TWI655329B - Composite textile - Google Patents

Composite textile Download PDF

Info

Publication number
TWI655329B
TWI655329B TW106146490A TW106146490A TWI655329B TW I655329 B TWI655329 B TW I655329B TW 106146490 A TW106146490 A TW 106146490A TW 106146490 A TW106146490 A TW 106146490A TW I655329 B TWI655329 B TW I655329B
Authority
TW
Taiwan
Prior art keywords
textile
composite
powder
metal
weight
Prior art date
Application number
TW106146490A
Other languages
Chinese (zh)
Other versions
TW201930667A (en
Inventor
黃泳彬
李君敏
葉佩宜
郭怡君
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW106146490A priority Critical patent/TWI655329B/en
Application granted granted Critical
Publication of TWI655329B publication Critical patent/TWI655329B/en
Publication of TW201930667A publication Critical patent/TW201930667A/en

Links

Abstract

本發明提供一種複合紡織品。此複合紡織品包括紡織品基材,以及形成於紡織品基材之上的保暖材料層。此保暖材料層包括奈米複合粉體。此奈米複合粉體由含吡咯烷酮的高分子及無機粒子所組成。此含吡咯烷酮的高分子為聚乙烯吡咯烷酮、聚乙烯吡咯烷酮之衍生物或上述之組合。此無機粒子為由第一金屬MA、摻雜金屬MB及氧所構成之金屬氧化物。無機粒子佔奈米複合粉體62.5-99.9重量%。 The present invention provides a composite textile. The composite textile comprises a textile substrate and a layer of thermal insulation material formed over the textile substrate. The layer of thermal insulation material comprises a nano composite powder. This nanocomposite powder is composed of a pyrrolidone-containing polymer and inorganic particles. The pyrrolidone-containing polymer is a polyvinylpyrrolidone, a derivative of polyvinylpyrrolidone or a combination thereof. The inorganic particles are metal oxides composed of a first metal M A , a doping metal M B and oxygen. The inorganic particles account for 62.5-99.9 wt% of the nano composite powder.

Description

複合紡織品 Composite textile

本發明是關於一種複合紡織品,特別是關於一種能夠高效率吸收紅外線並藉以發熱的複合紡織品。 The present invention relates to a composite textile, and more particularly to a composite textile capable of efficiently absorbing infrared rays and thereby generating heat.

對一般的紡織品而言,為了達到較佳的保暖效果,有幾種可行的方法。例如,可增加紡織品的密度或厚度。然而,這樣的紡織品存有較差透氣性及較高重量的問題,將造成使用者的不舒適感。 For general textiles, there are several possible ways to achieve better warmth. For example, the density or thickness of the textile can be increased. However, such textiles have problems of poor air permeability and high weight, which will cause user discomfort.

另外,也可在紡織物的最終產品(例如,服飾)中加入填充物(例如,動物的羽絨),以改善最終產品的保暖效果。然而,由於此填充物將使最終產品的體積大幅增加,而可能導致使用者活動上的不便。 In addition, fillers (eg, feathers of animals) may also be added to the final product of the textile (eg, apparel) to improve the warmth of the final product. However, since this filler will greatly increase the volume of the final product, it may cause inconvenience to the user's activities.

因此,在本領域中仍需尋求具有優異的保暖性且輕量化、薄型化的紡織品。 Therefore, there is still a need in the art to find a textile having excellent heat retention properties and being lightweight and thin.

本發明之一實施例揭示一種複合紡織品,其包括紡織品基材以及形成於紡織品基材之上的保暖材料層。此保暖材料層包括奈米複合粉體。此奈米複合粉體由含吡咯烷酮的高分子以及無機粒子所組成。此含吡咯烷酮的高分子為聚乙烯吡咯烷酮、聚乙烯吡咯烷酮之衍生物或上述之組合。此無機粒子為由第一金屬MA、摻雜金屬MB及氧所構成之金屬氧化物。此 無機粒子佔此奈米複合粉體62.5-99.9重量%。 One embodiment of the present invention discloses a composite textile comprising a textile substrate and a layer of thermal insulation material formed over the textile substrate. The layer of thermal insulation material comprises a nano composite powder. This nanocomposite powder is composed of a pyrrolidone-containing polymer and inorganic particles. The pyrrolidone-containing polymer is a polyvinylpyrrolidone, a derivative of polyvinylpyrrolidone or a combination thereof. The inorganic particles are metal oxides composed of a first metal M A , a doping metal M B and oxygen. This inorganic particle accounts for 62.5 to 99.9% by weight of the nano composite powder.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,作詳細說明如下: The above and other objects, features, and advantages of the present invention will become more apparent and understood.

100‧‧‧複合紡織品 100‧‧‧Composite textiles

100’‧‧‧複合紡織品 100’‧‧‧Composite textiles

102‧‧‧紡織品基材 102‧‧‧Textile substrate

104‧‧‧保暖材料層 104‧‧‧Warm material layer

104a‧‧‧奈米複合粉體 104a‧‧‧Nano composite powder

104b‧‧‧高分子載體 104b‧‧‧ polymer carrier

第1圖為根據本發明之一些實施例之複合紡織品的剖面示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic cross-sectional view of a composite textile in accordance with some embodiments of the present invention.

第2圖為根據本發明之另一些實施例之複合紡織品的剖面示意圖。 2 is a schematic cross-sectional view of a composite textile in accordance with further embodiments of the present invention.

為使本發明之上述和其他目的、特徵、優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。然而,任何所屬技術領域中具有通常知識者將會瞭解本發明中各種特徵結構僅用於說明,並未依照比例描繪。事實上,為了使說明更加清晰,可任意增減各種特徵結構的相對尺寸比例。 The above and other objects, features and advantages of the present invention will become more <RTIgt; However, it will be understood by those of ordinary skill in the art that the description In fact, in order to make the description clearer, the relative size ratio of various feature structures can be arbitrarily increased or decreased.

在本說明書中,「約」、「大約」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內。在此給定的數量為大約的數量,意即在沒有特定說明的情況下,仍可隱含「約」、「大約」之含義。 In the present specification, the terms "about" and "about" are usually expressed within 20%, preferably within 10%, and more preferably within 5% of a given value or range. The quantity given here is an approximate quantity, meaning that the meaning of "about" or "about" may be implied without specific explanation.

依據本發明一些實施例,提供一種複合紡織品。此複合紡織品包括紡織品基材,以及形成於紡織品基材之上的保暖材料層。此保暖材料層包括奈米複合粉體。此奈米複合粉體可由含吡咯烷酮的高分子及無機粒子所組成。此含吡咯烷酮 的高分子可為聚乙烯吡咯烷酮、聚乙烯吡咯烷酮之衍生物或上述之組合。此無機粒子為由第一金屬MA、摻雜金屬MB及氧所構成之金屬氧化物。此無機粒子佔此奈米複合粉體62.5-99.9重量%。 In accordance with some embodiments of the present invention, a composite textile is provided. The composite textile comprises a textile substrate and a layer of thermal insulation material formed over the textile substrate. The layer of thermal insulation material comprises a nano composite powder. The nano composite powder may be composed of a pyrrolidone-containing polymer and inorganic particles. The pyrrolidone-containing polymer may be a polyvinylpyrrolidone, a derivative of polyvinylpyrrolidone or a combination thereof. The inorganic particles are metal oxides composed of a first metal M A , a doping metal M B and oxygen. This inorganic particle accounts for 62.5 to 99.9% by weight of the nano composite powder.

上述奈米複合粉體能夠高效率地吸收紅外線等光的能量,並且在吸收光的能量之後,能夠以熱能的方式釋放所吸收的能量。將包括此奈米複合粉體的保暖材料層形成於紡織品基材上,能夠在不會明顯增加紡織品的體積或重量的前提下,而大幅地改善紡織品的保暖效果。 The above-mentioned nanocomposite powder can efficiently absorb energy of light such as infrared rays, and after absorbing energy of light, can release absorbed energy as heat energy. Forming the layer of the heat retaining material including the nano composite powder on the textile substrate can greatly improve the warming effect of the textile without significantly increasing the volume or weight of the textile.

