TWI660598B - Antenna control method - Google Patents

Antenna control method Download PDF

Info

Publication number
TWI660598B
TWI660598B TW107110544A TW107110544A TWI660598B TW I660598 B TWI660598 B TW I660598B TW 107110544 A TW107110544 A TW 107110544A TW 107110544 A TW107110544 A TW 107110544A TW I660598 B TWI660598 B TW I660598B
Authority
TW
Taiwan
Prior art keywords
antenna
transmission rate
antennas
control method
combinations
Prior art date
Application number
TW107110544A
Other languages
Chinese (zh)
Other versions
TW201943215A (en
Inventor
林柏瑋
Original Assignee
和碩聯合科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和碩聯合科技股份有限公司 filed Critical 和碩聯合科技股份有限公司
Priority to TW107110544A priority Critical patent/TWI660598B/en
Priority to CN201811516596.5A priority patent/CN110311741B/en
Application granted granted Critical
Publication of TWI660598B publication Critical patent/TWI660598B/en
Publication of TW201943215A publication Critical patent/TW201943215A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/17Detection of non-compliance or faulty performance, e.g. response deviations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength

Abstract

一種天線控制方法,應用於包含複數個天線的無線通訊裝置中,天線控制方法包括:於支援傳輸速率下,進行天線控制流程,天線控制流程包含:根據天線的待測組合列表中的複數個天線方向組合,控制天線對外部電子裝置進行封包傳輸測試;根據封包傳輸測試,擷取各天線方向組合對應的傳輸錯誤參數;將不位於錯誤門檻範圍的傳輸錯誤參數所對應的天線方向組合自待測組合列表移除後,判斷待測組合列表中的天線方向組合的數量是否等於零;以及若是,從已移除的天線方向組合中,選擇其中之一天線方向組合控制天線與外部電子裝置進行通訊。 An antenna control method is applied to a wireless communication device including a plurality of antennas. The antenna control method includes: performing an antenna control process under a supported transmission rate, and the antenna control process includes: according to a plurality of antennas in a combination list of antennas to be tested Direction combination to control the antenna to perform packet transmission tests on external electronic devices; according to the packet transmission test, extract the transmission error parameters corresponding to each antenna direction combination; combine the antenna directions corresponding to the transmission error parameters that are not in the error threshold range from the test to be performed After the combination list is removed, determine whether the number of antenna direction combinations in the combination list to be tested is equal to zero; and if so, from the removed antenna direction combinations, select one of the antenna direction combinations to control the antenna to communicate with the external electronic device.

Description

天線控制方法 Antenna control method

本發明是有關於天線技術,且特別是有關於一種天線控制方法。 The present invention relates to antenna technology, and more particularly, to an antenna control method.

智慧天線(smart antenna)可運用訊號處理的演算法,根據訊號傳輸的空間特性來計算與目標裝置間最佳的訊號傳輸方向,以藉由計算結果控制天線的方向與目標裝置進行通訊,達到最高的傳輸效能。常見的智慧天線控制方法,需要對於不同速率下的訊號傳輸參數進行大量的計算,不僅消耗大量的硬體資源,也需要耗費大量的時間成本。 Smart antennas can use signal processing algorithms to calculate the optimal signal transmission direction with the target device based on the spatial characteristics of the signal transmission, and use the calculation results to control the direction of the antenna to communicate with the target device to achieve the highest Transmission performance. Common smart antenna control methods require a large number of calculations for signal transmission parameters at different rates, which not only consumes a lot of hardware resources, but also consumes a lot of time and cost.

因此,如何設計一個新的天線控制方法,以解決上述的缺失,乃為此一業界亟待解決的問題。 Therefore, how to design a new antenna control method to solve the above-mentioned shortcomings is an urgent problem for the industry.

本發明之目的在於提供一種天線控制方法,應用於包含複數個天線的無線通訊裝置中,天線控制方法包括:於支援傳輸速率下,進行天線控制流程,天線控制流程包含:根據天線的待測組合列表中的複數個天線方向組合,控制天線對外部電子裝置進行封包傳輸測試;根據封包傳輸測試, 擷取各天線方向組合對應的傳輸錯誤參數;將不位於錯誤門檻範圍的傳輸錯誤參數所對應的天線方向組合自待測組合列表移除後,判斷待測組合列表中的天線方向組合的數量是否等於零;以及若是,從已移除的天線方向組合中,選擇其中之一天線方向組合控制天線與外部電子裝置進行通訊。 An object of the present invention is to provide an antenna control method applied to a wireless communication device including a plurality of antennas. The antenna control method includes: performing an antenna control process under a supported transmission rate, and the antenna control process includes: according to a combination of antennas to be tested. Multiple antenna direction combinations in the list control the antenna to perform packet transmission tests on external electronic devices; according to the packet transmission test, Extract the transmission error parameters corresponding to each antenna direction combination; remove the antenna direction combinations corresponding to the transmission error parameters that are not in the error threshold range from the list of combinations to be tested, and determine whether the number of antenna direction combinations in the list of combinations to be tested is Is equal to zero; and if so, from among the removed antenna direction combinations, selecting one of the antenna direction combinations to control the antenna to communicate with the external electronic device.

應用本發明之優點在於藉由傳輸錯誤參數及接收訊號強度篩選天線方向組合,並根據接收訊號強度決定測試的支援傳輸速率,大幅減少測試的時間,以產生最佳的天線方向組合,有效率地控制無線通訊裝置的運作。 The advantage of applying the present invention is that the antenna direction combinations are screened by the transmission error parameters and the received signal strength, and the supported transmission rate of the test is determined according to the received signal strength, which greatly reduces the test time to produce the optimal antenna direction combination and efficiently Control the operation of wireless communication devices.

