TWI664393B - Mobile mapping system and positioning terminal device - Google Patents
Mobile mapping system and positioning terminal device Download PDFInfo
- Publication number
- TWI664393B TWI664393B TW107109041A TW107109041A TWI664393B TW I664393 B TWI664393 B TW I664393B TW 107109041 A TW107109041 A TW 107109041A TW 107109041 A TW107109041 A TW 107109041A TW I664393 B TWI664393 B TW I664393B
- Authority
- TW
- Taiwan
- Prior art keywords
- positioning
- data
- satellite
- aforementioned
- terminal device
- Prior art date
Links
- 238000013507 mapping Methods 0.000 title claims abstract description 16
- 238000005259 measurement Methods 0.000 claims abstract description 78
- 230000002787 reinforcement Effects 0.000 claims abstract description 59
- 238000004891 communication Methods 0.000 claims abstract description 34
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims description 16
- 230000005540 biological transmission Effects 0.000 claims 2
- 238000012937 correction Methods 0.000 abstract description 21
- 238000012805 post-processing Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 238000013500 data storage Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012951 Remeasurement Methods 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 208000037805 labour Diseases 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/07—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
被裝載在計測車輛(100)的移動式測繪系統(101)係包括:測位終端裝置(200)、通訊裝置(300)、顯示裝置(400)、構成計測裝置的計測單元(110)、及里程表(120)。通訊裝置(300)係由傳送測位補強資料的補正資訊中心裝置(710)接收測位補強資料。測位終端裝置(200)係由通訊裝置(300)取得測位補強資料,由測位衛星(601)接收測位訊號,至少使用測位訊號來檢測位置。此外,測位終端裝置(200)係若處於使用測位訊號與測位補強資料來檢測位置的定位狀態時,在顯示裝置(400)顯示處於定位狀態。 The mobile mapping system (101) mounted on the measurement vehicle (100) includes a positioning terminal device (200), a communication device (300), a display device (400), a measurement unit (110) constituting the measurement device, and a mileage Table (120). The communication device (300) receives the positioning reinforcement data from the correction information center device (710) that transmits the positioning reinforcement data. The positioning terminal device (200) is obtained by the communication device (300), and the positioning satellite (601) receives the positioning signal, and at least uses the positioning signal to detect the position. In addition, if the positioning terminal device (200) is in a positioning state in which a position is detected using a positioning signal and positioning reinforcing data, the display device (400) displays the positioning state.
Description
本發明係關於移動式測繪系統、及在移動式測繪系統中所使用的測位終端裝置。 The present invention relates to a mobile mapping system and a positioning terminal device used in the mobile mapping system.
在習知之MMS(Mobile Mapping System,移動式測繪系統)中,並未取得根據電子基準點資料的測位補強資料。因此,是否由GPS收訊裝置取得測位解,係以來自有效衛星數的預測進行。此外,根據應已得測位解的預測,實施測位位置的誤差預測(例如專利文獻1)。 In the conventional MMS (Mobile Mapping System, mobile mapping system), the positioning reinforcement data based on the electronic reference point data is not obtained. Therefore, whether or not the positioning solution is obtained by the GPS receiver is based on the prediction from the number of effective satellites. In addition, an error prediction of a positioning position is performed based on the prediction of a positioning solution that should be obtained (for example, Patent Document 1).
在習知之MMS中,由於為應已得測位解的預測,因此有以下課題。 The conventional MMS has the following problems because it is a prediction of a known positioning solution.
(1)為提升確實性,在裝載有MMS的MMS計測車輛中,將靜止時間設定為較長。例如,初期靜止設為6分鐘、中間靜止設為2分鐘,可能有無用的靜止時間。 (1) To improve the reliability, the MMS measurement vehicle equipped with MMS is set to have a long standstill time. For example, if the initial inactivity is set to 6 minutes and the intermediate inactivity is set to 2 minutes, there may be useless inactivity time.
(2)即使將靜止時間設定為較長,亦有欠缺測位位置確實性的情形。亦即,在以往,在後處理工序中取得測位補強資料,且使用該測位補強資料與在MMS計測車輛所取得的位置資訊,在測位運算中算出測位解,但是會發生在測位運算中未取得測位解的情形。此係有關於電子基準點及電離層,在現況系統中為不可避免。若在測位運算中無法取得測位解,無法獲 得期待的位置精度,亦會發生無法進行後處理的事態。此時係成為使用MMS計測車輛的再測定,發生大幅的時間損失。 (2) Even if the standstill time is set to be long, there is a case where the positioning accuracy is lacking. That is, in the past, the positioning reinforcement data was obtained in the post-processing step, and the positioning reinforcement data and the position information obtained from the MMS measurement vehicle were used to calculate the positioning solution during the positioning operation, but it would not occur during the positioning operation The situation of positioning solution. This system is related to the electronic reference point and ionosphere, which is inevitable in the current system. If the positioning solution cannot be obtained during the positioning operation, the expected position accuracy cannot be obtained, and the situation that the post-processing cannot be performed may occur. In this case, the vehicle was re-measured using MMS, and a significant time loss occurred.
若更進一步詳加說明,如以下所示。 For further details, it is shown below.
<現況之MMS的技術> <Current MMS Technology>
若為以往之MMS技術,MMS計測車輛係可移動至可最低確保5個以上衛星的場所,藉由靜止2分鐘,取得以誤差預測所導出之定位預測狀態。 If it is the conventional MMS technology, the MMS measurement vehicle can be moved to a place where at least 5 satellites can be ensured, and the positioning prediction state derived from the error prediction can be obtained by standing still for 2 minutes.
在此,「定位預測狀態」係指可認為是定位狀態的狀態。 Here, the “position prediction state” refers to a state that can be regarded as a positioning state.
接著,「定位狀態」係指在測位運算中,取得測位解的狀態。 Next, the "positioning state" refers to a state in which a positioning solution is obtained during a positioning operation.
