TWI657795B - Unconstrained blood pressure measuring device and blood pressure measuring method using same - Google Patents

Unconstrained blood pressure measuring device and blood pressure measuring method using same Download PDF

Info

Publication number
TWI657795B
TWI657795B TW106120255A TW106120255A TWI657795B TW I657795 B TWI657795 B TW I657795B TW 106120255 A TW106120255 A TW 106120255A TW 106120255 A TW106120255 A TW 106120255A TW I657795 B TWI657795 B TW I657795B
Authority
TW
Taiwan
Prior art keywords
blood pressure
signal
user
unit
sensor
Prior art date
Application number
TW106120255A
Other languages
Chinese (zh)
Other versions
TW201904513A (en
Inventor
謝坤昌
蔡至清
Original Assignee
啟德電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 啟德電子股份有限公司 filed Critical 啟德電子股份有限公司
Priority to TW106120255A priority Critical patent/TWI657795B/en
Publication of TW201904513A publication Critical patent/TW201904513A/en
Application granted granted Critical
Publication of TWI657795B publication Critical patent/TWI657795B/en

Links

Abstract

一種無拘束式血壓量測裝置,包含有一心電圖感測器、一心衝擊圖感測器及一量測主機,在操作時主要是由使用者在量測主機輸入生理狀態資料,接著利用心電圖感測器及心衝擊圖感測器分別感測使用者之心電圖訊號及心衝擊圖訊號,並由量測主機進行訊號處理,之後量測主機會根據感測訊號之處理結果及使用者所輸入之生理狀態資料來計算血壓,最後再將計算結果輸出給使用者了解自身的生理狀態。藉此,本發明之無拘束式血壓量測裝置主要是藉由使用者之心電圖訊號及心衝擊圖訊號搭配使用者之生理狀態資料,讓使用者在無拘束狀態下進行血壓的量測。 An unconfined blood pressure measuring device comprises an electrocardiogram sensor, a heart impact map sensor and a measuring host. In operation, the user mainly inputs the physiological state data in the measuring host, and then uses the electrocardiogram sensing And the heart impact map sensor respectively senses the user's ECG signal and the heart impact map signal, and the signal is processed by the measurement host, and then the measurement host will process the result according to the sensing signal and the physiological input by the user. The status data is used to calculate the blood pressure, and finally the calculation result is output to the user to understand his or her physiological state. Therefore, the unconfined blood pressure measuring device of the present invention mainly uses the user's electrocardiogram signal and the heart impact map signal to match the physiological state data of the user, so that the user can measure the blood pressure without being restrained.

Description

無拘束式血壓量測裝置及使用其之血壓量測方法 Unconstrained blood pressure measuring device and blood pressure measuring method using same

本發明與血壓量測技術有關,特別是指一種無拘束式血壓量測裝置及使用該無拘束式量測裝置之血壓量測方法。 The present invention relates to a blood pressure measurement technique, and more particularly to an unconstrained blood pressure measurement device and a blood pressure measurement method using the same.

高血壓是現今社會中最普遍的疾病之一,除了已經被證明會造成動脈硬化之外,同時也會損壞心臟、腦部、腎臟及視網膜等器官,進而引發心、腦血管疾病或腎性病變等問題。然而一般的高血壓患者通常並無自覺症狀,往往因為併發症對身體造成重大傷害時才發現為時已晚。因此,長期居家血壓監測有利於早期高血壓的診斷,對於健康的維護相當重要。 Hypertension is one of the most common diseases in today's society. In addition to being proven to cause arteriosclerosis, it also damages organs such as the heart, brain, kidneys and retina, which can cause heart, cerebrovascular disease or renal disease. And other issues. However, general hypertensive patients usually have no symptoms, and it is often too late to find that the complications cause significant harm to the body. Therefore, long-term home blood pressure monitoring is conducive to the diagnosis of early hypertension, which is very important for health maintenance.

長期居家血壓監測由於醫療設備的限制,適用的方法為非侵入式血壓量測技術。最常使用的非侵入式血壓量測方法為聽診法和示波法,前者常用於臨床診斷,後者是電子式血壓計最常見的方法,這兩個方法的共通點在於受測者需要穿戴加壓裝置(如充氣式袖套)對手臂或其他肢體進行加壓,藉由外在的壓力來測得動脈血管所受的壓力,但是在量測過程中,加壓裝置的壓力需要大到足以完全阻止血液流動,如此必然會造成受測者的不適,為使受測者在量測血壓時獲得較佳的舒適性,不需穿戴加壓裝置的無拘束式血壓監測方法已研究多年。 Long-term home blood pressure monitoring Due to the limitations of medical equipment, the applicable method is non-invasive blood pressure measurement technology. The most commonly used non-invasive blood pressure measurement methods are auscultation and oscillometry, the former is often used for clinical diagnosis, the latter is the most common method of electronic sphygmomanometer, the common point of these two methods is that the subject needs to wear A compression device (such as an inflatable cuff) pressurizes the arm or other limb to measure the pressure on the arterial vessel by external pressure, but during the measurement process, the pressure of the compression device needs to be large enough The blood flow is completely prevented, which inevitably causes discomfort to the subject. In order to obtain better comfort for the subject to measure blood pressure, the unconstrained blood pressure monitoring method without wearing a pressurizing device has been studied for many years.

無拘束式血壓監測的技術有許多種,其中一種方法為利用與血壓值高度相關的生理參數來進行估算,例如脈搏波速(Pulse wave velocityPWV)和脈波傳遞時間(Pulse transittime,PTT)。PWV為脈搏波在動脈中傳遞的速度,其與血壓的高度相關性早在1920年代已發現,至於PTT為脈搏波到達動脈血管之兩點(通常為主動脈瓣與手指)的時間差,由此兩點之間的距離除以PTT可以得到PWV,接著再藉由Moens-Korteweg方程式、Bramwell-Hill方程式或其他流體力學方程式即可得到PTT與血壓之間的關係式。 Unrestrained blood pressure monitoring techniques There are many, one approach is to use highly correlated with the physiological parameter to be estimated blood pressure value, for example, pulse wave velocity (Pulse wave velocity, PWV) and the pulse wave transit time (Pulse transittime, PTT). PWV is the speed at which pulse waves are transmitted in the arteries. Its high correlation with blood pressure has been discovered as early as the 1920s. As for PTT, the time difference between the two points of the pulse wave reaching the arterial blood vessel (usually the aortic valve and the finger) The distance between the two points is divided by the PTT to obtain the PWV , and then the relationship between PTT and blood pressure can be obtained by the Moens-Korteweg equation, the Bramwell-Hill equation or other fluid mechanics equations.

近年來,關於PTT的量測除了使用心電圖(Electrocardiogram,ECG)與光體積變化描記圖(Photoplethysmography,PPG)之外,也有一部分的研究是開始使用心衝擊圖(Ballistocardiogram,BCG),不同於ECG的電位訊號,BCG所顯示的是跟心臟運動直接相關的生理訊號,因此BCG與其他生理訊號之間的關係也可以用來估算血壓或其他心血管的相關參數。 In recent years, in addition to the use of electrocardiogram (ECG) and photoplethysmography (PPG) for the measurement of PTT, some studies have begun to use the heart impact map (Ballistocardiogram, BCG), which is different from ECG. Potential signals, BCG shows physiological signals directly related to cardiac motion, so the relationship between BCG and other physiological signals can also be used to estimate blood pressure or other cardiovascular related parameters.

就使用與BCG相關的生理參數估算血壓之習用技術來說,例如中國公開第CN104114084號專利案所揭露之發明是一種使用全光學方法之監測系統,實施方式在於使用BCG訊號取代ECG訊號,再加上PPG訊號來估測PTT,進而計算出收縮壓和舒張壓。另外如美國公告第8,983,854號專利案所揭露之發明是以體重計形式在非束縛的情況下測量心率、標準化之每搏輸出量力(normalized stroke volume force)、血壓、平衡感異常等生理資訊,該發明並未使用PTT,而是利用ECG訊號之R波與BCG訊號之J波之間的時間間隔(以下簡稱RJ間隔)來計算血壓。 For the conventional technique of estimating blood pressure using physiological parameters related to BCG, for example, the invention disclosed in the Chinese Patent Publication No. CN104114084 is a monitoring system using an all-optical method, and the embodiment is to use a BCG signal instead of the ECG signal, and then add The PPG signal is used to estimate the PTT, and the systolic and diastolic blood pressures are calculated. In addition, the invention disclosed in U.S. Patent No. 8,983,854 discloses physiological information such as a heart rate, a standardized normalized stroke volume force, a blood pressure, and an abnormal balance in a non-binding condition in the form of a weight scale. Instead of using PTT, the invention uses the time interval between the R wave of the ECG signal and the J wave of the BCG signal (hereinafter referred to as the RJ interval) to calculate the blood pressure.

然而從前述習用專利案可以發現,除非針對特定受測者,使用單一參數(例如PTT或RJ間隔)的量測結果有準確度不足的問題。 However, it can be found from the aforementioned conventional patent that unless a specific subject is used, the measurement result using a single parameter (for example, PTT or RJ interval) has a problem of insufficient accuracy.

本發明之主要目的在於提供一種無拘束式血壓量測裝置,其能讓受測者在舒適且輕鬆自然的狀態下進行血壓的估測,並且能有效提升量測準確度。 The main object of the present invention is to provide an unconstrained blood pressure measuring device which allows a subject to perform blood pressure estimation in a comfortable and relaxed state, and can effectively improve measurement accuracy.

為了達成上述目的,本發明之無拘束式血壓量測裝置包含有一心電圖感測器、一心衝擊圖感測器及一量測主機。該心電圖感測器用以供一使用者進行接觸感測而發送一心電圖訊號;該心衝擊圖感測器用以供該使用者進行接觸感測而發送一心衝擊訊號;該量測主機具有一輸入單元、一訊號處理器、一計算單元及一輸出單元,該輸入單元用以供該使用者輸入一生理狀態資料,該訊號處理器連接該心電圖感測器及該心衝擊圖感測器,用以處理該心電圖感測器對該使用者所感測之心電圖訊號及該心衝擊圖感測器對該使用者所感測之心衝擊圖訊號,該計算單元連接該輸入單元及該訊號處理器,主要用來根據該使用者於該輸入單元所輸入之生理狀態資料及該訊號處理器之處理結果來計算該使用者之血壓,該輸出單元連接計算單元,用以輸出該計算單元之計算結果給該使用者了解本身的生理狀態。 In order to achieve the above object, the unconstrained blood pressure measuring device of the present invention comprises an electrocardiogram sensor, a heart impact map sensor and a measuring host. The ECG sensor is configured to send an ECG signal to a user for contact sensing; the heart impact map sensor is configured to send a heart beat signal to the user for contact sensing; the measuring host has an input unit a signal processor, a computing unit and an output unit, wherein the input unit is configured to input a physiological state data to the user, and the signal processor is coupled to the electrocardiogram sensor and the cardiac impact map sensor for Processing the electrocardiogram signal sensed by the electrocardiograph sensor and the heart impact signal sensed by the heart impact map sensor to the user, the computing unit is connected to the input unit and the signal processor, and is mainly used Calculating the blood pressure of the user according to the physiological state data input by the user in the input unit and the processing result of the signal processor, and the output unit is connected to the calculating unit for outputting the calculation result of the calculating unit to the use People understand their own physiological state.

由上述可知,本發明之無拘束式血壓量測裝置讓該使用者在無拘束的狀態下,藉由量測該使用者之心電圖訊號及心衝擊圖訊號,再搭配該使用者所輸入之生理狀態資料來計算該使用者的血壓。 It can be seen from the above that the unconstrained blood pressure measuring device of the present invention allows the user to measure the ECG signal and the heart impact signal of the user in an unconstrained state, and then match the physiological input of the user. Status data to calculate the blood pressure of the user.

