29 | 2017-05-04 | Samsung Electronics Co., Ltd. | Regulator circuit |
JP2017200385A (en) * | 2016-04-28 | 2017-11-02 | エスアイアイ・セミコンダクタ株式会社 | Dc/dc converter |
CN106936300A (en) * | 2017-03-29 | 2017-07-07 | 中国矿业大学 | A kind of efficient high-gain DC_DC converters of low input current ripple of non-isolation type |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI758054B (en) * | 2020-01-15 | 2022-03-11 | 國立研究開發法人產業技術總合研究所 | Noise reduction circuit, circuit board and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW201939866A (en) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017066985A1 (en) | Plug-and-play ripple pacifier for dc voltage links in power electronics systems and dc power grids | |
WO2018131384A1 (en) | Power converter | |
Farhadi-Kangarlu et al. | Five-level single-dc source inverter with adjustable DC-link voltage | |
Kumar et al. | T-shaped Z-source inverter | |
Chakraborty et al. | Design of single-stage buck and boost converters for photovoltaic inverter applications | |
Behera et al. | Performance comparison between bipolar and unipolar switching scheme for a single-phase inverter based stand-alone photovoltaic system | |
TWI664800B (en) | Boost-type dc power converter and method for voltage ripple inhibition of pv module | |
KR101920469B1 (en) | Grid connected single-stage inverter based on cuk converter | |
Sarikhani et al. | A common-ground quazi-z-source single-phase inverter suitable for photovoltaic applications | |
Zhou et al. | Impedance-edited multiple low-frequency harmonic current adaptive suppression | |
CN102118035B (en) | Grid-connected inverter | |
Ellappan et al. | Comparative analysis of ACM and GPWM controllers in continuous input and output power boost PFC converter | |
Mohammad et al. | Detailed analysis of dc-dc converters fed with solar-pv system with mppt | |
Makovenko et al. | Single-phase 3L PR controlled qZS inverter connected to the distorted grid | |
Azri et al. | Transformerless DC/AC converter for grid-connected PV power generation system | |
Shanthi et al. | Performance analysis of three level interleaved boost converter with coupled inductor | |
Kabalci | The design and analysis of a two-stage PV converter with quasi-Z source inverter | |
Ricchiuto et al. | Low-switching-frequency active damping methods of medium-voltage multilevel inverters | |
Patra et al. | Comparative analysis of Boost and Buck-Boost Converter for power factor correction using Hysteresis Band Current control | |
Sukhi et al. | High Step Up Converter with Transformerless Inverter for Grid Integration | |
Hirachi et al. | Improved control strategy to eliminate the harmonic current components for single-phase PWM current source inverter | |
Gambhir et al. | Low frequency current ripple reduction of a current-fed switched inverter | |
Abd Rahim et al. | Design and implementation of a stand-alone micro-inverter with push-pull DC/DC power converter | |
Zengin et al. | Evaluation of two-stage soft-switched flyback micro-inverter for photovoltaic applications | |
Alemdar et al. | Investigation of ripple minimization in asymmetric interleaved boost converters for vehicle-integrated photovoltaics (VIPV) applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |