TWI660173B - Biosensing system - Google Patents

Biosensing system Download PDF

Info

Publication number
TWI660173B
TWI660173B TW107131184A TW107131184A TWI660173B TW I660173 B TWI660173 B TW I660173B TW 107131184 A TW107131184 A TW 107131184A TW 107131184 A TW107131184 A TW 107131184A TW I660173 B TWI660173 B TW I660173B
Authority
TW
Taiwan
Prior art keywords
gate
electrode
sensing chip
voltage level
biosensor system
Prior art date
Application number
TW107131184A
Other languages
Chinese (zh)
Other versions
TW202011025A (en
Inventor
黃志忠
吳健銘
林恩
Original Assignee
致茂電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 致茂電子股份有限公司 filed Critical 致茂電子股份有限公司
Priority to TW107131184A priority Critical patent/TWI660173B/en
Application granted granted Critical
Publication of TWI660173B publication Critical patent/TWI660173B/en
Publication of TW202011025A publication Critical patent/TW202011025A/en

Links

Abstract

一種生物感測系統,包含場效電晶體、感測晶片以及外部電容。場效電晶體包含閘極。感測晶片透過導線電性連接至閘極。外部電容包含第一端以及第二端,第一端電性連接導線,第二端電性連接地準電極。 A biological sensing system includes a field effect transistor, a sensing chip, and an external capacitor. The field effect transistor contains a gate. The sensing chip is electrically connected to the gate electrode through a wire. The external capacitor includes a first terminal and a second terminal, the first terminal is electrically connected to the lead, and the second terminal is electrically connected to the ground electrode.

Description

生物感測系統 Biosensing system

本揭露有關於一種生物感測系統。 This disclosure relates to a biosensor system.

近年來結合電化學、微電子學和奈米技術產生的奈米線場效電晶體所製作之生物感測器,因具有極高靈敏度與選擇性,且擁有無需標記修飾便可即時測量的特性,在近期的生醫檢測應用上,引起相當廣大的關注與期待。常見的奈米管生物感測器有利用一維半導體奈米材料所研發而成的矽奈米線(Silicon Nanowire;SiNW)及奈米碳管(Carbon Nanotube;CNT)。 In recent years, biosensors made by combining nanowire field effect transistors produced by electrochemical, microelectronics, and nanotechnology have extremely high sensitivity and selectivity, and have the characteristics of immediate measurement without label modification In the recent application of biomedical testing, it has attracted considerable attention and expectation. Common nanotube biosensors include Silicon Nanowire (SiNW) and Carbon Nanotube (CNT) developed using one-dimensional semiconductor nanomaterials.

以矽奈米線場效電晶體(SiNW-FET)為例,一般之設計包括三電極系統:源極(Source;S)、汲極(Drain;D)和閘極(Gate;G)。其中源極和汲極是以半導體通道做為架橋,閘極則是負責調控通道之電導(Conductance);接著,在矽奈米線的表面修飾上特定的受體(Receptor)做為感測元件,此受體可為抗體。當系統暴露於含有檢體,如蛋白質、DNA、RNA等溶液環境中時,檢體會與受體結合於SiNW-FET表面,此時生物分子所帶電荷形成的電場,便會影響SiNW-FET內之電子或電洞數目,進而引發電導度的上升或下降。 Taking silicon nanowire field-effect transistor (SiNW-FET) as an example, a general design includes a three-electrode system: a source (S), a drain (Drain), and a gate (Gate). The source and drain are bridged by a semiconductor channel, and the gate is responsible for regulating the conductance of the channel. Then, a specific receptor is used as a sensing element on the surface modification of the silicon nanowire. This receptor can be an antibody. When the system is exposed to a solution environment containing specimens, such as proteins, DNA, RNA, etc., the specimens and receptors will bind to the surface of the SiNW-FET. At this time, the electric field formed by the charge carried by the biomolecule will affect the SiNW-FET The number of electrons or holes, which will cause the conductivity to rise or fall.

本揭露有關於一種生物感測系統,包含場效電晶體、感測晶片以及外部電容。場效電晶體包含閘極。感測晶片透過導線電性連接至閘極。外部電容包含第一端以及第二端,第一端電性連接導線,第二端電性連接地準電極。 The present disclosure relates to a biosensor system, including a field effect transistor, a sensing chip, and an external capacitor. The field effect transistor contains a gate. The sensing chip is electrically connected to the gate electrode through a wire. The external capacitor includes a first terminal and a second terminal, the first terminal is electrically connected to the lead, and the second terminal is electrically connected to the ground electrode.

在一些實施方式中,生物感測系統進一步包含液體槽以極參考電極。液體槽包含溶液,且感測晶片接觸溶液。參考電極接觸溶液。 In some embodiments, the biosensor system further includes a liquid cell to polarize the reference electrode. The liquid tank contains a solution and the wafer is contacted with the solution. The reference electrode is in contact with the solution.

綜上所述,本揭露提出之生物感測系統,可用以感測液體槽內的檢體濃度。其中在執行感測功能前,參考電極會對生物感測系統施加一個直流偏壓,而電容使生物感測系統整體的電性快速達到穩定狀態。 In summary, the bio-sensing system proposed in this disclosure can be used to sense the concentration of the specimen in the liquid tank. Before the sensing function is performed, the reference electrode applies a DC bias voltage to the biosensor system, and the capacitance makes the overall electrical property of the biosensor system quickly reach a stable state.

100‧‧‧生物感測系統 100‧‧‧Biosensor System

110‧‧‧場效電晶體 110‧‧‧Field Effect Transistor

111‧‧‧汲極 111‧‧‧ Drain

112‧‧‧源極 112‧‧‧Source

113‧‧‧閘極 113‧‧‧Gate

114‧‧‧奈米導線 114‧‧‧Nano wire

115‧‧‧絕緣層 115‧‧‧ Insulation

116‧‧‧基板 116‧‧‧ substrate

117‧‧‧熱氧化層 117‧‧‧ thermal oxide layer

120‧‧‧感測晶片 120‧‧‧Sensor Chip

121‧‧‧基板 121‧‧‧ substrate

122‧‧‧氧化層 122‧‧‧oxide

123‧‧‧導電層 123‧‧‧ conductive layer

124‧‧‧第一材料層 124‧‧‧First material layer

125‧‧‧第二材料層 125‧‧‧Second material layer

126‧‧‧第三材料層 126‧‧‧third material layer

127‧‧‧受體 127‧‧‧ receptor

130‧‧‧導線 130‧‧‧Wire

141‧‧‧第一端 141‧‧‧ the first end

142‧‧‧第二端 142‧‧‧second end

150‧‧‧液體槽 150‧‧‧ liquid tank

151‧‧‧溶液 151‧‧‧solution

152‧‧‧檢體 152‧‧‧ specimen

160‧‧‧參考電極 160‧‧‧Reference electrode

C‧‧‧感測晶片之雙電層電容 C‧‧‧ Sensing Chip Double Electric Layer Capacitance

C1‧‧‧第一等效電容 C 1 ‧‧‧ the first equivalent capacitance

C2‧‧‧第二等效電容 C 2 ‧‧‧Second Equivalent Capacitance

Cex‧‧‧外部電容 C ex ‧‧‧external capacitor

CO‧‧‧感測晶片之電極電容 C O ‧‧‧ electrode capacitance of sensor chip

Cp‧‧‧寄生電容 C p ‧‧‧parasitic capacitance

CT‧‧‧場效電晶體之閘極電容 C T ‧‧‧Gate capacitor of field effect transistor

L1、L2‧‧‧線段 L1, L2‧‧‧lines

R‧‧‧感測晶片之雙電層電阻 R‧‧‧ Double-layer resistance of the sensor chip

R1‧‧‧第一等效電阻 R 1 ‧‧‧first equivalent resistance

R2‧‧‧第二等效電阻 R 2 ‧‧‧Second equivalent resistance

RO‧‧‧感測晶片之電極電阻 R O ‧‧‧ electrode resistance of sensor chip

RT‧‧‧場效電晶體之閘極電阻 R T ‧‧‧Gate resistance of field effect transistor

Rsolution‧‧‧溶液電阻 R solution ‧‧‧ solution resistance

S1‧‧‧第一電壓源 S1‧‧‧first voltage source

S2‧‧‧第二電壓源 S2‧‧‧Second voltage source

S3‧‧‧第三電壓源 S3‧‧‧Third voltage source

VT‧‧‧閘極之電壓準位 V T ‧‧‧Gate voltage level

Ve‧‧‧感測晶片之表面電壓準位 V e ‧‧‧ surface voltage level of sensor chip

Vint‧‧‧初始電壓準位 V int ‧‧‧ initial voltage level

Vsta‧‧‧穩定電壓準位 V sta ‧‧‧ stable voltage level

第1A圖繪示依據本揭露一實施方式之生物感測系統的立體示意圖。 FIG. 1A is a schematic three-dimensional view of a biosensor system according to an embodiment of the disclosure.

第1B圖繪示依據本揭露一實施方式之場效電晶體的剖面圖。 FIG. 1B is a cross-sectional view of a field effect transistor according to an embodiment of the disclosure.

第1C圖繪示依據本揭露一實施方式之感測晶片的剖面圖。 FIG. 1C is a cross-sectional view of a sensing chip according to an embodiment of the disclosure.

第2圖繪示第1A圖中之生物感測系統未設置電容時於閘極所量測到的電壓準位-時間關係圖。 Figure 2 shows the voltage level-time relationship measured at the gate when the biosensor system in Figure 1A is not provided with a capacitor.

第3圖繪示第1A圖中之生物感測系統的電容具有理想的電容值時,於閘極所量測到的電壓準位-時間關係圖。 FIG. 3 is a voltage level-time relationship diagram measured at the gate electrode when the capacitance of the biosensor system in FIG. 1A has an ideal capacitance value.

第4圖繪示第1A圖中的生物感測系統中各元件的等效電路示意圖。 FIG. 4 is a schematic diagram of an equivalent circuit of each component in the biosensor system in FIG. 1A.

第5圖繪示由第4圖進一步簡化而來之等效電路圖。 FIG. 5 shows an equivalent circuit diagram further simplified from FIG. 4.

第6圖繪示生物感測系統實測之電壓準位-時間關係圖。 Figure 6 shows the voltage level-time relationship measured by the biosensor system.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。並且,除非有其他表示,在不同圖式中相同之元件符號可視為相對應的元件。這些圖式之繪示是為了清楚表達這些實施方式中各元件之間的連接關係,並非繪示各元件的實際尺寸。 In the following, a plurality of embodiments of the present invention will be disclosed graphically. For the sake of clarity, many practical details will be described in the following description. It should be understood, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the present invention, these practical details are unnecessary. In addition, in order to simplify the drawings, some conventional structures and components will be shown in the drawings in a simple and schematic manner. And, unless otherwise indicated, the same component symbols in different drawings may be regarded as corresponding components. These drawings are shown for the purpose of clearly expressing the connection relationship between the elements in these embodiments, and are not intended to show the actual dimensions of the elements.

請參照第1A圖,其繪示依據本揭露一實施方式之生物感測系統100的立體示意圖。如第1A圖所示,生物感測系統100包含場效電晶體(field effect transistor,FET)110、感測晶片120、導線130、外部電容Cex、液體槽150以及參考電極160。場效電晶體110包含汲極111、源極112以及閘極113,而閘極113透過導線130電性連接至感測晶片120。外部電容Cex包含第一端141以及第二端142,第一端141電性連接至導 線130,而第二端142電性連接至第一電壓源S1。在本實施方式中,第一電壓源S1提供一個地準電壓Vg。液體槽150內裝載有溶液151,感測晶片120接觸至溶液151。參考電極160接觸至溶液151,並電性連接至第二電壓源S2。透過以上配置,生物感測系統100藉由於閘極113所量測到的電壓準位可以感測出溶液151中特定成分的濃度。詳細的原理以及裝置細節將於後文中說明。 Please refer to FIG. 1A, which illustrates a three-dimensional schematic diagram of the biosensor system 100 according to an embodiment of the disclosure. As shown in FIG. 1A, the biosensor system 100 includes a field effect transistor (FET) 110, a sensing chip 120, a wire 130, an external capacitor C ex , a liquid tank 150, and a reference electrode 160. The field effect transistor 110 includes a drain electrode 111, a source electrode 112, and a gate electrode 113. The gate electrode 113 is electrically connected to the sensing chip 120 through a wire 130. The external capacitor C ex includes a first terminal 141 and a second terminal 142. The first terminal 141 is electrically connected to the wire 130, and the second terminal 142 is electrically connected to the first voltage source S1. In this embodiment, the first voltage source S1 provides a ground quasi-voltage V g . A solution 151 is loaded in the liquid tank 150, and the sensing wafer 120 contacts the solution 151. The reference electrode 160 is in contact with the solution 151 and is electrically connected to the second voltage source S2. Through the above configuration, the biosensor system 100 can sense the concentration of a specific component in the solution 151 by the voltage level measured by the gate 113. The detailed principle and device details will be explained later.

如第1A圖所示,本實施方式中的場效電晶體110為無接面奈米導線場效電晶體(junctionless nanowire field effect transistor,JN FET)。場效電晶體110中的汲極111與源極112之間由一條奈米導線114連接,奈米導線114可作為汲極111與源極112之間的通道。閘極113包覆奈米導線114,而閘極113與奈米導線114之間設置有一層絕緣層115,使兩者隔開。 As shown in FIG. 1A, the field effect transistor 110 in this embodiment is a junctionless nanowire field effect transistor (JN FET). The drain 111 and the source 112 in the field effect transistor 110 are connected by a nano wire 114, and the nano wire 114 can be used as a channel between the drain 111 and the source 112. The gate 113 covers the nanowire 114, and an insulating layer 115 is provided between the gate 113 and the nanowire 114 to separate the two.

在本實施方式中,奈米導線114的材料包含矽(Si),絕緣層115的材料包含氧化矽(SiO2)以及氮化矽(Si3N4),而閘極113的材料包含多晶矽。在本實施方式中,奈米導線114的矽材料為N型摻雜,而閘極113的多晶矽材料為P型摻雜。在未對閘極113施加電壓的狀態下,閘極113與奈米導線114之間的功函數差會使奈米導線114之內產生空乏區(depletion region),而使電荷載子無法在汲極111與源極112之間流通。而在對閘極113施加電壓的狀態下,奈米導線114內的空乏區會縮減(或是消失),而使電荷載子得以在汲極111與源極112之間流通。總結而言,閘極113的電壓準位會影響 汲極111與源極112之間的電性。 In this embodiment, the material of the nano-wire 114 includes silicon (Si), the material of the insulating layer 115 includes silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ), and the material of the gate 113 includes polycrystalline silicon. In this embodiment, the silicon material of the nanowire 114 is N-type doped, and the polycrystalline silicon material of the gate 113 is P-type doped. In the state where no voltage is applied to the gate 113, the work function difference between the gate 113 and the nanowire 114 will cause a depletion region within the nanowire 114, and the charge carriers cannot be drawn. The electrode 111 and the source electrode 112 circulate. When a voltage is applied to the gate electrode 113, the empty area in the nanowire 114 is reduced (or disappeared), so that the charge carriers can flow between the drain 111 and the source 112. In summary, the voltage level of the gate electrode 113 will affect the electrical property between the drain electrode 111 and the source electrode 112.

應了解,第1A圖中繪示的場效電晶體110僅為示意用。場效電晶體110實際上的堆疊結構可以參考第1B圖,其繪示依據本揭露一實施方式之場效電晶體110的剖面圖。如第1B圖所示,場效電晶體110還包含有基板116。基板116上設置有熱氧化層117。熱氧化層117上設置有汲極111、源極112以及奈米導線114。熱氧化層117在汲極111與源極112之間的部分往基板116凹陷,而絕緣層115與閘極113在熱氧化層117的凹陷處包覆住奈米導線114。 It should be understood that the field effect transistor 110 shown in FIG. 1A is for illustrative purposes only. The actual stacked structure of the field effect transistor 110 can be referred to FIG. 1B, which illustrates a cross-sectional view of the field effect transistor 110 according to an embodiment of the present disclosure. As shown in FIG. 1B, the field effect transistor 110 further includes a substrate 116. A thermal oxidation layer 117 is provided on the substrate 116. The thermal oxidation layer 117 is provided with a drain electrode 111, a source electrode 112, and a nanowire 114. A portion of the thermal oxidation layer 117 between the drain electrode 111 and the source electrode 112 is recessed toward the substrate 116, and the insulating layer 115 and the gate electrode 113 cover the nanowire 114 at the recess of the thermal oxidation layer 117.

接下來請回到第1A圖。場效電晶體110的閘極113通過導線130電性連接至感測晶片120,而使感測晶片120與閘極113電性耦合。也就是說,感測晶片120與閘極113兩者的電壓準位相同。當感測晶片120的電壓準位改變時,閘極113的電壓準位也會一同改變。在本實施方式中,感測晶片120可以作為一個電容式感測電極。 Now go back to Figure 1A. The gate 113 of the field effect transistor 110 is electrically connected to the sensing chip 120 through a wire 130, so that the sensing chip 120 and the gate 113 are electrically coupled. That is, the voltage levels of both the sensing chip 120 and the gate electrode 113 are the same. When the voltage level of the sensing chip 120 is changed, the voltage level of the gate electrode 113 is also changed together. In this embodiment, the sensing chip 120 can be used as a capacitive sensing electrode.

應了解,第1A圖中繪示的感測晶片120僅為示意用。感測晶片120實際上的堆疊結構可以參考第1C圖,其繪示依據本揭露一實施方式之感測晶片120的剖面圖。如第1C圖所示,感測晶片120包含有基板121、氧化層122、導電層123、第一材料層124、第二材料層125以及第三材料層126。 It should be understood that the sensing chip 120 shown in FIG. 1A is for illustrative purposes only. The actual stacked structure of the sensing chip 120 can be referred to FIG. 1C, which illustrates a cross-sectional view of the sensing chip 120 according to an embodiment of the present disclosure. As shown in FIG. 1C, the sensing wafer 120 includes a substrate 121, an oxide layer 122, a conductive layer 123, a first material layer 124, a second material layer 125, and a third material layer 126.

在本實施方式中,感測晶片120的導電層123與導線130可以作為閘極113的延伸。也就是說,導電層123與導線130的材料可與閘極113相同,兩者皆包含有多晶矽。舉例而言,導電層123可為厚度約380奈米的多晶矽。在本實施方式 中,基板121可為矽基板,氧化層122可為厚度約2.5微米的氧化矽(SiO2),第一材料層124為可厚度約100奈米的鋁(Al),第二材料層125可為厚度約10奈米的氧化鋁(Al2O3),而第三材料層126可為厚度約8至10奈米的氮化矽(Si3N4)。 In this embodiment, the conductive layer 123 and the conductive wire 130 of the sensing chip 120 can serve as extensions of the gate electrode 113. That is, the materials of the conductive layer 123 and the wire 130 may be the same as those of the gate electrode 113, and both of them include polycrystalline silicon. For example, the conductive layer 123 may be polycrystalline silicon with a thickness of about 380 nanometers. In this embodiment, the substrate 121 may be a silicon substrate, the oxide layer 122 may be silicon oxide (SiO 2 ) having a thickness of about 2.5 μm, the first material layer 124 may be aluminum (Al) having a thickness of about 100 nm, and the second The material layer 125 may be aluminum oxide (Al 2 O 3 ) with a thickness of about 10 nm, and the third material layer 126 may be silicon nitride (Si 3 N 4 ) with a thickness of about 8 to 10 nm.

在一些實施方式中,感測晶片120係可拆卸式地連接至場效電晶體110的閘極113。也就是說,感測晶片120係可被拋棄。舉例而言,可以斷開導線130,使感測晶片120與場效電晶體110分離。接著可以使新的感測晶片120電性連接至導線130。如此一來,可以重複地利用場效電晶體110,有效節省成本。 In some embodiments, the sensing chip 120 is detachably connected to the gate 113 of the field effect transistor 110. That is, the sensing chip 120 can be discarded. For example, the wire 130 may be disconnected to separate the sensing chip 120 from the field effect transistor 110. Then, the new sensing chip 120 can be electrically connected to the wire 130. In this way, the field effect transistor 110 can be repeatedly used, which effectively saves costs.

接下來請回到第1A圖。在本實施方式中,感測晶片120設置於液體槽150下方,而感測晶片120的一個表面接觸液體槽150內的溶液151。在本實施方式中,溶液151為磷酸鹽緩衝生理鹽水(Phosphate buffered saline,PBS)。另一方面,參考電極160浸泡於溶液151中,並連接至第二電壓源S2。第二電壓源S2可以提供一個固定的直流偏壓VrefNow go back to Figure 1A. In this embodiment, the sensing wafer 120 is disposed below the liquid tank 150, and one surface of the sensing wafer 120 contacts the solution 151 in the liquid tank 150. In this embodiment, the solution 151 is a phosphate buffered saline (PBS). On the other hand, the reference electrode 160 is immersed in the solution 151 and is connected to the second voltage source S2. The second voltage source S2 can provide a fixed DC bias voltage V ref .

在第二電壓源S2關閉時,整個生物感測系統100處於一個初始狀態。而開啟第二電壓源S2並提供參考電極160一個固定的直流偏壓Vref後,整個生物感測系統100內部的電荷、電壓分布會跟著改變。而生物感測系統100內部的電荷、電壓分布隨著時間的改變狀態會受到外部電容Cex的影響。 When the second voltage source S2 is turned off, the entire biosensor system 100 is in an initial state. After turning on the second voltage source S2 and providing the reference electrode 160 with a fixed DC bias voltage V ref , the charge and voltage distribution in the entire biosensor system 100 will change accordingly. The change of the charge and voltage distribution in the biosensor system 100 over time is affected by the external capacitance C ex .

在此請一併參考第1A圖以及第2圖。第2圖繪示第1A圖中之生物感測系統100的外部電容Cex的電容值等於零的時候(可視為未設置外部電容Cex),於閘極113所量測到的電壓 準位-時間關係圖。如第2圖所示,在開啟第二電壓源S2的同時,閘極113的電壓準位VT會快速地上升至一個初始電壓準位Vint。在經過一段時間後,整個生物感測系統100內部的電荷、電壓分布達到一個穩定狀態。此時閘極113的電壓準位VT變化至一個穩定電壓準位Vsta。於本實施例中,閘極113的電壓準位VT係下降至一個穩定電壓準位Vsta,然並不以此為限。 Please refer to Figure 1A and Figure 2 together. FIG. 2 shows the voltage level measured at the gate 113 when the capacitance value of the external capacitance C ex of the biosensor system 100 in FIG. 1A is equal to zero (it can be considered that the external capacitance C ex is not set)- Time diagram. As shown in FIG. 2, when the second voltage source S2 is turned on, the voltage level V T of the gate 113 will quickly rise to an initial voltage level V int . After a period of time, the charge and voltage distribution inside the entire biosensor system 100 reaches a stable state. At this time, the voltage level V T of the gate 113 changes to a stable voltage level V sta . In this embodiment, the voltage level V T of the gate 113 is reduced to a stable voltage level V sta , but it is not limited thereto.