本發明之次一目的在於提供一種使用前述無拘束式血壓量測裝置之血壓量測方法,首先由該使用者利用該輸入單元輸入本身之生理狀態資料,接著讓該使用者碰觸該心電圖感測器及該心衝擊圖感測器,使得該心電圖感測器及該心衝擊圖感測器能分別感測該使用者之心電圖訊號及心衝擊圖訊號,並由該訊號處理器進行訊號處理,然後由該計算單元根據該使用者所輸入之生理狀態資料及該訊號處理器之處理結果來計算該使用者之血壓,最後由該輸出單元輸出該計算單元之計算結果給該使用者作為參考。因此,本發明之血壓量測方法主要是根據不同使用者之生理狀態資料選擇適當的計算公式來估測收縮壓及舒張壓。 A second object of the present invention is to provide a blood pressure measuring method using the above-mentioned unconstrained blood pressure measuring device, in which the user first inputs the physiological state data of the user by using the input unit, and then causes the user to touch the electrocardiogram feeling. The sensor and the heart impact map sensor enable the electrocardiogram sensor and the heart impact map sensor to respectively sense the ECG signal and the heart impact map signal of the user, and the signal processing is performed by the signal processor And calculating, by the calculating unit, the blood pressure of the user according to the physiological state data input by the user and the processing result of the signal processor, and finally outputting the calculation result of the calculating unit to the user as a reference by the output unit . Therefore, the blood pressure measurement method of the present invention mainly selects an appropriate calculation formula to estimate systolic blood pressure and diastolic blood pressure according to physiological state data of different users.

有關本發明所提供之無拘束式血壓量測裝置的詳細構造、特點、組裝或使用方式,將於後續的實施方式詳細說明中予以描述。然而,在本發明領域中具有通常知識者應能瞭解,該等詳細說明以及實施本發明所列舉的特定實施例,僅係用於說明本發明,並非用以限制本發明之專利申請範圍。 The detailed construction, features, assembly or use of the unconfined blood pressure measuring device provided by the present invention will be described in the detailed description of the following embodiments. However, it should be understood by those of ordinary skill in the art that the present invention is not limited by the scope of the invention.

10‧‧‧無拘束式血壓量測裝置 10‧‧‧Unconstrained blood pressure measuring device

20‧‧‧心電圖感測器 20‧‧‧ECG sensor

22‧‧‧心電圖訊號 22‧‧‧ECG signal

30‧‧‧心衝擊圖感測器 30‧‧‧heart impact map sensor

32‧‧‧心衝擊圖訊號 32‧‧‧ Heart impact map signal

40‧‧‧量測主機 40‧‧‧Measurement host

42‧‧‧輸入單元 42‧‧‧Input unit

44‧‧‧訊號處理器 44‧‧‧Signal Processor

46‧‧‧計算單元 46‧‧‧Computation unit

48‧‧‧輸出單元 48‧‧‧Output unit

50‧‧‧底座 50‧‧‧Base

52‧‧‧立柱 52‧‧‧ column

54‧‧‧測距模組 54‧‧‧Ranging module

第1圖為本發明之無拘束式血壓量測裝置的結構示意圖。 Fig. 1 is a schematic view showing the structure of an unconstrained blood pressure measuring device of the present invention.

第2圖為本發明之無拘束式血壓量測裝置的方塊圖。 Fig. 2 is a block diagram of the unconfined blood pressure measuring device of the present invention.

第3圖為本發明之血壓量測方法的流程圖。 Figure 3 is a flow chart of the blood pressure measurement method of the present invention.

第4圖為心電圖訊號與心衝擊圖訊號之波形圖。 Figure 4 is a waveform diagram of the ECG signal and the heart impact signal.

第5A圖為習知方法預測男女性收縮壓之線性迴歸分析圖。 Figure 5A is a graphical representation of a linear regression analysis of predicting systolic blood pressure in men and women by conventional methods.

第5B圖為習知方法預測男女性舒張壓之線性迴歸分析圖。 Figure 5B is a graphical representation of a linear regression analysis of male and female diastolic blood pressure predicted by conventional methods.

第6A圖為本發明之血壓量測方法預測男性收縮壓與實際值之誤差分析圖。 Fig. 6A is a graph showing the error analysis of the male systolic blood pressure and the actual value by the blood pressure measurement method of the present invention.

第6B圖為本發明之血壓量測方法預測男性舒張壓與實際值之誤差分析圖。 Fig. 6B is a graph showing the error analysis of the male blood pressure and the actual value of the blood pressure measurement method of the present invention.

第7A圖為本發明之血壓量測方法預測女性收縮壓與實際值之誤差分析圖。 Fig. 7A is a graph showing the error analysis of the blood pressure measurement method for predicting female systolic blood pressure and actual value.

第7B圖為本發明之血壓量測方法預測女性舒張壓與實際值之誤差分析圖。 Fig. 7B is a graph showing the error analysis of the predicted diastolic blood pressure and the actual value of the blood pressure measurement method of the present invention.

請先參閱第1及2圖,本發明之無拘束式血壓量測裝置10包含有二心電圖感測器20、一心衝擊圖感測器30及一量測主機40。 Referring to FIGS. 1 and 2 , the unconfined blood pressure measuring device 10 of the present invention includes a two-cardiogram sensor 20 , a heart impact map sensor 30 , and a measuring host 40 .

心電圖感測器20主要用來跟使用者的皮膚直接接觸以獲取心電圖訊號。心電圖感測器20在本實施例中呈握把狀,用以供使用者之手部握持,由設置在表面之電極來量測標準12導聯中之I導聯的心電圖訊號。就電極的配置來說,可以視心電圖儀器的不同或者使用者的需求而有所變化,例如電極可以使用一般乾式電極、凝膠電極或軟性電極載板等,至於導聯可以擴充至標準12導聯與加壓肢體導聯之一或數種。此外,電極也可以設置在其他便於量得心電圖訊號之位置,例如設置於體重計上以量測雙腳之心電圖訊號。 The electrocardiogram sensor 20 is mainly used to directly contact the skin of the user to obtain an electrocardiogram signal. The electrocardiogram sensor 20 is in the form of a grip in the present embodiment for the user's hand to hold, and the electrocardiogram signal of the I lead in the standard 12 lead is measured by the electrode disposed on the surface. In terms of electrode configuration, it can be changed depending on the electrocardiograph instrument or the user's needs. For example, the electrode can use a general dry electrode, a gel electrode or a soft electrode carrier plate, and the lead can be expanded to a standard 12-lead. One or several of the joints with the pressurized limb. In addition, the electrodes can also be placed at other locations where the ECG signal is conveniently measured, such as on a scale to measure the ECG signals of the feet.