在MMS的計測中,存在方位角檢定、初期靜止、初期化行走、結束行走等順序,在習知之運用中,必須實施以下項目。 In the measurement of MMS, there are procedures such as azimuth verification, initial stationary, initialized walking, and ending walking, etc. In the conventional application, the following items must be implemented.
(a)若在難以確保5個以上衛星的場所進行計測時,費工找尋衛星。 (a) If it is difficult to measure at a place where more than 5 satellites are available, laboriously seek out satellites.
(b)為了取得定位預測狀態,MMS計測車輛必須靜止2分鐘。 (b) In order to obtain the positioning prediction status, the MMS measurement vehicle must be stationary for 2 minutes.
(c)若在計測中,預測誤差超過規定值時(快要超過時),MMS計測車輛必須移動至可確保5個以上衛星的場所,且靜止至取得定位預測狀態為止。 (c) If the prediction error exceeds the specified value during measurement (much more than it is going to be exceeded), the MMS measurement vehicle must move to a place where more than 5 satellites can be secured, and stand still until the position prediction state is obtained.
(d)雖然在計測中進行誤差推定,但是僅為推定,並非為正確的誤差。因此,有後處理後的誤差大於推定誤差而必須實施再計測的情形。 (d) Although the error is estimated during the measurement, it is only an estimation and is not a correct error. Therefore, there may be cases where the error after post-processing is greater than the estimated error and remeasurement must be performed.
(e)若在計測中MMS計測車輛所捕捉的衛星、與在後處理時所使用的電子基準點所捕捉到的衛星不相一致時,計測中 即使為定位預測狀態,在後處理結果中並未獲得定位狀態。 (e) If the satellites captured by the MMS measurement vehicle during the measurement are not consistent with the satellites captured by the electronic reference point used in the post-processing, even if the positioning is predicted during measurement, the No positioning status was obtained.
亦即,在藉由MMS計測車輛所為之習知之計測中,在位置檢測中並未使用測位補強資料。因此,在藉由MMS計測車輛所為之計測中,並無法提示現實中處於定位狀態,而僅可提示定位預測狀態。 That is, in the conventional measurement for measuring a vehicle by MMS, the position-reinforcing data is not used in the position detection. Therefore, in the measurement performed by the MMS to measure the vehicle, it is not possible to indicate that the vehicle is in a positioning state in reality, but only to indicate the positioning prediction state.
【先前技術文獻】 [Previous Technical Literature]
【專利文獻】 [Patent Literature]
【專利文獻1】日本特開2009-300355號公報 [Patent Document 1] Japanese Patent Laid-Open No. 2009-300355
本發明之目的在提供在MMS計測車輛的車中,可表示實際上為定位狀態之系統。 An object of the present invention is to provide a system capable of indicating that a vehicle is actually positioned in an MMS measurement vehicle.
本發明之移動式測繪系統係包括:通訊裝置、顯示裝置、測位終端裝置、及計測裝置,且被裝載在車輛的移動式測繪系統,前述通訊裝置係由傳送測位補強資料的測位補強資料送訊裝置,接收前述測位補強資料,前述測位終端裝置係由前述通訊裝置取得前述測位補強資料,由傳送測位訊號的測位衛星接收前述測位訊號,至少使用前述測位訊號來檢測位置,並且若處於使用前述測位訊號與前述測位補強資料來檢測前述位置的定位狀態時,在前述顯示裝置顯示處於前述定位狀態。 The mobile surveying and mapping system of the present invention includes: a communication device, a display device, a positioning terminal device, and a measurement device, and is mounted on the vehicle's mobile surveying and mapping system. The communication device is sent by the positioning reinforcement data that transmits the positioning reinforcement data. The device receives the positioning reinforcement data. The positioning terminal device obtains the positioning reinforcement data from the communication device, and the positioning satellite that receives the positioning signal receives the positioning signal. At least the positioning signal is used to detect the position. When the signal and the positioning reinforcing data are used to detect the positioning state of the position, the display device displays that the positioning state is in the positioning state.
藉由本發明,可提供在MMS計測車輛中,可表示實際上處於定位狀態的系統。 According to the present invention, it is possible to provide a system capable of indicating that the MMS measurement vehicle is actually in a positioning state.
此外,藉由可在車輛內確認實際上處於定位狀態,無須為了取得測位解而花費所需以上等待時間,計測效率會提升。此外,藉由可在車輛內確認實際上處於定位狀態,不會有結果無法取得測位解般的預測錯誤,因此不會有計測失敗,可防止再計測等的二次費工。 In addition, since it can be confirmed in the vehicle that it is actually in a positioning state, it is not necessary to spend more than the waiting time required to obtain a positioning solution, and the measurement efficiency is improved. In addition, since it can be confirmed in the vehicle that it is actually in a positioning state, there is no prediction error like a positioning solution that cannot be obtained, so there is no measurement failure, and it can prevent re-measurement and other secondary labor.