由第2圖可以推知,初始電壓準位Vint與穩定電壓準位Vsta差距越大,閘極113的電壓準位VT由初始電壓準位Vint下降至穩定電壓準位Vsta的時間就越長。因此,如果能夠減少初始電壓準位Vint與穩定電壓準位Vsta之間的差距,即可加速生物感測系統100達到穩定狀態。 It can be inferred from FIG. 2 that the larger the difference between the initial voltage level V int and the stable voltage level V sta is, the time for the voltage level V T of the gate 113 to fall from the initial voltage level V int to the stable voltage level V sta . The longer. Therefore, if the gap between the initial voltage level V int and the stable voltage level V sta can be reduced, the biosensor system 100 can be accelerated to a stable state.

具體而言,可以藉由調整外部電容Cex的電容值來改變初始電壓準位Vint的大小。理想的外部電容Cex的電容值應能使初始電壓準位Vint等於穩定電壓準位Vsta。在此請參照第3圖,其繪示第1A圖中之生物感測系統100的外部電容Cex具有理想的電容值時,於閘極113所量測到的電壓準位-時間關係圖。如第3圖所示,此實施方式中,初始電壓準位Vint等於穩定電壓準位Vsta。也就是說,參考電極160提供直流偏壓Vref後,整個生物感測系統100迅速的達到了穩定狀態。 Specifically, the value of the initial voltage level V int can be changed by adjusting the capacitance value of the external capacitor C ex . The capacitance of the ideal external capacitor C ex should be such that the initial voltage level V int is equal to the stable voltage level V sta . Please refer to FIG. 3, which shows a voltage level-time relationship diagram measured at the gate 113 when the external capacitance C ex of the biosensor system 100 in FIG. 1A has an ideal capacitance value. As shown in FIG. 3, in this embodiment, the initial voltage level V int is equal to the stable voltage level V sta . That is, after the reference electrode 160 provides a DC bias voltage V ref , the entire biosensor system 100 quickly reaches a stable state.

可以使用多種方法找出理想的外部電容Cex。舉例而言,可以直接在生物感測系統100中替換具有不同電容值的外部電容Cex,並依序測量初始電壓準位Vint以及穩定電壓準位Vsta的差距,以此選擇理想之外部電容CexThere are several ways to find the ideal external capacitor C ex . For example, the external capacitance C ex with different capacitance values can be directly replaced in the biosensor system 100, and the gap between the initial voltage level V int and the stable voltage level V sta can be measured in order to select the ideal external Capacitance C ex .

又或者,可以由計算的方式估計出理想的電容 值,以選擇理想之外部電容Cex。具體計算方法可以參考第4圖。第4圖繪示第1A圖中的生物感測系統100中各元件的等效電路示意圖。 Alternatively, the ideal capacitor value can be estimated by calculation to select the ideal external capacitor C ex . Specific calculation method can refer to Figure 4. FIG. 4 is a schematic diagram of the equivalent circuits of the components in the biosensor system 100 in FIG. 1A.

有關於第4圖中各個部件可對應至第1A圖至第1C圖,於此為簡潔起見不重複標出。如第4圖所示,場效電晶體110與感測晶片120之間由導線130電性連接。另一方面,場效電晶體110的汲極111進一步地電性連接至第三電壓源S3。在本實施方式中,第三電壓源S3提供一個地準電壓Vg。但在其他實施方式中,第三電壓源S3可以提供正偏壓或負偏壓,本揭露並不以上述為限。 Each component in FIG. 4 may correspond to FIG. 1A to FIG. 1C, and is not repeatedly marked for the sake of brevity. As shown in FIG. 4, the field effect transistor 110 and the sensing chip 120 are electrically connected by a wire 130. On the other hand, the drain 111 of the field effect transistor 110 is further electrically connected to the third voltage source S3. In this embodiment, the third voltage source S3 provides a ground quasi-voltage V g . However, in other embodiments, the third voltage source S3 may provide a positive bias voltage or a negative bias voltage, and the disclosure is not limited to the above.

由第二電壓源S2至第三電壓源S3之間的等效電路已經繪示於第4圖中。圖中各符號的對應意義整理如下表: The equivalent circuit between the second voltage source S2 to the third voltage source S3 has been shown in FIG. 4. The corresponding meanings of the symbols in the figure are arranged as follows:

如第4圖中所示,電壓準位VT實際上就是場效電晶體110的閘極113與地準電極間的電壓準位差(也就是VG)。另一方面,CP為生物感測系統100中之寄生電容(非實體元件),其數值遠小於外部電容Cex的電容值。具體而言,兩者之間的數值大小可差距超過500倍。 As shown in FIG. 4, the voltage level V T is actually the voltage level difference (that is, V G ) between the gate 113 of the field effect transistor 110 and the ground electrode. On the other hand, CP is a parasitic capacitance (non-solid element) in the biosensor system 100, and its value is much smaller than the capacitance value of the external capacitance Cex . Specifically, the difference between the two values can exceed 500 times.

