TWI657068B - Magnesium-based ceramic metal graphite conductive material comprising magnesium carbide and manufacturing method thereof - Google Patents

Magnesium-based ceramic metal graphite conductive material comprising magnesium carbide and manufacturing method thereof Download PDF

Info

Publication number
TWI657068B
TWI657068B TW106132644A TW106132644A TWI657068B TW I657068 B TWI657068 B TW I657068B TW 106132644 A TW106132644 A TW 106132644A TW 106132644 A TW106132644 A TW 106132644A TW I657068 B TWI657068 B TW I657068B
Authority
TW
Taiwan
Prior art keywords
magnesium
conductive material
graphite conductive
carbide
based ceramic
Prior art date
Application number
TW106132644A
Other languages
Chinese (zh)
Other versions
TW201914982A (en
Inventor
呂傳盛
洪飛義
Original Assignee
呂傳盛
洪飛義
康那香企業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呂傳盛, 洪飛義, 康那香企業股份有限公司 filed Critical 呂傳盛
Priority to TW106132644A priority Critical patent/TWI657068B/en
Publication of TW201914982A publication Critical patent/TW201914982A/en
Application granted granted Critical
Publication of TWI657068B publication Critical patent/TWI657068B/en

Links

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本發明有關於一種含碳化鎂之鎂基陶瓷金屬石墨導電材料及其製備方法,其製備方法包含有取一純鎂(Mg)或鎂合金沉積在碳(C)膜上,以形成一具有碳化鎂(MgC)之多層金屬結構;以及以一磷酸鎂(MgPO4)、一硫酸鎂(MgSO4)或一硝酸鎂(MgNO3)之凝膠、溶液或粉體,塗覆烘烤於多層金屬結構上,形成一含碳化鎂之鎂基陶瓷金屬石墨導電材料;此含碳化鎂之鎂基陶瓷金屬石墨導電材料具有良好的導電性,係能夠應用於電池之電極。 The invention relates to a magnesium-based ceramic metal graphite conductive material containing magnesium carbide and a preparation method thereof, the preparation method comprising the steps of: depositing a pure magnesium (Mg) or a magnesium alloy on a carbon (C) film to form a carbonization a multi-layered metal structure of magnesium (MgC); and a gel, solution or powder of magnesium monophosphate (MgPO 4 ), magnesium sulfate (MgSO 4 ) or magnesium nitrate (MgNO 3 ), coated and baked in a multilayer metal Structurally, a magnesium-based ceramic metal graphite conductive material containing magnesium carbide is formed; the magnesium-based ceramic metal graphite conductive material containing magnesium carbide has good electrical conductivity and can be applied to an electrode of a battery.

Description

含碳化鎂之鎂基陶瓷金屬石墨導電材料及其製備方法 Magnesium-based ceramic metal graphite conductive material containing magnesium carbide and preparation method thereof

本發明係有關於一種鎂基陶瓷金屬石墨導電材料,尤其是指製備出含碳化鎂之鎂基陶瓷金屬石墨導電材料,係於碳膜上沉積純鎂(Mg)或鎂合金,經過高溫使鎂與碳(C)結合成碳化鎂(MgC),搭配磷酸鎂(MgPO4)、硫酸鎂(MgSO4)或硝酸鎂(MgNO3)結構就可以發揮電極充放電應用效能。 The invention relates to a magnesium-based ceramic metal graphite conductive material, in particular to a magnesium-based ceramic metal graphite conductive material prepared with magnesium carbide, which is deposited on a carbon film to deposit pure magnesium (Mg) or magnesium alloy, and is subjected to high temperature to make magnesium. Combined with carbon (C) to form magnesium carbide (MgC), with magnesium phosphate (MgPO 4 ), magnesium sulfate (MgSO 4 ) or magnesium nitrate (MgNO 3 ) structure can play the role of electrode charge and discharge applications.

按,二次電池之應用越來越廣泛,尤其近年來電動汽機車及可攜式電子產品迅速發展,可充電的二次電池已成為主流。目前二次電池的電極分為粉體電極及薄膜電極,且為了使二次電池能夠具有快速充放電、壽命長、電容量高、安全性高等優點,其製造技術及材料應用成為相關領域發展之重點。 According to the application of secondary batteries, more and more, especially in recent years, electric steam locomotives and portable electronic products have developed rapidly, and rechargeable secondary batteries have become mainstream. At present, the electrodes of the secondary battery are classified into a powder electrode and a thin film electrode, and in order to enable the secondary battery to have the advantages of rapid charge and discharge, long life, high capacitance, high safety, etc., its manufacturing technology and material application have become related fields. Focus.

習知的薄膜電極製備技術,其電極因具有介金屬界面層與分佈均勻的活性薄膜材料層,而使充放電較穩定,電容量亦較粉體電極高,例如中華民國專利公告號TW I459617「鎂電極組成物」,此專利為本發明申請人先前核准之專利,其係利用鎂基粉末,熱蒸鍍製程,形成一鎂薄膜電極,電容量可達約1500mAh/g;然,熱蒸鍍製程相較於粉體電極所使用的燒結程序,工序上簡易具有極高競爭力,但由於蒸鍍爐體容量不大而無法大量生產,因此需耗費較 多時間製作薄膜電極。 The conventional thin film electrode preparation technology has a metal interfacial layer and a uniformly distributed active film material layer, so that the charge and discharge are stable, and the capacitance is higher than that of the powder electrode. For example, the Republic of China Patent Publication No. TW I459617 " "Magnesium electrode composition", which is a patent previously approved by the applicant of the present invention, which utilizes a magnesium-based powder and a thermal evaporation process to form a magnesium film electrode having a capacitance of up to about 1500 mAh/g; Compared with the sintering procedure used for the powder electrode, the process is extremely competitive in terms of process. However, since the capacity of the vapor deposition furnace is not large, it cannot be mass-produced, so it costs more. The film electrode was fabricated in multiple times.

為了改善前述之缺點,發明人又提出以其他電極材料的製備方法,可參考中華民國專利公告號TW I577074「具有包晶與柱狀晶結構之二次電池電極製造方法」,其主要揭示一種製備具有熱致薄膜層之二次電池電極的方法,藉由燒結重熔(remelt)程序使粉體材料與低熔點包覆材料之混合材料形成一具有熱致薄膜層之正極或負極,以同時具備薄膜電極及粉體電極的優點,提升電容量及充放電效率,且由於其中之熱致薄膜層係具有包晶(peritectic)結構與柱狀晶組織(columnar),因此能提升電池的安全性。 In order to improve the aforementioned disadvantages, the inventors have proposed a method for preparing other electrode materials, and can refer to the Republic of China Patent Publication No. TW I577074 "Manufacturing Method of Secondary Battery Electrode with Peritectic and Columnar Crystal Structure", which mainly discloses a preparation method. A method for a secondary battery electrode having a heat-induced thin film layer, wherein a mixed material of a powder material and a low-melting-point cladding material is formed into a positive electrode or a negative electrode having a heat-induced thin film layer by a sintering remelting process to simultaneously have The advantages of the thin film electrode and the powder electrode improve the capacitance and the charge and discharge efficiency, and since the heat-induced film layer has a peritectic structure and a columnar structure, the safety of the battery can be improved.

由前述專利可知,已經有提出以鎂粉體製備電極之方法,然而,由於目前市場對於二次電池的需求量極大,如何開發出各種不同的導電材料,以作為二次電池並提升其電容量與充放電效率,仍是相關領域發明人思及之方向。 It is known from the aforementioned patents that a method for preparing an electrode using magnesium powder has been proposed. However, since the current demand for secondary batteries is extremely large, how to develop various conductive materials to serve as secondary batteries and increase their capacitance. With the charge and discharge efficiency, it is still the direction that the inventors think about in related fields.

今,發明人即是鑑於上述現有之電極材料於實際實施使用時仍具有多處缺失,於是乃一本孜孜不倦之精神,並藉由其豐富專業知識及多年之實務經驗所輔佐,而加以改善,並據此研創出本發明。 Nowadays, the inventor is still in the light of the tireless spirit of the above-mentioned existing electrode materials in practical use, and is improved by their rich professional knowledge and years of practical experience. Based on this, the present invention has been developed.

本發明主要目的為提供一種含碳化鎂之鎂基陶瓷金屬石墨導電材料及其製備方法,其利用碳化鎂(MgC)結合磷酸鎂(MgPO4)、硫酸鎂(MgSO4)或硝酸鎂(MgNO3),形成含碳化鎂之鎂基陶瓷金屬石墨導電材料,以應用於電池之電極。 The main object of the present invention is to provide a magnesium-based ceramic metal graphite conductive material containing magnesium carbide and a preparation method thereof, which utilizes magnesium carbide (MgC) combined with magnesium phosphate (MgPO 4 ), magnesium sulfate (MgSO 4 ) or magnesium nitrate (MgNO 3 ) ), a magnesium-based ceramic metal graphite conductive material containing magnesium carbide is formed to be applied to an electrode of a battery.

為了達到上述實施目的,本發明一種含碳化鎂之鎂基陶瓷金屬石墨導電材料及其製備方法,其製備方法包含有取一純鎂(Mg)或鎂合金沉積在碳(C)膜上,以形成一具有碳化鎂(MgC)之多層金屬結構;以及取一磷酸鎂(MgPO4)、一硫酸鎂(MgSO4)或一硝酸鎂(MgNO3)之凝膠、溶液或粉體,將其塗覆烘烤於多層金屬結構上, 形成一含碳化鎂之鎂基陶瓷金屬石墨導電材料。 In order to achieve the above-mentioned object, the present invention provides a magnesium-based ceramic-based graphite metal conductive material and a preparation method thereof, which comprise a method of depositing a pure magnesium (Mg) or a magnesium alloy on a carbon (C) film, Forming a multi-layered metal structure having magnesium carbide (MgC); and coating a gel, solution or powder of magnesium monophosphate (MgPO 4 ), magnesium sulfate (MgSO 4 ) or magnesium nitrate (MgNO 3 ) The baking is baked on the multi-layer metal structure to form a magnesium-based ceramic metal graphite conductive material containing magnesium carbide.

於本發明之一實施例中,鎂合金係可例如選自鎂鈉(Mg-Na)、鎂鐵(Mg-Fe)、鎂錳(Mg-Mn)、鎂鎳(Mg-Ni)、鎂銅(Mg-Cu)、鎂鋁(Mg-Al)、鎂矽(Mg-Si)、鎂鈦(Mg-Ti)、鎂鋰(Mg-Li)、鎂錫(Mg-Sn)、鎂鋅(Mg-Zn)、鎂鋯(Mg-Zr)、鎂鈣(Mg-Ca)、鎂釔(Mg-Y)、鎂釓(Mg-Gd)、鎂碳(Mg-C)、鎂鈷(Mg-Co)或鎂稀土(Mg-RE)。 In an embodiment of the present invention, the magnesium alloy may be selected, for example, from magnesium sodium (Mg-Na), magnesium iron (Mg-Fe), magnesium manganese (Mg-Mn), magnesium nickel (Mg-Ni), magnesium copper. (Mg-Cu), Mg-Al, Mg-Si, Mg-Ti, Mg-Li, Mg-Sn, Mg-Zn -Zn), Mg-Zr, Mg-Ca, Mg-Y, Mg-Gd, Mg-C ) or magnesium rare earth (Mg-RE).

於本發明之一實施例中,沉積製程可例如為3D列印、蒸鍍或濺鍍其中之一。 In one embodiment of the invention, the deposition process can be, for example, one of 3D printing, evaporation, or sputtering.

於本發明之一實施例中,若為塗覆磷酸鎂,含碳化鎂之鎂基陶瓷金屬石墨導電材料的結構即依序為磷酸鎂/鎂或鎂合金/碳化鎂/碳。 In one embodiment of the present invention, if magnesium phosphate is coated, the structure of the magnesium-based ceramic-metal graphite conductive material containing magnesium carbide is sequentially magnesium phosphate/magnesium or magnesium alloy/magnesium carbide/carbon.

於本發明之一實施例中,若為塗覆硫酸鎂,含碳化鎂之鎂基陶瓷金屬石墨導電材料的結構即依序為硫酸鎂/鎂或鎂合金/碳化鎂/碳。 In one embodiment of the present invention, if magnesium sulfate is coated, the structure of the magnesium-based ceramic-metal graphite conductive material containing magnesium carbide is sequentially magnesium sulfate/magnesium or magnesium alloy/magnesium carbide/carbon.

於本發明之一實施例中,若為塗覆硝酸鎂,含碳化鎂之鎂基陶瓷金屬石墨導電材料的結構即依序為硝酸鎂/鎂或鎂合金/碳化鎂/碳。 In one embodiment of the present invention, if magnesium nitrate is coated, the structure of the magnesium-based ceramic-metal graphite conductive material containing magnesium carbide is sequentially magnesium nitrate/magnesium or magnesium alloy/magnesium carbide/carbon.

於本發明之一實施例中,純鎂(Mg)或鎂合金沉積於碳(C)膜時之溫度為400℃。 In one embodiment of the invention, the temperature at which the pure magnesium (Mg) or magnesium alloy is deposited on the carbon (C) film is 400 °C.

(1)‧‧‧磷酸鎂 (1)‧‧‧Magnesium phosphate

(2)‧‧‧鎂或鎂合金 (2) ‧‧‧Magnesium or magnesium alloy

(3)‧‧‧碳化鎂 (3)‧‧‧Magnesium carbide

(4)‧‧‧碳 (4) ‧‧‧carbon

(5)‧‧‧硫酸鎂 (5) ‧ ‧ magnesium sulfate

(6)‧‧‧硝酸鎂 (6)‧‧‧Magnesium nitrate

第一圖:本發明其較佳實施例之結構剖面示意圖。 First Figure: A schematic cross-sectional view of a preferred embodiment of the present invention.

本發明之目的及其結構功能上的優點,將依據以下圖面所示之結構,配合具體實施例予以說明,俾使審查委員能對本發明有更深入且具體之瞭解。 The object of the present invention and its structural and functional advantages will be explained in conjunction with the specific embodiments according to the structure shown in the following drawings, so that the reviewing committee can have a more in-depth and specific understanding of the present invention.