第1圖為根據本發明之一些實施例之複合紡織品100的剖面示意圖。請參照第1圖,在一些實施例中,複合紡織品100包括紡織品基材102,以及形成於紡織品基材102之上的保暖材料層104。在另一些實施例中,保暖材料層104可為由奈米複合粉體104a所形成的一層薄膜,而在這樣的實施例中,保暖材料層104以如第1圖所示之虛線進行繪示。 1 is a schematic cross-sectional view of a composite textile 100 in accordance with some embodiments of the present invention. Referring to FIG. 1 , in some embodiments, composite textile 100 includes a textile substrate 102 and a layer of thermal insulation material 104 formed over textile substrate 102 . In other embodiments, the layer of thermal insulation material 104 can be a film formed from nanocomposite powder 104a, while in such an embodiment, layer 40 of thermal insulation material is depicted in phantom as shown in FIG.

在一些實施例中,紡織品基材102可包括聚乙烯纖維紡織品、聚丙烯纖維紡織品、聚醯胺纖維紡織品、聚酯纖維紡織品、纖維素纖維紡織品、醋酸纖維紡織品、動物纖維紡織品或上述之組合。然而,這些材料僅為例示性的材料,並非用以限定。在其他實施例中,紡織品基材102可以是其他任何合適的紡織品。 In some embodiments, the textile substrate 102 can comprise a polyethylene fiber textile, a polypropylene fiber textile, a polyamide fiber textile, a polyester fiber textile, a cellulose fiber textile, a cellulose acetate textile, an animal fiber textile, or a combination thereof. However, these materials are merely illustrative materials and are not intended to be limiting. In other embodiments, the textile substrate 102 can be any other suitable textile.

奈米複合粉體104a可由無機粒子及含吡咯烷酮(pyrrolidone)的高分子所組成。奈米複合粉體104a能夠高效率地吸收紅外線等光的能量,並且在吸收光的能量之後,能夠以 熱能的方式釋放所吸收的能量。奈米複合粉體104a所釋放的熱能會傳導至紡織品基材102,進而提升複合紡織品100的最終產品的溫度。如此一來,可改善最終產品的保暖效果。 The nanocomposite powder 104a may be composed of inorganic particles and a polymer containing pyrrolidone. The nanocomposite powder 104a can efficiently absorb energy of light such as infrared rays, and after absorbing energy of light, can The way of heat releases the absorbed energy. The thermal energy released by the nanocomposite powder 104a is conducted to the textile substrate 102, thereby increasing the temperature of the final product of the composite textile 100. In this way, the warmth of the final product can be improved.

無機粒子可吸收光能並且釋放熱能,因此可改善紡織品的保暖效果。在一些實施例中,無機粒子可為由第一金屬MA、摻雜金屬MB及氧所構成之金屬氧化物,且此金屬氧化物可以下述通式(I)表示:(MA)(MB)O (I) Inorganic particles absorb light energy and release heat energy, thus improving the warmth of the textile. In some embodiments, the inorganic particles may be a metal oxide composed of the first metal M A , the doping metal M B , and oxygen, and the metal oxide may be represented by the following general formula (I): (M A ) (M B )O (I)

在通式(I)中,第一金屬MA可為鋅、銦、或錫,而摻雜金屬MB可為錫、鋁、鎵、鐵、或銻。 In the general formula (I), the first metal M A may be zinc, indium, or tin, and the doping metal M B may be tin, aluminum, gallium, iron, or antimony.

上述無機粒子是在單一金屬(例如,第一金屬MA)的氧化物中摻雜另一不同的金屬(例如,摻雜金屬MB)而形成。換言之,在第一金屬MA的氧化物中,有部分的第一金屬MA被摻雜金屬MB取代。如此一來,可使第一金屬MA的氧化物的能階產生變化。當無機粒子受到特定波長的光線照射時,此光線的能量轉換成無機粒子中的自由載子(free carrier)的動能。這些自由載子在無機粒子的晶格(lattice)中產生碰撞,進而釋放出熱能。舉例而言,在一些實施例中,無機粒子可為摻雜鎵的氧化鋅、摻雜鋁的氧化鋅、摻雜錫的氧化鋅、摻雜鎵的氧化銦或摻雜錫的氧化銦。然而,這些材料僅為例示性的材料,並非用以限定。在其他實施例中,無機粒子可為上述通式(I)所表示的任何無機粒子。 The above inorganic particles are formed by doping another oxide (for example, doping metal M B ) in an oxide of a single metal (for example, the first metal M A ). In other words, a first metal oxide of M A, M A first metal moiety is substituted doped metal M B. As a result, the energy level of the oxide of the first metal M A can be changed. When an inorganic particle is irradiated with light of a specific wavelength, the energy of the light is converted into the kinetic energy of a free carrier in the inorganic particle. These free carriers collide in the lattice of the inorganic particles, thereby releasing thermal energy. For example, in some embodiments, the inorganic particles can be gallium-doped zinc oxide, aluminum-doped zinc oxide, tin-doped zinc oxide, gallium-doped indium oxide, or tin-doped indium oxide. However, these materials are merely illustrative materials and are not intended to be limiting. In other embodiments, the inorganic particles may be any of the inorganic particles represented by the above formula (I).

若無機粒子中的摻雜金屬MB的含量太少,則自由載子的濃度太低。如此一來,將導致無機粒子無法有效地吸收 光能並釋放熱能。反之,若無機粒子中的摻雜金屬MB的含量太多,則無法有效地吸收光能並釋放熱能。因此,可將無機粒子中的摻雜金屬MB的含量調整至特定的範圍之內,以使無機粒子可有效地吸收光能且釋放熱能。在一些實施例中,以100重量份之第一金屬MA為基準,摻雜金屬MB為0.1至20重量份。在另一些實施例中,以100重量份之第一金屬MA為基準,摻雜金屬MB為1至15重量份。在又一些實施例中,以100重量份之第一金屬MA為基準,摻雜金屬MB為5至10重量份。 If the content of the doping metal M B in the inorganic particles is too small, the concentration of the free carrier is too low. As a result, the inorganic particles cannot effectively absorb the light energy and release the heat energy. On the other hand, if the content of the doping metal M B in the inorganic particles is too large, the light energy cannot be efficiently absorbed and the thermal energy is released. Therefore, the content of the doping metal M B in the inorganic particles can be adjusted to a specific range so that the inorganic particles can efficiently absorb the light energy and release the heat energy. In some embodiments, the doping metal M B is 0.1 to 20 parts by weight based on 100 parts by weight of the first metal M A . In other embodiments, the doping metal M B is from 1 to 15 parts by weight based on 100 parts by weight of the first metal M A . In still other embodiments, the doping metal M B is 5 to 10 parts by weight based on 100 parts by weight of the first metal M A .

在一些實施例中,製備無機粒子的方法可包括以下步驟。 In some embodiments, the method of preparing inorganic particles can include the following steps.

步驟1:將第一金屬MA的硝酸鹽或硫酸鹽與摻雜金屬MB的氯化物或硫酸鹽混合並溶解於水中,而得到混合鹽溶液。在此混合鹽溶液中,第一金屬MA與摻雜金屬MB的總濃度為0.5ml/L-5.0ml/L。再者,在此混合鹽溶液中,以100重量份之第一金屬MA為基準,摻雜金屬MB為0.1至20重量份。 Step 1: Mixing the nitrate or sulfate of the first metal M A with the chloride or sulfate of the doped metal M B and dissolving in water to obtain a mixed salt solution. In this mixed salt solution, the total concentration of the first metal M A and the doping metal M B is from 0.5 ml/L to 5.0 ml/L. Further, in the mixed salt solution, the doping metal M B is 0.1 to 20 parts by weight based on 100 parts by weight of the first metal M A .

步驟2:將步驟1所配置的混合鹽溶液與碳酸氫銨溶液分別滴加到水中,並快速攪拌,而生成白色沉澱物。在步驟2中,溫度保持在40℃,且pH值控制在7.0-7.5。此白色沉澱物即為均勻摻雜了摻雜金屬MB的第一金屬MA的鹼式碳酸鹽。 Step 2: The mixed salt solution and the ammonium hydrogencarbonate solution disposed in the step 1 were separately added dropwise to water, and rapidly stirred to form a white precipitate. In step 2, the temperature is maintained at 40 ° C and the pH is controlled between 7.0 and 7.5. This white precipitate is the basic carbonate of the first metal M A uniformly doped with the doping metal M B .