接下來請參考第5圖,其繪示由第4圖進一步簡化而來之等效電路圖。如第5圖所示,在導線130與第二電壓源S2之間的電路可以簡化為一個第一等效電阻R1以及一個第一等效電容C1,且第一等效電阻R1與第一等效電容C1並聯。而在導線130與第三電壓源S3之間的電路則可以簡化為一個第二等效電阻R2以及一個第二等效電容C2,且第二等效電阻R2與第二等效電容C2並聯。 Please refer to FIG. 5 for an equivalent circuit diagram further simplified from FIG. 4. As shown in FIG. 5, the circuit between the lead 130 and the second voltage source S2 can be simplified into a first equivalent resistance R 1 and a first equivalent capacitance C 1 , and the first equivalent resistance R 1 and The first equivalent capacitance C 1 is connected in parallel. The circuit between the lead 130 and the third voltage source S3 can be simplified into a second equivalent resistance R 2 and a second equivalent capacitance C 2 , and the second equivalent resistance R 2 and the second equivalent capacitance C 2 is connected in parallel.

第5圖的電路經過計算後,可以得知初始電壓準位Vint與穩定電壓準位Vsta滿足下列關係式: After the circuit of FIG. 5 is calculated, it can be learned that the initial voltage level V int and the stable voltage level V sta satisfy the following relationship:

也就是說,生物感測系統100中的各個電容值的比重會影響初始電壓準位Vint,而生物感測系統100中的各個電阻值的比重會影響穩定電壓準位Vsta。由以上式(1)與式(2)可以看出,本實施方式中可藉由外部電容Cex來調整初始電壓準位Vint的大 小。 That is, the proportion of each capacitance value in the biosensor system 100 will affect the initial voltage level V int , and the proportion of each resistance value in the biosensor system 100 will affect the stable voltage level V sta . As can be seen from the above formulas (1) and (2), in this embodiment, the size of the initial voltage level V int can be adjusted by the external capacitor C ex .

承前文所述,理想中外部電容Cex的電容值要使初始電壓準位Vint等於穩定電壓準位Vsta,因此數值應滿足下式(3): 經過恰當的選擇外部電容Cex的電容值後,即可得到類似於第3圖所繪示的電壓準位-時間關係圖。但在一些實施方式中,初始電壓準位Vint並不需完全等於穩定電壓準位Vsta。舉例而言,初始電壓準位Vint可以略為小於或大於穩定電壓準位VstaAs mentioned above, the capacitance value of the external capacitor C ex should ideally make the initial voltage level V int equal to the stable voltage level V sta , so the value should satisfy the following formula (3): After the capacitance value of the external capacitor C ex is properly selected, a voltage level-time relationship diagram similar to that shown in FIG. 3 can be obtained. However, in some embodiments, the initial voltage level V int does not need to be completely equal to the stable voltage level V sta . For example, the initial voltage level V int may be slightly less than or greater than the stable voltage level V sta .

也就是說,實務中並不一定需完全滿足式(3)。因為在實際的情形中,還須考慮常用電容的規格。另一方面,如前文所述,感測晶片120係可拋棄式的,當換上新的感測晶片120後,生物感測系統100中的第一等效電阻R1與第一等效電容C1會發生微幅改變,進而微幅改變初始電壓準位Vint與穩定電壓準位Vsta。總而言之,實務上外部電容Cex的電容值只要使初始電壓準位Vint與穩定電壓準位Vsta的差值維持於一定的範圍之內即可。舉例而言,兩者之誤差可滿足下式(4): That is, in practice, it is not necessary to completely satisfy equation (3). Because in the actual situation, the specifications of commonly used capacitors must also be considered. On the other hand, as mentioned above, the sensing chip 120 is disposable. When the new sensing chip 120 is replaced, the first equivalent resistance R 1 and the first equivalent capacitance in the biosensor system 100 are replaced. C 1 will change slightly, and then change the initial voltage level V int and the stable voltage level V sta slightly. In a word, in practice, the capacitance value of the external capacitor C ex only needs to keep the difference between the initial voltage level V int and the stable voltage level V sta within a certain range. For example, the error between the two can satisfy the following formula (4):

接下來請參照第6圖,其繪示生物感測系統100實測之電壓準位-時間關係圖。在第6圖中,線段L1代表未採用外部電容Cex之生物感測系統100在第二電壓源S2開啟直流偏壓Vref後的電壓準位-時間關係圖,而線段L2代表採用外部電容Cex之生物感測系統100在第二電壓源S2開啟直流偏壓Vref後 的電壓準位-時間關係圖。 Next, please refer to FIG. 6, which illustrates a voltage level-time relationship diagram measured by the biosensor system 100. In FIG. 6, the line segment L1 represents the voltage level-time relationship diagram of the biosensor system 100 without the external capacitor C ex after the second voltage source S2 turns on the DC bias voltage V ref , and the line segment L2 represents the use of an external capacitor. A voltage level-time relationship diagram of the biosensor system 100 of C ex after the second voltage source S2 turns on the DC bias voltage V ref .

如第6圖中的線段L1所示,平均每十分鐘閘極113的電壓準位VT降低了約3.72mV。另一方面,第6圖中的線段L2,平均每十分鐘閘極113的電壓準位VT降低了約0.66mV。兩者相差約五倍。也就是說,採用外部電容Cex的生物感測系統100中,閘極113的電壓準位VT改變幅度非常小(可視為處於穩定狀態),明顯優於未採用外部電容Cex的生物感測系統100。 As shown by the line segment L1 in FIG. 6, the average voltage level V T of the gate electrode 113 decreases by about 3.72 mV every ten minutes. On the other hand, the line segment L2 in FIG. 6 decreases the voltage level V T of the gate electrode 113 by approximately 0.66 mV every ten minutes. The difference between the two is about five times. In other words, in the biosensor system 100 using the external capacitor C ex , the voltage level V T of the gate 113 changes very little (it can be regarded as being in a stable state), which is obviously better than that of the biosensor without the external capacitor C ex .测 系统 100。 Test system 100.

由上述第1A圖至第6圖的說明內容可知,第二電壓源S2開啟直流偏壓Vref後,生物感測系統100中閘極113的電壓準位VT由初始電壓準位Vint非常快速的達到了穩定電壓準位Vsta。接下來請回到第1A圖,在生物感測系統100達到穩定狀態後,可以在溶液151中加入檢體(analyte)152。如第1A圖所示,感測晶片120的表面預先經過處理,其上附著有受體(receptor)127。溶液151中檢體152可以與感測晶片120表面上的受體127產生反應。具體而言,檢體152可以附著於受體127上。因此,溶液151中檢體152的濃度,會影響附著至感測晶片120上的檢體152的數量。 It can be known from the above description of FIGS. 1A to 6 that after the second voltage source S2 turns on the DC bias voltage V ref , the voltage level V T of the gate 113 in the biosensor system 100 is significantly changed from the initial voltage level V int The stable voltage level V sta is quickly reached. Next, please return to FIG. 1A. After the biosensor system 100 reaches a stable state, an analyte 152 can be added to the solution 151. As shown in FIG. 1A, the surface of the sensing wafer 120 is processed in advance, and a receptor 127 is attached thereto. The specimen 152 in the solution 151 may react with the receptor 127 on the surface of the sensing wafer 120. Specifically, the specimen 152 may be attached to the receptor 127. Therefore, the concentration of the specimens 152 in the solution 151 affects the number of the specimens 152 attached to the sensing wafer 120.

附著至感測晶片120上的檢體152會改變感測晶片120的電性。由於閘極113與感測晶片120電性耦合,因此外部的半導體感測裝置可感測到閘極113的電性變化(如:VT變化),並藉此電性變化來計算出溶液151中檢體152的濃度。如此一來,達成了生物感測系統100的檢測功能。 The specimen 152 attached to the sensing wafer 120 changes the electrical properties of the sensing wafer 120. Since the gate electrode 113 is electrically coupled to the sensing chip 120, an external semiconductor sensing device can sense an electrical change (such as a V T change) of the gate electrode 113 and use this electrical change to calculate the solution 151 The concentration of the intermediate sample 152. In this way, the detection function of the biosensor system 100 is achieved.

綜上所述,本揭露提出一種生物感測系統,可用以感測液體槽內的檢體濃度。其中在執行感測功能前,參考電 極會對生物感測系統施加一個直流偏壓,而電容使生物感測系統整體的電性快速達到穩定狀態。 In summary, the present disclosure proposes a bio-sensing system that can be used to sense the concentration of a specimen in a liquid tank. Before performing the sensing function, The pole will apply a DC bias voltage to the biosensor system, and the capacitor will make the overall electrical property of the biosensor system reach a stable state quickly.

本揭露已由範例及上述實施方式描述,應了解本發明並不限於所揭露之實施方式。相反的,本發明涵蓋多種更動及近似之佈置(如,此領域中之通常技藝者所能明顯得知者)。因此,附加之請求項應依據最寬之解釋以涵蓋所有此類更動及近似佈置。 This disclosure has been described by examples and the above-mentioned embodiments, and it should be understood that the present invention is not limited to the disclosed embodiments. On the contrary, the present invention encompasses various modifications and approximate arrangements (eg, as would be apparent to one of ordinary skill in the art). Therefore, additional claims should be based on the broadest interpretation to cover all such changes and approximate arrangements.

Claims (8)