本發明一種含碳化鎂之鎂基陶瓷金屬石墨導電材料及其製備方法,其製備步驟包含有步驟一:取一純鎂(Mg)或鎂合金沉積在碳(C)膜上,沉積時,溫度約為400℃,以形成一具有碳化鎂(MgC)之多層金屬結構,鎂合金係選自鎂鈉(Mg-Na)、鎂鐵(Mg-Fe)、鎂錳(Mg-Mn)、鎂鎳(Mg-Ni)、鎂銅(Mg-Cu)、鎂鋁(Mg-Al)、鎂矽(Mg-Si)、鎂鈦(Mg-Ti)、鎂鋰(Mg-Li)、鎂錫(Mg-Sn)、鎂鋅(Mg-Zn)、鎂鋯(Mg-Zr)、鎂鈣(Mg-Ca)、鎂釔(Mg-Y)、鎂釓(Mg-Gd)、鎂碳(Mg-C)、鎂鈷(Mg-Co)或鎂稀土(Mg-RE);以及步驟二:以一磷酸鎂(MgPO4)、一硫酸鎂(MgSO4)或一硝酸鎂(MgNO3)之凝膠、溶液或粉體,塗覆烘烤於多層金屬結構上,形成一含碳化鎂之鎂基陶瓷金屬石墨導電材料,上述沉積之製程可例如為3D列印、蒸鍍或濺鍍其中之一。 The invention relates to a magnesium-based ceramic-based metallic graphite conductive material containing magnesium carbide and a preparation method thereof, the preparation step comprising the first step: taking a pure magnesium (Mg) or a magnesium alloy deposited on the carbon (C) film, and depositing, the temperature About 400 ° C to form a multi-layer metal structure with magnesium carbide (MgC) selected from magnesium sodium (Mg-Na), magnesium iron (Mg-Fe), magnesium manganese (Mg-Mn), magnesium nickel (Mg-Ni), Mg-Cu, Mg-Al, Mg-Si, Mg-Ti, Mg-Li -Sn), Mg-Zn, Mg-Zr, Mg-Ca, Mg-Y, Mg-Gd, Mg-C , magnesium cobalt (Mg-Co) or magnesium rare earth (Mg-RE); and step two: a gel of magnesium monophosphate (MgPO 4 ), magnesium sulfate (MgSO 4 ) or magnesium nitrate (MgNO 3 ), The solution or powder is coated and baked on the multilayer metal structure to form a magnesium-based ceramic metal graphite conductive material containing magnesium carbide. The deposition process may be, for example, one of 3D printing, evaporation or sputtering.

請參閱第一圖,若為塗覆磷酸鎂(1),含碳化鎂之鎂基陶瓷金屬石墨導電材料的結構即依序為磷酸鎂(1)/鎂或鎂合金(2)/碳化鎂(3)/碳(4);若為塗覆硫酸鎂(5),含碳化鎂之鎂基陶瓷金屬石墨導電材料的結構即依序為硫酸鎂(5)/鎂或鎂合金(2)/碳化鎂(3)/碳(4);若為塗覆硝酸鎂(6),含碳化鎂之鎂基陶瓷金屬石墨導電材料的結構即依序為硝酸鎂(6)/鎂或鎂合金(2)/碳化鎂(3)/碳(4)。 Referring to the first figure, if magnesium phosphate (1) is coated, the structure of the magnesium-based ceramic-metal graphite conductive material containing magnesium carbide is sequentially magnesium phosphate (1) / magnesium or magnesium alloy (2) / magnesium carbide ( 3) / carbon (4); if coated with magnesium sulfate (5), the structure of the magnesium-based ceramic-metal graphite conductive material containing magnesium carbide is sequentially magnesium sulfate (5) / magnesium or magnesium alloy (2) / carbonization Magnesium (3) / carbon (4); if coated with magnesium nitrate (6), the structure of the magnesium-based ceramic metal graphite conductive material containing magnesium carbide is sequentially magnesium nitrate (6) / magnesium or magnesium alloy (2) / Magnesium carbide (3) / carbon (4).

本發明亦提供一種含碳化鎂之鎂基陶瓷金屬石墨導電材料,係藉由上述製造方法製備而得,其整體而言具有良好的導電性,能夠應用於電池之電極。 The present invention also provides a magnesium-based ceramic metal graphite conductive material containing magnesium carbide, which is obtained by the above-mentioned manufacturing method, and which has good electrical conductivity as a whole and can be applied to an electrode of a battery.

此外,藉由下述具體實施例,可進一步證明本發明可實際應用之範圍,但不意欲以任何形式限制本發明之範圍。 In addition, the scope of the invention may be further exemplified by the following specific examples, which are not intended to limit the scope of the invention.

請繼續參閱第一圖,取一純鎂或鎂合金(2)沉積在碳(4)膜上,沉積溫度約400℃,以形成一具有碳化鎂(3)之多層金屬結構,碳化鎂(3)可作為緩衝層;若是以純鎂沉積於碳(4)膜上,多層金屬 結構會由Mg/C轉變為Mg/MgC/C;若是以鎂合金沉積於碳(4)膜上,多層金屬結構會由MgX/C轉變為MgX/MgC/C,其中X代表鎂以外之元素,鎂合金可例如使用鎂鈉(Mg-Na)、鎂鐵(Mg-Fe)、鎂錳(Mg-Mn)、鎂鎳(Mg-Ni)、鎂銅(Mg-Cu)、鎂鋁(Mg-Al)、鎂矽(Mg-Si)、鎂鈦(Mg-Ti)、鎂鋰(Mg-Li)、鎂錫(Mg-Sn)、鎂鋅(Mg-Zn)、鎂鋯(Mg-Zr)、鎂鈣(Mg-Ca)、鎂釔(Mg-Y)、鎂釓(Mg-Gd)、鎂碳(Mg-C)、鎂鈷(Mg-Co)或鎂稀土(Mg-RE)其中之一。其中,上述沉積之過程可例如使用3D列印、蒸鍍或濺鍍其中之一,係將材料均勻地塗佈於另一薄膜上。 Please continue to refer to the first figure, a pure magnesium or magnesium alloy (2) deposited on the carbon (4) film, deposition temperature of about 400 ° C, to form a multi-layer metal structure with magnesium carbide (3), magnesium carbide (3 ) can be used as a buffer layer; if it is deposited on carbon (4) film with pure magnesium, multilayer metal The structure will change from Mg/C to Mg/MgC/C; if magnesium alloy is deposited on carbon (4) film, the multilayer metal structure will change from MgX/C to MgX/MgC/C, where X represents an element other than magnesium. For the magnesium alloy, for example, magnesium sodium (Mg-Na), magnesium iron (Mg-Fe), magnesium manganese (Mg-Mn), magnesium nickel (Mg-Ni), magnesium copper (Mg-Cu), magnesium aluminum (Mg) may be used. -Al), Mg-Si, Mg-Ti, Mg-Li, Mg-Sn, Mg-Zn, Mg-Zr ), magnesium calcium (Mg-Ca), magnesium strontium (Mg-Y), magnesium strontium (Mg-Gd), magnesium carbon (Mg-C), magnesium cobalt (Mg-Co) or magnesium rare earth (Mg-RE) one. Wherein, the above deposition process can be applied to another film uniformly, for example, by using one of 3D printing, evaporation or sputtering.

接續地,取一陶瓷材料,可為磷酸鎂(1)、硫酸鎂(5)或硝酸鎂(6),其形態可為凝膠、溶液或粉體,並塗覆烘烤於多層金屬結構(Mg/MgC/C或MgX/MgC/C)上,在鎂層或是鎂合金層上,形成一含碳化鎂(3)之鎂基陶瓷金屬石墨導電材料;若是以磷酸鎂(1)塗覆於多層金屬結構,含碳化鎂(3)之鎂基陶瓷金屬石墨導電材料的結構就依序為MgPO4/Mg或MgX/MgC/C,可稱為磷金碳化物結構;若是以硫酸鎂(5)塗覆於多層金屬結構,含碳化鎂(3)之鎂基陶瓷金屬石墨導電材料的結構就依序為MgSO4/Mg或MgX/MgC/C,可稱為硫金碳化物結構;若是以硫酸鎂(5)塗覆於多層金屬結構,含碳化鎂(3)之鎂基陶瓷金屬石墨導電材料的結構就依序為MgNO3/Mg或MgX/MgC/C,可稱為硝金碳化物結構。 Successively, a ceramic material may be taken as magnesium phosphate (1), magnesium sulfate (5) or magnesium nitrate (6), which may be in the form of a gel, a solution or a powder, and coated and baked in a multilayer metal structure ( On Mg/MgC/C or MgX/MgC/C), a magnesium-based ceramic metal graphite conductive material containing magnesium carbide (3) is formed on the magnesium layer or the magnesium alloy layer; if it is coated with magnesium phosphate (1) In the multilayer metal structure, the structure of the magnesium-based ceramic metal graphite conductive material containing magnesium carbide (3) is MgPO 4 /Mg or MgX/MgC/C, which may be referred to as a phosphorous gold carbide structure; 5) coated on a multi-layer metal structure, the structure of the magnesium-based ceramic metal graphite conductive material containing magnesium carbide (3) is sequentially MgSO 4 /Mg or MgX/MgC/C, which may be referred to as a sulfur-gold carbide structure; Applying magnesium sulfate (5) to a multilayer metal structure, the structure of the magnesium-based ceramic metal graphite conductive material containing magnesium carbide (3) is MgNO 3 /Mg or MgX/MgC/C, which may be called carbon gold carbonization. Structure of matter.

上述使用之磷酸鎂(1)、硫酸鎂(5)或硝酸鎂(6),可以下述方法製成,先準備為純鎂、氧化鎂或鎂合金之一金屬鎂,再將金屬鎂混合於一酸類溶液中,利用溫度25℃~65℃處理1~12小時,會依酸類溶液選用之磷酸根溶液、硫酸根溶液或硝酸根溶液,分別形成磷酸鎂(1)、硫酸鎂(5)或硝酸鎂(6);或係直接將酸類容易披覆於金屬鎂之表面,經低溫烘烤後,同樣會得到磷酸鎂(1)、硫酸鎂(5)或 硝酸鎂(6)。 The above-mentioned magnesium phosphate (1), magnesium sulfate (5) or magnesium nitrate (6) can be prepared by the following method, first preparing magnesium metal, one of pure magnesium, magnesium oxide or magnesium alloy, and then mixing the metal magnesium In an acid solution, treatment with a temperature of 25 ° C ~ 65 ° C for 1 to 12 hours, depending on the phosphate solution, sulfate solution or nitrate solution selected for the acid solution, respectively, forming magnesium phosphate (1), magnesium sulfate (5) or Magnesium nitrate (6); or the acid can be easily coated on the surface of magnesium metal, and after low temperature baking, magnesium phosphate (1), magnesium sulfate (5) or Magnesium nitrate (6).

將三種含碳化鎂之鎂基陶瓷金屬石墨導電材料製備為二次電池之電極,並進行電性測試,導電係數、電子遷移率與充放電測試結果如表一~表三所示,充放電測試係以鋰金屬當正極組成半電池,在0.1C之測試環境下評估充放電次數,表中符號代表●:優、◎:普通、○:差,其標準分別如下,導電係數:>104(優)、104-103(普通)、<103(差);遷移率:0.5(優)、0.5-0.1(普通)、<0.1(差);充放電:>100次(優)、10-100次(普通)、<10(差)。 Three kinds of magnesium-based ceramic-metal graphite conductive materials containing magnesium carbide were prepared as electrodes of secondary batteries, and electrical tests were conducted. Conductivity, electron mobility and charge and discharge test results are shown in Table 1 to Table 3. Charge and discharge tests The lithium metal is used as a positive electrode to form a half-cell, and the number of charge and discharge times is evaluated in a test environment of 0.1 C. The symbols in the table represent ●: excellent, ◎: normal, ○: poor, and the standards are as follows, conductivity: >10 4 ( Excellent), 10 4 -10 3 (ordinary), <10 3 (poor); mobility: 0.5 (excellent), 0.5-0.1 (normal), <0.1 (poor); charge and discharge: >100 times (excellent), 10-100 times (ordinary), <10 (poor).

由表一至表三呈現之數據可知,磷金碳化物結構與硫金碳化物結構之導電表現較硝金碳化物結構佳,但以一般二次電池之應用而言,三種材料之表現皆適合製備成電極。 From the data presented in Tables 1 to 3, it is known that the conductivity of the phosphorous gold carbide structure and the sulfur gold carbide structure is better than that of the nitrate metal carbide structure, but in the application of the general secondary battery, the performance of the three materials is suitable for preparation. Form the electrode.

由上述之實施說明可知,本發明與現有技術相較之下,本發明具有以下優點: It can be seen from the above description that the present invention has the following advantages compared with the prior art:

1.本發明之含碳化鎂之鎂基陶瓷金屬石墨導電材料及其製備方法,使用金屬鎂元素結合碳元素,令其轉變為碳化鎂,再結合磷酸鎂、硫酸鎂、或硝酸鎂以提升導電效果,測試出導電係數、遷 移率與充放電皆有良好的表現。 1. The magnesium-based ceramic-based metallic graphite conductive material of the present invention and the preparation method thereof, using metal magnesium element combined with carbon element, converting it into magnesium carbide, and then combining magnesium phosphate, magnesium sulfate or magnesium nitrate to enhance conductivity Effect, test the conductivity, move Both the rate of change and the charge and discharge have a good performance.

2.本發明之含碳化鎂之鎂基陶瓷金屬石墨導電材料及其製備方法,其製備出之含碳化鎂之鎂基陶瓷金屬石墨導電材料由於具有良好的導電特性,因此適合作為二次電池的電極材料。 2. The magnesium-containing magnesium-based ceramic metal graphite conductive material of the invention and the preparation method thereof, the magnesium-based ceramic metal graphite conductive material containing the magnesium carbide prepared by the invention has good electrical conductivity and is suitable as a secondary battery. Electrode material.

綜上所述,本發明之含碳化鎂之鎂基陶瓷金屬石墨導電材料及其製備方法,的確能藉由上述所揭露之實施例,達到所預期之使用功效,且本發明亦未曾公開於申請前,誠已完全符合專利法之規定與要求。爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。 In summary, the magnesium-containing magnesium-based ceramic metal graphite conductive material of the present invention and the preparation method thereof can achieve the intended use efficiency by the above disclosed embodiments, and the present invention has not been disclosed in the application. Before, Cheng has fully complied with the requirements and requirements of the Patent Law.爰Issuing an application for a patent for invention in accordance with the law, and asking for a review, and granting a patent, is truly sensible.

惟,上述所揭之圖示及說明,僅為本發明之較佳實施例,非為限定本發明之保護範圍;大凡熟悉該項技藝之人士,其所依本發明之特徵範疇,所作之其它等效變化或修飾,皆應視為不脫離本發明之設計範疇。 The illustrations and descriptions of the present invention are merely preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; those skilled in the art, which are characterized by the scope of the present invention, Equivalent variations or modifications are considered to be within the scope of the design of the invention.

Claims (7)

一種含碳化鎂之鎂基陶瓷金屬石墨導電材料之製備方法,其步驟包含有:步驟一:取一純鎂(Mg)或一鎂合金沉積在一碳(C)膜上,以形成一具有碳化鎂(MgC)之多層金屬結構;以及步驟二:以一磷酸鎂(MgPO4)、一硫酸鎂(MgSO4)或一硝酸鎂(MgNO3)之凝膠、溶液或粉體,塗覆烘烤於該多層金屬結構上,形成一含碳化鎂之鎂基陶瓷金屬石墨導電材料。 A method for preparing a magnesium-based ceramic metal graphite conductive material containing magnesium carbide, the steps comprising the steps of: taking a pure magnesium (Mg) or a magnesium alloy deposited on a carbon (C) film to form a carbonized a multi-layered metal structure of magnesium (MgC); and step 2: coating a paste, a solution or a powder of magnesium monophosphate (MgPO 4 ), magnesium sulfate (MgSO 4 ) or magnesium nitrate (MgNO 3 ) On the multilayer metal structure, a magnesium-based ceramic metal graphite conductive material containing magnesium carbide is formed. 如申請專利範圍第1項所述含碳化鎂之鎂基陶瓷金屬石墨導電材料之製備方法,其中該鎂合金係選自鎂鈉(Mg-Na)、鎂鐵(Mg-Fe)、鎂錳(Mg-Mn)、鎂鎳(Mg-Ni)、鎂銅(Mg-Cu)、鎂鋁(Mg-Al)、鎂矽(Mg-Si)、鎂鈦(Mg-Ti)、鎂鋰(Mg-Li)、鎂錫(Mg-Sn)、鎂鋅(Mg-Zn)、鎂鋯(Mg-Zr)、鎂鈣(Mg-Ca)、鎂釔(Mg-Y)、鎂釓(Mg-Gd)、鎂碳(Mg-C)、鎂鈷(Mg-Co)或鎂稀土(Mg-RE)。 The method for preparing a magnesium-based ceramic-based metallic graphite conductive material according to claim 1, wherein the magnesium alloy is selected from the group consisting of magnesium sodium (Mg-Na), magnesium iron (Mg-Fe), magnesium manganese ( Mg-Mn), Mg-Ni, Mg-Cu, Mg-Al, Mg-Si, Mg-Ti, Mg- Li), Mg-Sn, Mg-Zn, Mg-Zr, Mg-Ca, Mg-Y, Mg-Gd Magnesium carbon (Mg-C), magnesium cobalt (Mg-Co) or magnesium rare earth (Mg-RE). 如申請專利範圍第1項所述含碳化鎂之鎂基陶瓷金屬石墨導電材料之製備方法,其中該沉積製程為3D列印、蒸鍍或濺鍍其中之一。 The method for preparing a magnesium-based ceramic-based metallic graphite conductive material according to claim 1, wherein the deposition process is one of 3D printing, evaporation or sputtering. 如申請專利範圍第1項所述含碳化鎂之鎂基陶瓷金屬石墨導電材料之製備方法,其中塗覆該磷酸鎂之該含碳化鎂之鎂基陶瓷金屬石墨導電材料的結構依序為磷酸鎂、鎂或鎂合金、碳化鎂、碳。 The method for preparing a magnesium-based ceramic-based metallic graphite conductive material according to claim 1, wherein the magnesium-containing magnesium-based ceramic metal graphite conductive material coated with the magnesium phosphate is sequentially structured as magnesium phosphate. , magnesium or magnesium alloy, magnesium carbide, carbon. 如申請專利範圍第1項所述含碳化鎂之鎂基陶瓷金屬石墨導電材料之製備方法,其中塗覆該硫酸鎂之該含碳化鎂之鎂基陶瓷金屬石墨導電材料的結構依序為硫酸鎂、鎂或鎂合金、碳化鎂、碳。 The method for preparing a magnesium-based ceramic-based metallic graphite conductive material according to claim 1, wherein the magnesium-containing magnesium-based ceramic metal graphite conductive material coated with the magnesium sulfate is sequentially structured as magnesium sulfate. , magnesium or magnesium alloy, magnesium carbide, carbon. 如申請專利範圍第1項所述含碳化鎂之鎂基陶瓷金屬石墨導電材料之製備方法,其中塗覆該硝酸鎂之該含碳化鎂之鎂基陶瓷金屬石墨導電材料的結構依序為硝酸鎂、鎂或鎂合金、碳化鎂、碳。 The method for preparing a magnesium-based ceramic-based metallic graphite conductive material according to claim 1, wherein the magnesium-containing ceramic-based metallic graphite conductive material coated with the magnesium nitrate is sequentially structured as magnesium nitrate. , magnesium or magnesium alloy, magnesium carbide, carbon. 如申請專利範圍第1項所述含碳化鎂之鎂基陶瓷金屬石墨導電材料之製備方法,其中該純鎂(Mg)或該鎂合金沉積於該碳(C)膜時之溫度為400℃。 The method for preparing a magnesium-based ceramic-based metallic graphite conductive material according to claim 1, wherein the pure magnesium (Mg) or the magnesium alloy is deposited on the carbon (C) film at a temperature of 400 ° C.
TW106132644A 2017-09-22 2017-09-22 Magnesium-based ceramic metal graphite conductive material comprising magnesium carbide and manufacturing method thereof TWI657068B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106132644A TWI657068B (en) 2017-09-22 2017-09-22 Magnesium-based ceramic metal graphite conductive material comprising magnesium carbide and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106132644A TWI657068B (en) 2017-09-22 2017-09-22 Magnesium-based ceramic metal graphite conductive material comprising magnesium carbide and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201914982A TW201914982A (en) 2019-04-16
TWI657068B true TWI657068B (en) 2019-04-21

Family

ID=66991977

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106132644A TWI657068B (en) 2017-09-22 2017-09-22 Magnesium-based ceramic metal graphite conductive material comprising magnesium carbide and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI657068B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201234608A (en) * 2010-09-23 2012-08-16 Intel Corp Microelectronic transistor having an epitaxial graphene channel layer
CN102760892A (en) * 2012-06-25 2012-10-31 南昌大学 Magnesium-manganese paper battery and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201234608A (en) * 2010-09-23 2012-08-16 Intel Corp Microelectronic transistor having an epitaxial graphene channel layer
CN102760892A (en) * 2012-06-25 2012-10-31 南昌大学 Magnesium-manganese paper battery and preparation method thereof

Also Published As

Publication number Publication date
TW201914982A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2010021205A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
JP2017117753A (en) Solid electrolyte, all-solid battery, and method for manufacturing solid electrolyte
JP5682318B2 (en) All solid battery
CN105680023A (en) Preparation method of composite high-magnification silicon-based material, cathode material and lithium battery
WO2014141456A1 (en) Solid electrolyte, and all-solid ion secondary cell using same
CN103904360A (en) Solid electrolyte, manufacturing method thereof, and all-solid-state lithium battery
CN108417820A (en) A kind of graphene-aluminium ion superbattery and preparation method thereof
JP2009277381A (en) Lithium battery
JP2004179158A (en) Lithium ion conductor and all solid rechargeable lithium-ion battery
JP2014022204A (en) Active material particle for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
CN107665974A (en) A kind of lithium-sulfur cell negative pole and its preparation and application
CN107399717B (en) Cu for battery negative electrode9S5Preparation method of @ C nanocomposite
TWI657068B (en) Magnesium-based ceramic metal graphite conductive material comprising magnesium carbide and manufacturing method thereof
CN111384365A (en) Preparation method of carbon-coated multilayer NiO hollow sphere composite material
WO2018209762A1 (en) Lithium battery anode and preparation method and application thereof
JP2012134050A (en) Powder for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery
Lee et al. Binder-free metal fibril-supported Fe 2 O 3 anodes for high-performance lithium-ion batteries
Zhang et al. A lithium–tin fluoride anode enabled by ionic/electronic conductive paths for garnet-based solid-state lithium metal batteries
JP6856868B2 (en) All-solid-state battery, its manufacturing method, and bonding material
TWI617067B (en) Magnesium-rich solid salt conductive ion material and manufacturing method thereof
JP2010218958A (en) Copper-tin-containing paste, manufacturing method of copper-tin-containing paste, electrode for lithium ion secondary battery, and kit for forming copper-tin-containing paste
JP2012160324A (en) Nonaqueous electrolyte battery
JP2003109582A (en) Laminated strip material, laminated strip material for battery using the same, and manufacturing method of the same
JP2011154890A (en) Nonaqueous electrolyte battery and method of forming solid electrolyte layer for the nonaqueous electrolyte battery