心衝擊圖感測器30主要設置在便於量測使用者之心衝擊圖訊號32的位置。在本實施例中,心衝擊圖感測器30設於一底座50跟使用者的雙腳接觸,以獲取使用者的心衝擊圖訊號32。 The heart impact map sensor 30 is primarily disposed at a location that facilitates measurement of the user's heart impact map signal 32. In this embodiment, the heart impact map sensor 30 is disposed on a base 50 in contact with the user's feet to obtain the user's heart impact map signal 32.

量測主機40設於一立柱52且連接在兩心電圖感測器20之間,並具有一輸入單元42、一訊號處理器44、一計算單元46及一輸出單元48,其中:輸入單元42用以供使用者輸入本身之生理狀態資料,例如性別、年齡、腰圍及量測時姿勢(例如:站姿、坐姿或仰躺)等資料。輸入方式可以由鍵盤、按鍵、觸控螢幕、語音輸入或經由乙太網路或無線網路傳輸,亦可與一記憶裝置聯結,由先前已輸入之資料中選擇,輸入介面可以包括文字界面、圖形化界面或其他方式。 The measuring unit 40 is disposed between a column 52 and connected between the two electrocardiograph sensors 20, and has an input unit 42, a signal processor 44, a calculating unit 46 and an output unit 48, wherein: the input unit 42 For the user to input their own physiological status data, such as gender, age, waist circumference and measurement posture (for example: standing, sitting or lying). The input mode can be transmitted by a keyboard, a button, a touch screen, a voice input or via an Ethernet or wireless network, or can be connected to a memory device, and is selected from previously input materials, and the input interface can include a text interface. Graphical interface or other means.

此外,輸入單元42可以同時聯結至數位式身高計與體重體脂計,或體組成分析儀器等裝置,用以取得使用者的身高、體重及體脂肪比率等資料。數位式身高計之身高量測方式可以是接觸式量測或非接觸式量測,如果是接觸式量測方式,例如量規壓板自動或手動升降式測量,先將量規壓板設置於固定高度,再將量規壓板移動至使用者身體之最高部位,以線性可調電位器、容柵式位移傳感器或其他方式量測量規壓板在立柱52上的位移來計算身高。假如是非接觸式量測,主要在高於使用者身高的位置設置一測距模組54,由發射信號與接收信號之時間差,可以得出使用者身體之最高部位與測距模組54之間的距離,使用者的身高即為測距模組54之高度減去此一距離。非接觸式身高量測裝置可以是固定式或可攜式,測距模組54所使用之訊號可以是超音波、紅外線或無線電等。 In addition, the input unit 42 can be simultaneously coupled to a digital height meter and a body weight fat meter, or a body composition analyzer to obtain information such as the height, weight, and body fat ratio of the user. The height measurement method of the digital height gauge can be contact measurement or non-contact measurement. If it is a contact measurement method, such as gauge gauge automatic or manual lift measurement, first set the gauge plate to a fixed height. Then, the gauge plate is moved to the highest part of the user's body, and the height is calculated by linearly adjustable potentiometer, capacitive grid displacement sensor or other means to measure the displacement of the gauge plate on the column 52. If it is a non-contact measurement, a distance measuring module 54 is mainly disposed at a position higher than the height of the user, and the time difference between the transmitted signal and the received signal can be obtained between the highest part of the user's body and the ranging module 54. The distance of the user is the height of the distance measuring module 54 minus this distance. The non-contact height measuring device can be fixed or portable, and the signal used by the distance measuring module 54 can be ultrasonic, infrared or radio.

訊號處理器44連接心電圖感測器20與心衝擊圖感測器30,主要用來進行心電圖訊號22與心衝擊圖訊號32之前處理,例如放大、濾 波(包括帶通、帶拒濾波及其他濾波方式等),以及雜訊抑制(如去除基線漂移或移動偽影等),再將所得之兩訊號加以分析。 The signal processor 44 is connected to the electrocardiogram sensor 20 and the cardiac impact map sensor 30, and is mainly used for processing the electrocardiogram signal 22 and the cardiac impact map signal 32, such as amplification and filtering. Waves (including bandpass, band reject filtering, and other filtering methods), as well as noise suppression (such as removing baseline drift or moving artifacts), and then analyzing the resulting two signals.

計算單元46連接輸入單元42及訊號處理器44,用以接收輸入單元42所傳送過來之資料及訊號處理器44所處理後的訊號,並根據接收到的訊息資料選擇適當的計算公式來計算使用者的血壓。計算單元46可以為任何形式,例如微處理器、中央處理器、行動計算裝置或遠端計算裝置,此外,計算單元46及訊號處理器44亦可以整合至單一IC晶片,或者也可分別由多個IC晶片進行次單元功能之處理。 The calculating unit 46 is connected to the input unit 42 and the signal processor 44 for receiving the data transmitted by the input unit 42 and the signal processed by the signal processor 44, and selecting an appropriate calculation formula to calculate and use according to the received message data. The blood pressure of the person. The computing unit 46 can be in any form, such as a microprocessor, a central processing unit, a mobile computing device, or a remote computing device. In addition, the computing unit 46 and the signal processor 44 can also be integrated into a single IC chip, or can be separately The IC chips perform the processing of the sub-unit functions.

輸出單元48連接計算單元46,用以顯示計算單元46的計算結果給使用者作為參考。輸出單元48的顯示方式包括數字、圖形、語音或其他易於辨識的方式。輸出單元48也可以聯結至一記憶裝置,並經由乙太網路或無線網路傳輸資料至一遠端裝置,或者聯結至通用序列匯流排(USB)等。輸出單元48除收縮壓與舒張壓外,也可以輸出至少以下一種訊號、資料或結果,包括心電圖波形、心衝擊圖波形與心率等。 The output unit 48 is connected to the calculation unit 46 for displaying the calculation result of the calculation unit 46 to the user as a reference. The display of output unit 48 includes digital, graphical, voice or other readily identifiable means. The output unit 48 can also be coupled to a memory device and transfer data to a remote device via an Ethernet or wireless network, or to a universal serial bus (USB) or the like. In addition to the systolic and diastolic pressures, the output unit 48 can also output at least one of the following signals, data or results, including an electrocardiogram waveform, a heart beat waveform, and a heart rate.

在開始使用本發明之無拘束式血壓量測裝置10之前,可以先在量測主機建立血壓數學模式,也就是預先收集及量測多位男性與女性的年齡、身高、體重、腰圍、體脂肪率與不同量測姿勢下所得之心率、收縮壓、舒張壓、心電圖訊號與心衝擊圖訊號及心率等資料,進而建立資料庫,接著藉由統計或其他方式(如神經網路或機器學習等人工智慧),以收縮壓與舒張壓為相依變數或目標值,其餘參數為自變數或輸入參數,考慮不同組合下建立不同數學模型,或更進一步區分出不同族群 (例如不同性別、不同年齡層、不同運動量及不同人種等)相對應之較佳血壓估測數學模式。 Before starting to use the unconfined blood pressure measuring device 10 of the present invention, the blood pressure mathematical mode can be established in the measuring host, that is, the age, height, weight, waist circumference and body fat of a plurality of men and women are collected and measured in advance. Rates and heart rate, systolic blood pressure, diastolic blood pressure, ECG signal and heart impact map signal and heart rate obtained in different measurement positions, and then establish a database, and then by statistics or other means (such as neural network or machine learning, etc.) Artificial intelligence), taking systolic and diastolic pressures as dependent variables or target values, and the remaining parameters are independent variables or input parameters, considering different mathematical models under different combinations, or further distinguishing different ethnic groups (For example, different genders, different age groups, different exercise volumes, different races, etc.) corresponding to the preferred blood pressure estimation mathematical model.

如第3圖所示,本發明之血壓量測方法包含有下列步驟: As shown in Fig. 3, the blood pressure measurement method of the present invention comprises the following steps:

步驟a):讓使用者站在底座50上利用輸入單元42輸入本身之生理狀態資料,例如性別、年齡、身高、體重、腰圍、體脂肪比率及量測姿勢(例如:站姿、坐姿或仰躺)等資料。 Step a): Let the user stand on the base 50 and input the physiological state data of the user by using the input unit 42, such as gender, age, height, weight, waist circumference, body fat ratio and measurement posture (for example: standing posture, sitting posture or leaning back) Lying) and other information.

步驟b):讓使用者用雙手握住心電圖感測器20,同時用雙腳接觸心衝擊圖感測器30,使心電圖感測器20及心衝擊圖感測器30能分別感測使用者之心電圖訊號22及心衝擊圖訊號32,如第4圖所示,並由訊號處理器44將心電圖訊號22及心衝擊圖訊號32進行放大、濾波與雜訊抑制等處理,同時檢測出心電圖訊號22之R波、心衝擊圖訊號32之I波與J波,此時即可得到心率、心電圖訊號22之R波與心衝擊圖訊號32之J波之間的時間間隔TI及心衝擊圖訊號32之I波與J波之間的斜率S。 Step b): allowing the user to hold the electrocardiogram sensor 20 with both hands while simultaneously touching the heart impact map sensor 30 with both feet, so that the electrocardiogram sensor 20 and the heart impact map sensor 30 can respectively sense and use The electrocardiogram signal 22 and the heart impact map signal 32 are as shown in FIG. 4, and the signal processor 44 amplifies, filters, and suppresses the electrocardiogram signal 22 and the heart impact map signal 32, and simultaneously detects the electrocardiogram. The R wave of the signal 22 and the I wave and the J wave of the heart impact map signal 32 can obtain the time interval TI and the heart impact map between the heart rate, the R wave of the electrocardiogram signal 22 and the J wave of the heart impact map signal 32. The slope S between the I wave and the J wave of the signal 32.

步驟c):由計算單元46根據使用者所輸入之生理狀態資料及訊號處理器44之處理結果來選擇最適合之數學模式計算使用者之血壓。在本實施例中,計算單元46以性別為分類並使用多元線性迴歸分析法所得方程式如下:(1)SBPm=C1m+C2m×Age+C3m×H+C4m×We+C5m×Wa+C6m×BF+C7m×HR+C8m×TI+C9m×S Step c): The calculation unit 46 selects the most suitable mathematical mode to calculate the blood pressure of the user according to the physiological state data input by the user and the processing result of the signal processor 44. In the present embodiment, the calculation unit 46 classifies by gender and uses a multiple linear regression analysis method to obtain the following equation: (1) SBP m = C 1m + C 2m × Age + C 3m × H + C 4m × W e + C 5m × W a + C 6m × BF + C 7m × HR + C 8m × TI + C 9m × S

(2)DBPm=C10m+C11m×Age+C12m×H+C13m×We+C14m×Wa+C15m×BF+C16m×HR+C17m×TI+C18m×S (2) DBP m = C 10m + C 11m × Age + C 12m × H + C 13m × W e + C 14m × W a + C 15m × BF + C 16m × HR + C 17m × TI + C 18m × S

(3)SBPf=C1f+C2f×Age+C3f×H+C4f×We+C5f×Wa+C6f×BF+C7f×HR+C8f×TI+C9f×S (3) SBP f = C 1f + C 2f × Age + C 3f × H + C 4f × W e + C 5f × W a + C 6f × BF + C 7f × HR + C 8f × TI + C 9f × S

(4)DBPf=C10f+C11f×Age+C12f×H+C13f×We+C14f×Wa+C15f×BF+C16f×HR+C17f×TI+C18f×S (4) DBP f = C 10f + C 11f × Age + C 12f × H + C 13f × W e + C 14f × W a + C 15f × BF + C 16f × HR + C 17f × TI + C 18f × S

其中,SBPm為男性收縮壓(單位為毫米汞柱),SBPf為女性收縮壓(單位為毫米汞柱),DBPm為男性舒張壓(單位為毫米汞柱),DBPf為女性舒張壓(單位為毫米汞柱),C1m~C18m及C1f~C18f為多元迴歸分析係數,Age為年齡(單位為年),H為身高(單位為公分),We為體重(單位為公斤),Wa為腰圍(單位為公分),BF為體脂肪比率(單位為百分比),HR為心率(單位為次/分),TI為心電圖訊號22之R波與心衝擊圖訊號32之J波之間的時間間隔(單位為秒),S為心衝擊圖訊號32之I波與J波之間的斜率(單位為毫克/秒)。 Among them, SBP m is male systolic blood pressure (in millimeters of mercury), SBP f is female systolic blood pressure (in millimeters of mercury), DBP m is male diastolic blood pressure (in millimeters of mercury), DBP f is female diastolic blood pressure (in millimeters of mercury), C 1m ~ C 18m and C 1f ~ C 18f are multiple regression analysis coefficients, Age is age (in years), H is height (in centimeters), and W e is weight (in Kg), W a is waist circumference (unit is cm), BF is body fat ratio (unit is percentage), HR is heart rate (unit is sub/min), TI is ECG signal 22 R wave and heart impact map signal 32 The time interval between J waves (in seconds), where S is the slope (in milligrams per second) between the I and J waves of the heart beat signal 32.

在前述(1)~(4)之數學模式中,參數之選擇有多種變化,例如以I波與J波之間的最大距離(亦即振幅A)來取代S,以體脂肪重量取代體脂肪比率,或者加入不同的時間間隔,例如R波與I波之間的時間間隔。此外,考慮量測血壓時共有三種姿勢,分別為站姿、坐姿與仰躺,則可加入P1與P2為姿勢的虛擬變量。若以站姿為基本類別時,可設P1=1與P2=0為坐姿,P1=0與P2=1為仰躺,再將此二變量加入分析以得到不同姿勢下血壓之數學模式。 In the mathematical modes of (1) to (4) above, there are many variations in the selection of parameters, such as replacing the S with the maximum distance between the I wave and the J wave (that is, the amplitude A), and replacing the body fat with the body fat weight. Ratio, or add different time intervals, such as the time interval between the R wave and the I wave. In addition, when considering the measurement of blood pressure, there are three postures, namely standing, sitting and lying down, then P1 and P2 can be added as virtual variables of the posture. If the standing position is the basic category, P1=1 and P2=0 can be set as sitting posture, P1=0 and P2=1 as lying posture, and then the two variables are added to the analysis to obtain the mathematical mode of blood pressure in different postures.

為比較本發明方法與習用之單變量線性迴歸方法之準確性,取得男性與女性各二十名之身體測量資訊與基本資料加以驗證。在先前技術當中,首先以TI為自變量,收縮壓與舒張壓為依變量,對此四十筆資料進行線性迴歸分析。習知血壓因性別而異,故以性別作為分類,得到男性之收縮壓與舒張壓估測模式之R2分別為0.406與0.151; 女性之收縮壓與舒張壓估測模式之R2皆為0.04,如第5A及5B圖所示。由上述分析可得TI與男性之收縮壓相關性較大,與已知專利案及論文文獻類似,但不適用於參與本實驗女性之血壓估測。 In order to compare the accuracy of the method of the present invention with the conventional univariate linear regression method, physical measurement information and basic data of 20 male and female females were obtained and verified. In the prior art, firstly, TI was used as an independent variable, and systolic blood pressure and diastolic blood pressure were used as dependent variables. Linear regression analysis was performed on the forty data. Conventional blood pressure gender-specific, it is classified as gender, male obtain the systolic and diastolic blood pressure estimation model R 2 of 0.406 and 0.151 respectively; Women's systolic and diastolic blood pressure estimation mode of R 2 are both 0.04 As shown in Figures 5A and 5B. From the above analysis, TI has a greater correlation with systolic blood pressure in men, similar to known patents and papers, but not applicable to blood pressure estimation of women participating in this experiment.

同樣以性別分組,使用本發明得到四組估測模式,分別為男性收縮壓與舒張壓估測模式與女性收縮壓與舒張壓估測模式。將年齡、身高、體重、腰圍、體脂肪比率、心率、TI與S代入公式(1)與(2)後,如第6A及6B圖所示,得到男性收縮壓估測模式之R2為0.868,估計標準誤差為6.284,男性舒張壓估測模式之R2為0.759估計標準誤差為5.106。同樣將上述之資料代入公式(3)與(4)後,如第7A及7B圖所示,得到女性收縮壓估測模式之R2為0.850,估計標準誤差為10.560,女性舒張壓估測模式之R2為0.741,估計標準誤差為8.808。顯見本發明之模型對於血壓估測較習知方法更準確。 Also grouped by gender, using the present invention, four sets of estimation modes are obtained, namely, a male systolic blood pressure and diastolic blood pressure estimation mode and a female systolic blood pressure and diastolic blood pressure estimation mode. After substituting age, height, weight, waist circumference, body fat ratio, heart rate, TI and S into equations (1) and (2), as shown in Figures 6A and 6B, the R 2 of the male systolic blood pressure estimation model is 0.868. The estimated standard error is 6.284, and the male diastolic blood pressure estimation model has an R 2 of 0.759 and an estimated standard error of 5.106. Similarly, after substituting the above data into formulas (3) and (4), as shown in Figures 7A and 7B, the R 2 of the female systolic blood pressure estimation model is 0.850, the estimated standard error is 10.560, and the female diastolic blood pressure estimation mode is obtained. The R 2 is 0.741 and the estimated standard error is 8.808. It is apparent that the model of the present invention is more accurate for blood pressure estimation than conventional methods.

綜上所陳,本發明之無拘束式血壓量測裝置10讓使用者在不受束縛、舒適且輕鬆自然的狀態下,藉由量測使用者之心電圖訊號22及心衝擊圖訊號32,再搭配使用者所輸入之生理狀態資料來選擇適當的數學模式計算使用者的血壓,非常適合應用在長期血壓的監測,並利於高血壓的早期診斷與居家照護。 In summary, the unconstrained blood pressure measuring device 10 of the present invention allows the user to measure the user's electrocardiogram signal 22 and heart impact map signal 32 without being restrained, comfortable and relaxed. Using the physiological state data input by the user to select the appropriate mathematical mode to calculate the user's blood pressure is very suitable for long-term blood pressure monitoring, and is conducive to early diagnosis and home care of hypertension.

Claims (2)

一種使用無拘束式血壓量測裝置之血壓量測方法,係運用在依無拘束式血壓量測裝置,該無拘束式血壓量測裝置包含一心電圖感測器,用以供一使用者進行接觸感測而發送一心電圖訊號;一心衝擊圖感測器,用以供該使用者進行接觸感測而發送一心衝擊圖訊號;以及一量測主機,具有一輸入單元、一訊號處理器、一計算單元及一輸出單元,該輸入單元用以供該使用者輸入一生理狀態資料,該訊號處理器連接該心電圖感測器及該心衝擊圖感測器,用以處理該心電圖感測器所產生之心電圖訊號及該心衝擊圖感測器所產生之心衝擊圖訊號,該計算單元連接該輸入單元及該訊號處理器,用以根據該輸入單元所輸入之生理狀態資料及該訊號處理器之處理結果來計算該使用者之血壓,該輸出單元連接計算單元,用以輸出該計算單元之計算結果:該血壓量測方法包含:a)由一使用者利用該輸入單元輸入本身之一生理狀態資料;b)讓該使用者接觸該心電圖感測器及該心衝擊圖感測器,使得該心電圖感測器及該心衝擊圖感測器能分別感測該使用者之一心電圖訊號及一心衝擊圖訊號,並由該訊號處理器進行訊號處理;c)由該計算單元根據該使用者所輸入之生理狀態資料及該訊號處理器之處理結果來計算該使用者之血壓;d)由該輸出單元輸出該計算單元之計算結果; 該計算單元使用多元線性迴歸分析法所得之一男性血壓計算公式如下:SBPm=C1m+C2m×Age+C3m×H+C4m×We+C5m×Wa+C6m×BF+C7m×HR+C8m×TI+C9m×S DBPm=C10m+C11m×Age+C12m×H+C13m×We+C14m×Wa+C15m×BF+C16m×HR+C17m×TI+C18m×S其中,SBPm為收縮壓(單位為毫米汞柱),DBPm為舒張壓(單位為毫米汞柱),C1m~C18m為多元迴歸分析係數,Age為年齡(單位為年),H為身高(單位為公分),We為體重(單位為公斤),Wa為腰圍(單位為公分),BF為體脂肪比率(單位為百分比),HR為心率(單位為次/分),TI為心電圖訊號之R波與心衝擊圖訊號之J波之間的時間間隔(單位為秒),S為心衝擊圖訊號之I波與J波之間的斜率(單位為毫克/秒)。 A blood pressure measuring method using an unconstrained blood pressure measuring device is applied to an unconstrained blood pressure measuring device, wherein the unconfined blood pressure measuring device includes an electrocardiogram sensor for contacting a user Sensing and transmitting an ECG signal; a heart impact map sensor for the user to perform contact sensing and transmitting a heart impact map signal; and a measuring host having an input unit, a signal processor, and a calculation a unit and an output unit, wherein the input unit is configured to input a physiological state data to the user, and the signal processor is connected to the electrocardiogram sensor and the cardiac impact map sensor for processing the generated by the electrocardiogram sensor The ECG signal and the heart impact map signal generated by the heart impact map sensor, the computing unit is connected to the input unit and the signal processor for determining the physiological state data input by the input unit and the signal processor Processing the result to calculate the blood pressure of the user, the output unit is connected to the calculation unit for outputting the calculation result of the calculation unit: the blood pressure measurement method The method comprises: a) inputting, by the user, the physiological state data of the user by using the input unit; b) contacting the user with the electrocardiogram sensor and the cardiac impact map sensor, so that the electrocardiogram sensor and the heart The impact map sensor can respectively sense one of the user's electrocardiogram signal and the one-heart impact map signal, and the signal processor processes the signal; c) the computing unit according to the physiological state data input by the user and the The processing result of the signal processor is used to calculate the blood pressure of the user; d) the calculation result of the calculation unit is output by the output unit; the calculation unit uses one of the multiple linear regression analysis methods to calculate the male blood pressure as follows: SBP m = C 1m + C 2m × Age + C 3m × H + C 4m × W e + C 5m × W a + C 6m × BF + C 7m × HR + C 8m × TI + C 9m × S DBP m = C 10m + C 11m ×Age+C 12m ×H+C 13m ×W e +C 14m ×W a +C 15m ×BF+C 16m ×HR+C 17m ×TI+C 18m ×S Among them, SBP m is systolic blood pressure (unit is mmHg), DBP m diastolic blood pressure (in mm Hg), C 1m ~ C 18m multiple regression analysis coefficients, Age is the age (in years), H is the height ( Bits cm), W e is the weight (in kilograms), W a waist circumference (in centimeters), BF is a ratio of body fat (in percent), HR is the heart rate (in beats / min), TI electrocardiogram The time interval (in seconds) between the R wave of the signal and the J wave of the heart impact signal, and S is the slope (in milligrams per second) between the I wave and the J wave of the heart impact signal. 一種使用無拘束式血壓量測裝置之血壓量測方法,係運用在依無拘束式血壓量測裝置,該無拘束式血壓量測裝置包含一心電圖感測器,用以供一使用者進行接觸感測而發送一心電圖訊號;一心衝擊圖感測器,用以供該使用者進行接觸感測而發送一心衝擊圖訊號;以及一量測主機,具有一輸入單元、一訊號處理器、一計算單元及一輸出單元,該輸入單元用以供該使用者輸入一生理狀態資料,該訊號處理器連接該心電圖感測器及該心衝擊圖感測器,用以處理該心電圖感測器所產生之心電圖訊號及該心衝擊圖感測器所產生之心衝擊圖訊號,該計算單元 連接該輸入單元及該訊號處理器,用以根據該輸入單元所輸入之生理狀態資料及該訊號處理器之處理結果來計算該使用者之血壓,該輸出單元連接計算單元,用以輸出該計算單元之計算結果:該血壓量測方法包含:a)由一使用者利用該輸入單元輸入本身之一生理狀態資料;b)讓該使用者接觸該心電圖感測器及該心衝擊圖感測器,使得該心電圖感測器及該心衝擊圖感測器能分別感測該使用者之一心電圖訊號及一心衝擊圖訊號,並由該訊號處理器進行訊號處理;c)由該計算單元根據該使用者所輸入之生理狀態資料及該訊號處理器之處理結果來計算該使用者之血壓;d)由該輸出單元輸出該計算單元之計算結果;該計算單元使用多元線性迴歸分析法所得之一女性血壓計算公式如下:SBPf=C1f+C2f×Age+C3f×H+C4f×We+C5f×Wa+C6f×BF+C7f×HR+C8f×TI+C9f×S DBPf=C10f+C11f×Age+C12f×H+C13f×We+C14f×Wa+C15f×BF+C16f×HR+C17f×TI+C18f×S其中,SBPf為收縮壓(單位為毫米汞柱),DBPf為舒張壓(單位為毫米汞柱),C1f~C18f為多元迴歸分析係數,Age為年齡(單位為年),H為身高(單位為公分),We為體重(單位為公斤),Wa為腰圍(單位為公分),BF為體脂肪比率(單位為百分比),HR為心率(單位為次/分),TI為心電圖訊號之R波與心衝擊圖訊號之J 波之間的時間間隔(單位為秒),S為心衝擊圖訊號之I波與J波之間的斜率(單位為毫克/秒)。 A blood pressure measuring method using an unconstrained blood pressure measuring device is applied to an unconstrained blood pressure measuring device, wherein the unconfined blood pressure measuring device includes an electrocardiogram sensor for contacting a user Sensing and transmitting an ECG signal; a heart impact map sensor for the user to perform contact sensing and transmitting a heart impact map signal; and a measuring host having an input unit, a signal processor, and a calculation a unit and an output unit, wherein the input unit is configured to input a physiological state data to the user, and the signal processor is connected to the electrocardiogram sensor and the cardiac impact map sensor for processing the generated by the electrocardiogram sensor The ECG signal and the heart impact map signal generated by the heart impact map sensor, the computing unit is connected to the input unit and the signal processor for determining the physiological state data input by the input unit and the signal processor Processing the result to calculate the blood pressure of the user, the output unit is connected to the calculation unit for outputting the calculation result of the calculation unit: the blood pressure measurement method The method comprises: a) inputting, by the user, the physiological state data of the user by using the input unit; b) contacting the user with the electrocardiogram sensor and the cardiac impact map sensor, so that the electrocardiogram sensor and the heart The impact map sensor can respectively sense one of the user's electrocardiogram signal and the one-heart impact map signal, and the signal processor processes the signal; c) the computing unit according to the physiological state data input by the user and the The processing result of the signal processor is used to calculate the blood pressure of the user; d) the calculation result of the calculation unit is output by the output unit; the calculation unit uses one of the multiple linear regression analysis methods to calculate the female blood pressure as follows: SBP f = C 1f + C 2f × Age + C 3f × H + C 4f × W e + C 5f × W a + C 6f × BF + C 7f × HR + C 8f × TI + C 9f × S DBP f = C 10f + C 11f ×Age+C 12f ×H+C 13f ×W e +C 14f ×W a +C 15f ×BF+C 16f ×HR+C 17f ×TI+C 18f ×S where SBP f is the systolic blood pressure (unit is mmHg), DBP f diastolic blood pressure (in mm Hg), C 1f ~ C 18f multiple regression analysis coefficients, Age is the age (in years), H is the height ( Bits cm), W e is the weight (in kilograms), W a waist circumference (in centimeters), BF is a ratio of body fat (in percent), HR is the heart rate (in beats / min), TI electrocardiogram The time interval (in seconds) between the R wave of the signal and the J wave of the heart impact signal, and S is the slope (in milligrams per second) between the I wave and the J wave of the heart impact signal.
TW106120255A 2017-06-16 2017-06-16 Unconstrained blood pressure measuring device and blood pressure measuring method using same TWI657795B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106120255A TWI657795B (en) 2017-06-16 2017-06-16 Unconstrained blood pressure measuring device and blood pressure measuring method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106120255A TWI657795B (en) 2017-06-16 2017-06-16 Unconstrained blood pressure measuring device and blood pressure measuring method using same

Publications (2)

Publication Number Publication Date
TW201904513A TW201904513A (en) 2019-02-01
TWI657795B true TWI657795B (en) 2019-05-01

Family

ID=66213051

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106120255A TWI657795B (en) 2017-06-16 2017-06-16 Unconstrained blood pressure measuring device and blood pressure measuring method using same

Country Status (1)

Country Link
TW (1) TWI657795B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020210982A1 (en) * 2019-04-16 2020-10-22 深圳市格兰莫尔科技有限公司 Bcg-signal-based multi-sensor blood pressure monitoring apparatus and method
TWI733378B (en) * 2020-03-18 2021-07-11 英業達股份有限公司 Method of establishing blood pressure model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100210921A1 (en) * 2008-11-26 2010-08-19 Snu R&Db Foundation Scale-type nonconstrained health condition evaluating apparatus and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100210921A1 (en) * 2008-11-26 2010-08-19 Snu R&Db Foundation Scale-type nonconstrained health condition evaluating apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JH Shin, KM Lee, KS Park, "Non-constrained monitoring of systolic blood pressure on a weighing scale", Physiological Measurement, Volume 30, Number 7,pages 679-693. *

Also Published As

Publication number Publication date
TW201904513A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
JP6672489B2 (en) Personal health data collection
CN108185996B (en) Arterial blood vessel age estimation model construction method and device
CN105030195A (en) Three-position and nine-indicator multi-information acquisition and recognition device based on finger feel pressure application and microarray sensing
KR20100024118A (en) Apparatus and method for measuring blood presure
US20170055858A1 (en) Method and system for facilitating patient self-measuring and recording
KR100877207B1 (en) Apparatus for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness
TWI619472B (en) Method of and apparatus for detecting atrial fibrillation
WO2017092020A1 (en) Blood pressure measurement method and apparatus
CN110301906A (en) Device for non-invasively measuring blood pressure
KR100855043B1 (en) Method for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness
CN103536281A (en) Vascular endothelial function detecting device based on fingertip temperature change
CN113160921A (en) Construction method and application of digital human cardiovascular system based on hemodynamics
TWI657795B (en) Unconstrained blood pressure measuring device and blood pressure measuring method using same
KR100855042B1 (en) Apparatus for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness
US20190175031A1 (en) Hand-based blood pressure measurement system, apparatus and method
WO2021248817A1 (en) Toilet seat with physical sign monitoring function
KR100877212B1 (en) Apparatus for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness
CN108324259A (en) Calculate the method and its device of blood pressure
US6716177B2 (en) Inferior-and-superior-limb blood-pressure index measuring apparatus
Liu et al. The Cuffless Blood Pressure Measurement with Ballistocardiogram and Photoplethysmogram
CN117064354A (en) Continuous blood pressure measuring method and system without cuff
CN113951853A (en) Mouse with blood pressure measuring function and method for acquiring and processing biological signals
CN114021076A (en) Blood pressure calculation model generation method based on ECG and PPG signals and blood pressure measurement system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees