TWI661588B - 用於有機光伏打裝置之混合平面分級式異質接面 - Google Patents

用於有機光伏打裝置之混合平面分級式異質接面 Download PDF

Info

Publication number
TWI661588B
TWI661588B TW102143584A TW102143584A TWI661588B TW I661588 B TWI661588 B TW I661588B TW 102143584 A TW102143584 A TW 102143584A TW 102143584 A TW102143584 A TW 102143584A TW I661588 B TWI661588 B TW I661588B
Authority
TW
Taiwan
Prior art keywords
photoactive layer
layer
energy
donor
acceptor
Prior art date
Application number
TW102143584A
Other languages
English (en)
Other versions
TW201431148A (zh
Inventor
史蒂芬R 佛瑞斯特
傑若米D 齊默曼
布萊恩E 拉席特
肖新
Original Assignee
美國密西根州立大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美國密西根州立大學 filed Critical 美國密西根州立大學
Publication of TW201431148A publication Critical patent/TW201431148A/zh
Application granted granted Critical
Publication of TWI661588B publication Critical patent/TWI661588B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本文揭示包含至少一個混合平面分級式異質接面之有機光敏光電子裝置。具體而言,揭示具有以下之有機光敏光電子裝置:兩個呈疊加關係之電極、位於該兩個電極之間之分級式異質接面層及至少一個與該分級式異質接面層毗鄰並界接之光活性層。

