TWI662423B - Display system and method for wind power prediction - Google Patents
Display system and method for wind power prediction Download PDFInfo
- Publication number
- TWI662423B TWI662423B TW106103821A TW106103821A TWI662423B TW I662423 B TWI662423 B TW I662423B TW 106103821 A TW106103821 A TW 106103821A TW 106103821 A TW106103821 A TW 106103821A TW I662423 B TWI662423 B TW I662423B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- wind power
- forecast
- wind
- wind speed
- Prior art date
Links
Landscapes
- Wind Motors (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一種風力發電預測方法,包含:自複數個伺服器擷取複數個輸入資料,輸入資料包含至少一風速即時資料及至少一風速歷史資料;以輸入資料塑模出一類神經網路模型的至少一權重及至少一偏權值;根據權重及偏權值,藉由類神經網路模型對輸入資料進行運算,以得出至少一風速預測資料;根據一校正值,對風速預測資料進行運算,以得出至少一風速預測校正資料;根據一預測有效範圍值,對風速預測校正資料進行運算,以得出至少一預測有效範圍資料;對風速預測校正資料進行運算,以得出至少一風力發電預測校正資料;及對預測有效範圍資料進行運算,以得出至少一風力發電預測有效範圍資料。 A wind power generation prediction method includes: capturing a plurality of input data from a plurality of servers, the input data including at least one real-time wind speed data and at least one historical wind speed data; and using the input data to mold at least one weight of a type of neural network model And at least one partial weight value; according to the weight and partial weight value, the input data is calculated by a neural network-like model to obtain at least one wind speed prediction data; according to a correction value, the wind speed prediction data is calculated to obtain At least one wind speed prediction correction data is calculated; the wind speed prediction correction data is calculated according to a predicted effective range value to obtain at least one predicted effective range data; the wind speed prediction correction data is calculated to obtain at least one wind power prediction correction Data; and calculating the predicted effective range data to obtain at least one predicted effective range data of wind power generation.
Description
本發明係關於一種風力發電預測顯示系統及方法,特別是關於一種可進行預測值校正及預測有效範圍標示之風力發電預測顯示系統及方法。 The invention relates to a wind power forecast display system and method, and more particularly to a wind power forecast display system and method that can perform prediction value correction and prediction effective range labeling.
風力發電屬於間歇性能源,若將風力發電所產生的電力併入電網系統,易導致原電力系統的穩定度降低,同時未知的風能電力供應量亦增加電力調度的困難及相關營運成本。風力發電機輸出不穩定之主要原因在於當風速發生變化時,風力發電機之輸出也隨之變化。而由於地形、溫度、氣壓、緯度等因素對風速之影響存在著非常複雜且高度非線性的關係,因此導致利用傳統物理模式或統計方法進行風速預測時,會碰到相當大的困難。早期以線性或非線性的時間序列模型預測風速時,僅利用歷史資料進行多個領前預測時間點的風速預測,其預測準確度較差,且不易結合氣象資料進行多個領前時間點的預測。 Wind power is an intermittent energy source. If the power generated by wind power is incorporated into the grid system, the stability of the original power system will be reduced. At the same time, the unknown supply of wind power will increase the difficulty of power dispatch and related operating costs. The main cause of wind turbine output instability is that when the wind speed changes, the wind turbine output also changes. Due to the very complex and highly non-linear relationship between the effects of terrain, temperature, air pressure, latitude and other factors on wind speed, it will cause considerable difficulties when using traditional physical models or statistical methods to predict wind speed. When using a linear or non-linear time series model to predict wind speed in the early days, only the historical data was used to make wind speed predictions at multiple leading time points. The prediction accuracy was poor, and it was not easy to combine weather data to perform multiple leading time points. .
相較於此,類神經網路的人工智慧預測能學習輸入與輸出之間的關係,而不需要提供轉換的數學函式,並可完成複雜的非線性映射,因此更適合用於風速預測。然而,使用類神經網路進行風速預測時,缺乏 可靠的校正方法可對預測結果進行校正。同時,類神經網路亦缺乏可運算出預測有效範圍的方法,以標示出預測結果的有效範圍。 Compared to this, neural network-like artificial intelligence prediction can learn the relationship between input and output, without the need to provide mathematical functions for conversion, and can complete complex non-linear mapping, so it is more suitable for wind speed prediction. However, when using neural networks to make wind speed predictions, Reliable correction method can correct the prediction result. At the same time, neural-like networks also lack a method that can calculate the effective range of the prediction to indicate the effective range of the prediction result.
因此,為改善預測風力發電的準確性,需要一種能校正預測結果的風力發電預測顯示方法。同時,亦需要一種能標示出預測結果之有效範圍的風力發電預測顯示方法。 Therefore, in order to improve the accuracy of forecasting wind power generation, a wind power forecast display method capable of correcting the prediction result is required. At the same time, there is also a need for a wind power forecast display method that can indicate the effective range of the forecast results.
為了解決上述問題,本發明之目的在提供一種風力發電預測顯示系統及方法。 In order to solve the above problems, an object of the present invention is to provide a wind power generation prediction display system and method.
本發明之另一目的在提供一種可校正預測結果之風力發電預測顯示系統及方法。 Another object of the present invention is to provide a wind power generation prediction display system and method capable of correcting prediction results.
本發明之再一目的在提供一種可標示出預測結果之有效範圍的風力發電預測顯示系統及方法 Still another object of the present invention is to provide a wind power generation prediction display system and method that can indicate the effective range of prediction results.
根據上述目的,本發明提供一種風力發電預測顯示系統,包含:一預測模組,其包含:一輸入資料儲存模組,從複數個伺服器擷取並儲存複數個輸入資料,輸入資料包含至少一風速即時資料及至少一風速歷史資料;一類神經網路學習模組,根據輸入資料,塑模出至少一權重及至少一偏權值;一預測資料運算模組,根據權重及偏權值,對輸入資料進行運算,以得出至少一風速預測資料;一預測資料校正模組,根據一校正值,對風速預測資料進行運算,以得出至少一風速預測校正資料;及一風力發電運算模組,對輸入資料進行運算,以得出一風力發電即時資料及一風力發電歷史資料,對風速預測資料進行運算,以得出一風力發電預測資料, 對風速預測校正資料進行運算,以得出一風力發電預測校正資料;所述風力發電預測顯示系統並包含:一資料庫,接收及儲存輸入資料及/或風速預測資料及/或風速預測校正資料及/或風力發電即時資料及/或風力發電歷史資料及/或風力發電預測資料及/或風力發電預測校正資料;及一使用者操作介面,接收至少一使用者操作條件,並根據使用者操作條件,以顯示輸入資料及/或風速預測資料及/或風速預測校正資料及/或風力發電即時資料及/或風力發電歷史資料及/或風力發電預測資料及/或風力發電預測校正資料。 According to the above object, the present invention provides a wind power forecast display system, including: a prediction module including: an input data storage module, which retrieves and stores a plurality of input data from a plurality of servers, and the input data includes at least one Real-time wind speed data and at least one wind speed historical data; a type of neural network learning module that models at least one weight and at least one partial weight based on the input data; a prediction data calculation module based on the weight and partial weight, Input data for calculation to obtain at least one wind speed prediction data; a prediction data correction module for calculating wind speed prediction data according to a correction value to obtain at least one wind speed prediction correction data; and a wind power calculation module , Calculating input data to obtain real-time wind power data and historical data of wind power, calculating wind speed prediction data to obtain wind power prediction data, The wind speed prediction correction data is calculated to obtain a wind power prediction correction data; the wind power prediction display system further includes: a database that receives and stores input data and / or wind speed prediction data and / or wind speed prediction correction data And / or real-time data of wind power and / or historical data of wind power and / or forecast data of wind power and / or forecast correction data of wind power; and a user operation interface, receiving at least one user operation condition, and according to the user operation Condition to display input data and / or wind speed forecast data and / or wind speed forecast correction data and / or real-time wind power data and / or wind power historical data and / or wind power forecast data and / or wind power forecast correction data.
達到上述目的之實施例中,其中輸入資料包含至少一風速氣象預報即時資料及至少一風速氣象預報歷史資料。 In an embodiment that achieves the above object, the input data includes at least one real-time data of wind speed weather forecast and at least one historical data of wind speed weather forecast.
達到上述目的之實施例中,其中校正值係藉由均方根誤差運算式或平均絕對誤差運算式,對輸入資料及風速預測資料進行運算而得。 In the embodiment for achieving the above purpose, the correction value is obtained by calculating the input data and the wind speed prediction data by using a root mean square error calculation formula or an average absolute error calculation formula.
達到上述目的之實施例中,其中預測模組進一步包含:一預測有效範圍運算模組,根據一預測有效範圍值,對風速預測校正資料進行運算,以得出至少一預測有效範圍資料。 In an embodiment that achieves the above purpose, the prediction module further includes: a prediction effective range calculation module that calculates wind speed prediction correction data according to a predicted effective range value to obtain at least one predicted effective range data.
達到上述目的之實施例中,其中風力發電運算模組對預測有效範圍資料進行運算,以得出風力發電預測有效範圍資料。 In an embodiment that achieves the above purpose, the wind power generation computing module calculates the predicted effective range data to obtain the wind power predicted effective range data.
達到上述目的之實施例中,其中預測有效範圍值係藉由標準差運算式,對輸入資料及/或風速預測資料及/或風速預測校正資料進行運算而得。 In the embodiment that achieves the above purpose, the predicted effective range value is obtained by calculating input data and / or wind speed prediction data and / or wind speed prediction correction data by using a standard deviation calculation formula.
達到上述目的之實施例中,其中預測有效範圍資料包含一預測有效範圍上臨界值資料及一預測有效範圍下臨界值資料,且風力發電預 測有效範圍資料包含一風力發電預測有效範圍上臨界值資料及一風力發電預測有效範圍下臨界值資料。 In the embodiment that achieves the above purpose, the predicted effective range data includes a predicted effective range upper threshold value data and a predicted effective range lower threshold value data, and the wind power generation forecast The measured effective range data includes a critical value data of a wind power forecast effective range and a critical value data of a wind power forecast valid range.
達到上述目的之實施例中,其中當預測有效範圍下臨界值資料為小於零的數值時,預測有效範圍下臨界值資料修改為數值零,且當該風力發電預測有效範圍下臨界值資料為小於零的數值時,該風力發電預測有效範圍下臨界值資料修改為數值零。 In the embodiment that achieves the above purpose, when the critical value data under the predicted effective range is a value less than zero, the critical value data under the predicted effective range is modified to a value of zero, and when the critical value data under the predicted effective range of the wind power generation is less than When the value is zero, the critical value data in the effective range of the wind power forecast is modified to a value of zero.
達到上述目的之實施例中,其中資料庫接收及儲存預測有效範圍資料及風力發電預測有效範圍資料,且使用者操作介面根據使用者操作條件,以顯示輸入資料及/或風速預測資料及/或風速預測校正資料及/或預測有效範圍資料及/或風力發電即時資料及/或風力發電歷史資料及/或風力發電預測資料及/或風力發電預測校正資料及/或風力發電預測有效範圍資料。 In the embodiment that achieves the above purpose, the database receives and stores the predicted effective range data and the wind power predicted effective range data, and the user operation interface displays the input data and / or wind speed prediction data and / or according to the user operating conditions. Wind speed forecast correction data and / or forecast effective range data and / or wind power real-time data and / or wind power historical data and / or wind power forecast data and / or wind power forecast correction data and / or wind power forecast valid range data.
達到上述目的之實施例中,其中所述顯示輸入資料及/或風速預測資料及/或風速預測校正資料及/或預測有效範圍資料及/或風力發電即時資料及/或風力發電歷史資料及/或風力發電預測資料及/或風力發電預測校正資料及/或風力發電預測有效範圍資料,係以圖形方式顯現。 In an embodiment that achieves the above purpose, the display input data and / or wind speed prediction data and / or wind speed prediction correction data and / or prediction effective range data and / or real-time wind power data and / or historical wind power data and / The wind power forecast data and / or wind power forecast correction data and / or wind power forecast effective range data are displayed in a graphical manner.
達到上述目的之實施例中,其中使用者操作條件包含所顯示風場之指示,使用者操作界面根據使用者操作條件,以顯示與所指示之風場相關聯之輸入資料及/或風速預測資料及/或風速預測校正資料及/或風力發電即時資料及/或風力發電歷史資料及/或風力發電預測資料及/或風力發電預測校正資料。 In an embodiment that achieves the above purpose, wherein the user operation condition includes an indication of the displayed wind field, the user operation interface displays input data and / or wind speed prediction data associated with the indicated wind field according to the user operation condition And / or wind speed forecast correction data and / or real-time wind power data and / or wind power historical data and / or wind power forecast data and / or wind power forecast correction data.
達到上述目的之實施例中,其中所顯示風場之指示係顯示複數個風場之指示,使用者操作界面根據使用者操作條件,以顯示與所指示之複數個風場相關聯之輸入資料及/或風速預測資料及/或風速預測校正資料及/或風力發電即時資料的相加值及/或風力發電歷史資料的相加值及/或風力發電預測資料的相加值及/或風力發電預測校正資料的相加值。 In the embodiment that achieves the above purpose, the indication of the displayed wind field is an indication of a plurality of wind fields, and the user operation interface displays the input data associated with the indicated plurality of wind fields and / Or wind speed forecast data and / or wind speed forecast correction data and / or the sum of wind power real-time data and / or the sum of wind power historical data and / or the sum of wind power forecast data and / or wind power The sum of predicted correction data.
根據本發明之目的,再提供一種風力發電預測顯示系統,包含:一預測模組,其包含:一輸入資料儲存模組,從複數個伺服器擷取並儲存複數個輸入資料,輸入資料包含至少一風速即時資料及至少一風速歷史資料;一類神經網路學習模組,根據輸入資料,塑模出至少一權重及至少一偏權值;一預測資料運算模組,根據權重及偏權值,對輸入資料進行運算,以得出至少一風速預測資料;一預測有效範圍運算模組,根據一預測有效範圍值,對風速預測資料進行運算,以得出至少一預測有效範圍資料;及一風力發電運算模組,對輸入資料進行運算,以得出一風力發電即時資料及一風力發電歷史資料,對風速預測資料進行運算,以得出一風力發電預測資料,對預測有效範圍資料進行運算,以得出一風力發電預測有效範圍資料;所述風力發電預測顯示系統並包含:一資料庫,接收及儲存輸入資料及/或風速預測資料及/或預測有效範圍資料及/或風力發電即時資料及/或風力發電歷史資料及/或風力發電預測資料及/或風力發電預測有效範圍資料;及一使用者操作介面,接收至少一使用者操作條件,並根據使用者操作條件,以顯示輸入資料及/或風速預測資料及/或預測有效範圍資料及/或風力發電即時資料及/或風力發電歷史資料及/或風力發電預測資料及/ 或風力發電預測有效範圍資料。 According to the purpose of the present invention, a wind power forecast display system is further provided, including: a prediction module including: an input data storage module that retrieves and stores a plurality of input data from a plurality of servers, and the input data includes at least A wind speed real-time data and at least one wind speed historical data; a type of neural network learning module, based on the input data, molds at least one weight and at least one partial weight; a prediction data calculation module, based on the weight and partial weight, Calculate input data to obtain at least one wind speed prediction data; a prediction effective range calculation module to calculate wind speed prediction data according to a predicted effective range value to obtain at least one predicted effective range data; and a wind force The power generation computing module calculates input data to obtain real-time wind power data and historical wind power data, calculates wind speed prediction data to obtain wind power prediction data, and calculates valid range data. To obtain a wind power forecast effective range data; the wind power forecast display system and Including: a database that receives and stores input data and / or wind speed forecast data and / or forecast effective range data and / or real-time wind power data and / or wind power historical data and / or wind power forecast data and / or wind power Predicting effective range data; and a user operation interface, receiving at least one user operating condition, and displaying input data and / or wind speed prediction data and / or predicted effective range data and / or wind power generation in real time according to the user operating condition Data and / or historical data on wind power and / or forecast data on wind power and / Or wind power forecast valid range data.
達到上述目的之實施例中,其中輸入資料包含至少一風速氣象預報即時資料及至少一風速氣象預報歷史資料。 In an embodiment that achieves the above object, the input data includes at least one real-time data of wind speed weather forecast and at least one historical data of wind speed weather forecast.
達到上述目的之實施例中,其中預測有效範圍值係藉由標準差運算式,對輸入資料及風速預測資料進行運算而得。 In the embodiment that achieves the above purpose, the predicted effective range value is obtained by calculating input data and wind speed prediction data by using a standard deviation calculation formula.
達到上述目的之實施例中,其中預測有效範圍資料包含一預測有效範圍上臨界值資料及一預測有效範圍下臨界值資料,且風力發電預測有效範圍資料包含一風力發電預測有效範圍上臨界值資料及一風力發電預測有效範圍下臨界值資料。 In an embodiment that achieves the above purpose, the predicted effective range data includes a predicted effective range upper threshold data and a predicted effective range lower threshold data, and the wind power predicted effective range data includes a wind power predicted effective range upper threshold data. And a critical value data of the effective range of wind power forecast.
達到上述目的之實施例中,其中當預測有效範圍下臨界值資料為小於零的數值時,預測有效範圍下臨界值資料修改為數值零,且當風力發電預測有效範圍下臨界值資料為小於零的數值時,風力發電預測有效範圍下臨界值資料修改為數值零。 In the embodiment that achieves the above purpose, when the critical value data under the predicted effective range is a value less than zero, the critical value data under the predicted effective range is modified to a value of zero, and when the critical value data under the predicted effective range of the wind power generation is less than zero The value of the critical value data in the valid range of the wind power forecast is modified to a value of zero.
達到上述目的之實施例中,其中所述顯示輸入資料及/或風速預測資料及/或預測有效範圍資料及/或風力發電即時資料及/或風力發電歷史資料及/或風力發電預測資料及/或風力發電預測有效範圍資料,係以圖形方式顯現。 In an embodiment that achieves the above purpose, the display input data and / or wind speed prediction data and / or predicted effective range data and / or real-time wind power data and / or historical wind power data and / or wind power prediction data and / Or the effective range data of wind power forecast are displayed graphically.
達到上述目的之實施例中,其中使用者操作條件包含所顯示風場之指示,使用者操作界面根據使用者操作條件,以顯示與所指示之風場相關聯之輸入資料及/或風速預測資料及/或預測有效範圍資料及/或風力發電即時資料及/或風力發電歷史資料及/或風力發電預測資料及/或風力發 電預測有效範圍資料。 In an embodiment that achieves the above purpose, wherein the user operation condition includes an indication of the displayed wind field, the user operation interface displays input data and / or wind speed prediction data associated with the indicated wind field according to the user operation condition. And / or forecast effective range data and / or real-time data of wind power and / or historical data of wind power and / or forecast data of wind power and / or wind power Electric forecast effective range data.
根據本發明之目的,其中所顯示風場之指示係顯示複數個風場之指示,使用者操作界面根據使用者操作條件,以顯示與所指示之複數個風場相關聯之輸入資料及/或風速預測資料及/或預測有效範圍資料及/或風力發電即時資料的相加值及/或風力發電歷史資料的相加值及/或風力發電預測資料的相加值及/或風力發電預測有效範圍資料的相加值。 According to the purpose of the present invention, the indication of the displayed wind field is an indication of displaying a plurality of wind fields, and the user operation interface displays the input data associated with the indicated plurality of wind fields and / or according to the operating conditions of the user. Wind speed forecast data and / or forecast effective range data and / or wind power real-time data added value and / or wind power historical data added value and / or wind power forecast data added value and / or wind power forecast effective The sum of the range data.
根據本發明之目的,再提供一種風力發電預測方法,包含:自複數個伺服器擷取複數個輸入資料,輸入資料包含至少一風速即時資料及至少一風速歷史資料;以輸入資料塑模出一類神經網路模型的至少一權重及至少一偏權值;根據權重及偏權值,藉由類神經網路模型對輸入資料進行運算,以得出至少一風速預測資料;根據一校正值,對風速預測資料進行運算,以得出至少一風速預測校正資料;根據一預測有效範圍值,對風速預測校正資料進行運算,以得出至少一預測有效範圍資料;對該風速預測校正資料進行運算,以得出至少一風力發電預測校正資料;及對該預測有效範圍資料進行運算,以得出至少一風力發電預測有效範圍資料。 According to the purpose of the present invention, a wind power generation prediction method is further provided. The method includes: extracting a plurality of input data from a plurality of servers, and the input data includes at least one real-time wind speed data and at least one historical wind speed data; At least one weight and at least one partial weight of the neural network model; according to the weight and partial weight, the input data is calculated by the neural network-like model to obtain at least one wind speed prediction data; according to a correction value, the Calculate the wind speed prediction data to obtain at least one wind speed prediction correction data; operate on the wind speed prediction correction data according to a predicted effective range value to obtain at least one prediction effective range data; perform calculation on the wind speed prediction correction data, To obtain at least one wind power forecast correction data; and to perform calculation on the predicted effective range data to obtain at least one wind power forecast effective range data.
達到上述目的之實施例中,其中輸入資料包含至少一風速氣象預報即時資料及至少一風速氣象預報歷史資料。 In an embodiment that achieves the above object, the input data includes at least one real-time data of wind speed weather forecast and at least one historical data of wind speed weather forecast.
達到上述目的之實施例中,其中校正值係藉由均方根誤差運算式或平均絕對誤差運算式,對輸入資料及風速預測資料進行運算而得。 In the embodiment for achieving the above purpose, the correction value is obtained by calculating the input data and the wind speed prediction data by using a root mean square error calculation formula or an average absolute error calculation formula.
達到上述目的之實施例中,其中預測有效範圍值係藉由標準差運算式,對輸入資料及/或風速預測資料及/或風速預測校正資料進行運算 而得。 In an embodiment that achieves the above purpose, the predicted effective range value is calculated by using a standard deviation calculation formula on input data and / or wind speed prediction data and / or wind speed prediction correction data. And get.
達到上述目的之實施例中,其中預測有效範圍資料包含一預測有效範圍上臨界值資料及一預測有效範圍下臨界值資料,且風力發電預測有效範圍資料包含一風力發電預測有效範圍上臨界值資料及一風力發電預測有效範圍下臨界值資料。 In an embodiment that achieves the above purpose, the predicted effective range data includes a predicted effective range upper threshold data and a predicted effective range lower threshold data, and the wind power predicted effective range data includes a wind power predicted effective range upper threshold data. And a critical value data of the effective range of wind power forecast.
達到上述目的之實施例中,其中當預測有效範圍下臨界值資料為小於零的數值時,預測有效範圍下臨界值資料修改為數值零,且當風力發電預測有效範圍下臨界值資料為小於零的數值時,該風力發電預測有效範圍下臨界值資料修改為數值零。 In the embodiment that achieves the above purpose, when the critical value data under the predicted effective range is a value less than zero, the critical value data under the predicted effective range is modified to a value of zero, and when the critical value data under the predicted effective range of the wind power generation is less than zero The value of the critical value in the valid range of the wind power forecast is modified to a value of zero.
本發明前述各方面及其它方面依據下述的非限制性具體實施例詳細說明以及參照附隨的圖式將更趨於明瞭。 The foregoing aspects and other aspects of the present invention will become more apparent from the detailed description of the following non-limiting specific embodiments and with reference to the accompanying drawings.
100‧‧‧類神經網路系統 100‧‧‧ class neural network system
210‧‧‧訓練資料 210‧‧‧ training materials
220‧‧‧資料伺服器 220‧‧‧Data Server
230‧‧‧風力發電預測顯示系統 230‧‧‧wind power forecast display system
250‧‧‧預測模組 250‧‧‧ Prediction Module
252‧‧‧輸入資料儲存模組 252‧‧‧Input data storage module
254‧‧‧類神經網路學習模組 254‧‧‧ class neural network learning module
256‧‧‧預測資料運算模組 256‧‧‧ Forecast Data Operation Module
257‧‧‧預測資料校正模組 257‧‧‧ Forecast data correction module
258‧‧‧預測有效範圍運算模組 258‧‧‧ Prediction valid range calculation module
259‧‧‧風力發電運算模組 259‧‧‧wind power computing module
260‧‧‧使用者操作介面 260‧‧‧user interface
262‧‧‧操作模組 262‧‧‧operation module
264‧‧‧預測資料顯示模組 264‧‧‧ Forecast data display module
270‧‧‧資料庫 270‧‧‧Database
280‧‧‧使用者 280‧‧‧users
300‧‧‧流程圖 300‧‧‧flow chart
310-360‧‧‧步驟 310-360‧‧‧step
400‧‧‧風速預測系統 400‧‧‧wind speed prediction system
401‧‧‧目前風速 401‧‧‧current wind speed
402‧‧‧前1小時風速 402‧‧‧The first hour wind speed
403‧‧‧前2小時風速 403‧‧‧First 2 hours wind speed
404‧‧‧1小時後之風速氣象預報 Wind speed weather forecast after 404‧‧‧1 hour
405‧‧‧2小時後之風速氣象預報 Wind speed weather forecast after 405‧‧‧2 hours
406‧‧‧3小時後之風速氣象預報 Weather forecast for 406‧‧‧3 hours later
410‧‧‧類神經網路 410‧‧‧ class neural network
422‧‧‧1小時後預測風速 422‧‧‧1 hour forecast wind speed
424‧‧‧2小時後預測風速 424‧‧‧2 hours forecast wind speed
426‧‧‧3小時後預測風速 426‧‧‧3 hours forecast wind speed
428‧‧‧48小時後預測風速 428‧‧‧48 hours forecast wind speed
429‧‧‧校正值 429‧‧‧corrected value
430‧‧‧校正模組 430‧‧‧ Calibration Module
442‧‧‧1小時後預測校正風速 Predicted corrected wind speed after 442‧‧‧1 hour
444‧‧‧2小時後預測校正風速 Predicted corrected wind speed after 444‧‧‧2 hours
446‧‧‧3小時後預測校正風速 446‧‧‧3 hours after forecasting corrected wind speed
448‧‧‧48小時後預測校正風速 Predicted corrected wind speed after 448‧‧‧48 hours
449‧‧‧有效範圍值 449‧‧‧Valid range value
450‧‧‧預測有效範圍運算模組 450‧‧‧ Prediction Effective Range Calculation Module
462‧‧‧1小時後預測風速有效範圍 Effective range of forecast wind speed after 462‧‧‧1 hour
464‧‧‧2小時後預測風速有效範圍 Effective range of predicted wind speed after 464‧‧‧2 hours
466‧‧‧3小時後預測風速有效範圍 Effective range of predicted wind speed after 466‧‧‧3 hours
468‧‧‧48小時後預測風速有效範圍 Effective range of predicted wind speed after 468‧‧‧48 hours
500‧‧‧風速預測系統 500‧‧‧wind speed prediction system
520‧‧‧風速發電轉換曲線類神經網路模型 520‧‧‧Wind-speed power generation conversion curve-like neural network model
540‧‧‧類神經網路 540‧‧‧ class neural network
542‧‧‧風速 542‧‧‧wind speed
544‧‧‧風力發電量 544‧‧‧Wind power generation
610‧‧‧縱軸 610‧‧‧Vertical axis
620‧‧‧橫軸 620‧‧‧horizontal axis
631‧‧‧風力發電歷史預測校正資料 631‧‧‧ historical forecast correction data
632‧‧‧風力發電歷史觀測資料 632‧‧‧Historical observation data of wind power generation
633‧‧‧風力發電歷史預測有效範圍上臨界值資料 633‧‧‧ Upper threshold data of historical forecast effective range of wind power generation
634‧‧‧風力發電歷史預測有效範圍下臨界值資料 634‧‧‧Critical data of the lower limit of historical forecast effective range of wind power generation
635‧‧‧風力發電預測校正資料 635‧‧‧ Wind power forecast correction data
636‧‧‧風力發電預測有效範圍上臨界值資料 636‧‧‧ Upper threshold data of the effective range of wind power forecast
637‧‧‧風力發電預測有效範圍下臨界值資料 637‧‧‧Critical data of the lower limit of wind power forecast effective range
638‧‧‧風力發電預測觀測資料 638‧‧‧ Forecast data of wind power generation
第一圖為一般類神經網路系統的示意圖。 The first figure is a schematic diagram of a general neural network system.
第二圖為本發明風力發電預測顯示系統一具體實施例的系統架構圖。 The second figure is a system architecture diagram of a specific embodiment of a wind power forecast display system according to the present invention.
第三圖為本發明風力發電預測方法一具體實施例之流程圖。 The third figure is a flowchart of a specific embodiment of the wind power prediction method of the present invention.
第四A圖為本發明風速預測一具體實施例的系統模型圖。 FIG. 4A is a system model diagram of a specific embodiment of wind speed prediction according to the present invention.
第四B圖為本發明風速預測另一具體實施例的系統模型圖。 FIG. 4B is a system model diagram of another specific embodiment of wind speed prediction according to the present invention.
第五圖為建構風速發電轉換曲線一具體實施例的系統模型圖。 The fifth figure is a system model diagram of a specific embodiment for constructing a wind speed power generation conversion curve.
第六圖為本發明風力發電預測顯示系統一具體實施例的預 測結果顯示之示意圖。 The sixth figure is a preview of a specific embodiment of the wind power forecast display system of the present invention. Schematic representation of test results.
本發明之風力發電預測顯示系統及其方法,係利用類神經網路具有在不需要提供轉換的數學函示條件下,即可學習輸入資料與輸出資料之關係的特性,先以大量訓練資料對類神經網路進行訓練,以塑模出各個輸入節點與各個隱藏層神經元的權重、各個隱藏層神經元與輸出節點之權重,及各個節點的偏權值,而後配合即時擷取的風速資料作為各個輸入節點的輸入資料,以進行風速預測,並藉由所得之預測風速,透過風速發電轉換曲線計算出預測風力發電量。以下將配合圖示進一步說明。 The wind power generation prediction display system and method of the present invention utilize the characteristics of a neural network that can learn the relationship between input data and output data without providing a mathematical function for conversion. Neural network-like training to model the weights of each input node and each hidden layer neuron, the weights of each hidden layer neuron and output node, and the partial weights of each node, and then cooperate with real-time retrieved wind speed data As input data of each input node, wind speed prediction is performed, and based on the obtained predicted wind speed, a predicted wind power generation amount is calculated through a wind speed power generation conversion curve. The following will be further explained with the illustration.
第一圖為一般類神經網路系統的示意圖。本發明之風力發電預測顯示系統,係利用如圖示之類神經網路系統100進行訓練,以塑模出各個權重及各個偏權值,於圖示中,類神經網路系統100在第一層具有輸入節點S1、輸入節點S2,在第二層具有隱藏層神經元S3、隱藏層神經元S4、隱藏層神經元S5,在第三層具有輸出節點S6。 The first figure is a schematic diagram of a general neural network system. The wind power generation prediction display system of the present invention is trained by using a neural network system 100 such as shown in the figure to model each weight and each partial weight. In the figure, the neural network-like system 100 is in the first place. The layer has an input node S1, an input node S2, a hidden layer neuron S3, a hidden layer neuron S4, a hidden layer neuron S5 in the second layer, and an output node S6 in the third layer.
應了解類神經網路系統100在此僅為例示,本發明並不限於使用單層的隱藏層神經元,而係可視需求使用一至多層的隱藏層神經元。類神經網路系統100之輸入節點個數、隱藏層神經元個數、輸出節點個數,亦非可限制本發明,本發明之輸入節點個數、隱藏層神經元個數、輸出節點個數可視情況調整為任意個數。 It should be understood that the neural network system 100 is only an example here. The present invention is not limited to using a single layer of hidden layer neurons, but may use one to multiple layers of hidden layer neurons as required. The number of input nodes, the number of hidden layer neurons, and the number of output nodes of the neural network system 100 are not intended to limit the present invention. The number of input nodes, the number of hidden layer neurons, and the number of output nodes of the present invention It can be adjusted to any number as required.
請繼續參考第一圖,類神經網路系統100的各個輸入節點與各個隱藏層神經元均有相對應的權重,例如輸入節點S1與隱藏層神經元S5
具有一權重W15,輸入節點S2與隱藏層神經元S5具有一權重W25。同時,類神經網路系統100的各個隱藏層神經元與輸出節點亦有相對應的權重,例如隱藏層神經元S3與輸出節點S6具有一權重W36,隱藏層神經元S5與輸出節點S6具有一權重W56。此外,各個輸入節點、隱藏層神經元及輸出節點均具有各自的偏權值,例如輸入節點S2具有偏權值θ2,隱藏層神經元S5具有偏權值θ5,輸出節點S6具有偏權值θ6。而一節點傳輸至下個節點的傳輸數值之計算方式如下,假設共有n個節點將各自的傳輸數值傳輸至一節點Y,則節點Y傳輸至下一節點的傳輸數值y之公式為:
以節點S5為例,輸入節點S1與隱藏層神經元S5所對應的權重為W15,輸入節點S2與隱藏層神經元S5所對應的權重為W25,而隱藏層神經元S5的偏權值為θ5。設輸入節點S1傳輸至隱藏層神經元S5的傳輸數值為X1,而輸入節點S2傳輸至隱藏層神經元S5的傳輸數值為X2,則隱藏層神經元S5傳輸至輸出節點S6的傳輸數值為:(W15.X1+W25.X2)-θ5 Taking node S5 as an example, the weight corresponding to input node S1 and hidden layer neuron S5 is W15, the weight corresponding to input node S2 and hidden layer neuron S5 is W25, and the partial weight of hidden layer neuron S5 is θ5 . Let the transmission value of input node S1 to hidden layer neuron S5 be X1, and the transmission value of input node S2 to hidden layer neuron S5 be X2, then the transmission value of hidden layer neuron S5 to output node S6 is: (W15.X1 + W25.X2) -θ5
在訓練類神經網路系統100的過程中,首先以大量已知的輸入資料及輸出資料作為訓練用的輸入資料與輸出資料,對類神經網路系統100進行訓練,藉此塑模出各個權重及各個偏權值。傳統上可採用傳統梯度 下降演算法以修正各個權重。在塑模出各個權重及各個偏權值後,即可利用類神經網路系統100,以即時的輸入資料,進行輸出資料的預測。 In the process of training the neural network system 100, a large amount of known input data and output data are first used as training input data and output data to train the neural network system 100, thereby modeling each weight And each partial weight. Traditional gradient The descent algorithm is used to correct the individual weights. After modeling the weights and partial weights, the neural network system 100 can be used to predict the output data with real-time input data.