10‧‧‧無線通訊裝置 10‧‧‧Wireless communication device

100A、100B、100C‧‧‧天線 100A, 100B, 100C‧‧‧ Antenna

101‧‧‧待測組合列表 101‧‧‧List of combinations to be tested

102‧‧‧處理單元 102‧‧‧processing unit

104‧‧‧儲存單元 104‧‧‧Storage unit

103‧‧‧查找表 103‧‧‧ Lookup Table

200‧‧‧天線控制方法 200‧‧‧ Antenna Control Method

12‧‧‧外部電子裝置 12‧‧‧External electronics

300‧‧‧子流程 300‧‧‧ Sub-process

201-212‧‧‧步驟 201-212‧‧‧step

A、B‧‧‧點 A, B‧‧‧ points

301-305‧‧‧步驟 301-305‧‧‧step

Rate1-Rate7‧‧‧支援傳輸速率 Rate1-Rate7‧‧‧Supported transmission rate

DA、DB、DC‧‧‧方向 DA, DB, DC‧‧‧ direction

第1圖為本發明一實施例中,一種無線通訊裝置及外部電子裝置的方塊圖;第2圖為本發明一實施例中,一種天線控制方法的流程圖;第3圖為本發明一實施例中,天線控制方法的子流程的流程圖;以及第4圖為本發明一實施例中,接收訊號強度與支援傳輸速率間的對應關係的示意圖。 FIG. 1 is a block diagram of a wireless communication device and an external electronic device in an embodiment of the present invention; FIG. 2 is a flowchart of an antenna control method in an embodiment of the present invention; and FIG. 3 is an implementation of the present invention In the example, a flowchart of a sub-process of the antenna control method; and FIG. 4 is a schematic diagram of a correspondence relationship between a received signal strength and a supported transmission rate in an embodiment of the present invention.

請參照第1圖。第1圖為本發明一實施例中,一種無線通訊裝置10及外部電子裝置12的方塊圖。 Please refer to Figure 1. FIG. 1 is a block diagram of a wireless communication device 10 and an external electronic device 12 according to an embodiment of the present invention.

於一實施例中,無線通訊裝置10可為例如,但不限於一存取點(access point;AP,未繪示)。無線通訊裝置10配置以與外部電子裝置12進行無線通訊,以進行封包傳輸。 In an embodiment, the wireless communication device 10 may be, for example, but not limited to, an access point (AP, not shown). The wireless communication device 10 is configured to perform wireless communication with the external electronic device 12 for packet transmission.

如第1圖所示,無線通訊裝置10包含三個天線100A、100B及100C、處理單元102及儲存單元104。 As shown in FIG. 1, the wireless communication device 10 includes three antennas 100A, 100B, and 100C, a processing unit 102, and a storage unit 104.

於一實施例中,天線100A、100B及100C可為智慧天線(smart antenna)。更詳細地說,因此天線100A、100B及100C可藉由例如,但不限於處理單元102的控制,改變訊號的傳送與接收方向。 In one embodiment, the antennas 100A, 100B, and 100C may be smart antennas. In more detail, therefore, the antennas 100A, 100B, and 100C can change the transmission and reception directions of signals by, for example, but not limited to, the control of the processing unit 102.

在天線100A、100B及100C各指向一個方向,例如,但不限於第1圖中的方向DA、DB、DC的狀態下,即稱為一個天線方向組合。而當天線100A、100B及100C至少其中之一指向另一個方向時,則為另一個天線方向組合。需注意的是,在第1圖中所繪示的方向,僅是不同的二維方向。在實際應用時,天線100A、100B及100C可在三維空間中具有不同的方向。 When the antennas 100A, 100B, and 100C each point in one direction, such as, but not limited to, the directions DA, DB, and DC in FIG. 1, it is referred to as an antenna direction combination. When at least one of the antennas 100A, 100B, and 100C points in the other direction, it is another antenna direction combination. It should be noted that the directions shown in Figure 1 are only different two-dimensional directions. In practical applications, the antennas 100A, 100B, and 100C may have different directions in a three-dimensional space.

於一實施例中,天線100A、100B及100C可在處理單元102的控制下,根據傳輸錯誤參數及/或接收訊號強度選擇最佳的天線方向組合,以達到最佳的傳輸效果。 In an embodiment, the antennas 100A, 100B, and 100C may select the optimal antenna direction combination according to the transmission error parameter and / or the received signal strength under the control of the processing unit 102 to achieve the best transmission effect.

以下將針對無線通訊裝置10中,天線100A、100B及100C的控制機制進行更詳細的說明。 The control mechanism of the antennas 100A, 100B, and 100C in the wireless communication device 10 will be described in more detail below.

請同時參照第2圖。第2圖為本發明一實施例中,一種天線控制方法200的流程圖。 Please also refer to Figure 2. FIG. 2 is a flowchart of an antenna control method 200 according to an embodiment of the present invention.

天線控制方法200可應用於例如,但不限於第1圖的無線通訊裝置10中。天線控制方法200包括下列步驟(應瞭解到,在本實施方式中所提及的步驟,除特別敘明其順序者外,均可依實際需要調整其前後順序,甚至可同時或部分同時執行)。 The antenna control method 200 can be applied to, for example, but not limited to, the wireless communication device 10 of FIG. 1. The antenna control method 200 includes the following steps (it should be understood that the steps mentioned in this embodiment can be adjusted according to actual needs, except for those that are specifically described in order, and can even be performed simultaneously or partially) .

於步驟201,處理單元102於支援傳輸速率下,進行天線控制流程。 In step 201, the processing unit 102 performs an antenna control process under the supported transmission rate.

於步驟202,處理單元102根據天線100A、100B及100C的待測組合列表101中的複數個天線方向組合控制天線100A、100B及100C對外部電子裝置12進行封包傳輸測試。 In step 202, the processing unit 102 controls the antennas 100A, 100B, and 100C to perform a packet transmission test on the external electronic device 12 according to the plurality of antenna direction combinations in the combination list 101 to be tested 101 of the antennas 100A, 100B, and 100C.