100‧‧‧計測車輛 100‧‧‧Measurement vehicle
101‧‧‧移動式測繪系統 101‧‧‧ Mobile Mapping System
110‧‧‧計測單元 110‧‧‧Measurement unit
111A~111F‧‧‧攝影機 111A ~ 111F‧‧‧Camera
112A~112D‧‧‧雷射掃描器 112A ~ 112D‧‧‧Laser scanner
113A~113C‧‧‧GPS天線 113A ~ 113C‧‧‧GPS Antenna
114‧‧‧IMU 114‧‧‧IMU
120‧‧‧里程表 120‧‧‧Odometer
200‧‧‧測位終端裝置 200‧‧‧ positioning terminal device
210‧‧‧處理器 210‧‧‧ processor
211‧‧‧測位補強資料取得部 211‧‧‧ Positioning and Reinforcement Data Acquisition Department
212‧‧‧測位部 212‧‧‧Positioning Department
213‧‧‧定位狀態檢測部 213‧‧‧Positioning state detection section
214‧‧‧衛星決定部 214‧‧‧Satellite Decision Department
220‧‧‧主記憶裝置 220‧‧‧Master memory device
230‧‧‧輔助記憶裝置 230‧‧‧ auxiliary memory device
240‧‧‧輸出入介面裝置 240‧‧‧I / O interface device
250‧‧‧衛星訊號收訊裝置 250‧‧‧ satellite signal receiving device
260‧‧‧RTK測位結果 260‧‧‧RTK positioning results
300‧‧‧通訊裝置 300‧‧‧ communication device
400‧‧‧顯示裝置 400‧‧‧ display device
401‧‧‧Fix指示器 401‧‧‧Fix indicator
402‧‧‧透空圖 402‧‧‧ through chart
403‧‧‧黑圈 403‧‧‧black circle
404‧‧‧白圈 404‧‧‧White circle
500‧‧‧3次元計測資料記憶裝置 500‧‧‧3 dimension measurement data storage device
510‧‧‧3次元計測資料 510‧‧‧3 dimension measurement data
601‧‧‧測位衛星 601‧‧‧ positioning satellite
602‧‧‧準天頂衛星 602‧‧‧quasi-zenith satellite
700‧‧‧補正資訊中心 700‧‧‧ Correction Information Center
710‧‧‧補正資訊中心裝置 710‧‧‧ Correction Information Center Device
800‧‧‧後處理裝置 800‧‧‧ post-processing device
810‧‧‧後處理運算部 810‧‧‧ post-processing operation unit
820‧‧‧輸出資料 820‧‧‧Output data
900‧‧‧網際網路 900‧‧‧ internet
1000‧‧‧計測系統 1000‧‧‧ measurement system
第1圖係實施形態1的圖,表示計測系統1000的構成的圖。 FIG. 1 is a diagram of the first embodiment and shows a configuration of the measurement system 1000.
第2圖係實施形態1的圖,表示被裝載在計測車輛100的裝置的圖。 FIG. 2 is a diagram of the first embodiment and shows a device mounted on the measurement vehicle 100.
第3圖係實施形態1的圖,表示測位終端裝置200的硬體構成的圖。 FIG. 3 is a view showing the hardware configuration of the positioning terminal device 200 according to the first embodiment.
第4圖係實施形態1的圖,表示計測系統1000的動作的流程圖。 FIG. 4 is a flowchart of the first embodiment and is a flowchart showing the operation of the measurement system 1000.
第5圖係實施形態1的圖,表示在顯示裝置400的Fix指示器401與透空圖(sky plot)402的顯示態樣的圖。 FIG. 5 is a diagram of the first embodiment, showing a display state of a Fix indicator 401 and a sky plot 402 on the display device 400.
第6圖係實施形態1的圖,以模式表示在3次元計測資料反映出定位狀態資訊的狀態的圖。 FIG. 6 is a diagram of the first embodiment, and is a diagram showing a state in which the positioning state information is reflected in the three-dimensional measurement data in a pattern.
第7圖係實施形態1的圖,表示變形例的圖。 Fig. 7 is a diagram of the first embodiment and shows a modification.
以下使用圖示,說明本發明之實施形態。其中, 在各圖中,對相同或相當的部分係標註相同符號。在實施形態之說明中,關於相同或相當的部分,係將說明適當省略或簡化。 Hereinafter, embodiments of the present invention will be described using drawings. In each figure, the same or equivalent parts are denoted by the same symbols. In the description of the embodiment, the same or corresponding parts are appropriately omitted or simplified.
實施形態1 Embodiment 1
***構成的說明*** *** Description of composition ***
首先,定義定位狀態。 First, define the positioning status.
「定位狀態」在先前技術中亦已敘述,係指在測位運算中,取得測位解的狀態。若以其他定義來說,「定位狀態」係指針對規定數以上的測位衛星,決定各自的訊號的波數的狀態。 "Positioning state" has also been described in the prior art, and refers to a state in which a positioning solution is obtained in a positioning operation. According to other definitions, the "positioning state" refers to the state of determining the wave number of each signal for positioning satellites with a predetermined number or more.
參照第1圖~第7圖,說明實施形態1之計測系統1000。計測系統1000的主要特徵係如以下所示。以往,MMS計測車輛在位置檢測中,並未使用測位補強資料。因此,在MMS計測車輛中,並無法提示現實中處於定位狀態,僅可提示應處於定位狀態的預測。相對於此,在本實施形態之計測系統1000中,裝載在車輛的通訊裝置300或衛星訊號收訊裝置150接收測位補強資料,測位終端裝置200使用測位補強資料來檢測位置。因此,在MMS計測車輛中,可在顯示裝置400顯示現實中處於定位狀態。亦即,在計測系統1000中,如後述,裝載在MMS計測車輛的各種裝置係藉由與補正資訊中心裝置710或準天頂衛星602進行通訊,在MMS計測車輛之中,可取得測位補強資料,且實施測位解運算。藉此可得非為預測之作為結果的測位解。因此,以效果而言,在成為定位狀態的時點,MMS計測車輛係可開始接下來的行走,因此不必要地浪費靜止時間的情形會消失。 The measurement system 1000 according to the first embodiment will be described with reference to FIGS. 1 to 7. The main characteristics of the measurement system 1000 are as follows. In the past, MMS measurement vehicles did not use positioning reinforcement data during position detection. Therefore, in the MMS measurement vehicle, it is not possible to indicate that the vehicle is in the positioning state in reality, but only to predict that it should be in the positioning state. On the other hand, in the measurement system 1000 of this embodiment, the communication device 300 or the satellite signal receiving device 150 mounted on the vehicle receives the positioning reinforcement data, and the positioning terminal device 200 detects the position using the positioning reinforcement data. Therefore, in the MMS measurement vehicle, the display device 400 can display the positioning state in reality. That is, in the measurement system 1000, as will be described later, various devices mounted on the MMS measurement vehicle communicate with the correction information center device 710 or the quasi-zenith satellite 602. In the MMS measurement vehicle, positioning and reinforcement data can be obtained. And the positioning solution is implemented. The result is a positioning solution that is not predicted as a result. Therefore, in terms of the effect, when the MMS measurement vehicle system can start the next walking at the time of the positioning state, the situation that the rest time is unnecessarily wasted will disappear.