第二圖為本發明風力發電預測顯示系統一具體實施例的系統架構圖,如圖所示,風力發電預測顯示系統230包含一預測模組250;一使用者操作介面260;及一資料庫270。其中預測模組250包含一輸入資料儲存模組252,用以至複數個伺服器擷取及儲存輸入資料,該輸入資料至少包含風速即時資料及風速歷史資料;一類神經網路學習模組254,根據儲存於輸入資料儲存模組252的輸入資料,以塑模出至少一權重及至少一偏權值;一預測資料運算模組256,根據類神經網路學習模組254所塑模出之權重及偏權值,對輸入資料進行運算,以得出預測資料,其中預測資料至少包含風速預測資料;一預測資料校正模組257,根據一校正值,對風速預測資料進行運算,以得出風速預測校正資料;及一預測有效範圍運算模組258,根據一預測有效範圍值,對風速預測資料及/或風速預測校正資料進行運算,以得出預測有效範圍資料。其中權重、偏權值、風速預測資料、風速預測校正資料及有效範圍資料均儲存至資料庫270。使用者操作介面260包含一操作模組262,接收使用者操作條件,該使用者操作條件包含使用者280所選定瀏覽之預測資料及/或歷史資料及/或有效範圍資料;及一預測資料顯示模組264,根據使用者操作條件,至資料庫270擷取選定瀏覽之預測資料及/或歷史資料及/或有效範圍資料,並顯示該些選定瀏覽之預測資料及/或歷史資料及/或有效範圍資料,以供使用者280瀏覽。 The second figure is a system architecture diagram of a specific embodiment of the wind power forecast display system according to the present invention. As shown, the wind power forecast display system 230 includes a forecast module 250; a user operation interface 260; and a database 270 . The prediction module 250 includes an input data storage module 252 for capturing and storing input data to a plurality of servers, and the input data includes at least real-time wind speed data and historical wind speed data; a type of neural network learning module 254, according to The input data stored in the input data storage module 252 is used to mold at least one weight and at least one partial weight; a predictive data operation module 256 is used to model the weights and Partial weights are calculated on the input data to obtain prediction data, where the prediction data includes at least wind speed prediction data; a prediction data correction module 257 calculates wind speed prediction data based on a correction value to obtain a wind speed prediction Correction data; and a prediction effective range calculation module 258, which calculates wind speed prediction data and / or wind speed prediction correction data according to a predicted effective range value to obtain predicted effective range data. The weights, partial weights, wind speed prediction data, wind speed prediction correction data, and effective range data are all stored in the database 270. The user operation interface 260 includes an operation module 262 for receiving user operation conditions, and the user operation conditions include prediction data and / or historical data and / or valid range data selected by the user 280 for browsing; and a prediction data display Module 264, according to user operating conditions, go to the database 270 to retrieve the forecast data and / or historical data and / or effective range data of the selected browse, and display the forecast data and / or historical data of the selected browse and / or Valid range data for user 280 to view.
其中,預測模組250係藉由大量的訓練資料210對類神經網路 學習模組254進行訓練,藉此塑模出各個權重及各個偏權值。接著,由輸入資料儲存模組252定期至一或多個資料伺服器220擷取各類所需的即時資料並儲存,再由預測資料運算模組256將儲存在輸入資料儲存模組252的資料作為輸入資料,並依據類神經網路學習模組254塑模出的各個權重及各個偏權值,以進一步運算出預測資料,並透過資料庫270儲存該些預測資料。使用者可透過操作模組262決定欲顯示的預測資料及/或歷史資料及/或預測有效範圍資料的範圍,而後,使用者操作介面260將根據使用者選取的預測資料範圍,至資料庫270擷取該些預測資料及/或歷史資料及/或預測有效範圍資料,並透過預測資料顯示模組264將該些預測資料及/或歷史資料呈現給使用者。 Among them, the prediction module 250 is a 210-pair neural network with a large amount of training data. The learning module 254 performs training, thereby modeling each weight and each partial weight. Then, the input data storage module 252 periodically retrieves and stores various types of required real-time data to one or more data servers 220, and then the predicted data calculation module 256 stores the data stored in the input data storage module 252. As input data, the weights and partial weights modeled by the neural network learning module 254 are used to further calculate the prediction data, and the prediction data is stored through the database 270. The user can determine the range of the predicted data and / or historical data and / or predicted effective range data to be displayed through the operation module 262. Then, the user operation interface 260 will go to the database 270 according to the predicted data range selected by the user. Retrieve the prediction data and / or historical data and / or prediction effective range data, and present the prediction data and / or historical data to the user through the prediction data display module 264.
第三圖為本發明風力發電預測方法一具體實施例之流程圖。圖中之風速預測方法流程圖300,包含以下步驟:首先,進行步驟310,自複數個伺服器擷取輸入資料。於本實施例中,在步驟310處所擷取之輸入資料包含風速即時資料、風速歷史資料、風速氣象預報即時資料及風速氣象預報歷史資料。 The third figure is a flowchart of a specific embodiment of the wind power prediction method of the present invention. The flowchart 300 of the wind speed prediction method in the figure includes the following steps: First, step 310 is performed to retrieve input data from a plurality of servers. In this embodiment, the input data retrieved at step 310 includes real-time wind speed data, historical wind speed data, real-time wind speed weather forecast data, and historical wind speed weather forecast data.
在完成步驟310後,則進行步驟320,以輸入資料塑模出類神經網路的權重及偏權值。在本實施例中,類神經網路之輸入節點為目前風速、前1小時風速、前2小時風速、1小時後之風速氣象預報、2小時後之風速氣象預報,以及3小時後之風速氣象預報。隱藏層神經元個數為5至20個。類神經網路之輸出節點則為1至48小時後之預測風速。接著,進行步驟330,以塑模出之權重及偏權值依類神經網路模型進行預測運算。即可得出1至48 小時後之風速預測資料。 After step 310 is completed, step 320 is performed to model the weights and partial weights of the neural network-like model based on the input data. In this embodiment, the input nodes of the neural network are the current wind speed, the first hour wind speed, the first two hours wind speed, the wind speed weather forecast after one hour, the wind speed weather forecast after two hours, and the wind speed weather forecast after three hours. forecast. The number of hidden neurons is 5 to 20. The output node of the neural network is the predicted wind speed after 1 to 48 hours. Next, step 330 is performed to perform prediction operation according to the neural network model based on the modeled weights and partial weights. Gives 1 to 48 Wind speed forecast data in hours.
應了解,在此所述之輸入節點個數、隱藏層神經元個數、輸出節點個數,並非可限制本發明,本發明之輸入節點個數、隱藏層神經元個數、輸出節點個數可視情況調整為任意個數。同時,本發明並非僅可用於預測1至48小時後之風速,而係可視需求進行至少數小時至數天、週的風速預測。此外,預測之時間間隔並非僅可限制為1小時,而係可視需求將預測之時間間隔設為每隔數分鐘或數小時或數天進行一次預測。 It should be understood that the number of input nodes, the number of hidden layer neurons, and the number of output nodes described herein are not intended to limit the present invention. The number of input nodes, the number of hidden layer neurons, and the number of output nodes of the present invention It can be adjusted to any number as required. At the same time, the present invention is not only used to predict the wind speed after 1 to 48 hours, but it can be used to predict wind speed for at least several hours to several days and weeks according to demand. In addition, the time interval for forecasting is not limited to only one hour, but the time interval for forecasting can be set to make a forecast every few minutes or hours or days according to demand.