Description

用於有機光伏打裝置之混合平面分級式異質接面 相關申請案交叉參照
本申請案主張於2012年11月28日提出申請之美國臨時申請案第61/730,687號之權益,該案件之全文以引用方式併入本文中。
關於由聯邦政府贊助之研究之聲明
本發明係根據美國能源部(Department of Energy)授予之合同編號DE-SC0000957及DE-EE0005310及根據空軍科學研究處(Air Force Office of Scientific Research)授予之FA9550-10-1-0339並在美國政府支持下進行。政府對本發明擁有一定的權利。
聯合研究協議
本發明之標的物係由、代表及/或結合聯合大學協作研究協定(joint university-corporation research agreement)的以下各方中之一方或多方作出:The Regents of the University of Michigan and Global Photonic能量公司。該協議在準備好本發明之標的物之日期當天及之前生效,且係作為在該協議範疇內進行之活動之結果而達成。
本發明一般係關於有機光敏光電子裝置且具體而言係關於包含至少一個混合平面分級式異質接面之有機光敏光電子裝置。
光電子裝置依賴於材料之光學及電子性質來以電子方式產生或檢測電磁輻射或自環境電磁輻射產生電。
光敏光電子裝置將電磁輻射轉換成電。太陽能電池(亦稱作光伏 打(PV)裝置)係特定用於產生電力之一類光敏光電子裝置。PV裝置可自除日光以外之光源產生電能,其可用於驅動功率消耗負載以提供(例如)照明、加熱或給電子電路或裝置(例如計算器、無線電、電腦或遠端監視或通信設備)供電。此等發電應用亦通常涉及向電池或其他能量儲存裝置充電以便當來自太陽或其他光源之直接照射不可用時可繼續操作,或用以平衡光伏打(PV)裝置之功率輸出與特定應用之要求。本文所用之術語「電阻負載」係指任一功率消耗或儲存電路、裝置、設備或系統。
另一類光敏光電子裝置係光導體電池。在此功能中,信號檢測電路監視裝置之電阻以檢測因吸收光而導致之變化。
另一類光敏光電子裝置係光檢測器。在操作中,光檢測器與電流檢測電路結合使用,該電流檢測電路在光檢測器暴露於電磁輻射且可具有所施加之偏壓電壓時量測所產生之電流。本文所述之檢測電路能夠向光檢測器提供偏壓電壓並量測該光檢測器對電磁輻射之電子反應。
可根據是否存在如下文所定義之整流接面且亦根據裝置是否在外部施加電壓(亦稱作偏壓或偏壓電壓)下操作來表徵該三類光敏光電子裝置。光導體電池不具有整流接面且通常在有偏壓之情形下操作。PV裝置具有至少一個整流接面且在無偏壓之情形下操作。光檢測器具有至少一個整流接面且通常(但不總是)在有偏壓之情形下操作。通常,光伏打電池可向電路、裝置或設備提供電力,但並不提供信號或電流來控制檢測電路或自該檢測電路之資訊輸出。相反,光檢測器或光導體提供信號或電流來控制檢測電路或自該檢測電路之資訊輸出,但並不向該電路、裝置或設備提供電力。
傳統上,光敏光電子裝置一直係由多種無機半導體構成,例如結晶、多晶及非晶形矽、砷化鎵、碲化鎘及其他材料。本文之術語 「半導體」表示在藉由熱或電磁激發誘導電荷載流子時可導電之材料。術語「光導電」一般係指以下過程:電磁輻射能量被吸收並由此轉換成電荷載流子之激發能量,以便載流子可傳導(亦即傳輸)材料中之電荷。本文所用之術語「光導體」及「光導電材料」係指針對其吸收電磁輻射以產生電荷載流子之性質經選擇之半導體材料。
PV裝置之特徵可在於可有效地將入射太陽能轉換成有用電力。使用結晶或非晶形矽之裝置在商業應用中佔主導地位,且一些已達成23%或更大之效率。然而,基於結晶之有效裝置(尤其係具有大表面積者)製造困難且昂貴,此乃因在製造不具有顯著效率降格缺陷之大晶體時所固有之問題所致。另一方面,高效非晶形矽裝置仍遭受穩定性問題。現有市售非晶形矽電池具有介於4%與8%之間的穩定效率。最近已致力於使用有機光伏打電池來以經濟的製造成本達成可接受光伏打轉換效率。
可在標準照射條件(亦即標準測試條件(Standard Test Conditions):1000W/m2,AM1.5光譜照射)下針對最大的電力產生最佳化PV裝置以達成光電流乘以光電壓之最大乘積。此電池在標準照射條件下之功率轉換效率取決於以下三個參數:(1)零偏壓下之電流,亦即短路電流I SC ,以安培表示,(2)開路條件下之光電壓,亦即開路電壓VOC,以伏特表示,及(3)填充因子FF
PV裝置在跨越負載連接且由光輻照時產生光生電流。在無限負載下輻照時,PV裝置產生其最大可能電壓開路電壓或VOC。當在其電觸點短路下輻照時,PV裝置產生其最大可能電流短路電流或ISC。在實際用於發電時,將PV裝置連接至有限電阻型負載且藉由電流與電壓之乘積I×V給出功率輸出。由PV裝置產生之最大總功率固有地不能超出乘積ISC×VOC。在針對最大功率抽取最佳化負載值時,電流及電壓分別具有值Imax及Vmax
PV裝置之品質因數係填充因子FF,其定義為:FF={Imax Vmax}/{ISC VOC} (1)
其中FF總是小於1,此乃因ISC及VOC在實際使用中從不會同時獲得。然而,隨著FF接近1,裝置具有較小之串聯電阻或內部電阻,且由此在最佳條件下將ISC與VOC之乘積的較大百分比輸送至負載。若Pinc為入射於裝置上之功率,則該裝置之功率效率η P 可藉由以下來計算:η P =FF*(ISC * VOC)/Pinc
為產生佔據半導體大部分體積之內部產生的電場,通常方法係並置具有經適當選擇之傳導性質的兩個材料層(供體及受體),該等性質尤其係關於其分子量子能態之分佈。該兩種材料之界面稱作光伏打接面。在傳統半導體理論中,用於形成PV接面之材料通常表示為n型或p型。此處,n型表示大部分載流子類型係電子。此可視作具有眾多處於相對自由能態之電子的材料。p型表示大部分載流子類型係電洞。此材料具有眾多處於相對自由能態之電洞。背景(亦即,非光生)大部分載流子濃度之類型主要取決於缺陷或雜質之無意摻雜。雜質之類型及濃度決定在導電帶最小值與價能帶最大值能量之間的間隙(亦稱為HOMO-LUMO間隙)內之費米能量(Fermi energy)之值或位準。費米能量表徵由能量值表示之分子量子能態之統計佔據,其佔據概率等於½。接近導電帶最小值(LUMO)能量之費米能量指示電子係主導載流子。接近價能帶最大值(HOMO)能量之費米能量指示電洞係主導載流子。因此,費米能量係傳統半導體之主要特徵性質且典型PV接面傳統上為p-n界面。
術語「整流」尤其表示界面具有不對稱之導電特性,亦即,該界面支持電子電荷較佳在一個方向上傳輸。整流通常與發生在經適當選擇之材料之間的接面處之內在電場相關聯。
如本文所用且如熟習此項技術者通常所理解,若第一「最高佔據分子軌道」(HOMO)或「最低未佔據分子軌道」(LUMO)能級更接近真空能級,則該第一能級「大於」或「高於」第二HOMO或LUMO能級。由於電離電勢(IP)量測為相對於真空能級之負能量,則較高HOMO能級對應於具有較小絕對值之IP(不太負之IP)。類似地,較高LUMO能級對應於具有較小絕對值之電子親和力(EA)(不太負之EA)。在真空能級位於頂部之習用能級圖上,材料之LUMO能級高於同一材料之HOMO能級。「更高」HOMO或LUMO能級似乎較「更低」HOMO或LUMO能級更接近此圖之頂部。