一種生物感測系統,包含:一場效電晶體,包含一閘極;一感測晶片,透過一導線電性連接至該閘極;一外部電容(Cex),包含一第一端以及一第二端,該第一端電性連接該導線,該第二端電性連接一地準電極;一液體槽,包含一溶液,其中該感測晶片接觸該溶液;以及一參考電極,接觸該溶液,其中該導線與該參考電極之間具有一第一等效電阻R1與一第一等效電容C1,該導線與該地準電極之間具有一第二等效電阻R2與一第二等效電容C2,其數值滿足: A biological sensing system includes: a field effect transistor including a gate; a sensing chip electrically connected to the gate through a wire; and an external capacitor (C ex ) including a first terminal and a first terminal. Two ends, the first end is electrically connected to the wire, and the second end is electrically connected to a ground quasi electrode; a liquid tank containing a solution, wherein the sensing chip contacts the solution; and a reference electrode is contacted with the solution A first equivalent resistance R 1 and a first equivalent capacitance C 1 between the lead and the reference electrode, and a second equivalent resistance R 2 and a first equivalent resistance between the lead and the ground electrode. Two equivalent capacitors C 2 , whose values satisfy: 一種生物感測系統,包含:一場效電晶體,包含一閘極;一感測晶片,透過一導線電性連接至該閘極;一外部電容(Cex),包含一第一端以及一第二端,該第一端電性連接該導線,該第二端電性連接一地準電極;一液體槽,包含一溶液,其中該感測晶片接觸該溶液;以及一參考電極,接觸該溶液,其中該導線與該參考電極之間具有一第一等效電阻R1與一第一等效電容C1,該導線與該地準電極之間具有一第二等效電阻R2與一第二等效電容C2,其數值滿足:/<20%。A biological sensing system includes: a field effect transistor including a gate; a sensing chip electrically connected to the gate through a wire; and an external capacitor (C ex ) including a first terminal and a first terminal. Two ends, the first end is electrically connected to the wire, and the second end is electrically connected to a ground quasi electrode; a liquid tank containing a solution, wherein the sensing chip contacts the solution; and a reference electrode is contacted with the solution A first equivalent resistance R 1 and a first equivalent capacitance C 1 between the lead and the reference electrode, and a second equivalent resistance R 2 and a first equivalent resistance between the lead and the ground electrode. Two equivalent capacitors C 2 , whose values satisfy: / <20%. 如請求項1或2所述之生物感測系統,其中該導線與該地準電極之間具有一寄生電容Cp,其中該外部電容Cex與該寄生電容Cp的數值關係如下:Cp<Cex The biosensor system according to claim 1 or 2, wherein a parasitic capacitance C p exists between the lead and the ground quasi electrode, and a numerical relationship between the external capacitance C ex and the parasitic capacitance C p is as follows: C p <C ex . 如請求項3所述之生物感測系統,其中:Cp * 500<Cex The biosensor system according to claim 3, wherein: C p * 500 <C ex . 如請求項1或2所述之生物感測系統,其中該感測晶片可拆卸式地連接至該閘極。The biosensor system according to claim 1 or 2, wherein the sensing chip is detachably connected to the gate. 如請求項1或2所述之生物感測系統,其中該場效電晶體進一步包含:一基板;一半導體層,設置於該基板上;一絕緣層,設置於該半導體層上;以及一導電層,設置於該絕緣層上。The biosensing system according to claim 1 or 2, wherein the field effect transistor further comprises: a substrate; a semiconductor layer provided on the substrate; an insulating layer provided on the semiconductor layer; and a conductive Layer, disposed on the insulating layer. 如請求項1或2所述之生物感測系統,其中該感測晶片包含一電容式感測電極。The biosensor system according to claim 1 or 2, wherein the sensing chip includes a capacitive sensing electrode. 如請求項7所述之生物感測系統,其中該感測晶片進一步包含:一基板;一絕緣層,設置於該基板上;一半導體層,設置於該絕緣層上;一導電層,覆蓋該半導體層;一第一材料層,覆蓋該導電層;一第二材料層,覆蓋該第一材料層;以及一第三材料層,覆蓋該第二材料層。The biosensor system according to claim 7, wherein the sensing chip further comprises: a substrate; an insulating layer provided on the substrate; a semiconductor layer provided on the insulating layer; a conductive layer covering the A semiconductor layer; a first material layer covering the conductive layer; a second material layer covering the first material layer; and a third material layer covering the second material layer.
TW107131184A 2018-09-05 2018-09-05 Biosensing system TWI660173B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107131184A TWI660173B (en) 2018-09-05 2018-09-05 Biosensing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107131184A TWI660173B (en) 2018-09-05 2018-09-05 Biosensing system

Publications (2)

Publication Number Publication Date
TWI660173B true TWI660173B (en) 2019-05-21
TW202011025A TW202011025A (en) 2020-03-16

Family

ID=67347996

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107131184A TWI660173B (en) 2018-09-05 2018-09-05 Biosensing system

Country Status (1)

Country Link
TW (1) TWI660173B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2357468A1 (en) * 2010-01-21 2011-08-17 Nxp B.V. Sensor and measurement method
US20130057304A1 (en) * 2010-05-06 2013-03-07 Seoul National University R&D Foundation Capacitive element sensor and method for manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2357468A1 (en) * 2010-01-21 2011-08-17 Nxp B.V. Sensor and measurement method
US20130057304A1 (en) * 2010-05-06 2013-03-07 Seoul National University R&D Foundation Capacitive element sensor and method for manufacturing same

Also Published As

Publication number Publication date
TW202011025A (en) 2020-03-16

Similar Documents

Publication Publication Date Title
Reddy et al. High-k dielectric Al 2 O 3 nanowire and nanoplate field effect sensors for improved pH sensing
Spijkman et al. Dual‐gate organic field‐effect transistors as potentiometric sensors in aqueous solution
US20120282596A1 (en) Sensor for Biomolecules
JP6353454B2 (en) Integrated circuit having sensing transistor array, sensing device, and measuring method
CA2572485A1 (en) Capteur pour la detection et/ou la mesure d&#39;une concentration de charges electriques contenues dans une ambiance, utilisations et procede de fabrication correspondants.
US20170336347A1 (en) SiNW PIXELS BASED INVERTING AMPLIFIER
Nguyen et al. Organic field-effect transistor with extended indium tin oxide gate structure for selective pH sensing
Rollo et al. High performance Fin-FET electrochemical sensor with high-k dielectric materials
Chapman et al. Comparison of methods to bias fully depleted SOI-based MOSFET nanoribbon pH sensors
Münzer et al. Back-gated spray-deposited carbon nanotube thin film transistors operated in electrolytic solutions: An assessment towards future biosensing applications
US8368123B2 (en) Apparatus for sensing an event
US10739305B1 (en) Biosensing systems and methods using a FET
Dutta et al. High-performance dual-gate carbon nanotube ion-sensitive field effect transistor with high-$\kappa $ top gate and low-$\kappa $ bottom gate dielectrics
TWI660173B (en) Biosensing system
US20220018805A1 (en) Ion-sensitive field effect transistor
TW201815662A (en) Biological sensing system
Pregl et al. Signal and noise of Schottky-junction parallel silicon nanowire transducers for biochemical sensing
Pham et al. High performance indium oxide nanoribbon FETs: Mitigating devices signal variation from batch fabrication
Gonçalves et al. Label-free electronic detection of biomolecules using a-Si: H field-effect devices
JP5737655B2 (en) Semiconductor sensor
US20220170920A1 (en) Apparatus and method for measuring hormone concentration in biofluids
Chen et al. Temperature effects on the characteristics of hydrogen ion-sensitive field-effect transistors with sol–gel-derived lead titanate gates
Hossain et al. Multilayer graphene nanoribbon based BioFET sensor design
Le Bihan et al. Dual-gate TFT for chemical detection
Duarte et al. ISFET Fabrication and Characterization for Hydrogen Peroxide sensing