在完成步驟330後,即進行步驟340,計算出校正值,並以校正值進一步校正預測結果。在一具體實施例中,校正值係以均方根誤差(RMSE:Root Mean Square Error)運算式計算而得。均方根誤差運算式之公式為:
在另一具體實施例中,校正值係以平均絕對誤差(MAE:Mean Absolute Error)運算式計算而得。平均絕對誤差運算式之公式為:
在完成步驟340後,即進行步驟350,計算出有效範圍值,並以有效範圍值運算出預測有效範圍。其中,預測有效範圍包含預測有效範圍上臨界值及預測有效範圍下臨界值。在一具體實施例中,有效範圍值係以標準差(σ:Standard Deviation)運算式計算而得。標準差運算式之公式為:
在另一具體實施例中,係針對風速預測校正資料進行預測有 效範圍的運算。在此具體實施例中,係以標準差運算式,針對2016年2月至2016年7月之所有具有相同的1小時後風速預測校正值之風速預測校正資料及該時間所測得之風速觀測值進行運算,藉此得出1小時後預測校正風速之標準差值,並以此作為1小時後風速預測校正資料之有效範圍值。例如針對2016年2月至2016年7月之所有1小時後風速預測校正值為C之風速預測校正資料及該時間所測得之風速觀測值進行運算,即可得到1小時後風速預測校正值為C的風速預測校正資料之標準差,並以此作為1小時後風速預測校正值為C的1小時後風速預測校正資料之有效範圍值。而針對2016年2月至2016年7月之所有1小時後風速預測校正值為D之風速預測校正資料及該時間所測得之風速觀測值進行運算,即可得到1小時後風速預測校正值為D的風速預測校正資料之標準差,並以此作為1小時後風速預測校正值為D的1小時後風速預測校正資料之有效範圍值。而後,在計算出1小時後風速預測校正資料之有效範圍值後,將1小時後之風速預測校正值,加上1小時後風速預測校正資料之有效範圍值的兩倍,即為1小時後之預測校正風速的預測有效範圍上臨界值。將1小時後之風速校正預測值,減去1小時後風速預測校正資料之有效範圍值的兩倍,即為1小時後之預測校正風速的預測有效範圍下臨界值。應注意的是,當預測有效範圍下臨界值小於零時,將該小於零之預測有效範圍下臨界值修改為零。藉由上述之方式,即可計算出1小時後風速預測校正資料至48小時後風速預測校正資料各自的有效範圍值,並可進一步計算出1至48小時後風速預測校正資料各自的預測有效範圍上臨界值資料及預測有效範圍下臨界值資料。 In another specific embodiment, the prediction is performed on the wind speed prediction correction data. Effective range calculation. In this specific embodiment, the standard deviation calculation formula is used for all wind speed prediction correction data from February 2016 to July 2016 that have the same wind speed prediction correction value after one hour and the wind speed observations measured at that time. The value is calculated to obtain the standard deviation of the predicted and corrected wind speed after one hour, and this is used as the effective range value of the predicted and corrected wind speed after one hour. For example, for all the wind speed forecast correction data of C and the wind speed observation correction value measured at that time from February 2016 to July 2016, one can obtain the wind speed forecast correction value after one hour. It is the standard deviation of the wind speed prediction correction data of C, and this is taken as the effective range value of the wind speed prediction correction data of 1 hour after the wind speed prediction correction value of C. And for all wind speed forecast correction data of D from 1st February 2016 to July 2016, the wind speed prediction correction data D and the wind speed observation value measured at that time are calculated to obtain the wind speed prediction correction value after 1 hour. The standard deviation of the wind speed prediction correction data for D is used as the effective range value of the wind speed prediction correction data for D after 1 hour. Then, after calculating the effective range value of the wind speed prediction correction data after one hour, the wind speed prediction correction value after one hour is added to twice the effective range value of the wind speed prediction correction data after one hour, which is one hour later. The critical value of the forecast effective range of the forecast corrected wind speed. The predicted value of the wind speed correction after 1 hour is subtracted from the effective range value of the wind speed prediction correction data after 1 hour, which is the lower critical value of the predicted effective range of the prediction correction wind speed after 1 hour. It should be noted that when the lower critical value of the predicted effective range is less than zero, the lower critical value of the predicted effective range less than zero is modified to zero. In this way, the effective range values of the wind speed prediction correction data after 1 hour to the wind speed prediction correction data after 48 hours can be calculated, and the respective prediction effective ranges of the wind speed prediction correction data after 1 to 48 hours can be calculated. Upper critical value data and lower critical value data of the forecast effective range.
在完成步驟350後,即進行步驟360,利用風速發電轉換曲線計算出風力發電預測結果,其中代表風速與發電量之關係的風速發電轉換曲線係由風機廠商所提供。同時,並可於長期使用風機而導致風機之風速發電轉換曲線失準時,以類神經網路系統塑模出風速發電轉換曲線。而透過風機之風速發電轉換曲線,即可以1至48小時後之風速預測資料運算出1至48小時後之風力發電預測資料,以1至48小時後之風速預測校正資料運算出1至48小時後之風力發電預測校正資料,以1至48小時後之預測有效範圍上臨界值資料運算出1至48小時後之風力發電預測有效範圍上臨界值資料,以1至48小時後之預測有效範圍下臨界值資料運算出1至48小時後之風力發電預測有效範圍下臨界值資料。應注意的是,當風力發電預測有效範圍下臨界值小於零時,將該小於零之風力發電預測有效範圍下臨界值修改為零。 After step 350 is completed, step 360 is performed, and the wind power generation prediction result is calculated by using the wind speed power generation conversion curve, wherein the wind speed power generation conversion curve representing the relationship between the wind speed and the power generation amount is provided by the wind turbine manufacturer. At the same time, when the wind speed power generation conversion curve of the fan is inaccurate due to long-term use of the fan, the neural speed-like system can be used to mold the wind speed power generation conversion curve. And through the wind speed power generation conversion curve of the fan, the wind speed prediction data from 1 to 48 hours can be used to calculate the wind power prediction data from 1 to 48 hours, and the wind speed prediction correction data from 1 to 48 hours can be used to calculate 1 to 48 hours. For the subsequent wind power forecast correction data, the upper critical value data of the wind power forecast effective range after 1 to 48 hours is calculated based on the forecast effective range upper threshold data of 1 to 48 hours, and the forecast valid range after 1 to 48 hours is calculated. The lower critical value data calculates the lower critical value data of the valid range of wind power generation prediction after 1 to 48 hours. It should be noted that when the critical value of the effective range of the wind power forecast is less than zero, the critical value of the effective range of the wind power forecast less than zero is modified to zero.
第四A圖為本發明風速預測一具體實施例的系統模型圖。圖中之風速預測系統400係由已訓練完成之類神經網路410進行1至48小時後的風速預測。首先以目前風速401、前1小時風速402、前2小時風速403、1小時後之風速氣象預報404、2小時後之風速氣象預報405,以及3小時後之風速氣象預報406做為輸入資料,透過類神經網路410運算出1小時後預測風速422、2小時後預測風速424、3小時後預測風速426,至48小時後預測風速428。接著,由校正模組430透過均方根誤差運算式或平均絕對誤差運算式運算出校正值429,並藉由校正值429針對1至48小時後預測風速進行校正,以得出1小時後預測校正風速442、2小時後預測校正風速444、3小時後預測 校正風速446,至48小時後預測校正風速448。而後,由預測有效範圍運算模組450透過標準差運算式運算出有效範圍值449,並以有效範圍值449針對1至48小時後預測校正風速進行運算,以得出1小時後預測風速有效範圍462、2小時後預測風速有效範圍464、3小時後預測風速有效範圍466,至48小時後預測風速有效範圍468。 FIG. 4A is a system model diagram of a specific embodiment of wind speed prediction according to the present invention. The wind speed prediction system 400 in the figure is a wind speed prediction after 1 to 48 hours by a trained neural network 410. First, the current wind speed 401, the wind speed 402 in the first hour, the wind speed 403 in the first two hours, the wind speed weather forecast 404 in one hour, the wind speed weather forecast 405 in two hours, and the wind speed weather forecast 406 in three hours are used as input data. A neural network 410 is used to calculate the predicted wind speed 422 after 1 hour, the predicted wind speed 424 after 2 hours, the predicted wind speed 426 after 3 hours, and the predicted wind speed 428 after 48 hours. Then, the correction module 430 calculates a correction value 429 through a root mean square error calculation formula or an average absolute error calculation formula, and corrects the predicted wind speed from 1 to 48 hours by using the correction value 429 to obtain a prediction after 1 hour. Corrected wind speed 442, predicted after 2 hours Corrected wind speed 444, predicted after 3 hours The corrected wind speed is 446, and the predicted wind speed is 448 after 48 hours. Then, the prediction effective range calculation module 450 calculates the effective range value 449 through the standard deviation calculation formula, and uses the effective range value 449 to calculate the predicted and corrected wind speed after 1 to 48 hours to obtain the effective range of the predicted wind speed after 1 hour. 462, the effective range of the predicted wind speed after 2 hours is 464, the effective range of the predicted wind speed after 3 hours is 466, and the effective range of the predicted wind speed after 48 hours is 468.
第四B圖為本發明風速預測另一具體實施例的系統模型圖。圖中之風速預測系統500係由已訓練完成之類神經網路410進行1至48小時後的風速預測。首先以目前風速401、前1小時風速402、前2小時風速403、1小時後之風速氣象預報404、2小時後之風速氣象預報405,以及3小時後之風速氣象預報406做為輸入資料,透過類神經網路410運算出1小時後預測風速422、2小時後預測風速424、3小時後預測風速426,至48小時後預測風速428。接著,由預測有效範圍運算模組450透過標準差運算式運算出有效範圍值449,並以有效範圍值449針對1至48小時後預測風速進行運算,以得出1小時後預測風速有效範圍462、2小時後預測風速有效範圍464、3小時後預測風速有效範圍466,至48小時後預測風速有效範圍468。 FIG. 4B is a system model diagram of another specific embodiment of wind speed prediction according to the present invention. The wind speed prediction system 500 in the figure is a wind speed prediction after 1 to 48 hours by a trained neural network 410 or the like. First, the current wind speed 401, the wind speed 402 in the first hour, the wind speed 403 in the first two hours, the wind speed weather forecast 404 in one hour, the wind speed weather forecast 405 in two hours, and the wind speed weather forecast 406 in three hours are used as input data. A neural network 410 is used to calculate the predicted wind speed 422 after 1 hour, the predicted wind speed 424 after 2 hours, the predicted wind speed 426 after 3 hours, and the predicted wind speed 428 after 48 hours. Then, the effective range calculation module 450 calculates the effective range value 449 through the standard deviation calculation formula, and uses the effective range value 449 to calculate the predicted wind speed after 1 to 48 hours to obtain the effective wind range 462 after one hour. The effective range of wind speed is 464 after 2 hours, the effective range of wind speed is 466 after 3 hours, and the effective range of wind speed is 468 after 48 hours.
第五圖為建構風速發電轉換曲線一具體實施例的系統模型圖。在本實施例中,風速發電轉換曲線類神經網路模型520係以風速542作為輸入節點,類神經網路540的隱藏層神經元個數為5個,而輸出節點為輸入之風速的對應風力發電量544。藉由不同風速下的對應發電量,即可以風速發電轉換曲線類神經網路模型520塑模出風速發電轉換曲線。 The fifth figure is a system model diagram of a specific embodiment for constructing a wind speed power generation conversion curve. In this embodiment, the wind speed power generation curve-like neural network model 520 uses wind speed 542 as the input node, the number of hidden layer neurons of the neural network 540 is 5, and the output node is the corresponding wind speed of the input wind speed. Power generation 544. With the corresponding power generation amount under different wind speeds, the wind speed power generation conversion curve can be modeled by the neural network model 520 of the wind speed power generation conversion curve.
第六圖為本發明風力發電預測顯示系統一具體實施例的預 測結果顯示之示意圖。在此實施例中,使用者係於2016年8月14日23:30要求進行預測結果顯示,而使用者所選取之預測資料範圍為A、B、C風場自2016年8月14日14:00起,1至48小時後之風力發電預測校正資料及1至48小時前之風力發電預測校正資料。選定完成後,其預測結果係以折線圖的呈現方式顯示。圖中縱軸610標示風力發電量,橫軸620標示時間。顯示之資料包含風力發電歷史預測校正資料631、風力發電歷史觀測資料632、風力發電歷史預測有效範圍上臨界值資料633、風力發電歷史預測有效範圍下臨界值資料634、風力發電預測校正資料635、風力發電預測有效範圍上臨界值資料636、風力發電預測有效範圍下臨界值資料637,以及風力發電預測觀測資料638。 The sixth figure is a preview of a specific embodiment of the wind power forecast display system of the present invention. Schematic representation of test results. In this embodiment, the user requested to display the prediction result at 23:30 on August 14, 2016, and the range of prediction data selected by the user is A, B, and C. The wind field has been on August 14, 2016 14 : From 00, wind power forecast correction data after 1 to 48 hours and wind power forecast correction data from 1 to 48 hours. After the selection is completed, the prediction result is displayed in the form of a line chart. In the figure, the vertical axis 610 indicates the amount of wind power, and the horizontal axis 620 indicates time. The displayed data includes wind power historical forecast correction data 631, wind power historical observation data 632, wind power historical forecast effective range upper threshold data 633, wind power historical forecast effective range lower threshold data 634, wind power forecast correction data 635, The upper critical value data 636 of the effective range of the wind power forecast, the lower critical value data 637 of the effective range of the wind power forecast, and the observation data 638 of the wind power forecast.
其中,風力發電歷史預測校正資料631為8月12日14:00至8月14日13:00各時間點的A風場1小時後風力發電預測校正資料、B風場1小時後風力發電預測校正資料及C風場1小時後風力發電預測校正資料的相加值。風力發電歷史觀測資料632為8月12日15:00至8月14日14:00各時間點的A風場風力發電觀測資料、B風場風力發電觀測資料及C風場風力發電觀測資料的相加值。風力發電歷史預測有效範圍上臨界值資料633為8月12日14:00至8月14日13:00各時間點的A風場1小時後風力發電歷史預測有效範圍上臨界值資料、B風場1小時後風力發電歷史預測有效範圍上臨界值資料及C風場1小時後風力發電歷史預測有效範圍上臨界值資料的相加值。風力發電歷史預測有效範圍下臨界值資料634為8月12日14:00至8月14日13:00各時間點的A風場1小時後風力發電歷史預測有效範圍下臨界值資料、B風場 1小時後風力發電歷史預測有效範圍下臨界值資料及C風場1小時後風力發電歷史預測有效範圍下臨界值資料的相加值。 Among them, the wind power historical forecast correction data 631 are the wind power forecast correction data for A wind farm at 1 hour and 14:00 on August 14 at 13:00, and the wind power forecast for B wind farm at 1 hour. The sum of the correction data and the correction data of the wind power forecast for 1 hour after the C wind field. The historical observation data of wind power generation 632 are the observation data of A wind farm wind power, B wind farm wind power observation data, and C wind farm wind power observation data at 15:00 on August 12 and 14:00 on August 14. Add value. The upper threshold data 633 of the effective range of the historical forecast of wind power generation is the upper threshold value data of the effective range of the historical forecast of wind power at 14:00 on August 12 to 13:00 on August 14, and the wind B The combined value of the critical value data of the valid range of the historical forecast of wind power generation after one hour of the field and the valid range of the historical range of the wind power forecast of the C wind field after one hour. The lower threshold data 634 of the effective range of the historical forecast of wind power generation is the lower critical value data of the effective range of the historical forecast of wind power generation at 14:00 on August 12th to 13:00 on August 14th. field Addition of the critical value data of the effective range of the historical forecast of wind power generation after 1 hour and the critical value data of the effective range of the historical forecast of wind power generation after 1 hour of the C wind farm.
另外,風力發電預測校正資料635為8月14日14:00開始,1小時後的A風場風力發電預測校正資料、B風場風力發電預測校正資料及C風場風力發電預測校正資料的相加值,至48小時後的A風場風力發電預測校正資料、B風場風力發電預測校正資料及C風場風力發電預測校正資料的相加值。風力發電預測有效範圍上臨界值資料636為8月14日14:00開始,1小時後的A風場風力發電預測有效範圍上臨界值資料、B風場風力發電預測有效範圍上臨界值資料及C風場風力發電預測有效範圍上臨界值資料的相加值,至48小時後的A風場風力發電預測有效範圍上臨界值資料、B風場風力發電預測有效範圍上臨界值資料及C風場風力發電預測有效範圍上臨界值資料的相加值。風力發電預測有效範圍下臨界值資料637為8月14日14:00開始,1小時後的A風場風力發電預測有效範圍下臨界值資料、B風場風力發電預測有效範圍下臨界值資料及C風場風力發電預測有效範圍下臨界值資料的相加值,至48小時後的A風場風力發電預測有效範圍下臨界值資料、B風場風力發電預測有效範圍下臨界值資料及C風場風力發電預測有效範圍下臨界值資料的相加值。風力發電預測觀測資料638為8月14日14:00至8月14日23:00各時間點的A風場風力發電觀測資料、B風場風力發電觀測資料及C風場風力發電觀測資料的相加值。 In addition, the wind power forecast correction data 635 is the phase of A wind farm wind power forecast correction data, B wind farm wind power forecast correction data, and C wind farm wind power forecast correction data starting at 14:00 on August 14. Value added, up to the sum of A wind farm wind power forecast correction data, B wind farm wind power forecast correction data, and C wind farm wind power forecast correction data 48 hours later. The upper threshold value data of the effective range of wind power forecasting starts at 14:00 on August 14th, and after 1 hour, the upper threshold value data of the effective range of wind power forecast of A wind farm, the upper threshold value data of effective range of wind power forecasting and The sum of the critical value data in the effective range of the C wind farm wind power forecast, 48 hours later, the critical value data of the A wind farm wind power forecast effective range, the B critical data of the wind farm wind power forecast effective range, and the C wind Addition of critical value data in the effective range of wind farm forecast. Data 637 for the lower critical value of the effective range of the wind power forecast is from 14:00 on August 14, 1 hour later. The data for the lower critical value of the effective range of the wind power forecast for A wind farm, the data for the lower critical value of the effective range of the wind power forecast for wind farm and The sum of the critical value data in the effective range of the wind farm wind power forecast, the critical value data in the effective range of the wind farm A wind farm forecast, the critical value data in the valid range of the wind farm wind power forecast, and the C wind 48 hours later. Addition of critical value data in the valid range of wind power generation forecast. The wind power forecast observation data 638 are the data of the wind power observation data of A wind field, the wind power observation data of B wind field, and the wind power observation data of C wind field at each time point from 14:00 on August 14 to 23:00 on August 14. Add value.
應了解,此處之風力發電歷史預測校正資料631雖係使用各時間點的前1小時風力發電預測校正資料,然本發明並非僅限於使用各時間 點的前1小時風力發電預測校正資料,而係可視需求採用該時間點的前數小時或前數天、數週、數月之風力發電預測校正資料。此外,使用者並非僅可選擇顯示複數個風場之預測資料,而係可視需求選擇顯示單個風場之預測資料。本發明之風力發電預測顯示系統並會顯示與使用者所選擇之風場相關聯之預測資料。例如當使用者所選擇顯示之風場僅為D風場時,所顯示之各時間點的風力發電歷史觀測值將為對應時間點的D風場風力發電歷史觀測資料。而所顯示之各時間點的風力發電預測校正值將為對應時間點的D風場風力發電預測校正資料。 It should be understood that although the wind power historical forecast correction data 631 here is the wind power forecast correction data for the first hour of each time point, the present invention is not limited to using each time Wind power forecast correction data for the first hour of the point, and if necessary, the wind power forecast correction data for the first few hours or days, weeks, and months of the time point can be used. In addition, users are not only able to choose to display the forecast data of multiple wind farms, but they can choose to display the forecast data of a single wind farm according to their needs. The wind power forecast display system of the present invention also displays forecast data associated with the wind farm selected by the user. For example, when the wind field selected and displayed by the user is only the D wind field, the historical wind power observation values at each time point displayed will be the historical wind power observation data of the D wind field at the corresponding time point. The displayed wind power forecast correction value at each time point will be the D wind farm wind power forecast correction data at the corresponding time point.
至此,本發明之風力發電預測顯示系統與方法已經由上述說明及圖式加以說明。然應了解,本發明各具體實施例僅是作為說明之用,在不脫離本發明申請專利範圍與精神下可進行各種改變,均應包含於本發明之專利範圍中。因此,本說明書所描述的各具體實施例並非用以限制本發明,本發明之真實範圍與精神揭示於以下申請專利範圍。 So far, the wind power generation prediction display system and method of the present invention have been described by the above description and drawings. It should be understood, however, that the specific embodiments of the present invention are for illustration purposes only, and various changes can be made without departing from the scope and spirit of the patent application of the present invention, which should be included in the patent scope of the present invention. Therefore, the specific embodiments described in this specification are not intended to limit the present invention. The true scope and spirit of the present invention are disclosed in the following patent applications.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106103821A TWI662423B (en) | 2017-02-06 | 2017-02-06 | Display system and method for wind power prediction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106103821A TWI662423B (en) | 2017-02-06 | 2017-02-06 | Display system and method for wind power prediction |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201830273A TW201830273A (en) | 2018-08-16 |
TWI662423B true TWI662423B (en) | 2019-06-11 |
Family
ID=63960616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106103821A TWI662423B (en) | 2017-02-06 | 2017-02-06 | Display system and method for wind power prediction |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI662423B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113610665B (en) * | 2021-08-12 | 2024-01-30 | 东北电力大学 | Wind power generation power prediction method based on multi-delay output echo state network |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120123995A1 (en) * | 2010-11-17 | 2012-05-17 | General Electrical Company | Power consumption compliance monitoring system and method |
US20120230821A1 (en) * | 2011-03-10 | 2012-09-13 | Sinovel Wind Group Co., Ltd. | Wind power prediction method of single wind turbine generator |
US20140195159A1 (en) * | 2013-01-09 | 2014-07-10 | Iteris, Inc. | Application of artificial intelligence techniques and statistical ensembling to forecast power output of a wind energy facility |
CN104680241A (en) * | 2013-11-29 | 2015-06-03 | 财团法人资讯工业策进会 | Renewable energy power generation amount prediction system and method and power supply configuration system |
TWI543492B (en) * | 2013-08-06 | 2016-07-21 | 渥班資產公司 | Method for feeding electrical energy into an electrical supply grid by means of a wind power installation or wind farm, and wind power installation and wind farm for feeding electrical energy into an electrical supply grid |
US20160223600A1 (en) * | 2015-02-03 | 2016-08-04 | Envision Energy (Jiangsu) Co., Ltd. | Power generation performance evaluation method and apparatus for power generator set |
TW201635224A (en) * | 2015-03-18 | 2016-10-01 | 聖約翰科技大學 | Method of short-term wind power generation forecasting |
-
2017
- 2017-02-06 TW TW106103821A patent/TWI662423B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120123995A1 (en) * | 2010-11-17 | 2012-05-17 | General Electrical Company | Power consumption compliance monitoring system and method |
US20120230821A1 (en) * | 2011-03-10 | 2012-09-13 | Sinovel Wind Group Co., Ltd. | Wind power prediction method of single wind turbine generator |
US20140195159A1 (en) * | 2013-01-09 | 2014-07-10 | Iteris, Inc. | Application of artificial intelligence techniques and statistical ensembling to forecast power output of a wind energy facility |
TWI543492B (en) * | 2013-08-06 | 2016-07-21 | 渥班資產公司 | Method for feeding electrical energy into an electrical supply grid by means of a wind power installation or wind farm, and wind power installation and wind farm for feeding electrical energy into an electrical supply grid |
CN104680241A (en) * | 2013-11-29 | 2015-06-03 | 财团法人资讯工业策进会 | Renewable energy power generation amount prediction system and method and power supply configuration system |
US20160223600A1 (en) * | 2015-02-03 | 2016-08-04 | Envision Energy (Jiangsu) Co., Ltd. | Power generation performance evaluation method and apparatus for power generator set |
TW201635224A (en) * | 2015-03-18 | 2016-10-01 | 聖約翰科技大學 | Method of short-term wind power generation forecasting |
Also Published As
Publication number | Publication date |
---|---|
TW201830273A (en) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning | |
US10288038B2 (en) | Reducing curtailment of wind power generation | |
US10598157B2 (en) | Reducing curtailment of wind power generation | |
JP4886322B2 (en) | Wind power generation output prediction method, wind power generation output prediction apparatus, and program | |
Goliatt et al. | Development of a hybrid computational intelligent model for daily global solar radiation prediction | |
Yu et al. | The forecast of the electrical energy generated by photovoltaic systems using neural network method | |
JP2016136001A (en) | Prediction device | |
CN104376389A (en) | Master-slave type micro-grid power load prediction system and master-slave type micro-grid power load prediction method based on load balancing | |
US10770898B2 (en) | Methods and systems for energy use normalization and forecasting | |
CN111415010A (en) | Bayesian neural network-based wind turbine generator parameter identification method | |
Boutahir et al. | Machine learning and deep learning applications for solar radiation predictions review: morocco as a case of study | |
CN112307672A (en) | BP neural network short-term wind power prediction method based on cuckoo algorithm optimization | |
CN113095547B (en) | Short-term wind power prediction method based on GRA-LSTM-ICE model | |
TWI662423B (en) | Display system and method for wind power prediction | |
Tao et al. | On comparing six optimization algorithms for network-based wind speed forecasting | |
CN118312576A (en) | Prediction method and system for high-temperature heat wave-drought composite disaster and electronic equipment | |
Meng et al. | Hybrid neural network based on GRU with uncertain factors for forecasting ultra-short-term wind power | |
TW201810133A (en) | Neural networks based water level predicting system and method for reservoirs | |
CN107016470A (en) | Wind power plant wind energy Forecasting Methodology and device | |
CN113610665B (en) | Wind power generation power prediction method based on multi-delay output echo state network | |
Du et al. | Ensemble interpolation of missing wind turbine nacelle wind speed data in wind farms based on robust particle swarm optimized generalized regression neural network | |
TWI618016B (en) | Display system and method for water level predicting of reservoirs | |
Zhao et al. | TransOS-ELM: A short-term photovoltaic power forecasting method based on transferred knowledge from similar days | |
Cheggaga | New neural networks strategy used to improve wind speed forecasting | |
CN113761813B (en) | Dynamic capacity prediction method of power transmission line based on hydrodynamics and meteorological data |