於一實施例中,待測組合列表101可儲存於第1圖所繪示的儲存單元104中,並由處理單元102存取。於一實施例中,待測組合列表101可包含複數個表格項目(entry),各個表格項目對應於一個天線方向組合。 In one embodiment, the test combination list 101 may be stored in the storage unit 104 shown in FIG. 1 and accessed by the processing unit 102. In an embodiment, the list of combinations to be tested 101 may include a plurality of table entries, and each table entry corresponds to an antenna direction combination.

天線100A、100B及100C可對應有多個支援傳輸速率,例如但不限於97.5兆位元組/秒(MB/S)、780兆位元組/秒、1300兆位元組/秒等。於一實施例中,天線100A、100B及100C可具有從例如,但不限於十個最低到最高的支援傳輸速率,並以Rate0至Rate9表示。於其他實施例中,天線100A、100B及100C可具有其他數目的支援傳輸速率。 The antennas 100A, 100B, and 100C may correspond to multiple supported transmission rates, such as, but not limited to, 97.5 megabytes / second (MB / S), 780 megabytes / second, 1300 megabytes / second, and the like. In an embodiment, the antennas 100A, 100B, and 100C may have, for example, but not limited to, ten lowest to highest supported transmission rates, and are represented by Rate0 to Rate9. In other embodiments, the antennas 100A, 100B, and 100C may have other numbers of supported transmission rates.

於一實施例中,由於最低的支援傳輸速率Rate0具有較大的訊號強度,因此當處理單元102起始對天線100A、100B及100C進行測試時,將從最低的支援傳輸速率Rate0,依待測組合列表101中的天線方向組合控制天線 100A、100B及100C對外部電子裝置12進行封包傳輸測試,再逐步提升支援傳輸速率。 In an embodiment, since the lowest supported transmission rate Rate0 has a larger signal strength, when the processing unit 102 starts testing the antennas 100A, 100B, and 100C, it will start from the lowest supported transmission rate Rate0, depending on the test. Antenna direction combination control antenna in combination list 101 100A, 100B, and 100C perform a packet transmission test on the external electronic device 12, and then gradually increase the supported transmission rate.

於步驟203,處理單元102判斷目前的支援傳輸速率是否為最高支援傳輸速率。 In step 203, the processing unit 102 determines whether the current supported transmission rate is the highest supported transmission rate.

當目前的支援傳輸速率並非最高支援傳輸速率時,於步驟204,處理單元102根據封包傳輸測試,擷取天線方向組合對應的傳輸錯誤參數。 When the current supported transmission rate is not the highest supported transmission rate, in step 204, the processing unit 102 retrieves transmission error parameters corresponding to the antenna direction combination according to the packet transmission test.

於步驟205,處理單元102判斷傳輸錯誤參數是否位於錯誤門檻範圍。 In step 205, the processing unit 102 determines whether the transmission error parameter is within the error threshold range.

於一實施例中,傳輸錯誤參數是根據封包重傳次數決定。舉例而言,當封包重傳次數小於一個門檻值時,處理單元102將判斷傳輸錯誤參數位於錯誤門檻範圍。在另一個範例中,傳輸錯誤參數可為封包重傳次數與封包總傳送次數的比例。當此比例小於一個門檻值時,處理單元102將判斷傳輸錯誤參數位於錯誤門檻範圍。 In one embodiment, the transmission error parameter is determined according to the number of packet retransmissions. For example, when the number of packet retransmissions is less than a threshold value, the processing unit 102 determines that the transmission error parameter is within the error threshold range. In another example, the transmission error parameter may be a ratio of the number of packet retransmissions to the total number of packet transmissions. When the ratio is less than a threshold value, the processing unit 102 determines that the transmission error parameter is within the error threshold range.

於步驟206,處理單元102將不位於錯誤門檻範圍的傳輸錯誤參數所對應的的天線方向組合自待測組合列表101移除。 In step 206, the processing unit 102 removes the antenna direction combinations corresponding to the transmission error parameters that are not in the error threshold range from the combination list to be tested 101.

於一實施例中,當處理單元102於步驟205判斷傳輸錯誤參數不位於錯誤門檻範圍,或是已於步驟206將不位於錯誤門檻範圍的傳輸錯誤參數所對應的的天線方向組合自待測組合列表101移除後,於步驟207,處理單元102判斷是否待測組合列表101中的天線方向組合都已判斷完畢。 In an embodiment, when the processing unit 102 determines in step 205 that the transmission error parameter is not in the error threshold range, or in step 206 the antenna direction corresponding to the transmission error parameter that is not in the error threshold range has been combined from the combination under test. After the list 101 is removed, in step 207, the processing unit 102 determines whether the antenna direction combinations in the combination list 101 to be tested have been determined.

當步驟207中,處理單元102判斷待測組合列表101中的天線方向組合尚未完全判斷時,流程將回至步驟204,擷取尚未判斷的天線方向組合對應的傳輸錯誤參數,以繼續步驟205至206的處理。 When the processing unit 102 determines in step 207 that the antenna direction combination in the combination list to be tested 101 has not yet been completely determined, the flow will return to step 204 to retrieve the transmission error parameters corresponding to the antenna direction combination that has not yet been determined, to continue steps 205 to 206 processing.

而當步驟207中,處理單元102判斷待測組合列表101中的天線方向組合均已經過判斷時,流程將進行至步驟208,由處理單元102判斷待測組合列表101中的天線方向組合的數量是否等於零。 When in step 207, the processing unit 102 determines that the antenna direction combinations in the combination list 101 to be tested have all been judged, the process proceeds to step 208, and the processing unit 102 determines the number of antenna direction combinations in the combination list 101 to be tested Whether it is equal to zero.

當待測組合列表101中的天線方向組合的數量不等於零時,於步驟209,處理單元102進一步判斷目前測試的支援傳輸速率是否為最低支援傳輸速率。 When the number of antenna direction combinations in the combination list to be tested 101 is not equal to zero, in step 209, the processing unit 102 further determines whether the currently tested supported transmission rate is the lowest supported transmission rate.

當目前測試的支援傳輸速率並非最低支援傳輸速率時,於步驟210,處理單元102將測試的支援傳輸速率由目前測試的支援傳輸速率提高至支援傳輸速率中最接近目前測試的支援傳輸速率者。舉例而言,當目前測試的支援傳輸速率為Rate3時,處理單元102將支援傳輸速率由Rate3提高至Rate4。 When the currently tested supported transmission rate is not the lowest supported transmission rate, in step 210, the processing unit 102 increases the tested supported transmission rate from the currently tested supported transmission rate to the one closest to the currently tested supported transmission rate. For example, when the currently supported transmission rate is Rate3, the processing unit 102 increases the supported transmission rate from Rate3 to Rate4.

接著,流程將回至步驟201,處理單元102在提高後的支援傳輸速率下,進行天線控制流程,並根據經過前述移除步驟的待測組合列表101,在步驟202以其包含的天線方向組合控制天線100A、100B及100C對外部電子裝置12進行封包傳輸測試,並繼續步驟203至209的流程。 Next, the process will return to step 201. The processing unit 102 performs the antenna control process at the increased supported transmission rate, and according to the combination list to be tested 101 after the foregoing removal step, combines the antenna directions included in step 202. The antennas 100A, 100B, and 100C are controlled to perform a packet transmission test on the external electronic device 12, and the processes of steps 203 to 209 are continued.

於一實施例中,當步驟203中處理單元102判斷目前測試的支援傳輸速率為最高支援傳輸速率,例如Rate7時, 處理單元102將進行至步驟211,從當下的待測組合列表中,選擇其中之一天線方向組合控制天線100A、100B及100C與外部電子裝置12進行通訊。 In an embodiment, when the processing unit 102 determines in step 203 that the currently supported transmission rate is the highest supported transmission rate, such as Rate7, The processing unit 102 proceeds to step 211, and selects one of the antenna direction combination control antennas 100A, 100B, and 100C from the current list of combinations to be tested to communicate with the external electronic device 12.

更詳細地說,當目前測試的支援傳輸速率為最高支援傳輸速率時,處理單元102將從對應高支援傳輸速率的待測組合列表中,選擇其中之一天線方向組合控制天線100A、100B及100C與外部電子裝置12進行通訊。 In more detail, when the currently supported transmission rate is the highest supported transmission rate, the processing unit 102 selects one of the antenna direction combination control antennas 100A, 100B, and 100C from the list of combinations to be tested corresponding to the high supported transmission rate. Communicate with the external electronic device 12.

於另一實施例中,當步驟208中處理單元102判斷待測組合列表101中的天線方向組合的數量為零時,處理單元102將進行至步驟212,從已在步驟206移除的天線方向組合中,選擇其中之一天線方向組合控制天線100A、100B及100C與外部電子裝置12進行通訊。 In another embodiment, when the processing unit 102 determines in step 208 that the number of antenna direction combinations in the combination list to be tested 101 is zero, the processing unit 102 proceeds to step 212 and removes the antenna directions from step 206. In the combination, one of the antenna directions is selected to control the antennas 100A, 100B, and 100C to communicate with the external electronic device 12.

更詳細地說,當目前進行測試的支援傳輸速率為例如,但不限於Rate5,且待測組合列表101在步驟202進行三個天線方線組合的封包傳輸測試時,如果這三個天線方向組合對應的傳輸錯誤參數都因為不位於錯誤門檻範圍,而於步驟205移除,將使得待測組合列表101的天線方線組合數量為零。此時,處理單元102將從這三個已移除的天線方向組合中,選擇其中之一天線方向組合控制天線100A、100B及100C與外部電子裝置12進行通訊。 In more detail, when the supported transmission rate currently being tested is, for example, but not limited to Rate5, and the combined test list 101 performs a packet transmission test of a combination of three antenna square wires in step 202, if the three antenna directions are combined The corresponding transmission error parameters are not located in the error threshold range, and the removal in step 205 will make the number of antenna square line combinations of the combination list 101 to be tested zero. At this time, the processing unit 102 selects one of the three removed antenna direction combinations to control the antennas 100A, 100B, and 100C to communicate with the external electronic device 12.

因此,本發明的天線控制方法200可以藉由傳輸錯誤參數篩選天線方向組合,大幅減少測試的時間,以產生最佳的天線方向組合,有效率地控制無線通訊裝置的運作。 Therefore, the antenna control method 200 of the present invention can filter the antenna direction combinations by transmitting the error parameters, greatly reducing the test time, to generate the optimal antenna direction combination, and effectively control the operation of the wireless communication device.

於一實施例中,當步驟209中處理單元102判斷目前測試的支援傳輸速率為最低支援傳輸速率時,天線控制方法200可藉由接收訊號強度進行天線方向組合的篩選,並決定下一階段測試的支援傳輸速率,進一步減少測試的時間。 In an embodiment, when the processing unit 102 determines in step 209 that the currently supported transmission rate is the lowest supported transmission rate, the antenna control method 200 may screen the antenna direction combinations by receiving the signal strength and determine the next stage of the test. The supported transmission rate further reduces the test time.

第3圖為本發明一實施例中,天線控制方法200的子流程300的流程圖。當步驟209中處理單元102判斷目前測試的支援傳輸速率為最低支援傳輸速率時,天線控制方法200將進入A點,以接續至子流程300。 FIG. 3 is a flowchart of a sub-process 300 of an antenna control method 200 according to an embodiment of the present invention. When the processing unit 102 determines in step 209 that the currently supported transmission rate is the lowest supported transmission rate, the antenna control method 200 will enter point A to continue to the sub-process 300.

於步驟301,處理單元102根據先前步驟201的封包傳輸測試,擷取各天線在各天線組合中之接收訊號強度。於一實施例中,接收訊號強度為接收訊號強度指標(Received Signal Strength Indicator;RSSI)。因此,以天線100A為例,當有十個天線方向組合時,將產生對應天線100A的十個接收訊號強度RSSI1至RSSI10In step 301, the processing unit 102 acquires the received signal strength of each antenna in each antenna combination according to the packet transmission test of the previous step 201. In one embodiment, the received signal strength is a Received Signal Strength Indicator (RSSI). Therefore, taking the antenna 100A as an example, when there are ten antenna directions combined, ten received signal strengths RSSI 1 to RSSI 10 corresponding to the antenna 100A will be generated.

於步驟302,處理單元102判斷待測組合列表101的天線方向組合是否符合訊號強度狀況。 In step 302, the processing unit 102 determines whether the antenna direction combination of the combination list 101 to be tested meets the signal strength status.

於一實施例中,訊號強度狀況是天線方向組合所包含的天線100A、100B、100C中,接收訊號強度小於強度門檻值的天線數目大於或等於一數目門檻值的狀況。 In an embodiment, the signal strength condition is a condition in which the number of antennas whose received signal strength is less than the strength threshold value is greater than or equal to a number threshold value among the antennas 100A, 100B, and 100C included in the antenna direction combination.

舉例而言,數目門檻值可為三。當天線方向組合包含的天線100A、100B、100C的接收訊號強度均小於強度門檻值時,此天線方向組合即符合訊號強度狀況。因此於步驟303,處理單元102將此天線方向組合自待測組合列表101移除。於另一範例中,數目門檻值可為一。因此,當 天線方向組合所包含的天線100A、100B、100C其中之一的接收訊號強度小於強度門檻值時,處理單元102即判斷此天線方向組合符合訊號強度狀況,並於步驟303,將此天線方向組合自待測組合列表101移除。 For example, the number threshold may be three. When the received signal strengths of the antennas 100A, 100B, and 100C included in the antenna direction combination are less than the strength threshold, the antenna direction combination meets the signal strength status. Therefore, in step 303, the processing unit 102 removes the antenna direction combination from the combination list to be tested 101. In another example, the number threshold may be one. So when When the received signal strength of one of the antennas 100A, 100B, and 100C included in the antenna direction combination is less than the strength threshold, the processing unit 102 determines that the antenna direction combination meets the signal strength status, and in step 303, combines the antenna direction The test combination list 101 is removed.

於一實施例中,強度門檻值為各天線的全向性(omni direction)接收訊號強度RSSIomni。以天線100A為例,處理單元102將判斷天線100A的接收訊號強度是否小於天線100A的全向性接收訊號強度RSSIomniIn one embodiment, the strength threshold is the omni direction of each antenna receiving signal strength RSSI omni . Taking the antenna 100A as an example, the processing unit 102 will determine whether the received signal strength of the antenna 100A is less than the omnidirectional received signal strength RSSI omni of the antenna 100A.

當其中一個天線方向組合的天線100A、100B、100C中,接收訊號強度小於其全向性接收訊號強度的天線數目大於或等於數目門檻值時,處理單元102將此天線方向組合自待測組合列表101移除。 When among the antennas 100A, 100B, and 100C with one antenna direction combination, the number of antennas whose received signal strength is less than its omnidirectional received signal strength is greater than or equal to the number threshold, the processing unit 102 combines the antenna directions from the combination list under test 101 removed.

於另一實施例中,強度門檻值為各天線在所有天線方向組合中的平均接收訊號強度RSSIavg。以天線100A為例,當總共有十個天線方向組合時,強度門檻值為天線100A在十個天線方向組合中的方向所測得的接收訊號強度RSSI1至RSSI10加總後除以十的平均值。處理單元102將判斷天線100A的接收訊號強度是否小於此平均值。 In another embodiment, the strength threshold is the average received signal strength RSSI avg of each antenna in all antenna direction combinations. Taking antenna 100A as an example, when there are a total of ten antenna direction combinations, the strength threshold is the received signal strength RSSI 1 to RSSI 10 measured by the direction of antenna 100A among the ten antenna direction combinations, divided by ten. average value. The processing unit 102 determines whether the received signal strength of the antenna 100A is less than the average value.

當其中一個天線方向組合的天線100A、100B、100C中,接收訊號強度小於其平均接收訊號強度RSSIavg的天線數目大於或等於數目門檻值時,處理單元102將此天線方向組合自待測組合列表101移除。 When the number of antennas in the antennas 100A, 100B, and 100C with one antenna direction combination is less than the average received signal strength RSSI avg is greater than or equal to the number threshold, the processing unit 102 combines the antenna directions from the combination list to be tested 101 removed.

於又一實施例中,處理單元102可選擇性地判斷天線方向組合包含的天線100A、100B、100C的接收訊 號強度是否既小於的全向性接收訊號強度RSSIomni,又小於平均接收訊號強度RSSIavg。唯有兩者都成立時,處理單元102才將此天線方向組合自待測組合列表101移除。 In yet another embodiment, the processing unit 102 may selectively determine whether the received signal strengths of the antennas 100A, 100B, and 100C included in the antenna direction combination are both less than the omnidirectional received signal strength RSSI omni and smaller than the average received signal strength RSSI avg . Only when both are true, the processing unit 102 removes the antenna direction combination from the combination list to be tested 101.

於一實施例中,當處理單元102於步驟302判斷天線方向組合包含的天線100A、100B、100C的接收訊號強度至少其中之一不小於強度門檻值,或是已於步驟303將滿足條件的天線方向組合自待測組合列表101移除後,於步驟304,處理單元102判斷是否待測組合列表101中的天線方向組合都已判斷完畢。 In an embodiment, when the processing unit 102 determines in step 302 that at least one of the received signal strengths of the antennas 100A, 100B, and 100C included in the antenna direction combination is not less than the strength threshold, or the antenna that has met the conditions in step 303 After the direction combination is removed from the test combination list 101, in step 304, the processing unit 102 determines whether all the antenna direction combinations in the test combination list 101 have been determined.

當步驟304中,處理單元102判斷待測組合列表101中的天線方向組合尚未完全判斷時,流程將回至步驟301,擷取尚未判斷的天線方向組合對應的接收訊號強度,以繼續步驟301至303的處理。 When the processing unit 102 determines in step 304 that the antenna direction combination in the combination list to be tested 101 has not yet been completely determined, the flow will return to step 301 to retrieve the received signal strength corresponding to the antenna direction combination that has not been determined, to continue steps 301 to 303 processing.

而當步驟304中,處理單元102判斷待測組合列表101中的天線方向組合均已經過判斷時,流程將進行至步驟305,由處理單元102根據待測組合列表101中,天線方向組合的天線100A、100B、100C的最小接收訊號強度,決定所提高測試的支援傳輸速率。 When in step 304, the processing unit 102 determines that the antenna direction combinations in the combination list 101 to be tested have all been judged, the process proceeds to step 305, and the processing unit 102 determines the antennas combined in the antenna direction in the combination list 101 to be tested. The minimum received signal strength of 100A, 100B, and 100C determines the supported transmission rate for the increased test.

接著,子流程300將進入B點,以接續回至第2圖的步驟201,處理單元102在提高後的支援傳輸速率下,進行天線控制流程,並根據經過前述移除步驟的待測組合列表101,在步驟202以其包含的天線方向組合控制天線100A、100B及100C對外部電子裝置12進行封包傳輸測試,並繼續步驟203至209的流程。 Next, the sub-process 300 will enter point B to continue to step 201 in FIG. 2. The processing unit 102 performs the antenna control process at the increased supported transmission rate, and according to the list of combinations to be tested after the foregoing removal step. 101. In step 202, the antennas 100A, 100B, and 100C are combined to control the antennas 100A, 100B, and 100C to perform a packet transmission test on the external electronic device 12, and the processes of steps 203 to 209 are continued.

請參照第4圖。第4圖為本發明一實施例中,接收訊號強度RSSI與支援傳輸速率間的對應關係的示意圖。 Please refer to Figure 4. FIG. 4 is a schematic diagram of a correspondence between a received signal strength RSSI and a supported transmission rate in an embodiment of the present invention.

如第4圖所示,不同的支援傳輸速率Rate1、Rate3、Rate4、Rate5、Rate6、Rate7將可對應不同的接收訊號強度。舉例而言,支援傳輸速率Rate1對應-75dB以上的接收訊號強度。支援傳輸速率Rate3對應-75dB至-70dB的接收訊號強度。支援傳輸速率Rate4對應-70dB至-65dB的接收訊號強度。支援傳輸速率Rate5對應-65dB至-60dB的接收訊號強度。支援傳輸速率Rate6對應-60dB至-55dB的接收訊號強度。支援傳輸速率Rate7對應-55dB以上的接收訊號強度。 As shown in Figure 4, the different supported transmission rates Rate1, Rate3, Rate4, Rate5, Rate6, and Rate7 will correspond to different received signal strengths. For example, the supported transmission rate Rate1 corresponds to a received signal strength above -75dB. The supported transmission rate Rate3 corresponds to the received signal strength of -75dB to -70dB. The supported transmission rate Rate4 corresponds to the received signal strength of -70dB to -65dB. The supported transmission rate Rate5 corresponds to the received signal strength of -65dB to -60dB. The supported transmission rate Rate6 corresponds to the received signal strength of -60dB to -55dB. The supported transmission rate Rate7 corresponds to the received signal strength above -55dB.

因此,當待測組合列表101中,天線方向組合的天線100A、100B、100C的最小接收訊號強度為-63dB時,處理單元102將得知此些天線方向組的表現較佳,可直接將支援傳輸速率提高到Rate5,不需要再對Rate3至Rate4的支援傳輸速率進行測試。 Therefore, when the minimum received signal strength of the antennas 100A, 100B, and 100C in the antenna combination list 101 is -63dB, the processing unit 102 will know that these antenna direction groups perform better and can directly support the The transmission rate is increased to Rate5, and there is no need to test the supported transmission rates of Rate3 to Rate4.

需注意的是,接收訊號強度與支援傳輸速率間的對應關係可實作為一個儲存在儲存單元104中的查找表103,以由處理單元102擷取並判斷。並且,於一實施例中,接收訊號強度與支援傳輸速率間的對應關係可由預先測試天線100A、100B、100C的特性而建立。 It should be noted that the correspondence between the strength of the received signal and the supported transmission rate can be implemented as a lookup table 103 stored in the storage unit 104 to be retrieved and judged by the processing unit 102. Moreover, in an embodiment, the correspondence between the received signal strength and the supported transmission rate can be established by testing the characteristics of the antennas 100A, 100B, and 100C in advance.

因此,本發明的天線控制方法200的子流程300可以進一步藉由接收訊號強度篩選天線方向組合,並根據接收訊號強度決定測試的支援傳輸速率,大幅減少測試的時 間,以產生最佳的天線方向組合,有效率地控制無線通訊裝置的運作。 Therefore, the sub-process 300 of the antenna control method 200 of the present invention can further filter the antenna direction combinations based on the received signal strength, and determine the supported transmission rate of the test according to the received signal strength, thereby greatly reducing the test time. In order to produce the optimal antenna direction combination, the operation of the wireless communication device is effectively controlled.

需注意的是,上述實施例中,無線通訊裝置10包含的天線的數目僅為一範例。於不同實施例中,無線通訊裝置10可包含不同數目的天線,不為上述實施例的數目所限。 It should be noted that, in the above embodiment, the number of antennas included in the wireless communication device 10 is only an example. In different embodiments, the wireless communication device 10 may include different numbers of antennas, which is not limited to the number of the above embodiments.

以上所述僅為本發明的較佳實施例而已,並不用以限制本發明,凡在本發明的原則之內所作的任何修改,等同替換和改進等均應包含本發明的保護範圍之內。 The above descriptions are merely preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, and improvement made within the principles of the present invention shall fall within the protection scope of the present invention.

Claims (10)

一種天線控制方法,應用於包含複數個天線的一無線通訊裝置中,該天線控制方法包括:於一支援傳輸速率下,進行一天線控制流程,該天線控制流程包含:根據該等天線的一待測組合列表中的複數個天線方向組合,控制該等天線對一外部電子裝置進行一封包傳輸測試,其中每一該等天線方向組合為該等天線各自的指向方向組合;根據該封包傳輸測試,擷取各該等天線方向組合對應的一傳輸錯誤參數;將不位於一錯誤門檻範圍的該傳輸錯誤參數所相應的該等天線方向組合自該待測組合列表移除後,判斷該待測組合列表中的該等天線方向組合的數量是否等於零;以及若是,從已移除的該等天線方向組合中,選擇其中之一該等天線方向組合控制該等天線與該外部電子裝置進行通訊。An antenna control method is applied to a wireless communication device including a plurality of antennas. The antenna control method includes: performing an antenna control process at a supported transmission rate. The antenna control process includes: A plurality of antenna direction combinations in the test combination list are controlled to perform a packet transmission test on an external electronic device, wherein each of the antenna direction combinations is a respective direction combination of the antennas; according to the packet transmission test, Extracting a transmission error parameter corresponding to each of the antenna direction combinations; and removing the antenna direction combinations corresponding to the transmission error parameters that are not located in an error threshold range from the list of combinations to be tested to determine the combination to be tested Whether the number of antenna direction combinations in the list is equal to zero; and if so, selecting one of the antenna direction combinations from the removed antenna direction combinations to control the antennas to communicate with the external electronic device. 如請求項1所述的天線控制方法,其中若該待測組合列表中的該等天線方向組合的數量不等於零,該天線控制方法更包含:提高該支援傳輸速率,並於所提高的該支援傳輸速率下,使該待測組合列表進行該天線控制流程。The antenna control method according to claim 1, wherein if the number of the antenna direction combinations in the combination list under test is not equal to zero, the antenna control method further includes: increasing the supported transmission rate, and improving the supported At the transmission rate, the antenna control process is performed on the combination list under test. 如請求項2所述的天線控制方法,其中若該待測組合列表中的該等天線方向組合的數量不等於零,在提高該支援傳輸速率的步驟前,該天線控制方法更包含:判斷該支援傳輸速率是否為一最低支援傳輸速率;當該支援傳輸速率是該最低支援傳輸速率時,根據該封包傳輸測試,擷取各該等天線在各該等天線組合中之一接收訊號強度;以及將符合一訊號強度狀況的至少一該等天線方向組合自該待測組合列表移除後,再提高該支援傳輸速,其中該訊號強度狀況為該等天線方向組合所包含的該等天線中,該接收訊號強度小於一強度門檻值的天線數目大於或等於一數目門檻值。The antenna control method according to claim 2, wherein if the number of the antenna direction combinations in the combination list under test is not equal to zero, before the step of increasing the supported transmission rate, the antenna control method further includes: judging the support Whether the transmission rate is a minimum supported transmission rate; when the supported transmission rate is the minimum supported transmission rate, according to the packet transmission test, extracting the received signal strength of each of the antennas in one of the antenna combinations; and After the at least one antenna direction combination that meets a signal strength condition is removed from the list of combinations to be tested, the supported transmission speed is increased, where the signal strength condition is among the antennas included in the antenna direction combinations. The number of antennas whose received signal strength is less than a strength threshold is greater than or equal to a number threshold. 如請求項3所述的天線控制方法,提高該支援傳輸速率的步驟更包含:根據該待測組合列表中,該等天線方向組合的該等天線的一最小接收訊號強度決定所提高的該支援傳輸速率。According to the antenna control method described in claim 3, the step of increasing the supported transmission rate further includes: determining the improved support according to a minimum received signal strength of the antennas of the antenna direction combinations in the combination list under test. Transmission rate. 如請求項4所述的天線控制方法,更包含:根據該最小接收訊號強度,藉由一查找表決定所提高的該支援傳輸速率,其中該查找表包含該接收訊號強度與該支援傳輸速率間的對應關係。The antenna control method according to claim 4, further comprising: determining the improved supported transmission rate by a lookup table according to the minimum received signal strength, wherein the lookup table includes the interval between the received signal strength and the supported transmission rate. Corresponding relationship. 如請求項3所述的天線控制方法,其中該強度門檻值為各該等天線的一全向性(omni direction)接收訊號強度,或各該等天線在所有該等天線方向組合中的一平均接收訊號強度。The antenna control method according to claim 3, wherein the intensity threshold value is an omni-directional (omni direction) received signal strength of each of the antennas, or an average of each of the antennas among all the combinations of the antenna directions Received signal strength. 如請求項3所述的天線控制方法,其中該接收訊號強度為一接收訊號強度指標(Received Signal Strength Indicator;RSSI)。The antenna control method according to claim 3, wherein the received signal strength is a Received Signal Strength Indicator (RSSI). 如請求項3所述的天線控制方法,其中該無線通訊裝置具有複數個支援傳輸速率,當判斷該支援傳輸速率不為該最低支援傳輸速率時,該天線控制方法更包含:將該支援傳輸速率由一目前支援傳輸速率提高至該等支援傳輸速率中最接近該目前支援傳輸速率者。The antenna control method according to claim 3, wherein the wireless communication device has a plurality of supported transmission rates. When it is determined that the supported transmission rate is not the minimum supported transmission rate, the antenna control method further includes: The current supported transmission rate is increased to the closest one among the supported transmission rates. 如請求項1所述的天線控制方法,其中在進行該天線控制流程前,更包括:判斷該支援傳輸速率的大小是否達到一最高支援傳輸速率;若是,選擇該待測組合列表中其中之一該等天線方向組合控制該等天線與該外部電子裝置進行通訊;以及若否,於該支援傳輸速率下,進行該天線控制流程。The antenna control method according to claim 1, before performing the antenna control process, further comprising: determining whether the size of the supported transmission rate reaches a maximum supported transmission rate; if so, selecting one of the combinations to be tested The antenna direction combinations control the antennas to communicate with the external electronic device; and if not, perform the antenna control process at the supported transmission rate. 如請求項1所述的天線控制方法,其中該傳輸錯誤參數是根據一封包重傳次數決定。The antenna control method according to claim 1, wherein the transmission error parameter is determined according to the number of retransmissions of a packet.
TW107110544A 2018-03-27 2018-03-27 Antenna control method TWI660598B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107110544A TWI660598B (en) 2018-03-27 2018-03-27 Antenna control method
CN201811516596.5A CN110311741B (en) 2018-03-27 2018-12-12 Antenna control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107110544A TWI660598B (en) 2018-03-27 2018-03-27 Antenna control method

Publications (2)

Publication Number Publication Date
TWI660598B true TWI660598B (en) 2019-05-21
TW201943215A TW201943215A (en) 2019-11-01

Family

ID=67348032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107110544A TWI660598B (en) 2018-03-27 2018-03-27 Antenna control method

Country Status (2)

Country Link
CN (1) CN110311741B (en)
TW (1) TWI660598B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1232060C (en) * 2002-08-30 2005-12-14 华为技术有限公司 Wave beam judgeing method and device used in switching wave beam type intelligent antenna system
US20060040707A1 (en) * 2004-08-18 2006-02-23 Video54 Technologies, Inc. System and method for transmission parameter control for an antenna apparatus with selectable elements
US20090005121A1 (en) * 2007-06-28 2009-01-01 Fimax Technology Limited C/O M&C Corporate Services Limited Systems and methods using antenna beam scanning for improved communications
TWI560942B (en) * 2015-01-27 2016-12-01 Wistron Neweb Corp Wireless communication device and antenna search method thereof
US20170005714A1 (en) * 2014-03-18 2017-01-05 Huawei Technologies Co., Ltd. Directional direction selection method, apparatus, and system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI355112B (en) * 2007-06-14 2011-12-21 Asustek Comp Inc Method and system for setting smart antenna
CN104283590B (en) * 2012-01-09 2017-11-17 光宝电子(广州)有限公司 Antenna array control method and the communicator using this method
JP2014053780A (en) * 2012-09-07 2014-03-20 Sony Corp Communication device, communication control method and program
KR102067156B1 (en) * 2012-12-31 2020-02-11 삼성전자주식회사 Circuit, apparatus and method for antenna mode steering
TWI563733B (en) * 2015-04-07 2016-12-21 Wistron Neweb Corp Smart antenna module and omni-directional antenna thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1232060C (en) * 2002-08-30 2005-12-14 华为技术有限公司 Wave beam judgeing method and device used in switching wave beam type intelligent antenna system
US20060040707A1 (en) * 2004-08-18 2006-02-23 Video54 Technologies, Inc. System and method for transmission parameter control for an antenna apparatus with selectable elements
US20090005121A1 (en) * 2007-06-28 2009-01-01 Fimax Technology Limited C/O M&C Corporate Services Limited Systems and methods using antenna beam scanning for improved communications
US20170005714A1 (en) * 2014-03-18 2017-01-05 Huawei Technologies Co., Ltd. Directional direction selection method, apparatus, and system
TWI560942B (en) * 2015-01-27 2016-12-01 Wistron Neweb Corp Wireless communication device and antenna search method thereof

Also Published As

Publication number Publication date
CN110311741B (en) 2022-07-19
CN110311741A (en) 2019-10-08
TW201943215A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
US20110244808A1 (en) Wireless communications apparatus, wireless communications method, program, and integrated circuit
CN106797596B (en) access control method, device and network equipment
US10172016B2 (en) Generation of access point configuration change based on a generated coverage monitor
JP2013239960A5 (en)
CN104821852B (en) A kind of frequency spectrum sensing method based on multiple antennas instantaneous power
TWI660598B (en) Antenna control method
US11456543B2 (en) Antenna assembly and antenna tuning-free method and apparatus
CN104954089B (en) A kind of frequency spectrum sensing method being compared based on multiple antennas instantaneous power
CN107947842B (en) Beam forming method and device
TWI521906B (en) Channel map generating method and apparatus of wireless communication system
CN105813089B (en) A kind of matched filtering frequency spectrum sensing method fighting incorrect noise
WO2017097055A1 (en) Method and device for random access channel
CN109862572B (en) Deployment method and evaluation method of intelligent interference analysis system and electronic equipment
CN106060918B (en) Power control method and base station
CN112055408B (en) Terminal positioning method and direction finding system
US9998189B1 (en) Adaptive device and method for wireless network
CN113810135A (en) Method and equipment for radio station fast link establishment and dynamic channel access based on spectrum sensing
CN105898756B (en) A kind of cycle specificity detection method for fighting incorrect noise
CN111954246B (en) Downlink evaluation method, base station and equipment
CN106535244B (en) Wireless communication method and device
CN106303911B (en) Interference measuring method and interference measuring device
CN114205835B (en) Directional communication method, device, electronic equipment and storage medium
CN103947148A (en) Discrete transmission detecting device and method
CN103503361B (en) For controlling the method and apparatus of ascending load
KR101393141B1 (en) Method to multi rat choosing access and simultaneous access and load balancing in heterogeneous cellular network