步驟3:將上述白色沉澱物經過洗滌分離後烘乾,而得到白色粉末。所得到的白色粉末在混合了氫氣與氬氣的環境下進行燒結。燒結溫度為400℃-700℃,且燒結時間為30-60分鐘。燒結後所得到的粉體,即為摻雜了摻雜金屬MB的第一金屬MA的無機粒子。 Step 3: The above white precipitate was washed and separated and dried to give a white powder. The obtained white powder was sintered in an environment in which hydrogen gas and argon gas were mixed. The sintering temperature is from 400 ° C to 700 ° C, and the sintering time is from 30 to 60 minutes. The powder obtained after sintering is an inorganic particle doped with a first metal M A doped with a metal M B .

含吡咯烷酮的高分子可與無機粒子形成複合物(亦即,奈米複合粉體104a)。若是沒有含吡咯烷酮的高分子存在,則無機粒子容易發生聚集,造成無機粒子的粒徑增加且無機粒子的表面積降低。如此一來,將使吸收光能與釋放熱能的效率降低。因此,藉由將含吡咯烷酮的高分子與無機粒子結合而形成奈米複合粉體104a,可避免無機粒子的聚集,進而可避免吸收光能與釋放熱能效率降低的問題。 The pyrrolidone-containing polymer can form a complex with the inorganic particles (that is, the nanocomposite powder 104a). If a polymer containing no pyrrolidone is present, the inorganic particles are likely to aggregate, and the particle diameter of the inorganic particles is increased and the surface area of the inorganic particles is lowered. As a result, the efficiency of absorbing light energy and releasing heat energy is reduced. Therefore, by combining the pyrrolidone-containing polymer with the inorganic particles to form the nanocomposite powder 104a, aggregation of the inorganic particles can be avoided, and the problem of reduced absorption of light energy and release of thermal energy can be avoided.

在一些實施例中,含吡咯烷酮的高分子為聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)、聚乙烯吡咯烷酮之衍生物或上述之組合。在一些實施例中,聚乙烯吡咯烷酮之衍生物包括末端具異氰酸酯基之聚乙烯吡咯烷酮、末端具甲氧基之聚乙烯吡咯烷酮、末端具乙氧基之聚乙烯吡咯烷酮、末端具羧酸基之聚乙烯吡咯烷酮或上述之組合。然而,這些材料僅為例示性的材料,並非用以限定。在其他實施例中,含吡咯烷酮的高分子可為其他任何合適的含吡咯烷酮的高分子。 In some embodiments, the pyrrolidone-containing polymer is polyvinylpyrrolidone (PVP), a derivative of polyvinylpyrrolidone, or a combination thereof. In some embodiments, the polyvinylpyrrolidone derivative comprises a polyvinylpyrrolidone having an isocyanate group at the end, a polyvinylpyrrolidone having a methoxy group at the end, a polyvinylpyrrolidone having an ethoxy group at the end, and a polyethylene having a carboxylic acid group at the end. Pyrrolidone or a combination thereof. However, these materials are merely illustrative materials and are not intended to be limiting. In other embodiments, the pyrrolidone-containing polymer can be any other suitable pyrrolidone-containing polymer.

若奈米複合粉體104a中的無機粒子的含量太少,則吸收光能與釋放熱能的效率降低。反之,若奈米複合粉體104a中的無機粒子的含量太多,則無機粒子容易發生聚集,造成奈米複合粉體104a的粒徑增加且表面積降低。如此一來,吸收光能與釋放熱能的效率也會降低。因此,可將奈米複合粉體104a中的無機粒子的含量調整至特定的範圍之內,以避免吸收光能及釋放熱能的效率受到影響。在一些實施例中,無機粒子佔奈米複合粉體的62.5-99.9重量%。在另一些實施例中,無機粒子佔奈米複合粉體的70.0-90.0重量%。在又一些實施例中, 無機粒子佔奈米複合粉體的75.0-85.0重量%。 When the content of the inorganic particles in the nanocomposite powder 104a is too small, the efficiency of absorbing light energy and releasing heat energy is lowered. On the other hand, if the content of the inorganic particles in the nanocomposite powder 104a is too large, the inorganic particles are likely to aggregate, and the particle diameter of the nanocomposite powder 104a is increased and the surface area is lowered. As a result, the efficiency of absorbing light energy and releasing heat energy is also reduced. Therefore, the content of the inorganic particles in the nanocomposite powder 104a can be adjusted to a specific range to avoid the influence of the efficiency of absorbing light energy and releasing heat energy. In some embodiments, the inorganic particles comprise from 62.5 to 99.9% by weight of the nanocomposite powder. In other embodiments, the inorganic particles comprise from 70.0 to 90.0% by weight of the nanocomposite powder. In still other embodiments, The inorganic particles account for 75.0-85.0% by weight of the nano composite powder.