第1圖係表示計測系統1000。計測系統1000係包括:裝載有MMS的計測車輛100、補正資訊中心700、後處理裝置800。計測車輛100為MMS計測車輛。計測車輛100係包括:測位終端裝置200、及通訊裝置300等。通訊裝置300係可透過網際網路900而與補正資訊中心700的補正資訊中心裝置710進行通訊。通訊裝置300係由補正資訊中心裝置710接收測位補強資料,對測位終端裝置200輸出測位補強資料。補正資訊中心700係包括:補正資訊中心裝置710。 FIG. 1 shows the measurement system 1000. The measurement system 1000 includes a measurement vehicle 100 equipped with an MMS, a correction information center 700, and a post-processing device 800. The measurement vehicle 100 is an MMS measurement vehicle. The measurement vehicle 100 includes a positioning terminal device 200, a communication device 300, and the like. The communication device 300 can communicate with the correction information center device 710 of the correction information center 700 through the Internet 900. The communication device 300 receives the positioning reinforcement data from the correction information center device 710, and outputs the positioning reinforcement data to the positioning terminal device 200. The correction information center 700 includes a correction information center device 710.
測位終端裝置200係接收測位衛星601所傳送的測位訊號,檢測位置。在本實施形態中,若可使用測位補強資料,測位終端裝置200係進行藉由RTK(Real Time Kinematic,即時動態定位)所為之測位。以計測車輛100所計測出的RTK測位結果與3次元計測資料係在後處理裝置800的後處理運算部810予以後處理,後處理的結果被輸出作為輸出資料820。 The positioning terminal device 200 receives a positioning signal transmitted by a positioning satellite 601 and detects a position. In this embodiment, the positioning terminal device 200 performs positioning using RTK (Real Time Kinematic, if real-time positioning can be used). The RTK positioning results measured by the measurement vehicle 100 and the three-dimensional measurement data are post-processed by the post-processing arithmetic unit 810 of the post-processing device 800, and the results of the post-processing are output as output data 820.
第2圖係表示裝載在計測車輛100的裝置。裝載在計測車輛100的MMS係包括:計測單元110、里程表120、測位終端裝置200、通訊裝置300、顯示裝置400、儲存經計測的3次元計測資料的3次元計測資料記憶裝置500。計測單元110係包括:攝影機111A~111F、雷射掃描器112A~112D、GPS天線113A~113C、IMU(航法慣性裝置)114。移動式測繪系統101係包括:通訊裝置300、顯示裝置400、測位終端裝置200、作為計測裝置的計測單元110、及里程表120。移動式測繪系統101係被裝載在計測車輛100。 FIG. 2 shows a device mounted on the measurement vehicle 100. The MMS system mounted on the measurement vehicle 100 includes a measurement unit 110, an odometer 120, a positioning terminal device 200, a communication device 300, a display device 400, and a three-dimensional measurement data storage device 500 that stores measured three-dimensional measurement data. The measurement unit 110 includes cameras 111A to 111F, laser scanners 112A to 112D, GPS antennas 113A to 113C, and IMU (Aeronautical Inertial Unit) 114. The mobile mapping system 101 includes a communication device 300, a display device 400, a positioning terminal device 200, a measurement unit 110 as a measurement device, and an odometer 120. The mobile mapping system 101 is mounted on a measurement vehicle 100.
第3圖係表示測位終端裝置200的硬體構成。測 位終端裝置200為電腦。測位終端裝置200係包括處理器210、主記憶裝置220、輔助記憶裝置230、輸出入介面裝置240、及衛星訊號收訊裝置250,作為硬體。處理器210係透過訊號線而與其他硬體相連接,控制該等其他硬體。 FIG. 3 shows a hardware configuration of the positioning terminal device 200. The positioning terminal device 200 is a computer. The positioning terminal device 200 includes a processor 210, a main memory device 220, an auxiliary memory device 230, an input / output interface device 240, and a satellite signal receiving device 250 as hardware. The processor 210 is connected to other hardware through a signal line, and controls the other hardware.
處理器210係進行運算處理的IC(Integrated Circuit,積體電路)。處理器210係CPU(Central Processing Unit,中央處理單元)、DSP(Digital Signal Processor,數位訊號處理器)、GPU(Graphics Processing Unit,圖形處理單元),作為具體例。 The processor 210 is an integrated circuit (Integrated Circuit) that performs arithmetic processing. The processor 210 is a central processing unit (CPU), a digital signal processor (DSP), or a graphics processing unit (GPU) as specific examples.
主記憶裝置220係可讀寫的揮發性記憶裝置。以主記憶裝置220的具體例而言,為SRAM(Static Random Access Memory,靜態隨機存取記憶體)、DRAM(Dynamic Random Access Memory,動態隨機存取記憶體)。 The main memory device 220 is a readable and writable volatile memory device. Taking the specific examples of the main memory device 220 as SRAM (Static Random Access Memory, static random access memory), and DRAM (Dynamic Random Access Memory, dynamic random access memory).
輔助記憶裝置230係可讀寫的非揮發性記憶裝置。在輔助記憶裝置230係記憶用以實現測位終端裝置200的功能的程式或其他資料。以具體例而言,輔助記憶裝置230為磁碟裝置(Hard Disk Drive,硬碟機)。此外,輔助記憶裝置230亦可為使用光碟、CD、藍光(註冊商標)碟片、DVD(Digital Versatile Disk,數位影音光碟)等可搬式記憶媒體的記憶裝置。 The auxiliary memory device 230 is a non-volatile memory device that can be read and written. The auxiliary memory device 230 stores programs or other data for realizing the functions of the positioning terminal device 200. For example, the auxiliary memory device 230 is a hard disk drive (Hard Disk Drive). In addition, the auxiliary storage device 230 may be a storage device using a removable storage medium such as an optical disc, a CD, a Blu-ray (registered trademark) disc, or a DVD (Digital Versatile Disk).
輸出入介面裝置240係供處理器210與衛星訊號收訊裝置250、通訊裝置300、顯示裝置400、及3次元計測資料記憶裝置500進行通訊之用的介面裝置。 The input / output interface device 240 is an interface device for the processor 210 to communicate with the satellite signal receiving device 250, the communication device 300, the display device 400, and the three-dimensional measurement data storage device 500.
衛星訊號收訊裝置250係接收測位衛星601所傳送的測位訊號,透過輸出入介面裝置240,將測位訊號送至處 理器210。 The satellite signal receiving device 250 receives the positioning signal transmitted by the positioning satellite 601, and sends the positioning signal to the processor 210 through the input / output interface device 240.
測位終端裝置200係包括:測位補強資料取得部211、測位部212、定位狀態檢測部213、衛星決定部214,作為功能要素。測位補強資料取得部211、測位部212、定位狀態檢測部213、衛星決定部214的功能係藉由程式予以實現。在輔助記憶裝置230係記憶有:實現測位補強資料取得部211、測位部212、定位狀態檢測部213、衛星決定部214的功能的程式。該程式係藉由處理器210被讀入且執行。藉此,實現測位補強資料取得部211、測位部212、定位狀態檢測部213、衛星決定部214的功能。 The positioning terminal device 200 includes a positioning reinforcing data acquisition unit 211, a positioning unit 212, a positioning state detection unit 213, and a satellite determination unit 214 as functional elements. The functions of the positioning reinforcing data acquisition unit 211, the positioning unit 212, the positioning state detection unit 213, and the satellite determination unit 214 are realized by a program. The auxiliary memory device 230 stores programs for realizing the functions of the positioning reinforcing data acquisition unit 211, the positioning unit 212, the positioning state detection unit 213, and the satellite determination unit 214. The program is read and executed by the processor 210. Thereby, the functions of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the positioning state detection unit 213, and the satellite determination unit 214 are realized.
其中,實現測位補強資料取得部211、測位部212、定位狀態檢測部213、衛星決定部214的功能的程式亦可儲存在電腦可讀取記錄媒體來提供,亦可提供作為程式產品。 Among them, the program that realizes the functions of the positioning-reinforcing data acquisition section 211, the positioning section 212, the positioning state detection section 213, and the satellite determination section 214 can also be stored in a computer-readable recording medium and provided as a program product.
在第3圖中,處理器210係僅表示1個。但是,測位終端裝置200亦可包括替代處理器210的複數處理器。該等複數處理器係分擔測位補強資料取得部211、測位部212、定位狀態檢測部213、衛星決定部214的程式的執行。各自的處理器係與處理器210相同,為進行運算處理的IC。 In FIG. 3, only one processor 210 is shown. However, the positioning terminal device 200 may include a plurality of processors instead of the processor 210. These plural processors share the execution of the programs of the positioning reinforcement data acquisition unit 211, the positioning unit 212, the positioning state detection unit 213, and the satellite determination unit 214. Each processor is the same as the processor 210 and is an IC that performs arithmetic processing.
其中,處理器210及替代處理器210的複數處理器亦被稱為處理電路圖(processing circuitry)。 Among them, the processor 210 and a plurality of processors replacing the processor 210 are also referred to as processing circuitry.
***動作的說明*** *** Description of action ***
第4圖係表示計測系統1000的動作的流程圖。參照第4圖,說明計測系統1000的動作。 FIG. 4 is a flowchart showing the operation of the measurement system 1000. The operation of the measurement system 1000 will be described with reference to FIG. 4.
在步驟S11中,通訊裝置300係與補正資訊中心 裝置710進行通訊,即時取得電子基準點i的測位補強資料。其中,測位部212係由傳送測位訊號的測位衛星601接收測位訊號,至少使用測位訊號來檢測位置。此時,通訊裝置300係當取得測位補強資料時,首先,由測位終端裝置200取得無須使用測位補強資料而測位部212由測位衛星601所傳送的測位訊號所計算出的概略位置,且傳送至補正資訊中心裝置710。補正資訊中心裝置710係將在複數電子基準點之中關於更接近概略位置的電子基準點i的測位補強資料傳送至通訊裝置300。 In step S11, the communication device 300 communicates with the correction information center device 710 to obtain the positioning and reinforcement data of the electronic reference point i in real time. The positioning unit 212 receives the positioning signal from a positioning satellite 601 that transmits the positioning signal, and at least uses the positioning signal to detect the position. At this time, when the communication device 300 obtains the positioning reinforcement data, first, the positioning terminal device 200 obtains the approximate position calculated by the positioning signal transmitted by the positioning satellite 601 without using the positioning reinforcement data, and transmits it to Correct the information center device 710. The correction information center device 710 transmits, to the communication device 300, positioning enhancement data on the electronic reference point i closer to the approximate position among the plurality of electronic reference points.
在步驟S12中,通訊裝置300係將測位補強資料輸出至測位終端裝置200。 In step S12, the communication device 300 outputs the positioning reinforcement data to the positioning terminal device 200.
在步驟S13中,測位終端裝置200的測位補強資料取得部211取得由通訊裝置300被傳送的測位補強資料。 In step S13, the positioning reinforcement data acquisition unit 211 of the positioning terminal device 200 acquires the positioning reinforcement data transmitted by the communication device 300.
在步驟S14中,測位部212使用測位補強資料及測位訊號來實施測位。 In step S14, the positioning unit 212 performs positioning using the positioning reinforcement data and the positioning signal.
在步驟S15中,定位狀態檢測部213係即時取得在測位部212所計算出的RTK測位結果亦即測位解。 In step S15, the positioning state detection unit 213 immediately obtains the RTK positioning result calculated by the positioning unit 212, that is, the positioning solution.
定位狀態檢測部213係並行進行以下(1)-(3)。 The positioning state detection unit 213 performs the following (1) to (3) in parallel.
(1)判斷是否處於定位狀態。 (1) Determine whether it is in the positioning state.
(2)在顯示裝置400顯示是否為定位狀態。 (2) Whether the display device 400 is in the positioning state is displayed.
(3)將表示是否為定位狀態的資訊反映在3次元計測資料。 (3) The information indicating whether the positioning state is reflected in the three-dimensional measurement data.
在上述(2)中,定位狀態檢測部213係若處於測位部212使用測位補強資料與測位訊號來檢測出位置的定位狀態,在被裝載在計測車輛100的顯示裝置400顯示處於定位狀態。 In the above (2), if the positioning state detection unit 213 is in the positioning state where the positioning unit 212 detects the position using the positioning reinforcement data and the positioning signal, the display device 400 mounted on the measurement vehicle 100 displays the positioning state.
第5圖係表示顯示裝置400的Fix指示器401與透空圖402的顯示態樣。如第5圖所示,在顯示裝置400的Fix指示器401顯示定位狀態。 FIG. 5 shows the display state of the Fix indicator 401 and the through-air map 402 of the display device 400. As shown in FIG. 5, the Fix indicator 401 of the display device 400 displays the positioning state.
在上述(3)中,定位狀態檢測部213係在藉由計測裝置(計測單元110、里程表120)的計測所得之3次元計測資料反映出表示定位狀態的定位狀態資訊。3次元計測資料係儲存在3次元計測資料記憶裝置500。 In the above (3), the positioning state detection unit 213 reflects the positioning state information indicating the positioning state by the three-dimensional measurement data obtained by the measurement by the measurement device (the measuring unit 110 and the odometer 120). The three-dimensional measurement data is stored in the three-dimensional measurement data storage device 500.
第6圖係以模式表示在3次元計測資料反映出定位狀態資訊的狀態的圖。第6圖的「Fix」及「NON-Fix」為定位狀態資訊,「Fix」表示為定位狀態,「NON-Fix」表示非處於定位狀態。 Fig. 6 is a diagram showing a state in which the positioning state information is reflected in the three-dimensional measurement data in a pattern. “Fix” and “NON-Fix” in FIG. 6 are positioning status information, “Fix” indicates positioning status, and “NON-Fix” indicates non-positioning status.
「非處於定位狀態」係表示未取得測位解。 "Not in positioning" means that no positioning solution has been obtained.
在步驟S16中,衛星決定部214係對所取得之關於電子基準點i的測位補強資料進行解析。 In step S16, the satellite determination unit 214 analyzes the obtained positioning and reinforcement data on the electronic reference point i.
此外,衛星決定部214係決定電子基準點i所捕捉到的測位衛星601,而且,現在,測位終端裝置200決定藉由所接收的測位訊號所捕捉的測位衛星601。 In addition, the satellite determination unit 214 determines the positioning satellite 601 captured by the electronic reference point i, and the positioning terminal device 200 now determines the positioning satellite 601 captured by the received positioning signal.
接著,衛星決定部214係在顯示裝置400顯示兩者的測位衛星601。如第5圖所示,顯示表示所被捕捉的測位衛星的透空圖402。如上所示,衛星決定部214係由測位補強資料,決定供生成測位補強資料之用所捕捉到的測位衛星601。此外,衛星決定部214係由測位部212所接收到的測位訊號,決定供位置檢測之用所捕捉到的測位衛星601。 Next, the satellite determination unit 214 displays both positioning satellites 601 on the display device 400. As shown in FIG. 5, a radiograph 402 showing the captured positioning satellites is displayed. As shown above, the satellite determination unit 214 determines the positioning satellite 601 captured by the positioning reinforcement data for generating the positioning reinforcement data. In addition, the satellite determination unit 214 is a positioning signal received by the positioning unit 212, and determines the positioning satellite 601 captured for position detection.
衛星決定部214係在關於生成測位補強資料的複數測位衛 星601之中,以不同於與關於檢測位置的測位衛星601相一致的測位衛星601的態樣,顯示與關於檢測位置的複數測位衛星601不相一致的測位衛星601。 The satellite determination unit 214 is among the plurality of positioning satellites 601 for generating positioning-reinforcing data, and displays a position different from the positioning satellite 601 corresponding to the positioning satellite 601 for detecting the position. Inconsistent positioning satellite 601.
在第5圖中,黑圈403表示關於檢測位置的測位衛星601,白圈404表示不相一致的測位衛星601。 In FIG. 5, a black circle 403 indicates a positioning satellite 601 regarding a detection position, and a white circle 404 indicates a non-conforming positioning satellite 601.
在步驟S17中,測位補強資料取得部211係以一定間隔,將測位部212所計算出的自己位置,透過通訊裝置300傳送至補正資訊中心裝置710。補正資訊中心裝置710係將最接近自己位置的場所的電子基準點i的測位補強資料傳送至通訊裝置300。通訊裝置300係由傳送測位補強資料的測位補強資料送訊裝置亦即補正資訊中心裝置710接收測位補強資料的裝置,且為被裝載在計測車輛100的裝置。測位補強資料取得部211係透過通訊裝置300取得測位補強資料,並且將測位部212所測位到的位置,透過通訊裝置300傳送至補正資訊中心裝置710。藉此,測位補強資料取得部211係由補正資訊中心裝置710透過通訊裝置300取得適合所傳送的位置的測位補強資料。 In step S17, the positioning-reinforcing data acquisition unit 211 transmits its own position calculated by the positioning unit 212 to the correction information center device 710 at a certain interval through the communication device 300. The correction information center device 710 transmits the positioning enhancement data of the electronic reference point i closest to the place where the correction information center device 710 is located to the communication device 300. The communication device 300 is a device that receives the positioning reinforcement data by the positioning reinforcement data transmitting device that transmits the positioning reinforcement data, that is, the correction information center device 710, and is a device loaded on the measurement vehicle 100. The positioning reinforcement data acquisition unit 211 obtains the positioning reinforcement data through the communication device 300, and transmits the position measured by the positioning unit 212 to the correction information center device 710 through the communication device 300. Thereby, the positioning reinforcement data acquisition unit 211 obtains the positioning reinforcement data suitable for the transmitted position from the correction information center device 710 through the communication device 300.
若根據第4圖所為之處理已結束,3次元計測資料510與RTK測位結果260係被送至後處理裝置800,在後處理運算部810被處理,該處理結果被輸出作為輸出資料820。 If the processing according to FIG. 4 has ended, the three-dimensional measurement data 510 and the RTK positioning result 260 are sent to the post-processing device 800, and processed in the post-processing arithmetic unit 810, and the processing result is output as the output data 820.
***實施形態1的效果*** *** Effect of Embodiment 1 ***
現況的MMS係以計測資料的後處理為前提的系統,若非為後處理後,無法取得最終結果。因此,在根據定位預測狀態的現況的MMS的計測中,在未取得所需位置精度的狀態下進 行3次元計測,有在後處理後造成再計測的情形。但是,在實施形態1中,在MMS的計測車輛100裝載測位終端裝置200及通訊裝置300,通訊裝置300由補正資訊中心裝置710取得測位補強資料。因此,在實施形態1中,測位終端裝置200係可由測位補強資料與測位訊號,即時取得RTK測位結果。因此,可提示在計測車輛100中是否處於現實的定位狀態。藉此,可解決在後處理後未取得定位狀態的課題、或為取得定位預測狀態所需之靜止2分鐘等費工的課題。 The current MMS is a system based on post-processing of measurement data. If it is not post-processing, the final result cannot be obtained. Therefore, in the MMS measurement based on the current status of the positioning prediction state, the 3-dimensional measurement is performed without obtaining the required position accuracy, which may cause re-measurement after post-processing. However, in the first embodiment, a positioning terminal device 200 and a communication device 300 are mounted on the measurement vehicle 100 of the MMS, and the communication device 300 obtains positioning reinforcement data from the correction information center device 710. Therefore, in the first embodiment, the positioning terminal device 200 can obtain the RTK positioning result in real time by the positioning reinforcing data and the positioning signal. Therefore, it can be presented whether the measurement vehicle 100 is in a realistic positioning state. Thereby, it is possible to solve a problem such as a problem that the positioning state is not obtained after the post-processing, or a laborious problem such as a 2 minute standstill required to obtain the positioning prediction state.
<變形例> <Modifications>
第7圖係表示實施形態1之變形例的圖。第7圖係表示相對第1圖,由準天頂衛星602配送測位補強資料的構成。在第7圖中表示4台測位衛星601與1台準天頂衛星602。準天頂衛星602係傳送測位補強資料及測位訊號。準天頂衛星602係傳送測位補強資料的測位補強資料送訊裝置。與第1圖之不同處係在第7圖中並不需要通訊裝置300及補正資訊中心700。準天頂衛星602係依序傳送將日本區域分為複數區塊的各區塊的測位補強資料。該<變形例>的動作係與第4圖大致相同,但是步驟S11不同,並不需要步驟S17。亦即,測位終端裝置200係根據概略位置,由從準天頂衛星602被傳送的各區塊的測位補強資料之中,選擇接近概略位置的測位補強資料。因此,並不需要步驟S17。其中,衛星訊號收訊裝置250除了測位訊號之外,由準天頂衛星602接收測位補強資料,透過輸出入介面裝置240傳送至處理器210。 Fig. 7 is a diagram showing a modification of the first embodiment. Fig. 7 shows a configuration in which positioning data is distributed by the quasi-zenith satellite 602 compared to Fig. 1. Fig. 7 shows four positioning satellites 601 and one quasi-zenith satellite 602. The quasi-zenith satellite 602 transmits positioning reinforcement data and positioning signals. The quasi-zenith satellite 602 is a positioning reinforcement data transmitting device for transmitting positioning reinforcement data. The difference from Fig. 1 is that Fig. 7 does not require the communication device 300 and the correction information center 700. The quasi-zenith satellite 602 sequentially transmits positioning reinforcement data of each block that divides the Japanese region into a plurality of blocks. The operation of this <modified example> is substantially the same as that in FIG. 4, but step S11 is different, and step S17 is not required. That is, the positioning terminal device 200 selects positioning reinforcement data close to the approximate position from among the positioning reinforcement data of each block transmitted from the quasi-zenith satellite 602 based on the approximate position. Therefore, step S17 is not required. Among them, in addition to the positioning signal, the satellite signal receiving device 250 receives positioning reinforcing data from the quasi-zenith satellite 602, and transmits it to the processor 210 through the input / output interface device 240.
藉由該<變形例>,除了上述之實施形態1的效 果之外,具有不需要與補正資訊中心裝置710進行通訊的效果。 According to this <Modification>, in addition to the effects of the first embodiment described above, there is an effect that communication with the correction information center device 710 is not required.
Claims (6)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017058000 | 2017-03-23 | ||
JP2017-058000 | 2017-03-23 | ||
PCT/JP2018/005451 WO2018173573A1 (en) | 2017-03-23 | 2018-02-16 | Mobile mapping system and positioning terminal device |
??PCT/JP2018/005451 | 2018-02-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201835530A TW201835530A (en) | 2018-10-01 |
TWI664393B true TWI664393B (en) | 2019-07-01 |
Family
ID=63585207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107109041A TWI664393B (en) | 2017-03-23 | 2018-03-16 | Mobile mapping system and positioning terminal device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2018173573A1 (en) |
KR (1) | KR20190116442A (en) |
TW (1) | TWI664393B (en) |
WO (1) | WO2018173573A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7219201B2 (en) * | 2019-10-29 | 2023-02-07 | 大林道路株式会社 | 3D measurement system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03295411A (en) * | 1990-04-13 | 1991-12-26 | Pioneer Electron Corp | Satellite display system in on-vehicle navigation device |
US5477458A (en) * | 1994-01-03 | 1995-12-19 | Trimble Navigation Limited | Network for carrier phase differential GPS corrections |
US20020041251A1 (en) * | 2000-08-31 | 2002-04-11 | Kimiya Yamaashi | Information terminal with positioning function, positioning system, method of positioning, storage medium, and computer program product |
US20050080599A1 (en) * | 2003-10-14 | 2005-04-14 | Chunming Han | Reflectometer with echo canceller |
US20060158373A1 (en) * | 2005-01-18 | 2006-07-20 | Mitsubishi Denki Kabushiki Kaisha | Positioning apparatus, positioning server apparatus, and positioning system |
US20070115354A1 (en) * | 2005-11-24 | 2007-05-24 | Kabushiki Kaisha Topcon | Three-dimensional data preparing method and three-dimensional data preparing device |
JP2009257802A (en) * | 2008-04-14 | 2009-11-05 | Mitsubishi Electric Corp | Data transmitter, data transmission method, data transmission program, positioning device, positioning method, and positioning program |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06314060A (en) * | 1993-04-28 | 1994-11-08 | Nec Home Electron Ltd | Navigation device |
JP2004125580A (en) * | 2002-10-02 | 2004-04-22 | Hitachi Constr Mach Co Ltd | Position measuring system of working machine |
ES2359841T3 (en) * | 2007-05-18 | 2011-05-27 | Nokia Corporation | POSITIONING USING A REFERENCE STATION. |
US9103671B1 (en) * | 2007-11-29 | 2015-08-11 | American Vehicular Sciences, LLC | Mapping techniques using probe vehicles |
JP5116572B2 (en) | 2008-06-17 | 2013-01-09 | 三菱電機株式会社 | Accuracy prediction apparatus, accuracy prediction method, and accuracy prediction program |
-
2018
- 2018-02-16 JP JP2019507443A patent/JPWO2018173573A1/en active Pending
- 2018-02-16 WO PCT/JP2018/005451 patent/WO2018173573A1/en active Application Filing
- 2018-02-16 KR KR1020197027055A patent/KR20190116442A/en not_active Application Discontinuation
- 2018-03-16 TW TW107109041A patent/TWI664393B/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03295411A (en) * | 1990-04-13 | 1991-12-26 | Pioneer Electron Corp | Satellite display system in on-vehicle navigation device |
US5477458A (en) * | 1994-01-03 | 1995-12-19 | Trimble Navigation Limited | Network for carrier phase differential GPS corrections |
US20020041251A1 (en) * | 2000-08-31 | 2002-04-11 | Kimiya Yamaashi | Information terminal with positioning function, positioning system, method of positioning, storage medium, and computer program product |
US20050080599A1 (en) * | 2003-10-14 | 2005-04-14 | Chunming Han | Reflectometer with echo canceller |
US20060158373A1 (en) * | 2005-01-18 | 2006-07-20 | Mitsubishi Denki Kabushiki Kaisha | Positioning apparatus, positioning server apparatus, and positioning system |
US20070115354A1 (en) * | 2005-11-24 | 2007-05-24 | Kabushiki Kaisha Topcon | Three-dimensional data preparing method and three-dimensional data preparing device |
JP2009257802A (en) * | 2008-04-14 | 2009-11-05 | Mitsubishi Electric Corp | Data transmitter, data transmission method, data transmission program, positioning device, positioning method, and positioning program |
Also Published As
Publication number | Publication date |
---|---|
WO2018173573A1 (en) | 2018-09-27 |
TW201835530A (en) | 2018-10-01 |
KR20190116442A (en) | 2019-10-14 |
JPWO2018173573A1 (en) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI524083B (en) | Satellite navigation receivers, apparatuses and methods for positioning | |
JP3922585B2 (en) | POSITIONING DEVICE, POSITIONING METHOD, POSITIONING PROGRAM, COMPUTER-READABLE RECORDING MEDIUM CONTAINING POSITIONING PROGRAM | |
KR20160139065A (en) | Techniques for affecting a wireless signal-based positioning capability of a mobile device based on one or more onboard sensors | |
US20150022395A1 (en) | Method and receiver for determining system time of a navigation system | |
JP7195185B2 (en) | Road surface condition measuring device, road surface condition measuring system, road surface condition measuring method, and road surface condition measuring program | |
JP2009192325A (en) | Satellite navigation/estimated navigation integration positioning device | |
US11209555B2 (en) | Positioning method and apparatus for mobile terminal, and mobile terminal | |
US11409004B2 (en) | Method of detecting multipath state of global navigation satellite system signal and electronic device supporting the same | |
JP2008249555A (en) | Position-specifying device, position-specifying method, and position-specifying program | |
US20220113171A1 (en) | Sensor diagnosis device and computer readable medium | |
TWI664393B (en) | Mobile mapping system and positioning terminal device | |
JP6929492B2 (en) | Locator device and its accuracy evaluation system and positioning method | |
US10852442B2 (en) | Reception control device | |
JP6597843B2 (en) | Reception control apparatus, reception control method, and program | |
JP2007024832A (en) | Terminal device, control method and program of terminal device, and computer readable recording medium recording control program of terminal device | |
US20130135144A1 (en) | Synchronized measurement sampling in a navigation device | |
WO2012088281A1 (en) | Method and apparatus for estimating satellite positioning reliability | |
CN116931028A (en) | GNSS data processing method and device based on intelligent terminal inertial navigation | |
JP2010197353A (en) | Computer device | |
CN110678781B (en) | Positioning method and positioning terminal | |
JP2019138751A (en) | Map complementing device and map complementing program | |
JP2005283238A (en) | Positioning system, terminal device, control method of terminal device, control program of terminal device, and recording medium readable by compuer for recording control program of terminal device | |
RU2789700C1 (en) | Error and integrity assessment via displacement prediction | |
JP2018146545A (en) | Composite positioning device, composite positioning method, and composite positioning program | |
US12044783B2 (en) | Method and device for detecting a group runtime variation for a navigation sensor for a navigation system for a vehicle and navigation sensor with a device of this kind |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |