TWI658045B - Multi-branched cationic phosphonium salt, forward osmosis extract employing the same and forward osmosis seawater desalination process - Google Patents
Multi-branched cationic phosphonium salt, forward osmosis extract employing the same and forward osmosis seawater desalination process Download PDFInfo
- Publication number
- TWI658045B TWI658045B TW107116774A TW107116774A TWI658045B TW I658045 B TWI658045 B TW I658045B TW 107116774 A TW107116774 A TW 107116774A TW 107116774 A TW107116774 A TW 107116774A TW I658045 B TWI658045 B TW I658045B
- Authority
- TW
- Taiwan
- Prior art keywords
- tri
- bis
- formula
- butylphosphonium
- phosphonium salt
- Prior art date
Links
- -1 cationic phosphonium salt Chemical class 0.000 title claims abstract description 98
- 238000009292 forward osmosis Methods 0.000 title claims description 32
- 239000013535 sea water Substances 0.000 title claims description 20
- 239000000284 extract Substances 0.000 title claims description 17
- 238000010612 desalination reaction Methods 0.000 title claims description 15
- 150000001449 anionic compounds Chemical class 0.000 claims abstract description 10
- 229910001412 inorganic anion Inorganic materials 0.000 claims abstract description 10
- 150000002891 organic anions Chemical class 0.000 claims abstract description 10
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims abstract description 9
- 230000003204 osmotic effect Effects 0.000 claims description 69
- 238000000605 extraction Methods 0.000 claims description 58
- 239000000243 solution Substances 0.000 claims description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- 239000007788 liquid Substances 0.000 claims description 33
- TUQOTMZNTHZOKS-UHFFFAOYSA-O tributylphosphanium Chemical compound CCCC[PH+](CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-O 0.000 claims description 23
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 claims description 22
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims description 22
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 15
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 14
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical group CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 11
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 10
- 239000007983 Tris buffer Substances 0.000 claims description 7
- LWPKCXUBAHMXJT-UHFFFAOYSA-L 4-methylbenzenesulfonate tributyl(8-tributylphosphaniumyloctyl)phosphanium Chemical group Cc1ccc(cc1)S([O-])(=O)=O.Cc1ccc(cc1)S([O-])(=O)=O.CCCC[P+](CCCC)(CCCC)CCCCCCCC[P+](CCCC)(CCCC)CCCC LWPKCXUBAHMXJT-UHFFFAOYSA-L 0.000 claims description 6
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 6
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 6
- SWEGTCILWFXZMP-UHFFFAOYSA-L tributyl(8-tributylphosphaniumyloctyl)phosphanium 2,4,6-trimethylbenzenesulfonate Chemical compound Cc1cc(C)c(c(C)c1)S([O-])(=O)=O.Cc1cc(C)c(c(C)c1)S([O-])(=O)=O.CCCC[P+](CCCC)(CCCC)CCCCCCCC[P+](CCCC)(CCCC)CCCC SWEGTCILWFXZMP-UHFFFAOYSA-L 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims description 5
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 5
- 229960004889 salicylic acid Drugs 0.000 claims description 5
- JSGDTSUGFXASND-UHFFFAOYSA-L CCCC[P+](CCCC)(CCCC)CCCCCCCC[P+](CCCC)(CCCC)CCCC.[O-]C(C(F)(F)F)=O.[O-]C(C(F)(F)F)=O Chemical compound CCCC[P+](CCCC)(CCCC)CCCCCCCC[P+](CCCC)(CCCC)CCCC.[O-]C(C(F)(F)F)=O.[O-]C(C(F)(F)F)=O JSGDTSUGFXASND-UHFFFAOYSA-L 0.000 claims description 4
- BGQZBRCUTDRTKW-UHFFFAOYSA-L CCCC[P+](CCCC)(CCCC)CCCCCCCC[P+](CCCC)(CCCC)CCCC.[O-]C(C1=CC=CC=C1O)=O.[O-]C(C1=CC=CC=C1O)=O Chemical compound CCCC[P+](CCCC)(CCCC)CCCCCCCC[P+](CCCC)(CCCC)CCCC.[O-]C(C1=CC=CC=C1O)=O.[O-]C(C1=CC=CC=C1O)=O BGQZBRCUTDRTKW-UHFFFAOYSA-L 0.000 claims description 3
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 2
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 2
- 210000001787 dendrite Anatomy 0.000 claims 2
- UZQLWFGBWZLPQL-UHFFFAOYSA-N 2,2,4,4-tetrakis(hydroxymethyl)pentane-1,5-diol Chemical compound OCC(CO)(CO)CC(CO)(CO)CO UZQLWFGBWZLPQL-UHFFFAOYSA-N 0.000 claims 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims 1
- 125000000217 alkyl group Chemical group 0.000 claims 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims 1
- 239000007864 aqueous solution Substances 0.000 description 66
- 238000002360 preparation method Methods 0.000 description 55
- 239000000047 product Substances 0.000 description 40
- 239000012071 phase Substances 0.000 description 22
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 20
- 230000007704 transition Effects 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 239000002608 ionic liquid Substances 0.000 description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- 238000005481 NMR spectroscopy Methods 0.000 description 10
- 238000005160 1H NMR spectroscopy Methods 0.000 description 9
- 238000005265 energy consumption Methods 0.000 description 9
- 230000004907 flux Effects 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 125000002091 cationic group Chemical group 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000008014 freezing Effects 0.000 description 7
- 238000007710 freezing Methods 0.000 description 7
- 239000012044 organic layer Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- GPWHDDKQSYOYBF-UHFFFAOYSA-N ac1l2u0q Chemical compound Br[Br-]Br GPWHDDKQSYOYBF-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical compound CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- KVCGISUBCHHTDD-UHFFFAOYSA-M sodium;4-methylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1 KVCGISUBCHHTDD-UHFFFAOYSA-M 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- AOAXVBAQLJURNO-UHFFFAOYSA-N 2-(4-bromobutanoyloxy)ethyl 4-bromobutanoate Chemical compound BrCCCC(=O)OCCOC(CCCBr)=O AOAXVBAQLJURNO-UHFFFAOYSA-N 0.000 description 2
- LRTRXDSAJLSRTG-UHFFFAOYSA-N 4-bromobutanoyl chloride Chemical compound ClC(=O)CCCBr LRTRXDSAJLSRTG-UHFFFAOYSA-N 0.000 description 2
- FBYJOCBDWDVDOJ-UHFFFAOYSA-M 4-methylbenzenesulfonate;tetrabutylphosphanium Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.CCCC[P+](CCCC)(CCCC)CCCC FBYJOCBDWDVDOJ-UHFFFAOYSA-M 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 239000012527 feed solution Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002122 magnetic nanoparticle Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- YSWYYGKGAYSAOJ-UHFFFAOYSA-N phosphane Chemical compound P.P YSWYYGKGAYSAOJ-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- XNJVIJQATFJERB-UHFFFAOYSA-N 2,3,4-trimethylbenzenesulfonic acid Chemical group CC1=CC=C(S(O)(=O)=O)C(C)=C1C XNJVIJQATFJERB-UHFFFAOYSA-N 0.000 description 1
- GRHQDJDRGZFIPO-UHFFFAOYSA-N 4-bromobutanoic acid Chemical compound OC(=O)CCCBr GRHQDJDRGZFIPO-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- DEAKHZJSHIXWCZ-UHFFFAOYSA-N CCCC[P](CCCC)(CCCC)CCCCCCCC[P](CCCC)(CCCC)CCCC Chemical compound CCCC[P](CCCC)(CCCC)CCCCCCCC[P](CCCC)(CCCC)CCCC DEAKHZJSHIXWCZ-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000011557 critical solution Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- HRIZJUDKZZJVBC-UHFFFAOYSA-N ethane-1,1-diol;ethane-1,2-diol Chemical compound CC(O)O.OCCO HRIZJUDKZZJVBC-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- AOJUNZYQOYSGHT-UHFFFAOYSA-M sodium;2,4,6-trimethylbenzenesulfonate Chemical compound [Na+].CC1=CC(C)=C(S([O-])(=O)=O)C(C)=C1 AOJUNZYQOYSGHT-UHFFFAOYSA-M 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- HNODSVCSQHBVNS-UHFFFAOYSA-L tributyl(8-tributylphosphaniumyloctyl)phosphanium dihydroxide Chemical compound [OH-].[OH-].C(CCCCCCC[P+](CCCC)(CCCC)CCCC)[P+](CCCC)(CCCC)CCCC HNODSVCSQHBVNS-UHFFFAOYSA-L 0.000 description 1
- XFODVBVHRABGNB-UHFFFAOYSA-L tributyl(8-tributylphosphaniumyloctyl)phosphanium;dibromide Chemical compound [Br-].[Br-].CCCC[P+](CCCC)(CCCC)CCCCCCCC[P+](CCCC)(CCCC)CCCC XFODVBVHRABGNB-UHFFFAOYSA-L 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/54—Quaternary phosphonium compounds
- C07F9/5407—Acyclic saturated phosphonium compounds
- C07F9/5414—Acyclic saturated phosphonium compounds substituted by B, Si, P or a metal
- C07F9/5421—Acyclic saturated phosphonium compounds substituted by B, Si, P or a metal substituted by a phosphorus atom
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/445—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/01—Sulfonic acids
- C07C309/28—Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C309/29—Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
- C07C309/30—Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/54—Quaternary phosphonium compounds
- C07F9/5407—Acyclic saturated phosphonium compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Detergent Compositions (AREA)
Abstract
本揭露提供一種多枝狀陽離子鏻鹽,具有式(I)所示結構:{Z[P+(R1)(R2)(R3)]n}(X-)n (I) Dendritic present disclosure provides a cationic phosphonium salts, having the formula (I) shown in the structure: {Z [P + (R 1) (R 2) (R 3)] n} (X -) n (I)
其中,R1、R2和R3各自獨立地為直鏈或支鏈的C1~C10烷基,X-為有機或無機陰離子,Z具有式(IIb)或式(IIc)所示結構:
其中,a為1~15之整數,在式(IIb)、式(IIc)中,Z以星號(★)所標示位置與[P+(R1)(R2)(R3)]連接,n為3~4的整數。 Among them, a is an integer from 1 to 15. In formula (IIb) and formula (IIc), Z is connected with [P + (R 1 ) (R 2 ) (R 3 )] at the position indicated by an asterisk (★), n is an integer from 3 to 4.
Description
本揭露係有關於一種多枝狀陽離子鏻鹽、包含其之正滲透提取液及正滲透海水淡化製程。 The present disclosure relates to a multi-dendritic cationic phosphonium salt, a forward osmosis extract containing the same, and a forward osmosis seawater desalination process.
隨著人口的增加、工業迅速發展以及環境的變化,全世界面臨嚴重的淡水資源短缺,越來越多的國家開始發展海水淡化技術,來解決這場全球性的危機。目前海水淡化在國際上較為普遍採用的技術包括多級閃蒸(Multi-Stage flash,MSF)、低溫多效蒸餾(Multi-effect distillation,MED)和反滲透法(Reverse osmosis,RO),但這些技術都普遍存在高成本、高能耗、以及產水率偏低的缺陷。 With the increase of population, rapid industrial development and changes in the environment, the world is facing a serious shortage of fresh water resources, and more and more countries have begun to develop seawater desalination technology to solve this global crisis. At present, seawater desalination technologies that are more commonly used internationally include Multi-Stage flash (MSF), Multi-effect distillation (MED), and Reverse osmosis (RO). The disadvantages of technology are generally high cost, high energy consumption, and low water yield.
近年來,正向滲透(Forward osmosis,FO)海水淡化技術得到了廣泛的關注,其利用正向滲透原理,採用具有高滲透壓的提取液(Draw solution,DS),進行海水分離得到淡水。相較於其他技術,正向滲透海水淡化技術雖然具有較低成本、較低能耗以及產水率較高等優點,然而,仍需要搭配適當的提取液,才能真正達到低成本的產水過程。 In recent years, forward osmosis (FO) seawater desalination technology has received widespread attention. It uses the principle of forward osmosis and uses a high osmotic pressure extraction solution (Draw solution, DS) to separate seawater to obtain fresh water. Compared with other technologies, although the forward osmosis seawater desalination technology has the advantages of lower cost, lower energy consumption, and higher water production rate, it still needs to be matched with an appropriate extraction liquid to truly achieve a low-cost water production process.
一般而言,高分子材料存在有溶解度與黏度高的問題,因此難以配置為高濃度溶液,故滲透壓無法進一步提高。已知的低聚合物材料雖然具有高溶解度,能夠配製為高濃度溶液,但是其滲透壓仍不足夠。 Generally speaking, polymer materials have problems of high solubility and viscosity, so it is difficult to dispose them as high-concentration solutions, so the osmotic pressure cannot be further increased. Although known low-polymer materials have high solubility and can be formulated into high-concentration solutions, their osmotic pressure is still insufficient.
目前許多提取液雖然可以生成足夠高的滲透壓,但因為能耗較高而不適合實際推廣。舉例而言,利用導入二氧化碳增加提取液之溶解度或滲透壓的方式,在回收提取液時需要加熱至60℃或更高以去除二氧化碳的額外過程,因此,需要較高的能耗。另外,雖有報導使用磁性奈米顆粒做為提取液,並通過磁分離回收實現提取液的循環利用,但實際上附聚的磁性顆粒不易再度分散,且除去磁性納米顆粒也是困難的。 Although many extracts can generate a sufficiently high osmotic pressure, they are not suitable for practical promotion because of high energy consumption. For example, the method of introducing carbon dioxide to increase the solubility or osmotic pressure of the extraction liquid requires an additional process of heating to 60 ° C. or higher to remove carbon dioxide when recovering the extraction liquid, and therefore requires higher energy consumption. In addition, although it is reported that magnetic nano particles are used as the extraction liquid, and the extraction liquid is recycled through magnetic separation and recovery, in fact, the agglomerated magnetic particles are not easy to be dispersed again, and it is difficult to remove the magnetic nanoparticles.
因此,目前亟需一種新穎之提取液材料。 Therefore, there is an urgent need for a novel extraction liquid material.
根據一實施例,本揭露提供一種多枝狀陽離子型鏻鹽,具有式(I)所示結構:{Z[P+(R1)(R2)(R3)]n}(X-)n (I) According to an embodiment, the present disclosure provides a multi-dendritic cationic phosphonium salts, having the formula (I) shown in the structure: {Z [P + (R 1) (R 2) (R 3)] n} (X -) n (I)
其中,R1、R2和R3各自獨立地為直鏈或支鏈的C1~C10烷基,X-為有機或無機陰離子,Z具有式(IIb)或式(IIc)所示結構:
其中,a為1~15之整數,在式(IIb)、(IIc)中,Z以星號(★)所標示位置與[P+(R1)(R2)(R3)]連接,n為3~4的整數。 Among them, a is an integer from 1 to 15. In formulas (IIb) and (IIc), Z is connected to [P + (R 1 ) (R 2 ) (R 3 )] with the position indicated by an asterisk (★), n It is an integer from 3 to 4.
根據另一實施例,本揭露提供一種多枝狀陽離子型鏻鹽,具有式(III)所示結構:{Z[P+(R)3]n}(X-)n (III) According to another embodiment, the present disclosure provides a multi-dendritic cationic phosphonium salts, having the formula (III) shown in the structure: {Z [P + (R ) 3] n} (X -) n (III)
其中,R為直鏈或支鏈的C1~C10烷基,X-為有機或無機陰離子,Z具有式(IIb)或式(IIc)所示結構:
其中,a為1~15之整數,在式(IIb)、(IIc)中,Z以星號(★)所標示位置與[P+(R)3]連接,n為3~4的整數。 Among them, a is an integer from 1 to 15. In formulae (IIb) and (IIc), Z is connected to [P + (R) 3 ] at a position indicated by an asterisk (★), and n is an integer from 3 to 4.
根據再一實施例,本揭露提供一種正滲透提取液,包括:一種多枝狀陽離子型鏻鹽以及水。其中,多枝狀陽離子型鏻鹽具有式(I)所示結構:{Z[P+(R1)(R2)(R3)]n}(X-)n (I) According to yet another embodiment, the present disclosure provides a forward osmosis extract, comprising: a multi-dendritic cationic phosphonium salt and water. Wherein Dendritic cationic phosphonium salt having the formula (I) shown in the structure: {Z [P + (R 1) (R 2) (R 3)] n} (X -) n (I)
其中,R1、R2和R3各自獨立地為直鏈或支鏈的C1~C10烷基,X-為有機或無機陰離子, Z具有式(IIa)、式(IIb)、式(IIc)、或式(IId)所示結構:
其中,a為1~15之整數,在式(IIa)~(IId)中,Z以星號(★)所標示位置與[P+(R1)(R2)(R3)]連接,n為2~4的整數,其中正滲透提取液的濃度大於等於5wt%。 Among them, a is an integer from 1 to 15. In formulas (IIa) to (IId), Z is connected with [P + (R 1 ) (R 2 ) (R 3 )] at the position indicated by an asterisk (★), n It is an integer of 2 to 4, in which the concentration of the forward osmosis extract is 5 wt% or more.
根據再一實施例,本揭露提供一種正滲透海水淡化製程,包括:於一半透膜的兩側分別提供如前述之正滲透提取液以及純水,以正滲透(FO)模式對海水進行淡化。 According to yet another embodiment, the present disclosure provides a forward osmosis seawater desalination process, which includes providing forward osmosis extraction liquid and pure water as described above on both sides of a semipermeable membrane, and desalination of the seawater in a forward osmosis (FO) mode.
為讓本揭露之上述內容和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,作詳細說明如下: In order to make the above content and other purposes, features, and advantages of this disclosure more comprehensible, the following describes the preferred embodiments in detail, as follows:
第1圖顯示P2-TOS實際得到的滲透壓與離子液體(IL)濃度數據圖。 Figure 1 shows the actual osmotic pressure and ionic liquid (IL) concentration data obtained by P2-TOS.
第2圖顯示P2-TMBS實際得到的滲透壓與IL濃度數據圖。 Figure 2 shows the actual osmotic pressure and IL concentration data of P2-TMBS.
第3圖顯示P3-TOS實際得到的滲透壓與IL濃度數據圖。 Figure 3 shows the actual osmotic pressure and IL concentration data obtained by P3-TOS.
第4圖顯示P2a-TOS實際得到的滲透壓與IL濃度數據圖。 Figure 4 shows the actual osmotic pressure and IL concentration data of P2a-TOS.
本揭露實施例提供一種多枝狀陽離子型鏻鹽,其可應用於正滲透過程中做為提取液。舉例而言,可應用於海水淡化過程中做為正滲透提取液。然而,本揭露提供之多枝狀陽離子型鏻鹽的應用不限於此,只要調整配製後提取液的濃度及滲透壓,即可應用於其他利用正向滲透原理進行分離的過程中做為提取液,例如還可應用於廢水處理、濃縮純化、萃取、水脫鹽、發電等。 The embodiment of the present disclosure provides a multi-dendritic cationic phosphonium salt, which can be used as an extraction liquid in a forward osmosis process. For example, it can be used as a forward osmosis extract in seawater desalination. However, the application of the multi-dendritic cationic phosphonium salt provided in this disclosure is not limited to this, as long as the concentration and osmotic pressure of the extracted solution after adjustment are adjusted, it can be applied as an extraction solution in other processes using the principle of forward osmosis for separation For example, it can also be applied to wastewater treatment, concentration purification, extraction, water desalination, power generation, etc.
本揭露利用化學合成方法將對甲苯磺酸四丁基鏻(tetrabutylphosphonium p-toluenesulfonate)[P4444][TOS]的陽離子部分進行改質,合成多枝狀陽離子型寡聚物,例如:多枝狀陽離子型二聚物(P2)或多枝狀陽離子型多枝狀三聚物(P3)。 This disclosure uses a chemical synthesis method to modify the cationic portion of tetrabutylphosphonium p -toluenesulfonate [P 4444 ] [TOS] to synthesize a multi-dendritic cationic oligomer, such as a multi-dendritic Cationic dimer (P2) or multi-dendritic cationic multi-dendrimer (P3).
在本揭露一實施例中,提供一種多枝狀陽離子型鏻鹽,具有式(I)所示結構:{Z[P+(R1)(R2)(R3)]n}(X-)n (I) In an embodiment of the present disclosure, there is provided a multi-dendritic cationic phosphonium salts, having the formula (I) shown in the structure: {Z [P + (R 1) (R 2) (R 3)] n} (X - ) n (I)
在本揭露一些實施例中,R1、R2和R3各自獨立地為直鏈或支鏈的C1~C10烷基,Z可具有式(IIb)或式(IIc)所示結構:
其中,a可為1~15之整數。在式(IIb)、(IIc)中,Z以星號(★)所標示位置與[P+(R1)(R2)(R3)]連接,n為3~4的整數。 Among them, a can be an integer from 1 to 15. In the formulae (IIb) and (IIc), Z is connected to [P + (R 1 ) (R 2 ) (R 3 )] with a position indicated by an asterisk (★), and n is an integer of 3 to 4.
在本揭露一些實施例中,式(I)中的X-可為帶有一價之有機或無機陰離子。例如,X-可為CH3SO3 -、I-、CF3COO-、 SCN-、BF4 -、CF3SO3 -、PF6 -、FeCl4 -、、、
於式(I)中,中心結構Z搭配不同的陰離子,會使得所合成之多枝狀陽離子型鏻鹽具有不同的特性,可視實際需要選擇適合的陰離子。 In formula (I), the central structure Z is matched with different anions, which will make the synthesized dendritic cationic phosphonium salts have different characteristics, and a suitable anion may be selected according to actual needs.
在本揭露一實施例中,式(I)中的X-為 ,在R5和R6同時為H的實施例中,X為對甲苯磺 醯基(TOS);在R5和R6同時為CH3的實施例中,X為三甲基苯磺酸鹽(TMBS)。 In an embodiment of the disclosure, X - in the formula (I) is In the embodiment where R 5 and R 6 are both H, X is p-toluenesulfonyl (TOS); in the embodiment where R 5 and R 6 are both CH 3 , X is trimethylbenzenesulfonate (TMBS).
在本揭露一實施例中,式(I)中的R1、R2、R3各自獨立地為C1~C8之烷基。在本揭露另一實施例中,式(I)中的R1、R2、R3各自獨立地為C1~C5之烷基。 In an embodiment of the disclosure, R 1 , R 2 , and R 3 in the formula (I) are each independently a C 1 -C 8 alkyl group. In another embodiment of the present disclosure, R 1 , R 2 , and R 3 in formula (I) are each independently a C 1 -C 5 alkyl group.
在本揭露一實施例中,式(IIb)、(IIc)中的a可為3~8之整數。 In an embodiment of the present disclosure, a in the formulae (IIb) and (IIc) may be an integer of 3-8.
在本揭露一實施例中,提供一種多枝狀陽離子型鏻鹽,具有式(III)所示結構:{Z[P+(R)3]n}(X-)n (III) In an embodiment of the present disclosure, there is provided a multi-dendritic cationic phosphonium salts, having the formula (III) shown in the structure: {Z [P + (R ) 3] n} (X -) n (III)
其中,R為直鏈或支鏈的C1~C10烷基,Z具有式(IIb)或式(IIc)所示結構:
其中,a為1~15之整數,在式(IIb)、(IIc)中,Z以星號(★)所標示位置與[P+(R)3]連接,n為3~4的整數。 Among them, a is an integer from 1 to 15. In formulae (IIb) and (IIc), Z is connected to [P + (R) 3 ] at a position indicated by an asterisk (★), and n is an integer from 3 to 4.
在本揭露一些實施例中,式(III)中的X-可為帶有一價之有機或無機陰離子。例如,X-可為CH3SO3 -、I-、CF3COO-、 SCN-、BF4 -、CF3SO3 -、PF6 -、FeCl4 -、、、
在本揭露實施例中,多枝狀陽離子型鏻鹽可為: ,其中R可為C1~C5之 烷基,X-可為CH3SO3 -、CF3COO-、CF3SO3 -、、
在本揭露一實施例中,多枝狀陽離子型鏻鹽可為三羥甲基丙烷三[(三正丁基磷)丁酸鹽]三(對甲苯磺酸鹽)(trimethylolpropane tris[(tri-n-butylphosphonium)butyrate]tri(p-toluenesulfonate)(P3-TOS),其化學式如下:
在本揭露一些實施例中,多枝狀陽離子型鏻鹽為一種溫敏材料,其具有最低臨界溶解溫度(lower critical solution temperature;LCST),且其相變溫度(phase change temperature;Tc)可為5~60℃。相變溫度係溶液開始分離成兩相的最低溫度,在低於相變溫度時,溫敏材料為溶解狀態,在高於相變溫度時,溫敏材料為不溶解狀態。因此,當溫度高於上述相變溫度時,多枝狀陽離子型鏻鹽產生相變化,分離為兩相而產生沉澱。由於陽離子部分經過改質,本揭露所合成的多枝狀陽離子型鏻鹽之最低臨界溶解溫度降低,因此可在較低溫度下,利用液-液相分離或固-液相分離提取液中的水和多枝狀陽離子型鏻鹽,為一種低能耗的過程。並且,由於多枝狀陽離子型鏻鹽為一種溫敏材料,可透過溫度的改變容易地回收、重複使用多枝狀陽離子型鏻鹽,減少相分離後水層中殘留的多枝狀 陽離子型鏻鹽,進而降低能耗。 In some embodiments of the present disclosure, the multi-dendritic cationic phosphonium salt is a temperature-sensitive material, which has a lower critical solution temperature (LCST), and its phase change temperature (Tc) may be 5 ~ 60 ℃. The phase transition temperature is the lowest temperature at which the solution begins to separate into two phases. When the temperature is lower than the phase transition temperature, the temperature sensitive material is in a dissolved state, and when it is higher than the phase transition temperature, the temperature sensitive material is in an insoluble state. Therefore, when the temperature is higher than the above-mentioned phase transition temperature, the multi-dendritic cationic phosphonium salt undergoes a phase change, separates into two phases, and causes precipitation. Because the cationic portion is modified, the minimum critical melting temperature of the multi-dendritic cationic phosphonium salt synthesized in this disclosure is reduced, so that liquid-liquid phase separation or solid-liquid phase separation in the extraction liquid can be performed at a lower temperature. Water and multi-dendritic cationic phosphonium salts are a low-energy process. In addition, since the multi-dendritic cationic phosphonium salt is a temperature-sensitive material, the multi-dendritic cationic phosphonium salt can be easily recovered and reused by changing the temperature, thereby reducing the multi-dendritic cationic phosphonium salt remaining in the water layer after phase separation. Salt, which reduces energy consumption.
本揭露又一實施例提供一種正滲透提取液,包括前述之多枝狀陽離子型鏻鹽以及水。正滲透提取液之滲透壓隨正滲透提取液之質量摩爾濃度單調遞增,但非呈線性關係。 Another embodiment of the present disclosure provides a forward osmosis extract, including the aforementioned multi-dendritic cationic phosphonium salt and water. The osmotic pressure of the forward osmotic extraction solution monotonously increases with the mass molar concentration of the forward osmotic extraction solution, but it is not linear.
在本揭露一些實施例中,在正滲透提取液所包括之多枝狀陽離子型鏻鹽具有式(I)所示結構:{Z[P+(R1)(R2)(R3)]n}(X-)n (I) In some embodiments of the present disclosure, the multi-dendritic cationic phosphonium salt included in the forward osmotic extraction solution has a structure represented by formula (I): {Z [P + (R 1 ) (R 2 ) (R 3 )] n} (X -) n ( I)
其中,R1、R2和R3各自獨立地為直鏈或支鏈的C1~C10烷基,X-為有機或無機陰離子,Z具有式(IIa)、式(IIb)、式(IIc)、或式(IId)所示結構:
其中,a為1~15之整數,在式(IIa)~(IId)中,Z以星號(★)所標示位置與[P+(R1)(R2)(R3)]連接,n為2~4的整數。X-可如前述式(I)中所定義。 Among them, a is an integer from 1 to 15. In formulas (IIa) to (IId), Z is connected with [P + (R 1 ) (R 2 ) (R 3 )] at the position indicated by an asterisk (★), n It is an integer from 2 to 4. X - may be as defined in the aforementioned formula (I).
在本揭露一些實施例中,正滲透提取液所包括之 多枝狀陽離子型鏻鹽可為:
在本揭露一實施例中,正滲透提取液所包括之多枝狀陽離子型鏻鹽可為1,8-辛烷二基-雙(三正丁基磷)二(對甲苯磺酸鹽)(1,8-octanediyl-bis(tri-n-butylphosphonium)di(p-toluenesulfonate))(P2-TOS),其化學式如下:
在本揭露一實施例中,正滲透提取液所包括之多枝狀陽離子型鏻鹽可為1,8-辛烷二基-雙(三正丁基磷)二(2,4,6- 三甲基-苯磺酸鹽)(1,8-octanediyl-bis(tri-n-butylphosphonium)di(2,4,6-trimethyl-benzenesulfonate))(P2-TMBS),其化學式如下:
在本揭露一實施例中,正滲透提取液所包括之多枝狀陽離子型鏻鹽可為三羥甲基丙烷三[(三正丁基磷)丁酸鹽]三(對甲苯磺酸鹽)(trimethylolpropane tris[(tri-n-butylphosphonium)butyrate]tri(p-toluenesulfonate)(P3-TOS),其化學式如下:
在本揭露一實施例中,正滲透提取液所包括之多枝狀陽離子型鏻鹽可為二羥基乙烷-雙[(三正丁基磷)丁酸鹽]二(對甲苯磺酸鹽)(1,2-Ethanediol bis[(tri-n-butylphosphonium)butyrate])(P2a-TOS),其化學式如 下:
在本揭露一實施例中,正滲透提取液所包括之多枝狀陽離子型鏻鹽可為1,8-辛烷二基-雙(三正丁基磷)二(水楊酸)(1,8-octanediyl-bis(tri-n-butylphosphonium)di(salicylic acid))(P2-SA),其化學式如下:
在本揭露一實施例中,正滲透提取液所包括之多枝狀陽離子型鏻鹽可為1,8-辛烷二基-雙(三正丁基磷)二(三氟乙酸)(1,8-octanediyl-bis(tri-n-butylphosphonium)di(trifluoroacetic acid)(P2-TFA),其化學式如下:
在本揭露一些實施例中,前述正滲透提取液的濃度大於等於5wt%。在本揭露一些實施例中,正滲透提取液可應用於正向滲透海水淡化技術中,此時正滲透提取液濃度可大於例如15wt%、30wt%、40wt%、50wt%、或60wt%。應注意的是,正滲透提取液的濃度並不限於特定範圍,只要正滲透提取液在該濃度下的滲透壓大於原料液(例如:海水、蛋白質、工業、農業或民生廢水等)的滲透壓,即可發揮正滲透提取液的功效。一般而言,提取液和原料液之間的滲透壓差異越大,提取的效果越好,故以高濃度水溶液做為提取液會有較好的提取效果。然而,以成本的觀點考量,只要正滲透提取液在該濃度下的滲透壓大於原料液的滲透壓即可。以本揭露一實施例提供之多枝狀陽離子型鏻鹽P2-TOS為例,其本身即為液態溶液,故可在100wt%的濃度下直接做為提取液。然而,依據原料液的滲透壓大小,也可任意調配所需濃度的P2-TOS水溶液。 In some embodiments of the present disclosure, the concentration of the aforementioned forward osmosis extract is greater than or equal to 5 wt%. In some embodiments of the present disclosure, the forward osmosis extraction liquid may be applied to the forward osmosis seawater desalination technology. At this time, the concentration of the forward osmosis extraction liquid may be greater than, for example, 15 wt%, 30 wt%, 40 wt%, 50 wt%, or 60 wt%. It should be noted that the concentration of the forward osmotic extraction liquid is not limited to a specific range, as long as the osmotic pressure of the forward osmotic extraction liquid at this concentration is greater than the osmotic pressure of the raw material liquid (for example, seawater, protein, industrial, agricultural or domestic wastewater, etc.) , You can play the role of forward osmosis extract. Generally speaking, the larger the difference in osmotic pressure between the extraction liquid and the raw material liquid, the better the extraction effect, so a high concentration aqueous solution as the extraction liquid will have a better extraction effect. However, from the viewpoint of cost, the osmotic pressure of the forward osmotic extraction liquid at this concentration may be greater than the osmotic pressure of the raw material liquid. Taking the multi-branched cationic phosphonium salt P2-TOS provided by an embodiment of the present disclosure as an example, it is a liquid solution itself, so it can be directly used as an extraction solution at a concentration of 100% by weight. However, depending on the osmotic pressure of the raw material liquid, a P2-TOS aqueous solution of a desired concentration can also be arbitrarily prepared.
本揭露又一實施例提供一種正滲透海水淡化製程,包括:於一半透膜的兩側分別提供如前述之正滲透提取液以及純水,以正滲透(FO)模式對海水進行淡化。 Another embodiment of the present disclosure provides a forward osmosis seawater desalination process, which includes providing forward osmosis extraction liquid and pure water as described above on both sides of a semi-permeable membrane to desalinate seawater in a forward osmosis (FO) mode.
本揭露提供之多枝狀陽離子型鏻鹽雖然因為陽離 子部分經過改質而具有較大的分子量,但其黏度低,仍可配製為高濃度溶液,進而使得配製而成的提取液具有高滲透壓。並且,本揭露提供之多枝狀陽離子型鏻鹽具有較低的相變溫度之特性,在應用過程中易於回收且低耗能。此外,利用本揭露提供之多枝狀陽離子型鏻鹽配製為提取液應用時,可有效增加水通量,提高產水率。 Although the dendritic cationic phosphonium salt provided by this disclosure has a larger molecular weight because the cationic portion has been modified, its viscosity is low, and it can still be formulated as a high-concentration solution, so that the prepared extract has a high osmotic pressure. . In addition, the multi-dendritic cationic phosphonium salt provided by this disclosure has the characteristics of lower phase transition temperature, is easy to recycle and has low energy consumption in the application process. In addition, when the multi-dendritic cationic phosphonium salt provided by the present disclosure is formulated for use in an extraction liquid, the water flux can be effectively increased and the water production rate can be improved.
以下列舉各製備例、比較例、及實施例說明本揭露提供之多枝狀陽離子型鏻鹽及其製備成之提取液之特性: The following is a list of preparation examples, comparative examples, and examples to illustrate the characteristics of the multi-dendritic cationic phosphonium salt provided by this disclosure and the extracts prepared therefrom:
首先,合成1,8-辛烷二基-雙(三正丁基磷)二溴化物(1,8-octanediyl-bis(tri-n-butylphosphonium)dibromide)(此後簡稱P2-Br): First, 1,8-octanediyl-bis (tri-n-butylphosphonium) dibromide (hereinafter referred to as P2-Br) is synthesized:
(1)取500mL圓底瓶,置入三丁基膦(tributylphosphine)80g(0.4mol)和1,8-二溴辛烷(1,8-dibromooctane)48.9g(0.18mol),再加入無水丙酮150mL,於40℃下攪拌48小時。 (1) Take a 500mL round bottom bottle, put 80g (0.4mol) of tributylphosphine and 48.9g (0.18mol) of 1,8-dibromooctane, and then add anhydrous acetone 150 mL, and stirred at 40 ° C for 48 hours.
(2)反應結束後,將上述溶液慢慢滴入1.5L乙醚內。過濾所得到白色粉末固體,再以乙醚清洗數次。 (2) After completion of the reaction, the above solution was slowly dropped into 1.5 L of ether. The white powdery solid obtained was filtered and washed several times with ether.
(3)將清洗後的白色固體乾燥,得到117g的產物P2-Br。 (3) The white solid after washing was dried to obtain 117 g of the product P2-Br.
接著,合成1,8-辛烷二基-雙(三正丁基磷)二(對甲苯磺酸鹽)(1,8-octanediyl-bis(tri-n-butylphosphonium)di(p-toluenesulfonate))(此後簡稱P2-TOS): Next, 1,8-octanediyl-bis (tri-n-butylphosphonium) bis (p-toluenesulfonate) (1,8-octanediyl-bis (tri-n-butylphosphonium) di ( p- toluenesulfonate)) was synthesized. (Hereinafter referred to as P2-TOS):
(1)取P2-Br 2.67g(3.7mmol)與對甲苯磺酸鈉(sodium p-toluenesulfonate)(TOS-Na)1.57g(8.1mmol)溶於13g的去離子水中,於室溫下攪拌24小時。 (1) Take 2.67 g (3.7 mmol) of P2-Br and 1.57 g (8.1 mmol) of sodium p- toluenesulfonate (TOS-Na) in 13 g of deionized water and stir at room temperature for 24 hour.
(2)反應結束後,加入10mL乙酸乙酯進行萃取二次,收集上層乙酸乙酯層後,再加入20mL去離子水清洗三次純化。 (2) After the reaction is completed, 10 mL of ethyl acetate is added for extraction twice. After collecting the upper ethyl acetate layer, 20 mL of deionized water is added for washing and purification for three times.
(3)將清洗後的有機層濃縮,得到產物P2-TOS約1.6g。 (3) The washed organic layer was concentrated to obtain about 1.6 g of the product P2-TOS.
產物P2-TOS經由NMR測定(1H-NMR,400MHz in D2O):0.81(t,18H,C H 3CH2-)、1.09(m,4H,-CH2-)、1.1~1.5(m,32H,-CH2-)、1.9~2.1(t,16H,PCH2-)、2.25(s,6H,Ar-CH3)、7.21(d,4H,ArH)、7.58(d,4H,ArH)。產物P2-TOS的化學式如下:
合成1,8-辛烷二基-雙(三正丁基磷)二(2,4,6-三甲基-苯磺酸鹽)(1,8-octanediyl-bis(tri-n-butylphosphonium)di(2,4,6-trimethyl-benzenesulfonate))(此後簡稱P2-TMBS): Synthesis of 1,8-octanediyl-bis (tri-n-butylphosphonium) bis (2,4,6-trimethyl-benzenesulfonate) (1,8-octanediyl-bis (tri-n-butylphosphonium) di (2,4,6-trimethyl-benzenesulfonate)) (hereinafter referred to as P2-TMBS):
(1)取P2-Br 10g(14.7mmol)與2,4,6-三甲基苯磺酸鈉(sodium 2,4,6-trimethyl-benzensulfonate)(TMBS-Na)6.8g(29.6 mmol)溶於40g的去離子水中,於室溫下攪拌24小時。 (1) Take 10 g (14.7 mmol) of P2-Br and dissolve 6.8 g (29.6 mmol) of sodium 2,4,6-trimethylbenzenesulfonate (TMBS-Na) It was stirred in 40 g of deionized water at room temperature for 24 hours.
(2)反應結束後,加入20mL乙酸乙酯萃取。 (2) After completion of the reaction, 20 mL of ethyl acetate was added for extraction.
(3)將有機層濃縮,得到產物P2-TMBS約12.4g。 (3) The organic layer was concentrated to obtain about 12.4 g of product P2-TMBS.
產物P2-TMBS經由NMR測定(1H-NMR,400MHz in D2O):0.8(t,18H,C H 3CH2-)、1.09(m,4H,-CH2-)、1.1~1.5(m,32H,-CH2-)、1.9~2.0(t,16H,PCH2-)、2.12(s,6H,Ar-CH3)、2.25(s,12H,Ar-CH3)、6.88(s,4H,ArH)。產物P2-TMBS的化學式如下:
首先,合成三羥甲基丙烷三(4-溴丁酸酯)(trimethylolpropane tris(4-bromobutyrate)): First, trimethylolpropane tris (4-bromobutyrate) is synthesized:
(1)取50mL圓底反應瓶,置入三羥甲基丙烷(trimethylolpropane)1g(8.3mmol),以無水四氫呋喃(tetrahydrofuran;THF)20mL溶解之,再慢慢加入NaH(60%)1.1g,於室溫下以磁石攪拌2小時後,再滴入4-溴丁醯氯(4-bromobutyryl chloride)5g(27mmol),於室溫 下反應過夜。 (1) Take a 50mL round-bottomed reaction flask, put 1g (8.3mmol) of trimethylolpropane, dissolve it in 20mL of anhydrous tetrahydrofuran (THF), and slowly add 1.1g of NaH (60%). After stirring at room temperature with a magnet for 2 hours, 4-bromobutyryl chloride (5 g (27 mmol)) was added dropwise, and the mixture was reacted at room temperature overnight.
(2)待反應結束後將THF抽乾,加入乙醚20mL,將溶液過濾去除固體,將得到的濾液以50mL水清洗三次後,再將產物抽乾可得到3.4g的產物三羥甲基丙烷三(4-溴丁酸酯)。 (2) After the reaction is completed, THF is pumped to dryness, 20 mL of ether is added, the solution is filtered to remove solids, the obtained filtrate is washed three times with 50 mL of water, and then the product is pumped to dry to obtain 3.4 g of product trimethylolpropane (4-bromobutyrate).
接著,合成三羥甲基丙烷三[(三正丁基鏻)丁酸酯]三溴化物(trimethylolpropane tris[(tri-n-butylphosphonium)butyrate]tribromide)(此後簡稱P3-Br): Next, trimethylolpropane tris [(tri-n-butylphosphonium) butyrate] tribromide (trimethylolpropane tris [(tri-n-butylphosphonium) butyrate] tribromide) (hereinafter referred to as P3-Br):
(1)取50mL圓底反應瓶,置入三丁基膦(tributylphosphine)1.14g(5.6mmol)和三羥甲基丙烷三(4-溴丁酸酯)(trimethylolpropane tris(4-bromobutyrate))1.06g(1.8mmol),再加入無水丙酮10mL,於40℃下攪拌24小時。 (1) Take a 50mL round-bottomed reaction flask and put 1.14g (5.6mmol) of tributylphosphine and trimethylolpropane tris (4-bromobutyrate) 1.06 g (1.8 mmol), 10 mL of anhydrous acetone was added, and it stirred at 40 degreeC for 24 hours.
(2)反應結束後將溶液抽乾,再加入水20mL,以乙醚50mL分三次清洗後,將溶液抽乾可得到1.9g的產物P3-Br。 (2) After the reaction, the solution was drained, and 20 mL of water was added. After washing with 50 mL of ether three times, the solution was drained to obtain 1.9 g of product P3-Br.
接著,合成三羥甲基丙烷三[(三正丁基磷)丁酸鹽]三(對甲苯磺酸鹽)(trimethylolpropane tris[(tri-n-butylphosphonium)butyrate]tri(p-toluenesulfonate)(此後簡稱P3-TOS): Next, trimethylolpropane tris [(tri-n-butylphosphonium) butyrate] tri ( p- toluenesulfonate) (hereinafter (Referred to as P3-TOS):
(1)取P3-Br 3g(2.5mmol)與對甲苯磺酸鈉(sodium p-toluenesulfonate)(TOS-Na)1.5g(7.7mmol)溶於55g的去離子水中,於室溫下攪拌24小時。 (1) Take 3g (2.5mmol) of P3-Br and 1.5g (7.7mmol) of sodium p- toluenesulfonate (TOS-Na) in 55g of deionized water, and stir at room temperature for 24 hours .
(2)反應結束後加入15mL乙酸乙酯進行萃取,收集有機層。 (2) After completion of the reaction, 15 mL of ethyl acetate was added for extraction, and the organic layer was collected.
(3)將有機層進行真空濃縮,得到產物P3-TOS約2.5g。 (3) The organic layer was concentrated in vacuo to obtain about 2.5 g of the product P3-TOS.
產物P3-TOS經由NMR測定(1H-NMR,400MHz in D2O):0.81(t,30H,C H 3CH2-)、1.2~1.5(m,38H,-CH2-)、1.6~1.8(br.s,6H,-CH2-)、1.95~2.1(m,24H,PCH2-)、2.26(s,9H,Ar-CH3)、2.42(m,6H,-CH2CO-)、4.0(s,6H,-OCH2-)、7.21(d,6H,ArH)、7.58(d,6H,ArH)。產物P3-TOS的化學式如下:
首先,合成二羥基乙烷二(4-溴丁酸酯)(1,2-Ethanediol bis(4-bromobutyrate)): First, dihydroxyethane bis (4-bromobutyrate) (1,2-Ethanediol bis (4-bromobutyrate)) was synthesized:
(1)取50mL圓底反應瓶,置入二羥基乙烷(1,2-Ethanediol)0.795g(12.8mmol),以無水四氫呋喃(tetrahydrofuran;THF)20mL溶解之,再慢慢加入NaH(60%)1.23g,於室溫下攪拌2小時後,再滴入4-溴丁醯氯(4-bromobutyryl chloride)5.35g(2.74mmol),於室溫下反應過夜。 (1) Take a 50mL round-bottomed reaction flask, put 0.795g (12.8mmol) of dihydroxyethane (1,2-Ethanediol), dissolve it in 20mL of tetrahydrofuran (THF), and slowly add NaH (60%) 1.23 g, and after stirring at room temperature for 2 hours, 5.35 g (2.74 mmol) of 4-bromobutyryl chloride was added dropwise, and reacted at room temperature overnight.
(2)待反應結束後將THF抽乾,加入乙醚20mL,將溶液過濾去除固體,將得到的濾液以50mL水清洗三次後,再將產物抽乾可得到3g的產物二羥基乙烷二(4-溴丁酸酯)。 (2) After the reaction is completed, THF is drained, 20 mL of ether is added, and the solution is filtered to remove solids. The obtained filtrate is washed three times with 50 mL of water, and then the product is drained to obtain 3 g of the product dihydroxyethane di (4 -Bromobutyrate).
接著,合成二羥基乙烷-雙[(三正丁基磷)丁酸鹽]二溴化物(1,2-Ethanediol bis[(tri-n-butylphosphonium)butyrate]dibromide)(此後簡稱P2a-Br): Next, dihydroxyethane-bis [(tri-n-butylphosphonium) butyrate] dibromide (1,2-Ethanediol bis [(tri-n-butylphosphonium) butyrate] dibromide)) (hereinafter referred to as P2a-Br) was synthesized. :
(1)取50mL圓底反應瓶,置入三丁基膦(tributylphosphine)3.2g(15.8mmol)和二羥基乙烷二(4-溴丁酸酯)(1,2-Ethanediol bis(4-bromobutyrate))2.85g(7.9mmol),再加入無水丙酮10mL,於40℃下攪拌24小時。 (1) Take a 50mL round-bottomed reaction flask and put 3.2g (15.8mmol) of tributylphosphine and dihydroxyethanebis (4-bromobutyrate) (1,2-Ethanediol bis (4-bromobutyrate) )) 2.85 g (7.9 mmol), 10 mL of anhydrous acetone was added, and it stirred at 40 degreeC for 24 hours.
(2)反應結束後將溶液抽乾,再加入水60mL,以乙醚150mL分三次清洗,之後將水溶液抽乾可得到5g的產物P2a-Br。 (2) After the reaction, the solution was drained, 60 mL of water was added, and the solution was washed with 150 mL of ether three times, and then the aqueous solution was drained to obtain 5 g of product P2a-Br.
接著,合成二羥基乙烷-雙[(三正丁基磷)丁酸鹽]二(對甲苯磺酸鹽)(1,2-Ethanediol bis[(tri-n-butylphosphonium)butyrate]di(p-toluenesulfonate))(此後簡稱P2a-TOS): Next, dihydroxyethane-bis [(tri-n-butylphosphonium) butyrate] bis (p-toluenesulfonate) (1,2-Ethanediol bis [(tri-n-butylphosphonium) butyrate] di (p- toluenesulfonate)) (hereinafter referred to as P2a-TOS):
(1)取P2a-Br 5g(6.5mmol)與對甲苯磺酸鈉(sodium p-toluenesulfonate)(TOS-Na)2.79g(14.3mmol)溶於20g的去離子水中,於室溫下攪拌24小時。 (1) 5 g (6.5 mmol) of P2a-Br and 2.79 g (14.3 mmol) of sodium p- toluenesulfonate (TOS-Na) were dissolved in 20 g of deionized water and stirred at room temperature for 24 hours .
(2)反應結束後加入25mL乙酸乙酯進行萃取。 (2) After completion of the reaction, 25 mL of ethyl acetate was added for extraction.
(3)將有機層真空濃縮,得到產物P2a-TOS約3g。 (3) The organic layer was concentrated in vacuo to obtain about 3 g of the product P2a-TOS.
產物P2a-TOS經由NMR測定(1H-NMR,400MHz in D2O):0.81(t,18H,CH3CH2-)、1.2~1.5(m,24H,-CH2-)、1.6~1.8(br.s,4H,-CH2-)、1.95~2.1(m,16H,PCH2-)、2.26(s,6H,Ar-CH3)、2.42(m,4H,-CH2CO-)、4.2(s,4H,-OCH2-)、7.21(d,4H,ArH)、7.58(d,4H,ArH)。產物P2a-TOS的化學式如下:
首先,依照製備例1所述方法合成P2-Br。接著,依下列步驟合成1,8-辛烷二基-雙(三正丁基磷)二(水楊酸)(1,8-octanediyl-bis(tri-n-butylphosphonium)di(salicylic acid))(此後簡稱P2-SA): First, P2-Br was synthesized according to the method described in Preparation Example 1. Next, 1,8-octanediyl-bis (tri-n-butylphospho) bis (salicylic acid) (1,8-octanediyl-bis (tri-n-butylphosphonium) di (salicylic acid)) was synthesized according to the following steps. (Hereinafter referred to as P2-SA):
(1)先將P2-Br用離子交換樹脂轉換成P2-OH(1,8-辛烷二基-雙(三正丁基磷)二氫氧化物;1,8-octanediyl-bis(tri-n-butylphosphonium)dihydroxide),取P2-OH 20g(36.4mmol)與水楊酸(salicylic acid)(SA)10.1g(72.8mmol)溶於添加3g乙醇的120g去離子水中,於室溫下攪拌24小時。 (1) P2-Br is first converted into P2-OH with an ion exchange resin (1,8-octanediyl-bis (tri-n-butyl phosphorus) dihydroxide; 1,8-octanediyl-bis (tri- n-butylphosphonium) dihydroxide), take 20 g (36.4 mmol) of P2-OH and 10.1 g (72.8 mmol) of salicylic acid (SA) and dissolve in 120 g of deionized water with 3 g of ethanol, and stir at room temperature for 24 hour.
(2)反應結束後,加入80mL乙酸乙酯進行萃取。 (2) After completion of the reaction, 80 mL of ethyl acetate was added for extraction.
(3)將有機層濃縮,得到產物P2-SA約16g。 (3) The organic layer was concentrated to obtain about 16 g of the product P2-SA.
產物P2-SA經由NMR測定(1H-NMR,400MHz in D2O;ppm):0.8(t,18H,CH 3-)、1.20(m,4H,-CH2-)、1.25~1.45(m,32H,-CH2-)、1.90~2.05(m,16H,PCH2-)、6.81~6.86(m,4 H,ArH)、7.32(td,2H,ArH)、7.70(dd,2H,ArH)。產物P2-SA的化學式如下:
首先,依照製備例1所述方法合成P2-Br。接著,依下列步驟合成1,8-辛烷二基-雙(三正丁基磷)二(三氟乙酸)(1,8-octanediyl-bis(tri-n-butylphosphonium)di(trifluoroacetic acid)(此後簡稱P2-TFA): First, P2-Br was synthesized according to the method described in Preparation Example 1. Next, 1,8-octanediyl-bis (tri-n-butylphospho) bis (trifluoroacetic acid) (1,8-octanediyl-bis (tri-n-butylphosphonium) di (trifluoroacetic acid) ( Hereinafter referred to as P2-TFA):
(1)先將P2-Br用離子交換樹脂轉換成P2-OH,取P2-OH 20g(36.4mmol)與三氟乙酸(trifluoroacetic acid;TFA)8.3g(72.8mmol)溶於30g去離子水中,於室溫下攪拌24小時。 (1) First convert P2-Br to P2-OH with an ion exchange resin. Take 20 g (36.4 mmol) of P2-OH and 8.3 g (72.8 mmol) of trifluoroacetic acid (TFA) and dissolve in 30 g of deionized water. Stir at room temperature for 24 hours.
(2)反應結束後,加入20mL乙酸乙酯進行萃取。 (2) After completion of the reaction, 20 mL of ethyl acetate was added for extraction.
(3)將有機層濃縮,得到產物P2-TFA約12g。 (3) The organic layer was concentrated to obtain about 12 g of the product P2-TFA.
產物P2-TFA經由NMR測定(1H-NMR,400MHz in D2O;ppm):0.81(t,18H,CH 3-)、1.23(m,4H,-CH2-)、1.3~1.5(m,32H,-CH2-)、2.0~2.2(t,16H,PCH2-);(19F-NMR,400MHz in D2O;ppm):75.54。產物P2-TFA的化學式如下:
以市售的對甲苯磺酸四丁基鏻(tetrabutylphosphonium p-toluenesulfonate)(Aldrich 95wt%)[P4444][TOS]作為比較例1。 Commercially available tetrabutylphosphonium p -toluenesulfonate (Aldrich 95wt%) [P 4444 ] [TOS] was used as Comparative Example 1.
將製備例1所合成之P2-Br以NMR進行測定(1H-NMR,400MHz in D2O;ppm):0.81(t,18H,CH3-)、1.09(m,4H,-CH2-)、1.1~1.5(m,32H,-CH2-)、1.9~2.1(t,16H,PCH2-)。P2-Br的化學式如下:
依下列步驟合成二羥基乙烷-雙[(三正丁基磷)乙酸鹽]二溴化物(1,2-ethanediol bis[(tri-n-butylphosphonium) acetyrate]dibromide)(此後簡稱P2a1-Br): To synthesize dihydroxyethane-bis [(tri-n-butylphosphonium) acetate] dibromide (hereinafter referred to as P2a1-Br) :
(1)取100mL圓底反應瓶,置入三丁基膦1g(4.93mmol)和二羥基乙烷二(2-溴乙酸酯)(1,2-ethanediol bis(bromoacetyrate))0.752g(2.47mmol),再加入無水丙酮10mL,於40℃下攪拌48小時。 (1) Take a 100mL round-bottomed reaction bottle, and put 1g (4.93mmol) of tributylphosphine and dihydroxyethanebis (2-bromoacetylate) (1,2-ethanediol bis (bromoacetyrate)) 0.752g (2.47) mmol), 10 mL of anhydrous acetone was added, and the mixture was stirred at 40 ° C. for 48 hours.
(2)反應結束後,將溶液抽乾,再加入水40mL,並以100mL的乙醚分三次清洗。之後,將水溶液抽乾可得到1g的產物P2a1-Br。 (2) After the reaction is completed, the solution is drained, and 40 mL of water is added, and the solution is washed with 100 mL of ether three times. After that, the aqueous solution was dried to obtain 1 g of the product P2a1-Br.
產物P2a1-Br經由NMR測定(1H-NMR,400MHz in D2O;ppm):0.8(t,18H,CH3-)、1.2~1.6(m,24H,-CH2-)、2.3~2.3(m,12H,PCH2-)、3.52(d,4H,-CH2(CO)-)、4.4(s,4H,-OCH2-)。產物P2a1-Br的化學式如下:
依下列步驟合成三羥甲基丙烷三[(三正丁基鏻)丁酸酯]三溴化物(trimethylolpropanetris[(tri-n-butylphosphonium)butyrate]tribromide)(此後簡稱P3-Br): To synthesize trimethylolpropanetri [(tri-n-butylphosphonium) butyrate] tribromide ((tri-n-butylphosphonium) butyrate] tribromide) (hereinafter referred to as P3-Br):
(1)取50mL圓底反應瓶,置入三丁基膦1.14g(5.6mmol) 和三羥甲基丙烷三(4-溴丁酸酯)(trimethylolpropane tris(4-bromobutyrate))1.06g(1.8mmol),再加入無水丙酮10mL,於40℃下攪拌24小時。 (1) Take a 50mL round-bottomed reaction flask and put 1.14g (5.6mmol) of tributylphosphine and trimethylolpropane tris (4-bromobutyrate) 1.06g (1.8 mmol), 10 mL of anhydrous acetone was added, and the mixture was stirred at 40 ° C. for 24 hours.
(2)反應結束後,將溶液抽乾,再加入水20mL,以50mL的乙醚分三次清洗。之後,將水溶液抽乾可得到1.9g的產物P3-Br。 (2) After completion of the reaction, the solution was drained, and 20 mL of water was added, followed by washing with 50 mL of ether three times. After that, the aqueous solution was dried to obtain 1.9 g of the product P3-Br.
產物P3-Br經由NMR測定(1H-NMR,400MHz in D2O;ppm):0.81(t,30H,CH3-)、1.2~1.5(m,38H,-CH2-)、1.6~1.8(br.s,6H,-CH2-)、1.95~2.1(m,24H,PCH2-)、2.42(m,6H,-CH2CO-)、4.0(s,6H,-OCH2-)。產物P3-Br的化學式如下:
將製備例1獲得的多枝狀陽離子型鏻鹽P2-TOS、製備例2獲得的多枝狀陽離子型鏻鹽P2-TMBS、製備例3獲得的多枝狀陽離子型鏻鹽P3-TOS、及製備例4獲得的多枝狀陽離子型鏻鹽P2a-TOS、各別配製成濃度為75wt%水溶液,於20℃使用黏度儀Brookfield DV2TLVCJ0測量黏度值。結果如表1所示。 The multi-dendritic cationic phosphonium salt P2-TOS obtained in Preparation Example 1, the multi-dendritic cationic phosphonium salt P2-TMBS obtained in Preparation Example 2, the multi-dendritic cationic phosphonium salt P3-TOS obtained in Preparation Example 3, and The multi-branched cationic sulfonium salts P2a-TOS obtained in Preparation Example 4 were each formulated into a 75 wt% aqueous solution, and the viscosity was measured at 20 ° C using a viscosity meter Brookfield DV2TLVCJ0. The results are shown in Table 1.
[表1]
以可操作的觀點考慮,根據操作經驗,適合作為提取液的材料以具有200cp以下的黏度值較佳。若黏度值過高,則材料會因為流動上的困難而不適合做為提取液。而高分子材料在高濃度下易因高黏度的問題而導致操作困難,故不適合做為提取液。由表1可看到,雖然本揭露製備例1~4的多枝狀陽離子型鏻鹽經過陽離子改質而具有較大的分子量,但是在配製成75wt%高濃度水溶液時,最高的黏度值只有110cp,其仍在可操作的黏度值範圍內。換句話說,本揭露製備例1~4的多枝狀陽離子型鏻鹽並未因分子量增加而使黏度值大幅增加,因此不會像一般高分子材料因黏度值過高而無法在高濃度下做為提取液。 From the viewpoint of operability, according to the operating experience, it is better that the material suitable as the extraction liquid has a viscosity value of 200 cp or less. If the viscosity value is too high, the material will not be suitable as an extraction solution due to difficulties in flow. However, polymer materials are difficult to operate due to high viscosity problems at high concentrations, so they are not suitable for extraction. It can be seen from Table 1 that although the multi-dendritic cationic phosphonium salts of Preparation Examples 1 to 4 have a larger molecular weight after cation modification, the highest viscosity value when formulated into a 75 wt% high concentration aqueous solution Only 110cp, which is still within the range of operable viscosity values. In other words, the multi-branched cationic sulfonium salts of Preparation Examples 1 to 4 do not increase the viscosity value greatly due to the increase in molecular weight, so it will not be unable to work at high concentrations due to the high viscosity value of ordinary polymer materials. As an extract.
將製備例1獲得的多枝狀陽離子型鏻鹽P2-TOS、製備例2獲得的多枝狀陽離子型鏻鹽P2-TMBS、製備例3獲得的多枝狀陽離子型鏻鹽P3-TOS、製備例4獲得的多枝狀陽離子型鏻鹽P2a-TOS、製備例5獲得的多枝狀陽離子型鏻鹽P2-SA、製備例6獲得的多枝狀陽離子型鏻鹽P2-TFA各別配製成不同濃度的水溶液,利用冰點滲透壓儀(OSMOMAT 030;GONOTEC)以冰 點法測量滲透壓值。 The multi-dendritic cationic phosphonium salt P2-TOS obtained in Preparation Example 1, the multi-dendritic cationic phosphonium salt P2-TMBS obtained in Preparation Example 2, and the multi-dendritic cationic phosphonium salt P3-TOS obtained in Preparation Example 3 were prepared, The multi-branched cationic phosphonium salt P2a-TOS obtained in Example 4, the multi-branched cationic phosphonium salt P2-SA obtained in Preparation Example 5, and the multi-dendritic cationic phosphonium salt P2-TFA obtained in Preparation Example 6 were prepared separately. Aqueous solutions of different concentrations were used, and the osmotic pressure value was measured by the freezing point method using a freezing point osmometer (OSMOMAT 030; GONOTEC).
需注意的是,當水溶液之濃度大於30wt%時,其滲透壓通常無法被儀器所測量,但可通過低濃度的滲透壓測定結果,利用外推法來預測水溶液之濃度大於30wt%時的滲透壓。因此,於本揭露下列實施例中,係事先測量製備例1~4配製成的水溶液在低濃度時的滲透壓,並畫出滲透壓與質量摩爾濃度(molality)相關的模擬函數,將此模擬函數應用來預測水溶液在高濃度時的滲透壓。其中,質量摩爾濃度(molality)與重量百分濃度(wt%)之間的換算公式為:wt%=molality x Mw/[(molality x Mw)+1000] It should be noted that when the concentration of the aqueous solution is greater than 30wt%, its osmotic pressure cannot usually be measured by the instrument, but the low-concentration osmotic pressure measurement result can be used to predict the penetration of the aqueous solution when the concentration of the aqueous solution is greater than 30wt%. Pressure. Therefore, in the following examples of the present disclosure, the osmotic pressure of the aqueous solution prepared in Preparation Examples 1 to 4 at low concentration was measured in advance, and a simulation function related to the osmotic pressure and the molarity of the mass was drawn. Simulation functions should be used to predict the osmotic pressure of aqueous solutions at high concentrations. Among them, the conversion formula between the molar concentration (molality) and the weight percent concentration (wt%) is: wt% = molality x Mw / [(molality x Mw) +1000]
Mw表示水溶液中溶質的分子量(g/mol)。 Mw represents the molecular weight (g / mol) of the solute in the aqueous solution.
表2顯示將製備例1獲得的多枝狀陽離子型鏻鹽P2-TOS配置成不同濃度的水溶液時,其滲透壓值。以冰點法量測P2-TOS實際得到的滲透壓與離子液體(IL)濃度數據圖顯示於第1圖。 Table 2 shows the osmotic pressure value of the multi-dendritic cationic phosphonium phosphonium salt P2-TOS obtained in Preparation Example 1 when they were arranged into aqueous solutions of different concentrations. The osmotic pressure and ionic liquid (IL) concentration data obtained by measuring the P2-TOS by the freezing point method are shown in Figure 1.
表3顯示將製備例2獲得的多枝狀陽離子型鏻鹽P2-TMBS配置成不同濃度的水溶液時,其滲透壓值。以冰點法 量測P2-TMBS實際得到的滲透壓與IL濃度數據圖顯示於第2圖。 Table 3 shows the osmotic pressure values of the multi-dendritic cationic phosphonium salt P2-TMBS obtained in Preparation Example 2 when they were arranged into aqueous solutions of different concentrations. Figure 2 shows the actual osmotic pressure and IL concentration data obtained by measuring P2-TMBS with the freezing point method.
表4顯示將製備例3獲得的多枝狀陽離子型鏻鹽P3-TOS配置成不同濃度的水溶液時,其滲透壓值。以冰點法量測P3-TOS實際得到的滲透壓與IL濃度數據圖顯示於第3圖。 Table 4 shows the osmotic pressure values of the multi-dendritic cationic phosphonium salt P3-TOS obtained in Preparation Example 3 when the aqueous solutions were arranged in different concentrations. The osmotic pressure and IL concentration data obtained by measuring the P3-TOS with the freezing point method are shown in Figure 3.
表5顯示將製備例4獲得的多枝狀陽離子型鏻鹽P2a-TOS配置成不同濃度的水溶液時,其滲透壓值。以冰點法量測P2a-TOS實際得到的滲透壓與IL濃度數據圖顯示於第4圖。 Table 5 shows the osmotic pressure values of the multi-dendritic cationic phosphonium phosphonium salt P2a-TOS obtained in Preparation Example 4 when the aqueous solutions were arranged in different concentrations. The actual osmotic pressure and IL concentration data obtained by measuring P2a-TOS by the freezing point method are shown in Figure 4.
為了證實預測值的正確性,而進行了下述測試。取一U型管,其中間設置有正滲透(FO)膜,一端置入75wt%的P2-TOS水溶液,另一端置入11.2wt%的NaCl水溶液(於此濃度下的NaCl水溶液,其滲透壓約為海水滲透壓的3.2倍)。於溫度22℃下靜置一段時間後,75wt%的P2-TOS水溶液之液面上升,而11.2wt%的NaCl水溶液之液面下降。這代表著75wt%的P2-TOS水溶液具有比11.2wt%的NaCl水溶液(約3.85Osmol/Kg)更高的滲透壓。由表2可看到,以外推法預測70wt%的P2-TOS水溶液的滲透壓為6.148(Osmol/Kg),比3.85Osmol/Kg更高,符合上述結果。顯示由外推法得到的滲透壓預測值具可參考性。 To confirm the accuracy of the predicted values, the following tests were performed. Take a U-shaped tube with a forward osmosis (FO) membrane in the middle, put 75 wt% P2-TOS aqueous solution at one end, and 11.2 wt% NaCl aqueous solution (NaCl aqueous solution at this concentration, its osmotic pressure at the other end) (About 3.2 times the osmotic pressure of seawater). After standing at a temperature of 22 ° C for a period of time, the liquid level of a 75 wt% aqueous solution of P2-TOS rises, while the liquid level of a 11.2 wt% aqueous solution of NaCl decreases. This means that a 75 wt% aqueous solution of P2-TOS has a higher osmotic pressure than a 11.2 wt% aqueous solution of NaCl (about 3.85 Osmol / Kg). As can be seen from Table 2, the extrapolation method predicts the osmotic pressure of a 70 wt% P2-TOS aqueous solution to be 6.148 (Osmol / Kg), which is higher than 3.85 Osmol / Kg, which is consistent with the above results. It shows that the osmotic pressure predicted by extrapolation is informative.
表6顯示將製備例5獲得的多枝狀陽離子型鏻鹽P2-SA配置成不同濃度的水溶液時,其滲透壓值。以冰點法量測P2-SA實際得到的滲透壓與IL濃度數據圖顯示於第X圖。 Table 6 shows the osmotic pressure values of the multi-dendritic cationic phosphonium salt P2-SA obtained in Preparation Example 5 when the aqueous solutions were prepared in different concentrations. The osmotic pressure and IL concentration data obtained by measuring the freezing point method of P2-SA are shown in Figure X.
表7顯示將製備例6獲得的多枝狀陽離子型鏻鹽P2-TFA配置成不同濃度的水溶液時,其滲透壓值。 Table 7 shows the osmotic pressure values of the multi-dendritic cationic phosphonium salt P2-TFA obtained in Preparation Example 6 when they were configured into aqueous solutions of different concentrations.
由表2~7的結果看來,隨著多枝狀陽離子型鏻鹽水溶液的濃度增加,其滲透壓也相對地增加。具體而言,多枝狀陽離子型鏻鹽水溶液的滲透壓隨著質量摩爾濃度單調遞增,而非呈線性關係。尤其,從表2可看到,當製備例1配製成的水溶液濃度介於30~40wt%之間時,其滲透壓就可大於海水的滲透壓,因此適合應用在海水淡化,作為正滲透提取液。類似地,在表3~表7中可發現,當製備例2配製成的水溶液濃度介於40~50wt%、製備例3配製成的水溶液濃度介於60~70wt%、製備例4配製成的水溶液濃度介於30~40wt%、製備例5配製成的水溶液濃度介於40~50wt%、製備例6配製成的水溶液濃度介於30~40wt%時,滲透壓就可以大於海水的滲透壓1.2(Osmol/Kg),故適合應用在海水淡化,作為正滲透提取液。 From the results in Tables 2 to 7, it appears that the osmotic pressure of the multi-dendritic cationic phosphonium salt aqueous solution increases relatively as the concentration thereof increases. Specifically, the osmotic pressure of the multi-dendritic cationic phosphonium salt aqueous solution monotonically increases with the molar concentration, rather than a linear relationship. In particular, it can be seen from Table 2 that when the concentration of the aqueous solution prepared in Preparation Example 1 is between 30 and 40% by weight, the osmotic pressure can be greater than the osmotic pressure of seawater. Extract. Similarly, it can be found in Tables 3 to 7 that when the concentration of the aqueous solution prepared in Preparation Example 2 is between 40-50% by weight, the concentration of the aqueous solution prepared in Preparation Example 3 is between 60-70% by weight, and When the prepared aqueous solution has a concentration of 30 to 40 wt%, the aqueous solution prepared in Preparation Example 5 has a concentration of 40 to 50 wt%, and the aqueous solution prepared in Preparation Example 6 has a concentration of 30 to 40 wt%, the osmotic pressure can be greater than The osmotic pressure of seawater is 1.2 (Osmol / Kg), so it is suitable for seawater desalination as a forward osmotic extraction solution.
此外,根據不同原料液的滲透壓,本技術領域具有通常知識者也可參照表2~7所示結果,選擇合適的多枝狀陽離子型鏻鹽種類及其配置成的提取液濃度,應用於不同原料液 的水提取過程。 In addition, according to the osmotic pressure of different raw material liquids, those with ordinary knowledge in the technical field can also refer to the results shown in Tables 2 to 7 to select an appropriate multi-dendritic cationic phosphonium salt type and the concentration of the extract solution configured for application. Water extraction process of different raw material liquids.
將製備例1獲得的多枝狀陽離子型鏻鹽P2-TOS、製備例2獲得的多枝狀陽離子型鏻鹽P2-TMBS、製備例3獲得的多枝狀陽離子型鏻鹽P3-TOS、製備例4獲得的多枝狀陽離子型鏻鹽P2a-TOS、製備例5獲得的多枝狀陽離子型鏻鹽P2-SA、製備例6獲得的多枝狀陽離子型鏻鹽P2-TFA、及比較例1之[P4444][TOS]、比較例2之P2-Br、比較例3之P2a1-Br、比較例4之P3-Br各別配製成不同濃度的水溶液,並慢慢升溫至溶液開始起霧。溶液開始起霧之最低溫度(cloud point temperature;Tc)為相變溫度。測量到的Tc(℃)結果如表8所示。 The multi-dendritic cationic phosphonium salt P2-TOS obtained in Preparation Example 1, the multi-dendritic cationic phosphonium salt P2-TMBS obtained in Preparation Example 2, and the multi-dendritic cationic phosphonium salt P3-TOS obtained in Preparation Example 3 were prepared, Multi-branched cationic phosphonium salt P2a-TOS obtained in Example 4, multi-branched cationic phosphonium salt P2-SA obtained in Preparation Example 5, multi-dendritic cationic phosphonium salt P2-TFA obtained in Preparation Example 6, and comparative examples [P 4444 ] [TOS] of 1, P2-Br of Comparative Example 2, P2a1-Br of Comparative Example 3, and P3-Br of Comparative Example 4 were formulated into aqueous solutions of different concentrations, and the temperature was gradually raised to the beginning of the solution. Fog. The minimum temperature (cloud point temperature; Tc) at which the solution begins to fog is the phase transition temperature. The measured Tc (° C) results are shown in Table 8.
於表8中,以「製備例1」表示以產物P2-TOS配製成的水溶液、以「製備例2」表示以產物P2-TMBS配製成的水溶液、以「製備例3」表示以產物P3-TOS配製成的水溶液、以「製備例4」表示以產物P2a-TOS配製成的水溶液、以「製備例5」表示以產物P2-SA配製成的水溶液、以「製備例6」表示以產物P2-TFA配製成的水溶液、以「比較例1」表示以[P4444][TOS]配製成的水溶液、以「比較例2」表示以產物P2-Br配製成的水溶液、以「比較例3」表示以產物P2a1-Br配製成的水溶液、以「比較例4」表示以產物P3-Br配製成的水溶液。由表8可看到,40wt%的[P4444][TOS]水溶液的相變溫度約為55℃,如果做為提取液,會因為相變溫度過高,使得提取液在回收時的能耗提升。 In Table 8, "Preparation Example 1" indicates the aqueous solution prepared by the product P2-TOS, "Preparation Example 2" indicates the aqueous solution prepared by the product P2-TMBS, and "Preparation Example 3" indicates the product. Aqueous solution prepared by P3-TOS, "Preparation Example 4" indicates the aqueous solution prepared by the product P2a-TOS, "Preparation Example 5" indicates the aqueous solution prepared by the product P2-SA, and "Preparation Example 6""Indicates an aqueous solution prepared with the product P2-TFA," Comparative Example 1 "indicates an aqueous solution prepared with [P 4444 ] [TOS], and" Comparative Example 2 "indicates an aqueous solution prepared with product P2-Br An "aqueous solution" indicates an aqueous solution prepared by the product P2a1-Br as "Comparative Example 3", and an "aqueous solution" prepared by the product P3-Br as "Comparative Example 4". It can be seen from Table 8 that the phase transition temperature of a 40 wt% [P 4444 ] [TOS] aqueous solution is about 55 ° C. If it is used as an extraction solution, the phase transition temperature will be too high, which will cause the energy consumption of the extraction solution during recovery. Promotion.
相較之下,在相同濃度條件(40wt%)下,由本揭露製備例1~4所配製成的多枝狀陽離子型鏻鹽水溶液,其相變溫度低於[P4444][TOS]水溶液的相變溫度。例如,40wt%的製備例1水溶液的相變溫度約為39℃,40wt%的製備例2水溶液的相變溫度約為26℃,40wt%的製備例4水溶液的相變溫度約為41℃,而40wt%的製備例3水溶液的相變溫度更下降為約15℃。另外,由表8可知,在相同濃度條件(如20~50wt%)下,由本揭露製備例5、6所配製成的多枝狀陽離子型鏻鹽水溶液,其相變溫度也低於[P4444][TOS]水溶液的相變溫度。 In contrast, under the same concentration conditions (40wt%), the multi-dendritic cationic phosphonium salt aqueous solution prepared by the preparation examples 1 to 4 has a phase transition temperature lower than that of the [P 4444 ] [TOS] aqueous solution. Phase transition temperature. For example, the phase transition temperature of a 40 wt% aqueous solution of Preparation Example 1 is about 39 ° C, the phase transition temperature of a 40 wt% aqueous solution of Preparation Example 2 is about 26 ° C, and the phase transition temperature of a 40 wt% aqueous solution of Preparation Example 4 is about 41 ° C Meanwhile, the phase transition temperature of the 40% by weight aqueous solution of Preparation Example 3 was further reduced to about 15 ° C. In addition, it can be known from Table 8 that under the same concentration conditions (such as 20-50% by weight), the phase transition temperature of the multi-branched cationic phosphonium salt aqueous solution prepared in Preparation Examples 5 and 6 of the present disclosure is also lower than [P 4444 ] [TOS] Phase transition temperature of aqueous solution.
由此可知,將本揭露製備例1~6的水溶液做為提取液時,有利於提取液的回收,並降低能耗。 Therefore, it can be known that when the aqueous solutions of Preparation Examples 1 to 6 of the present disclosure are used as the extraction liquid, it is beneficial to the recovery of the extraction liquid and reduce the energy consumption.
以下,將製備例1~4的多枝狀陽離子型鏻鹽配製為 提取液,進行正滲透的驗證。 Hereinafter, the multi-dendritic cationic sulfonium salts of Preparation Examples 1 to 4 were prepared as an extraction solution and verified by forward osmosis.
半透膜使用Dow filmtec tw30-3012-500,面積為8x8cm,切向流量(cross flow)為25cm/s,原料液(feed solution)為純水,提取液為75wt%的P2-TOS水溶液、75wt% P2-TMBS水溶液、50wt% P2a-TOS水溶液、或70wt% 的[P4444][TOS]水溶液。採用FO模式(active layer faced the feed solution,AL-FS),進行正滲透驗證。結果如表9所示。 The semi-permeable membrane uses Dow filmtec tw30-3012-500, the area is 8x8cm, the tangential flow (cross flow) is 25cm / s, the feed solution is pure water, and the extraction solution is 75wt% P2-TOS aqueous solution, 75wt % P2-TMBS aqueous solution, 50 wt% P2a-TOS aqueous solution, or 70 wt% [P 4444 ] [TOS] aqueous solution. The FO mode (active layer faced the feed solution (AL-FS)) was used for forward penetration verification. The results are shown in Table 9.
由表9可看到,當提取液為70wt%的[P4444][TOS]水溶液時,水通量只有1.31(LMH)。相較之下,由本揭露製備例1配製成的75wt% P2-TOS水溶液的水通量可達3.09(LMH),水通量增加為約2.3倍;本揭露製備例2配製成的75wt% P2-TMBS水溶液的水通量可達3.04(LMH),水通量增加為約2.3倍;本揭露製備例4配製成的50wt% P2a-TOS水溶液的水通量可達2.0(LMH),水通量增加為約1.5倍。 It can be seen from Table 9 that when the extraction solution is a 70 wt% [P 4444 ] [TOS] aqueous solution, the water flux is only 1.31 (LMH). In comparison, the 75wt% P2-TOS aqueous solution prepared by the preparation example 1 has a water flux of 3.09 (LMH), and the water flux is increased by about 2.3 times; the 75wt% prepared by the preparation example 2 is 75wt%. The water flux of the% P2-TMBS aqueous solution can reach 3.04 (LMH), and the water flux increases by about 2.3 times; the water flux of the 50 wt% P2a-TOS aqueous solution formulated in Preparation Example 4 can reach 2.0 (LMH) , The water flux increased by about 1.5 times.
由上述實施例結果可證明,本揭露提供之多枝狀陽離子型鏻鹽雖然陽離子部分經過改質而分子量增大,但配製為提取液應用時,具有黏度低、滲透壓高、相變溫度低等特性。因此,利用本揭露提供之多枝狀陽離子型鏻鹽配製為提取液應用時,具有易於回收且低耗能的優點。並且,利用本揭露提供之多枝狀陽離子型鏻鹽配製為提取液應用時,可有效提高水通量,進而增加產水率。 From the results of the above examples, it can be proved that although the dendritic cationic phosphonium salt provided by the present disclosure has been modified to increase the molecular weight, it has low viscosity, high osmotic pressure, and low phase transition temperature when it is formulated as an extract. And other characteristics. Therefore, when the multi-dendritic cationic phosphonium salt provided by the present disclosure is formulated for extraction liquid application, it has the advantages of easy recovery and low energy consumption. In addition, when the multi-dendritic cationic phosphonium salt provided by the present disclosure is formulated to be used as an extraction liquid, the water flux can be effectively improved, thereby increasing the water production rate.
雖本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視附之申請專利範圍所界定者為準。 Although the present disclosure has been disclosed above with several preferred embodiments, it is not intended to limit the present disclosure. Any person with ordinary knowledge in the technical field may make arbitrary changes without departing from the spirit and scope of the present disclosure. And retouching, so the scope of protection of this disclosure shall be determined by the scope of the attached patent application.
Claims (14)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810520836.2A CN108976258B (en) | 2017-06-01 | 2018-05-28 | Multi-branched cationic phosphonium salt, forward osmosis extract containing same, and forward osmosis seawater desalination process |
US15/994,193 US10584139B2 (en) | 2017-06-01 | 2018-05-31 | Multi-branched cationic phosphonium salt, forward osmosis extract employing the same and forward osmosis seawater desalination process |
JP2018106103A JP6626924B2 (en) | 2017-06-01 | 2018-06-01 | Hyperbranched cationic phosphonium salt, forward osmosis extract using the same, and forward osmosis seawater desalination process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
??106118071 | 2017-06-01 | ||
TW106118071 | 2017-06-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201902908A TW201902908A (en) | 2019-01-16 |
TWI658045B true TWI658045B (en) | 2019-05-01 |
Family
ID=64542222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107116774A TWI658045B (en) | 2017-06-01 | 2018-05-17 | Multi-branched cationic phosphonium salt, forward osmosis extract employing the same and forward osmosis seawater desalination process |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108976257A (en) |
TW (1) | TWI658045B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11235283B2 (en) | 2019-12-30 | 2022-02-01 | Industrial Technology Research Institute | Ionic liquid and forward osmosis process employing the same |
US11273410B2 (en) | 2019-12-31 | 2022-03-15 | Industrial Technology Research Institute | Extracted material for forward osmosis, preparation method thereof, and forward-osmosis water desalination system using the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202440382U (en) * | 2012-01-20 | 2012-09-19 | 安纳社环保工程(苏州)有限公司 | Sea water desalination treatment system with ultra-high recover rate |
US20130306551A1 (en) * | 2012-04-20 | 2013-11-21 | National University Of Singapore | High performance positively charged composite membranes and their use in nanofiltration processes |
US20160082391A1 (en) * | 2013-04-26 | 2016-03-24 | Nanyang Technological University | A draw solute and an improved forward osmosis method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2867665A (en) * | 1956-07-09 | 1959-01-06 | Searle & Co | Alkylenebis [trialkylphosphonium halides] and processes for the manufacture thereof |
US3664807A (en) * | 1966-09-26 | 1972-05-23 | Petrolite Corp | Use of phosphonium compounds as corrosion inhibitors |
US3531514A (en) * | 1966-09-26 | 1970-09-29 | Petrolite Corp | Phosphonium compounds and/or ethylene glycol - bis-(trialkylphosphonium acetates) |
EP3272740A3 (en) * | 2004-07-23 | 2018-04-18 | Sigma Aldrich Co. LLC | High stability diionic liquid salts |
EP2016056A4 (en) * | 2006-04-21 | 2010-11-10 | Univ Boston | Ionic viscoelastics and viscoelastic salts |
EP2114969B1 (en) * | 2007-01-31 | 2016-06-29 | Sigma Aldrich Co. LLC | High stability polyionic liquid salts |
JP2009029857A (en) * | 2007-07-25 | 2009-02-12 | Toyo Ink Mfg Co Ltd | Antistatic agent and use thereof |
CN103039514A (en) * | 2012-12-12 | 2013-04-17 | 广东工业大学 | Preparation method and application of double quaternary phosphonium salt sterilization composition |
SG10201808247TA (en) * | 2014-03-25 | 2018-10-30 | Univ Nanyang Tech | A draw solute for a forward osmosis process |
US20170259210A1 (en) * | 2014-08-21 | 2017-09-14 | Asahi Kasei Kabushiki Kaisha | Solvent Separation System and Method |
-
2017
- 2017-07-25 CN CN201710609425.6A patent/CN108976257A/en active Pending
-
2018
- 2018-05-17 TW TW107116774A patent/TWI658045B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202440382U (en) * | 2012-01-20 | 2012-09-19 | 安纳社环保工程(苏州)有限公司 | Sea water desalination treatment system with ultra-high recover rate |
US20130306551A1 (en) * | 2012-04-20 | 2013-11-21 | National University Of Singapore | High performance positively charged composite membranes and their use in nanofiltration processes |
US20160082391A1 (en) * | 2013-04-26 | 2016-03-24 | Nanyang Technological University | A draw solute and an improved forward osmosis method |
Non-Patent Citations (2)
Title |
---|
Jin-jooKim et al., "Thermo-responsive oligomeric poly(tetrabutylphosphonium styrenesulfonate)s as draw solutes for forward osmosis (FO) applications", Desalination, Volume 381, 1 March 2016, Pages 84-94 * |
Jin-jooKim et al., "Thermo-responsive oligomeric poly(tetrabutylphosphonium styrenesulfonate)s as draw solutes for forward osmosis (FO) applications", Desalination, Volume 381, 1 March 2016, Pages 84-94。 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11235283B2 (en) | 2019-12-30 | 2022-02-01 | Industrial Technology Research Institute | Ionic liquid and forward osmosis process employing the same |
US11273410B2 (en) | 2019-12-31 | 2022-03-15 | Industrial Technology Research Institute | Extracted material for forward osmosis, preparation method thereof, and forward-osmosis water desalination system using the same |
Also Published As
Publication number | Publication date |
---|---|
TW201902908A (en) | 2019-01-16 |
CN108976257A (en) | 2018-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108976258B (en) | Multi-branched cationic phosphonium salt, forward osmosis extract containing same, and forward osmosis seawater desalination process | |
Zhang et al. | Syntheses, crystal structures, and properties of five mixed-ligand coordination polymers based on novel quaterphenyl-2, 5, 2′, 5′-tetracarboxylic acid ligand | |
TWI658045B (en) | Multi-branched cationic phosphonium salt, forward osmosis extract employing the same and forward osmosis seawater desalination process | |
CN105561790B (en) | Benzo-aza crown ether compound separates the application of lithium isotope | |
CN110042234A (en) | A kind of extractant and the preparation method and application thereof | |
CN103214500A (en) | Functional monomer for preparing heavy metal ion imprinted polymer and preparation method | |
CN103724255B (en) | One class is used for the compounds process for production thereof based on amide group dihydropyridine structure of explosive detection RDX | |
CN111574425A (en) | Novel benzoyl formic acid methyl ester photoinitiator and preparation method thereof | |
CN101880251B (en) | 4,4'-dimercaprol azobenzene and preparation method thereof | |
CN104910024A (en) | Surfactant for driving oil | |
CN113025297B (en) | Temperature-resistant salt-resistant low-tension foam oil displacement agent and preparation method and application thereof | |
TWI738291B (en) | Extracted material for forward osmosis, preparation method thereof, and forward-osmosis water desalination system using the same | |
Liu et al. | Hydrothermal syntheses and crystal structures of PbII coordination polymers based on a N, O-donor ligand | |
CN104326893B (en) | Side chain type two fluorine monomers and synthetic method thereof | |
TWI776116B (en) | Ionic liquid and forward osmosis process employing the same | |
CN101130596B (en) | Colophony diacid ester aldehyde acetal polyalcohol, synthesis method and uses of the same | |
CN108727167B (en) | Preparation method of anoplophora chinensis gathering pheromone | |
CN106220842A (en) | The preparation method of poly glycol monomethyl ether propionic ester | |
US11235283B2 (en) | Ionic liquid and forward osmosis process employing the same | |
CN109260759B (en) | Method for extracting and separating glycine from choline hydrophobic ionic liquid | |
JP2015036378A (en) | Method for producing polyhydroxy naphthalene | |
KR101800638B1 (en) | Method for preparing ionic liquid having carboxylic acid anion using microreactor | |
CN106565418B (en) | Preparation method of 1,1,1,3,3, 3-hexafluoro-2- (4-vinyl phenyl) -2-propanol | |
Shirai et al. | Alkali cation binding of polymers with different sized crown ethers and photodimerizable units | |
CN105949209A (en) | Synthesis method of triphenylene dodecyloxy bridged dodecyloxy phenyl porphyrin metal Zn complex |