有機半導體之顯著性質係載流子遷移率。遷移率量測電荷載流子可因應電場移動穿過導電材料之難易性。在有機光敏裝置之情形中,包括因高電子遷移率而優先傳導電子之材料的層可稱作電子傳輸層或ETL。包括因高電洞遷移率而優先傳導電洞之材料的層可稱作電洞傳輸層或HTL。在一些情形下,受體材料可為ETL且供體材料可為HTL。
習用無機半導體PV電池可採用p-n接面來建立內部電場。然而,現已認識到,除p-n型接面之建立以外,異質接面之能級偏移亦起重要作用。
據信,有機供體-受體(D-A)異質接面處之能級偏移因有機材料中光生過程之基本性質而對有機PV裝置之操作具有重要性。在光激發有機材料之後,生成定域弗倫克爾(Frenkel)或電荷轉移激子。為實施電檢測或促使電流生成,束縛激子必須解離成其組成電子及電洞。此過程可由內在電場誘導,但在有機裝置中通常發現之電場(F約為106V/cm)下效率較低。有機材料中之最有效激子解離發生在D-A界面處。在此界面處,具有低電離電勢之供體材料與具有高電子親和性之受體材料形成異質接面。端視供體及受體材料之能級對準而定,激子 之解離在此界面處可在能量上變得有利,從而在受體材料中產生自由電子極化子且在供體材料中產生自由電洞極化子。
載流子生成需要激子生成、擴散及電離或收集。存在與該等過程中之每一者皆相關之效率η。可使用以下下標:P為功率效率,EXT為外部量子效率,A為光子吸收,ED為擴散,CC為收集,且INT為內部量子效率。使用以下表示法:η P ~η EXT =η A * η ED * η CC
η EXT =η A * η INT
激子之擴散長度(LD)通常較光吸收長度(約500Å)低很多(LD為約50Å),從而需要在使用具有多重或高度摺疊界面之厚的且因此電阻性電池或具有低光吸收效率之薄電池之間進行權衡。
可使用供體及受體材料之均勻混合物來形成混合異質接面(HJ)有機PV電池。該等電池受益於高激子擴散效率η ED 但因低收集效率η CC 而受損。為改良η CC ,供體及受體材料之濃度可在形成分級式異質接面之混合光活性層上變化以為電荷載流子抽取提供路徑。本文揭示具有改良性能之分級式異質接面有機光敏裝置。本發明之新穎裝置包含至少一個混合平面分級式異質接面。具體而言,揭示具有以下之有機光敏光電子裝置:兩個呈疊加關係之電極、位於該兩個電極之間之分級式異質接面層及至少一個與該分級式異質接面層毗鄰並界接之光活性層。
本文亦揭示有機光敏光電子裝置,其包含兩個呈疊加關係之電極;位於該兩個電極之間之混合光活性層,其中該混合光活性層具有第一及第二邊界界面且包含至少一種具有最高佔據分子軌道(HOMO)能量之供體材料及至少一種具有最低未佔據分子軌道能量(LUMO)之受體材料,其中該混合層中之該至少一種受體材料之濃度在該第一邊界界面處最大且在該第二邊界界面之方向上減小,且其中該混合層中 之該至少一種供體材料之濃度在該第二邊界界面處最大且在該第一邊界界面之方向上減小;及毗鄰該混合光活性層並與該第一邊界界面界接之第一光活性層,其中該第一光活性層包含具有在該至少一種受體材料之LUMO能量之0.3eV內之LUMO能量的材料。
在一些實施例中,裝置進一步包含毗鄰混合光活性層並與第二邊界界面界接之第二光活性層,其中第二光活性層包含具有在該至少一種供體材料之HOMO能量之0.3eV內之HOMO能量的材料。
在本發明之另一實施例中,有機光敏光電子裝置包含兩個呈疊加關係之電極;位於該兩個電極之間之混合光活性層,其中該混合光活性層具有第一及第二邊界界面且包含至少一種具有最高佔據分子軌道(HOMO)能量之供體材料及至少一種具有最低未佔據分子軌道能量(LUMO)之受體材料,其中該混合層中之該至少一種受體材料之濃度在該第一邊界界面處最大且在該第二邊界界面之方向上減小,且其中該混合層中之該至少一種供體材料之濃度在該第二邊界界面處最大且在該第一邊界界面之方向上減小;及毗鄰該混合光活性層並與該第二邊界界面界接之光活性層,其中該光活性層包含具有在該至少一種供體材料之HOMO能量之0.3eV內之HOMO能量的材料。
本文所用術語「有機」包括可用於製作有機光敏裝置之聚合材料以及小分子有機材料。「小分子」係指任何並非聚合物之有機材料,且「小分子」可實際上相當大。在一些情形下,小分子可包括重複單元。舉例而言,使用長鏈烷基作為取代基不會自「小分子」種類去除分子。小分子亦可(例如)作為聚合物主鏈上之側接基團或作為主鏈之一部分納入聚合物中。
本文所用之術語「電極」及「觸點」係指提供用以將光生電流輸送至外部電路或向裝置提供偏壓電流或電壓之介質的層。亦即,電極或觸點在有機光敏光電子裝置之活性區域與導線、引線、跡線或其他部件之間提供界面,以將電荷載流子輸送至外部電路或自外部電路 輸送電荷載流子。實例係陽極及陰極。美國專利第6,352,777號(其關於電極之揭示內容以引用方式併入本文中)提供可用於光敏光電子裝置中之電極或觸點的實例。在光敏光電子裝置中,可能期望將來自裝置外部之最大量環境電磁輻射引入光導活性內部區域中。亦即,電磁輻射必須到達光導層,在光導層中可藉由光導吸收將電磁輻射轉換成電。此通常表明,至少一個電觸點應最低限度地吸收及最低限度地反射入射電磁輻射。在一些情形下,此觸點應透明或至少半透明。在電極容許相關波長中之至少50%環境電磁輻射透射穿過其時,認為該電極「透明」。在電極容許相關波長中之一些、但小於50%環境電磁輻射透射時,將該電極稱為「半透明」。相對電極可為反射材料,以便透將過電池而未被吸收之光反射回電池。
本文使用且繪示之術語「層」係指光敏裝置中主要維度係X-Y(亦即沿其長度及寬度)之構件或組件。應理解,術語層不一定限於材料之單一層或片。此外,應理解,某些層之表面(包括此等層與其他材料或層之界面)可能不完整,其中該等表面代表與其他材料或層之互穿、纏結或回旋網路。同樣,亦應理解,層可係不連續的,因此該層在X-Y維度上之連續性可被其他層或材料破壞或以其他方式打斷。
本文所用「光活性區」係指吸收電磁輻射以生成激子之裝置之區。類似地,若層吸收電磁輻射以生成激子,則該層係「光活性」層。激子可解離成電子及電洞以產生電流。
本文所用「分級式異質接面層」係包含至少一種供體材料及至少一種受體材料且具有第一及第二邊界界面之層,其中該層中之至少一種受體材料之濃度在第一邊界界面處最大且在第二邊界界面方向上減小,且其中該層中之至少一種供體材料之濃度在第二邊界界面最大且在第一邊界界面方向上減小。圖4繪示一般有機光敏光電子裝置之裝置示意圖且比對均勻混合異質接面與分級式異質接面之濃度梯度之 實例。
在本發明之有機材料之上下文中,術語「供體」及「受體」係指兩種接觸但不同之有機材料之間之HOMO及LUMO能級的相對位置。若與另一種材料接觸之一種材料之LUMO能級較低,則該材料係受體。否則其係供體。在不存在外部偏壓之情形下,供體-受體接面處之電子移動至受體材料中且電洞移動至供體材料中係能量上有利的。
本發明裝置包含至少一個混合光活性層,其係分級式異質接面。如圖1中之非限制性裝置示意圖中所示,本發明之有機光敏光電子裝置100可包含兩個呈疊加關係之電極110150、位於該兩個電極之間之混合光活性層130,其中混合光活性層具有第一邊界界面160及第二邊界界面170且包含至少一種具有最高佔據分子軌道(HOMO)能量之供體材料及至少一種具有最低未佔據分子軌道能量(LUMO)之受體材料,其中混合層中之至少一種受體材料之濃度在第一邊界界面160處最大且在第二邊界界面170之方向上減小,且其混合層中之至少一種供體材料之濃度在第二邊界界面170處最大且在第一邊界界面160之方向上減小;及
毗鄰混合光活性層並與第一邊界界面界接之第一光活性層140,其中第一光活性層包含具有在至少一種受體材料之LUMO能量之0.3eV內之LUMO能量的材料。
如圖1中所示,在一些實施例中,混合光活性層130與電極110毗鄰並界接。在其他實施例中,裝置可進一步包含至少一個介於電極110與混合層130之間之緩衝層。至少一個緩衝層可毗鄰混合層130定位且可與其界接。緩衝層可經選擇以便不抑制電洞傳輸至電極110。在一些實施例中,緩衝層係電洞傳輸材料。在一些實施例中,緩衝層係激子阻斷電洞傳輸材料。緩衝層可包含業內已知之材料,例如有機 材料。在一些實施例中,緩衝層係金屬氧化物。在一些實施例中,緩衝層係導電聚合物。緩衝材料之實例包括(但不限於)MoO3、V2O5、WO3、CrO3、Co3O4、NiO、ZnO、TiO2、聚苯胺(PANI)、聚(3,4伸乙基二氧基噻吩)及聚(苯乙烯磺酸酯)(PEDOT-PSS)。在一些實施例中,緩衝層係自裝配單層。
本發明電極中之一者可為陽極,且另一電極為陰極。舉例而言,在圖1中,電極110可為陽極,且電極150可為陰極。應理解,電極應最佳化以接收並傳輸期望載流子(電洞或電子)。在本文中按如下方式使用術語「陰極」:在處於環境輻照下且與電阻負載連接且無外部施加電壓之非堆疊PV裝置或堆疊PV裝置之單一單元(例如,PV裝置)中,電子自光導材料移動至陰極。類似地,在本文中按如下方式使用術語「陽極」:在處於照射下之PV裝置中,電洞自光導材料移動至陽極,其等效於電子以相反方式進行移動。
本發明之混合光活性層130係如本文所定義之分級式異質接面層。其包含至少一種具有HOMO能量之供體材料及至少一種具有LUMO能量之受體材料。適宜供體材料之實例包括(但不限於)酞菁(例如銅酞菁(CuPc)、氯鋁酞菁(ClAlPc)、錫酞菁(SnPc)、鋅酞菁(ZnPc)及其他經改質酞菁)、酞青素(例如硼酞青素(SubPc))、萘酞菁、部花青染料、硼-二吡咯甲烯(BODIPY)染料、噻吩(例如聚(3-己基噻吩)(P3HT))、低帶隙聚合物、多并苯(例如并五苯及并四苯)、二氫茚苝(DIP)、方酸(squaraine,SQ)染料及四苯基二苯并二茚并芘(DBP)。本發明涵蓋其他有機供體材料。
方酸供體材料之實例包括(但不限於)2,4-雙[4-(N,N-二丙基胺基)-2,6-二羥基苯基]方酸、2,4-雙[4-(N,N二異丁基胺基)-2,6-二羥基苯基]方酸、2,4-雙[4-(N,N-二苯基胺基)-2,6-二羥基苯基]方酸(DPSQ)及其鹽。適宜方酸材料之其他實例揭示於美國專利公開案第2012/0248419 號中,該案件關於方酸材料之揭示內容以引用方式併入本文中。
本發明之適宜受體材料之實例包括(但不限於)聚合或非聚合苝、聚合或非聚合萘及聚合或非聚合富勒烯(fullerene)及富勒烯衍生物(例如,PCBM、ICBA、ICMA等)。非限制性提及彼等選自以下者:C60、C70、C76、C82、C84或其衍生物(例如苯基-C61-丁酸-甲基酯([60]PCBM)、苯基-C71-丁酸-甲基酯([70]PCBM)或噻吩基-C61-丁酸-甲基酯([60]ThCBM))及其他受體(例如3,4,9,10-苝基四甲酸-雙苯并咪唑(PTCBI)、十六氟酞菁(F16CuPc)及其衍生物)。本發明涵蓋其他有機受體材料。
在一些實施例中,至少一種供體材料係以小於至少一種受體材料之量存於混合光活性層130中。在某些實施例中,混合光活性層130包含至少一種供體材料及至少一種受體材料,其中供體:受體比率介於以下範圍內:1:1至1:50,例如1:2至1:50、1:2至1:35、1:2至1:25、1:4至1:20、1:4至1:16、1:4至1:12、1:4至1:10或1:4至1:8。
在一些實施例中,至少一種受體材料係以小於至少一種供體材料之量存於混合光活性層130中。在某些實施例中,混合光活性層130包含至少一種受體材料及至少一種供體材料,其中供體:受體比率介於以下範圍內:1:1至50:1,例如1:1至35:1、1:1至25:1、1:1至20:1、2:1至16:1、2:1至12:1、4:1至10:1或4:1至8:1。
在一些實施例中,在第二邊界界面170處存在之至少一種供體材料之量大於至少一種受體材料。在一些實施例中,在第二邊界界面處存在之至少一種供體材料小於至少一種受體材料。在某些實施例中,在第二邊界界面處至少一種供體材料對至少一種受體材料之比率介於以下範圍內:1:1至10:1,例如1:1至8:1、1:1至4:1、1:1至3:1、1:1至2:1、1:1至1.8:1、1:1至1.6:1、1:1至1.4:1、1:1至1.2:1、1:1至1.1:1、1.1:1至3:1、1.2:1至2:1、1.3:1至1.9:1或1.4:1至1.8:1。在某些實施例 中,在第二邊界界面處至少一種供體材料對至少一種受體材料之比率介於以下範圍內:1:1至1:10,例如1:1至1:8、1:1至1:6、1:1至1:4、1:1至1:3、1:1至1:2、1:1至1:1.8、1:1至1:1.6、1:1至1:1.4、1:1至1:1.2、1:1至1:1.1、1:1.1至1:3、1:1.2至1:2、1:1.3至1:1.9或1:1.4至1:1.8。
在一些實施例中,在第一邊界界面160處存在之至少一種受體材料之量大於至少一種供體材料。在一些實施例中,在第一邊界界面處存在之至少一種受體材料小於至少一種供體材料。在某些實施例中,在第一邊界界面處至少一種供體材料對至少一種受體材料之比率介於以下範圍內:1:1至1:20,例如1:1至1:15、1:1至1:12、1:1至1:10、1:1至1:8、1:1至1:6、1:1至1:4、1:1至1:2、1:2至1:20、1:3至1:15、1:4至1:12、1:5至1:10、1:6至1:9或1:7至1:8。在某些實施例中,在第一邊界界面處至少一種供體材料對至少一種受體材料之比率介於以下範圍內:1:1至10:1,例如1:1至8:1、1:1至6:1、1:1至4:1、1:1至3:1、1:1至2:1或1:1至1.5:1。
如圖1中所示,第一光活性層140毗鄰混合光活性層130並與第一邊界界面160界接。第一光活性層可相對於混合光活性層之至少一種供體材料為受體,且有利於電子傳輸至電極150。第一光活性層中生成之激子可擴散至混合光活性層(亦即,分級式異質接面層),其中其可解離成電子及電洞。第一光活性層包含具有在混合光活性層之至少一種受體材料之LUMO能量之0.3eV、0.2eV、0.1eV或0.05eV內之LUMO能量的材料。在一些實施例中,至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或至少99.9%包含第一光活性層之材料係具有在至少一種受體材料之LUMO能量之0.3eV、0.2eV、0.1eV或0.05eV內之LUMO能量的材料。在某些實施例中,具有在至少一種受體材料之 LUMO能量之0.3eV、0.2eV、0.1eV或0.05eV內之LUMO能量的材料係與至少一種受體材料相同之材料。
在一些實施例中,第一光活性層140之厚度在具有在至少一種受體材料之LUMO能量之0.3eV內之LUMO能量的材料之激子擴散長度的2倍、1.5倍或1倍內。在一些實施例中,第一光活性層之厚度在具有在至少一種受體材料之LUMO能量之0.3eV內之LUMO能量的材料之激子擴散長度的5nm、4nm、3nm、2nm、1nm或0.5nm內。在某些實施例中,第一光活性層之厚度為小於60nm、小於50nm、小於40nm、小於30nm、小於25nm、小於20nm、小於15nm、小於10nm、小於8nm、小於5nm、小於3nm或小於1nm。
如圖2中之非限制性裝置示意圖中所示,圖1之裝置100可進一步包含毗鄰混合光活性層130並與第二邊界界面170界接之第二光活性層120。第二光活性層可相對於混合光活性層之至少一種受體材料為供體,且可有利於電洞傳輸至電極110。第二光活性層中生成之激子可擴散至混合光活性層(亦即,分級式異質接面層),其中其可解離成電子及電洞。第二光活性層包含具有在至少一種供體材料之HOMO能量之0.3eV、0.2eV、0.1eV或0.05eV內之HOMO能量的材料。在一些實施例中,至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或至少99.9%包含第二光活性層之材料係具有在至少一種供體材料之HOMO能量之0.3eV、0.2eV、0.1eV或0.05eV內之HOMO能量的材料。在某些實施例中,具有在至少一種供體材料之HOMO能量之0.3eV、0.2eV、0.1eV或0.05eV內之HOMO能量的材料係與至少一種供體材料相同之材料。
在一些實施例中,第二光活性層120之厚度在具有在至少一種供體材料之HOMO能量之0.3eV內之HOMO能量的材料之激子擴散長度 的2倍、1.5倍或1倍內。在一些實施例中,第二光活性層之厚度在具有在至少一種供體材料之HOMO能量之0.3eV內之HOMO能量的材料之激子擴散長度的5nm、4nm、3nm、2nm、1nm或0.5nm內。在某些實施例中,第二光活性層之厚度為小於60nm、小於50nm、小於40nm、小於30nm、小於25nm、小於20nm、小於15nm、小於10nm、小於8nm、小於5nm、小於3nm或小於1nm。
在一些實施例中,第一光活性層140之厚度在具有在至少一種受體材料之LUMO能量之0.3eV內之LUMO能量的材料之激子擴散長度的2倍、1.5倍或1倍內,且第二光活性層120之厚度在具有在至少一種供體材料之HOMO能量之0.3eV內之HOMO能量的材料之激子擴散長度的2倍、1.5倍或1倍內。
如圖3中所示,本文亦揭示有機光敏光電子裝置200,其包含兩個呈疊加關係之電極210250、位於該兩個電極之間之混合光活性層230,其中混合光活性層具有第一邊界界面260及第二邊界界面270且包含至少一種具有HOMO能量之供體材料及至少一種具有LUMO之受體材料,其中混合層中之至少一種受體材料之濃度在第一邊界界面260處最大且在第二邊界界面270之方向上減小,且其中混合層中之至少一種供體材料之濃度在第二邊界界面270處最大且在第一邊界界面260之方向上減小;及
毗鄰混合光活性層並與第二邊界界面270界接之光活性層220,其中光活性層包含具有在至少一種供體材料之HOMO能量之0.3eV內之HOMO能量的材料。
如圖3中所示,在一些實施例中,混合光活性層230與電極250毗鄰並界接。在其他實施例中,裝置可進一步包含至少一個介於電極250與混合光活性層230之間之緩衝層。至少一個緩衝層可毗鄰混合光活性層定位且可與其界接。緩衝層可經選擇以便不抑制電子傳輸至電 極250。在一些實施例中,緩衝層係電子傳輸材料。在一些實施例中,緩衝層係激子阻斷電子傳輸材料。緩衝層可包含業內已知之材料,例如有機材料。緩衝材料之實例包括(但不限於)浴銅靈(bathocuproine)(BCP)、紅菲咯啉(bathophenanthroline,BPhen)、1,4,5,8-萘-四甲酸-二酐(NTCDA)、3,4,9,10-苝基四甲酸雙-苯并咪唑(PTCBI)、1,3,5-叁(N-苯基苯并咪唑-2-基)苯(TPBi)、叁(乙醯基丙酮酸)釕(III)(Ru(acac)3)及酚鋁(III)(Alq2 OPH)、N,N’-二苯基-N,N’-雙α-萘基聯苯胺(NPD)、叁(8-羥基喹啉)鋁(Alq3)及咔唑聯苯(CBP)。在一些實施例中,緩衝層係自裝配單層。
如上文所述,一個電極可為陽極,且另一電極為陰極。舉例而言,在圖3中,電極210可為陽極,且電極250可為陰極。
混合光活性層230係分級式異質接面層。其包含如本文所述至少一種具有HOMO能量之供體材料及至少一種具有LUMO能量之受體材料。
如圖3中所示,光活性層220毗鄰混合光活性層230並與第二邊界界面270界接。光活性層可相對於混合光活性層之至少一種受體材料為供體,且可有利於電洞傳輸至電極210。光活性層中生成之激子可擴散至混合光活性層(亦即,分級式異質接面層),其中其可解離成電子及電洞。光活性層包含具有在混合光活性層之至少一種供體材料之HOMO能量之0.3eV、0.2eV、0.1eV或0.05eV內之HOMO能量的材料。在一些實施例中,至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或至少99.9%包含光活性層之材料係具有在至少一種供體材料之HOMO能量之0.3eV、0.2eV、0.1eV或0.05eV內之HOMO能量的材料。在某些實施例中,具有在至少一種供體材料之HOMO能量之0.3eV、0.2eV、0.1eV或0.05eV內之HOMO能量的材料係與至少一種供體材料相 同之材料。
在一些實施例中,光活性層220之厚度在具有在至少一種供體材料之HOMO能量之0.3eV內之HOMO能量的材料之激子擴散長度的2倍、1.5倍或1倍內。在一些實施例中,光活性層之厚度在具有在至少一種供體材料之HOMO能量之0.3eV內之HOMO能量的材料之激子擴散長度的5nm、4nm、3nm、2nm、1nm或0.5nm內。在某些實施例中,光活性層之厚度為小於60nm、小於50nm、小於40nm、小於30nm、小於25nm、小於20nm、小於15nm、小於10nm、小於8nm、小於5nm、小於3nm或小於1nm。
本發明之有機光敏光電子裝置可進一步包含如業內已知用於該等裝置之其他層。舉例而言,裝置可進一步包含電荷載流子傳輸層及/或緩衝層,例如一或多個阻斷層,例如激子阻斷層(EBL)。該等額外層可位於電極與光活性層之間。阻斷層之實例闡述於美國專利公開案第2012/0235125號及第2011/0012091號及美國專利第7,230,269號及第6,451,415號中,該等案件關於阻斷層之揭示內容以引用方式併入本文中。
另外,裝置可進一步包含至少一個平滑層。平滑層可位於(例如)光活性層與一個或兩個電極之間。包含3,4聚伸乙基二氧基噻吩:聚苯乙烯磺酸酯(PEDOT:PSS)之膜係平滑層之實例。
本發明之有機光敏光電子裝置可以包含兩個或更多個子電池之串接裝置存在。本文所用子電池意指包含至少一個供體-受體異質接面之裝置之組件。在子電池個別地用作光敏光電子裝置時,其通常包括完整之電極組。串接裝置可包含電荷轉移材料、電極或串接供體-受體異質接面之間之電荷重組材料或隧道接面。在一些串接組態中,毗鄰子電池可利用共有(亦即共享)電極、電荷轉移區或電荷重組區。在其他情形下,毗鄰子電池不共享共有電極或電荷轉移區。子電池可 並聯或串聯電連接。
在一些實施例中,電荷轉移層或電荷重組層可選自Al、Ag、Au、MoO3、Li、LiF、Sn、Ti、WO3、氧化銦錫(ITO)、氧化錫(TO)、氧化鎵銦錫(GITO)、氧化鋅(ZO)或氧化鋅銦錫(ZITO)。在另一實施例中,電荷轉移層或電荷重組層可包括金屬奈米簇、奈米顆粒或奈米棒。
本發明之裝置可為(例如)光檢測器、光導體或光伏打裝置(例如太陽能電池)。
可使用業內已知之技術沈積層及材料。舉例而言,可自溶液、蒸氣或二者之組合沈積或共沈積本文所述層及材料。在一些實施例中,可經由溶液加工、例如藉由一或多種選自旋塗、旋轉澆注、噴塗、浸塗、刮刀塗佈、噴墨印刷或轉移印刷之技術沈積或共沈積有機材料或有機層。
在其他實施例中,可使用真空蒸發(例如真空熱蒸發、有機蒸氣相沈積或有機蒸氣-噴射印刷)沈積或共沈積有機材料。
本發明之分級式異質接面層可藉由改變沈積條件製作。舉例而言,可藉由改變每一材料之沈積速率控制混合層中之供體及受體材料之濃度梯度。
應理解,本文所述實施例可結合多種結構使用。基於設計、性能及成本因素,藉由以不同方式組合所述各層可達成功能有機光伏打裝置,或可完全省略多個層。亦可包括未具體闡述之其他層。可使用不同於彼等具體闡述材料之材料。本文中給定用於各種層之名稱不欲具有嚴格限制性。
除在實例中以外,或除非另外指明,否則在說明書及申請專利範圍中所用之表示成份的量、反應條件、分析量測值及諸如此類之所有數字均應理解為在所有情況下皆由術語「約」修飾。因此,除非指 明相反之情形,否則說明書及隨附申請專利範圍中所列示之數字參數均為可隨本發明尋求獲得之期望性質而變化之近似值。無論如何,且並非試圖限制申請專利範圍之範疇之等效項原則的應用,每一數字參數皆應至少根據有效數位之數目及通常之捨入方法來解釋。
儘管列示本發明之寬廣範疇之數值範圍及參數係近似值,但除非另外指示,否則在具體實例中所列示之數值係儘可能準確地報告。然而,每一數值固有地含有必然由其各自測試量測中存在之準則偏差所引起的必然誤差。
藉由以下非限制性實例來進一步闡述本文所述之裝置及方法,該等實例意欲係純例示性的。
實例
使用硼酞青素氯化物(SubPc)作為供體及C70作為受體製作四個有機有機光伏打裝置。SubPc具有-5.6eV之深最高佔據分子軌道(HOMO)能量及大的消光係數,如圖5中所示。與C60相比,C70具有變寬之吸收光譜(參見圖5)。四個有機有機光伏打裝置結構分別示於圖6A、6B、6C及6D中。經由真空熱蒸發(VTE)製作分級式HJ及平面分級式HJ電池。圖6A中所示對照裝置含有分級式HJ層作為唯一光活性層。圖6B中之裝置在分級式HJ層下方具有11nm厚之純淨SubPc層(SubPc-GHJ)。圖6C中之裝置在分級式HJ層頂部具有8nm厚之純淨C70層(GHJ-C70)。圖6D中之裝置具有純淨SubPc層及C70層,其之間夾有分級式HJ層(SubPc-GHJ-C70)。分級式HJ層係30nm厚且係藉由將SubPc及C70之速率沈積分別連續自0.012nm/s變為0.010nm/s及自0.020nm/s變為0.080nm/s來製作。該等沈積條件使得分級式異質接面層及SubPc或MoO3層之界面處之供體:受體比率為約1:1.6,且分級式異質接面層及C70或BPhen層之界面處之供體:受體比率為1:8。
在AM1.5G 1個太陽強度模擬之太陽照度下分級式HJ及平面分級 式HJ電池之電流-電壓(J-V)特性及外部量子效率(EQE)光譜分別示於圖7及圖8中,且裝置性能特性概述於表I中。對於比較,亦製作C60作為受體之分級式HJ電池且包括結果。與C60相比,基於C70之分級式HJ電池具有類似VOC及FF。然而,由於如圖5中所示之C70之增強吸收,基於C70之分級式HJ之JSC增加25%。如圖8之EQE光譜中所示,基於C70之分級式HJ在可見範圍內具有較基於C60之電池高之EQE。下方具有純淨SubPc層之平面分級式HJ電池(亦即SubPc-GHJ(裝置(b))及SubPc-GHJ-C70(裝置(d))二者皆顯示較差FF(<0.40),此歸因於SubPc層較混合層低之電洞遷移率,此限制裝置中之電荷載流子傳輸。具有純淨C70層之平面分級式HJ電池(裝置(c))具有與對照電池(裝置(a))類似之VOC及FF但呈現JSC增加20%。在1個太陽照度下,具有純淨C70層之平面分級式HJ(裝置(c))之功率轉化效率(PCE)達到4.6±0.2%,與之相比,分級式HJ對照電池達到3.8±0.2%。
EQE定義為吸收效率與內部量子效率(IQE)之乘積。使用轉移矩陣方法計算吸收效率ηA以進一步瞭解平面分級式HJ電池中之EQE改良的起因。藉由使用EQE除以ηA計算IQE。如圖9中所示,平面分級式HJ之吸收效率及IQE在可見區內高於分級式HJ。IQE增加係歸因於平面分級式HJ中之電荷載流子抽取改良。根據500nm之波長下裝置內部之吸收光功率的空間分佈,如圖10中所示,額外C70可吸收更多光子,此增強平面分級式HJ電池中之吸收。
為進一步最佳化裝置性能,改變純淨C70層之厚度。裝置性能概述於表II中。J-V特性及EQE光譜分別示於圖11及圖12中。所有電池皆具有類似VOC及FF。JSC隨著C70層之厚度增加而增加且在8nm下達到其最大值。對於較厚C70層,則JSC開始減小。EQE光譜顯示相同趨勢。純淨C70層之最佳厚度係8nm,此與C70之激子擴散長度(8.0±0.8nm)相當。此結果指示8nm厚之C70層中生成之激子有效地擴散至分級 式HJ層及純淨C70層之界面用於解離。
100‧‧‧有機光敏光電子裝置
110‧‧‧電極
120‧‧‧第二光活性層
130‧‧‧混合光活性層
140‧‧‧第一光活性層
150‧‧‧電極
160‧‧‧第一邊界界面
170‧‧‧第二邊界界面
210‧‧‧電極
220‧‧‧光活性層
230‧‧‧混合光活性層
250‧‧‧電極
260‧‧‧第一邊界界面
270‧‧‧第二邊界界面
附圖納入本說明書中並構成本說明書之一部分。
圖1顯示本發明之包含混合平面分級式異質接面之例示性裝置的示意圖。
圖2顯示本發明之包含混合平面分級式異質接面之另一例示性裝置的示意圖。
圖3顯示本發明之包含混合平面分級式異質接面之額外例示性裝置的示意圖。
圖4繪示一般有機光敏光電子裝置之裝置示意圖並比對均勻混合 異質接面與分級式異質接面之濃度梯度之實例。
圖5顯示SubPc、C60及C70之消光係數。
圖6A、6B、6C及6D顯示所用特定分級式異質接面及混合平面分級式異質接面電池之裝置結構以產生有機有機光伏打性能數據。
圖7在一個太陽照度下比較特定分級式異質接面及混合平面分級式異質接面電池之電流-電壓(J-V)特性。
圖8比較特定分級式異質接面及混合平面分級式異質接面電池之EQE光譜。
圖9比較特定分級式異質接面及混合平面分級式異質接面電池之計算吸收效率及內部量子效率(IQE)。
圖10比較分級式異質接面電池及混合平面分級式異質接面電池內部之吸收光功率之空間分佈。
圖11顯示在一個太陽照度下在純淨C70層之不同厚度下平面分級式異質接面電池之J-V特性。
圖12顯示在純淨C70層之不同厚度下混合平面分級式異質接面電池之EQE光譜。

Claims (22)

  1. 一種有機光敏光電子裝置,其包含:兩個呈疊加關係之電極;位於該兩個電極之間之混合光活性層,其中該混合光活性層係單一層,其具有第一及第二邊界界面且包含至少一種具有最高佔據分子軌道(HOMO)能量之供體材料及至少一種具有最低未佔據分子軌道能量(LUMO)之受體材料,其中該混合層中之該至少一種受體材料之濃度在該第一邊界界面處最大且在該第二邊界界面之方向上減小,以在該混合層中形成該至少一種受體材料之濃度梯度,且其中該混合層中之該至少一種供體材料之濃度在該第二邊界界面處最大且在該第一邊界界面之方向上減小,以在該混合層中形成該至少一種供體材料之濃度梯度;及毗鄰該混合光活性層並與該第一邊界界面界接之第一光活性層,其中該第一光活性層包含具有在該至少一種受體材料之LUMO能量之0.3eV內之LUMO能量的材料;其中該至少一種供體材料在該第二邊界界面上係以相較於該至少一種受體材料較少之量存在。
  2. 如請求項1之裝置,其中該第一光活性層包含具有在該至少一種受體材料之該LUMO能量之0.1eV內之LUMO能量的材料。
  3. 如請求項2之裝置,其中具有在該至少一種受體材料之該LUMO能量之0.1eV內之LUMO能量的該材料係與該至少一種受體材料相同之材料。
  4. 如請求項1之裝置,其中該混合光活性層包含該至少一種供體材料及該至少一種受體材料,其中供體:受體比率介於1:2至1:50範圍內。
  5. 如請求項4之裝置,其中該供體:受體比率介於1:4至1:12範圍內。
  6. 如請求項1之裝置,其中該至少一種供體材料在該第二邊界界面上之該較少之量係對應於小於1:1但不小於1:4之供體:受體比率。
  7. 如請求項1之裝置,其中在該第一邊界界面處該至少一種供體材料對該至少一種受體材料之比率介於1:2至1:20範圍內。
  8. 如請求項1之裝置,其中該第一光活性層之厚度在具有在該至少一種受體材料之該LUMO能量之0.3eV內之LUMO能量的該材料之激子擴散長度的2倍內。
  9. 如請求項1之裝置,其中該第一光活性層具有小於30nm之厚度。
  10. 如請求項9之裝置,其中該厚度小於10nm。
  11. 如請求項1之裝置,其中該至少一種受體材料包含富勒烯(fullerene)或其衍生物。
  12. 如請求項1之裝置,其進一步包含毗鄰該混合光活性層並與該第二邊界界面界接之第二光活性層,其中該第二光活性層包含具有在該至少一種供體材料之該HOMO能量之0.3eV內之HOMO能量的材料。
  13. 如請求項12之裝置,其中該第二光活性層包含具有在該至少一種供體材料之該HOMO能量之0.1eV內之HOMO能量的材料。
  14. 如請求項13之裝置,其中具有在該至少一種供體材料之該HOMO能量之0.1eV內之HOMO能量的該材料係與該至少一種供體材料相同之材料。
  15. 如請求項12之裝置,其中該第二光活性層之厚度在具有在該至少一種供體材料之該HOMO能量之0.3eV內之HOMO能量的該材料之激子擴散長度的2倍內。
  16. 如請求項12之裝置,其中該第二光活性層具有小於20nm之厚度。
  17. 如請求項12之裝置,其中該第一光活性層之厚度在具有該至少一種受體材料之該LUMO能量之0.3eV內之LUMO能量的該材料之激子擴散長度的2倍內,且該第二光活性層之厚度在具有該至少一種供體材料之該HOMO能量之0.3eV內之HOMO能量的材料之激子擴散長度的2倍內。
  18. 一種有機光敏光電子裝置,其包含:兩個呈疊加關係之電極;位於該兩個電極之間之混合光活性層,其中該混合光活性層係單一層,其具有第一及第二邊界界面且包含至少一種具有最高佔據分子軌道(HOMO)能量之供體材料及至少一種具有最低未佔據分子軌道能量(LUMO)之受體材料,其中該混合層中之該至少一種受體材料之濃度在該第一邊界界面處最大且在該第二邊界界面之方向上減小,以在該混合層中形成該至少一種受體材料之濃度梯度,且其中該混合層中之該至少一種供體材料之濃度在該第二邊界界面處最大且在該第一邊界界面之方向上減小,以在該混合層中形成該至少一種供體材料之濃度梯度;及毗鄰該混合光活性層並與該第二邊界界面界接之光活性層,其中該光活性層包含具有在該至少一種供體材料之HOMO能量之0.3eV內之HOMO能量的材料;其中該至少一種供體材料在該第二邊界界面上係以相較於該至少一種受體材料較少之量存在。
  19. 如請求項18之裝置,其中該光活性層包含具有在該至少一種供體材料之該HOMO能量之0.1eV內之HOMO能量的材料。
  20. 如請求項19之裝置,其中具有在該至少一種供體材料之該HOMO能量之0.1eV內之HOMO能量的該材料係與該至少一種供體材料相同之材料。
  21. 如請求項18之裝置,其中該光活性層之厚度在具有在該至少一種供體材料之該HOMO能量之0.3eV內之HOMO能量的該材料之激子擴散長度的2倍內。
  22. 如請求項18之裝置,其中該光活性層具有小於20nm之厚度。
TW102143584A 2012-11-28 2013-11-28 用於有機光伏打裝置之混合平面分級式異質接面 TWI661588B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261730687P 2012-11-28 2012-11-28
US61/730,687 2012-11-28

Publications (2)

Publication Number Publication Date
TW201431148A TW201431148A (zh) 2014-08-01
TWI661588B true TWI661588B (zh) 2019-06-01

Family

ID=49753533

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102143584A TWI661588B (zh) 2012-11-28 2013-11-28 用於有機光伏打裝置之混合平面分級式異質接面

Country Status (8)

Country Link
US (1) US10141531B2 (zh)
EP (1) EP2926387B1 (zh)
JP (2) JP6436492B2 (zh)
KR (1) KR102170583B1 (zh)
CN (1) CN104904029A (zh)
AU (1) AU2013352112A1 (zh)
TW (1) TWI661588B (zh)
WO (1) WO2014085639A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102314129B1 (ko) * 2014-07-21 2021-10-18 삼성전자주식회사 유기 광전 소자 및 이미지 센서
KR102243553B1 (ko) * 2014-07-16 2021-04-22 삼성전자주식회사 유기 광전 소자 및 이미지 센서
WO2016009693A1 (ja) * 2014-07-17 2016-01-21 ソニー株式会社 光電変換素子、撮像装置、光センサ及び光電変換素子の製造方法
EP3041060B1 (en) * 2014-12-19 2021-06-16 Samsung Electronics Co., Ltd. Image sensor, and electronic device including the same
TWI788030B (zh) 2016-07-20 2022-12-21 日商索尼股份有限公司 固體攝像元件及固體攝像裝置
US20180366658A1 (en) * 2017-06-16 2018-12-20 Ubiquitous Energy, Inc. Visibly Transparent, Near-Infrared-Absorbing Photovoltaic Devices
US11778896B2 (en) * 2017-06-16 2023-10-03 Ubiquitous Energy, Inc. Visibly transparent, near-infrared-absorbing metal-complex photovoltaic devices
US11545635B2 (en) * 2017-06-16 2023-01-03 Ubiquitous Energy, Inc. Visibly transparent, near-infrared-absorbing boron-containing photovoltaic devices
US11152581B2 (en) 2017-06-16 2021-10-19 Ubiquitous Energy, Inc. Visibly transparent, near-infrared-absorbing donor/acceptor photovoltaic devices
US10903438B2 (en) 2017-06-16 2021-01-26 Ubiquitous Energy, Inc. Visibly transparent, ultraviolet-absorbing photovoltaic devices
US20180366654A1 (en) * 2017-06-16 2018-12-20 Ubiquitous Energy, Inc. Visibly Transparent, Ultraviolet-Absorbing and Near-Infrared-Absorbing Photovoltaic Devices
CN107799653A (zh) * 2017-10-27 2018-03-13 吉林大学 双边体相异质结结构的水相有机无机杂化太阳能电池及其制备方法
CN108807683B (zh) * 2018-07-05 2021-04-30 南京邮电大学 一种宽光谱响应的倍增型有机光电探测器
WO2020040844A1 (en) * 2018-08-20 2020-02-27 The Trustees Of Princeton University Donor-acceptor interfaces for excitonic semiconductors
US10832775B1 (en) * 2019-07-18 2020-11-10 International Business Machines Corporation Cross-point array of polymer junctions with individually-programmed conductances that can be reset
KR102661869B1 (ko) * 2022-01-06 2024-04-26 중앙대학교 산학협력단 유기 광전자소자 제조방법 및 이의 제조방법에 의한 유기 광전자소자

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038721A1 (ja) * 2008-09-30 2010-04-08 コニカミノルタホールディングス株式会社 有機光電変換素子、及びその製造方法
WO2010091278A2 (en) * 2009-02-05 2010-08-12 The Research Foundation Of State University Of New York Energy conversion cell having a dielectrically graded region to alter transport, and methods thereof
US8847066B2 (en) * 2009-05-19 2014-09-30 Regents Of The University Of Minnesota Graded organic photovoltaic device
US20110203649A1 (en) * 2010-02-19 2011-08-25 Basf Se Use of indanthrene compounds in organic photovoltaics
JP5653658B2 (ja) * 2010-06-16 2015-01-14 キヤノン電子株式会社 有機光電変換デバイス及び有機薄膜太陽電池並びにこれらの製造方法
WO2012098876A1 (ja) 2011-01-21 2012-07-26 株式会社クラレ 光電変換素子とその製造方法、及び太陽電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QIN et al., "Measuring the exciton diffusion length of C60 in organic planar heterojunction solar cells"^&amp;rn^Phys. Status Solidi A 208, No. 8, pages 1967-1971^&amp;rn^(2011) /DOI 10. 1002/pssa.201026724。
QIN et al., "Measuring the exciton diffusion length of C60 in organic planar heterojunction solar cells"^&rn^Phys. Status Solidi A 208, No. 8, pages 1967-1971^&rn^(2011) /DOI 10. 1002/pssa.201026724 *
Schultes et al., The role of molecular architecture^&amp;rn^and layer composition on the properties and performance of CuPc-C60 photovoltaic devices" Materials Science and Engineering C25 (2005) 858-865。
Schultes et al., The role of molecular architecture^&rn^and layer composition on the properties and performance of CuPc-C60 photovoltaic devices" Materials Science and Engineering C25 (2005) 858-865 *

Also Published As

Publication number Publication date
EP2926387A1 (en) 2015-10-07
JP2019054263A (ja) 2019-04-04
US10141531B2 (en) 2018-11-27
EP2926387B1 (en) 2020-11-25
KR102170583B1 (ko) 2020-10-27
CN104904029A (zh) 2015-09-09
JP2015536577A (ja) 2015-12-21
US20150340634A1 (en) 2015-11-26
TW201431148A (zh) 2014-08-01
WO2014085639A1 (en) 2014-06-05
AU2013352112A1 (en) 2015-06-18
JP6436492B2 (ja) 2018-12-12
KR20150091102A (ko) 2015-08-07

Similar Documents

Publication Publication Date Title
TWI661588B (zh) 用於有機光伏打裝置之混合平面分級式異質接面
US20190259971A1 (en) Organic photosensitive devices with exciton-blocking charge carrier filters
JP7281216B2 (ja) 有機光起電装置のためのハイブリッド平面混合ヘテロ接合
US20100084011A1 (en) Organic tandem solar cells
US10297775B2 (en) Organic optoelectronics with electrode buffer layers
US10978654B2 (en) Exciton management in organic photovoltaic multi-donor energy cascades
US20210288261A1 (en) Polymer photovoltaics employing a squaraine donor additive
US11744089B2 (en) Multijunction organic photovoltaics incorporating solution and vacuum deposited active layers
US20160254101A1 (en) Organic photosensitive devices with exciton-blocking charge carrier filters
TWI660532B (zh) 具有激子障蔽性電荷載體濾波器之有機光敏性裝置
TW201618347A (zh) 具有採用高玻璃轉換溫度材料之激子障蔽性電荷載體濾波器之穩定性有機光敏性裝置