在一些實施例中,含吡咯烷酮的高分子的重量平均分子量為3,000-1,500,000。在另一些實施例中,含吡咯烷酮的高分子的重量平均分子量為30,000-1,100,000。在又一些實施例中,含吡咯烷酮的高分子的重量平均分子量為300,000-700,000。 In some embodiments, the pyrrolidone-containing polymer has a weight average molecular weight of from 3,000 to 1,500,000. In other embodiments, the pyrrolidone-containing polymer has a weight average molecular weight of 30,000 to 1,100,000. In still other embodiments, the pyrrolidone-containing polymer has a weight average molecular weight of from 300,000 to 700,000.

製備奈米複合粉體104a的方法可為任何合適的方法。舉例而言,在一些實施例中,可將無機粒子、含吡咯烷酮的高分子及溶劑混合,而形成膠體(colloid)混合物。接著,藉由去除溶劑而將此膠體混合物乾燥,即可得到奈米複合粉體104a。 The method of preparing the nanocomposite powder 104a can be any suitable method. For example, in some embodiments, inorganic particles, pyrrolidone-containing polymers, and solvents can be combined to form a colloid mixture. Next, the colloidal mixture is dried by removing the solvent to obtain a nanocomposite powder 104a.

為了能夠得到膠體混合物,含吡咯烷酮的高分子在溶劑中的溶解度應為良好。並且,為了能夠有效率地移除膠體混合物中的溶劑,溶劑應具有較低的沸點。於上述條件下,在一些實施例中,合適的溶劑可包括二甲基乙醯胺(dimethylacetamide,DMAc)、二甲基亞碸(dimethyl sulfoxide,DMSO)。然而,這些溶劑僅為例示性的溶劑,並非用以限定。在其他實施例中,溶劑可以是其他任何合適的溶劑。 In order to obtain a colloidal mixture, the solubility of the pyrrolidone-containing polymer in a solvent should be good. Also, in order to be able to efficiently remove the solvent in the colloidal mixture, the solvent should have a lower boiling point. Under the above conditions, in some embodiments, suitable solvents may include dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO). However, these solvents are merely exemplary solvents and are not intended to be limiting. In other embodiments, the solvent can be any other suitable solvent.

在一些實施例中,將膠體混合物乾燥的方法可包括噴霧乾燥法(spray dry)、減壓蒸餾法(reduced pressure distillation)。然而,這些方法僅為例示性的方法,並非用以限定。在其他實施例中,可藉由其他任何合適的方法將膠體混合物乾燥。 In some embodiments, the method of drying the colloidal mixture can include spray dry, reduced pressure distillation. However, these methods are merely exemplary methods and are not intended to be limiting. In other embodiments, the colloidal mixture can be dried by any other suitable method.

在一些實施例中,可將上述膠體混合物直接塗佈 於紡織品基材102上。接著,再將此膠體混合物乾燥,而得到複合紡織品100。如第1圖所示,所得到的複合紡織品100可具有紡織品基材102,以及形成於紡織品基材102之上的保暖材料層104。在這樣的實施例中,可藉由簡單的製程,高效率地製作複合紡織品100。因此,可大幅降低生產的時間與成本。 In some embodiments, the above colloidal mixture can be directly coated On the textile substrate 102. Next, the colloidal mixture is dried to obtain a composite textile 100. As shown in FIG. 1, the resulting composite textile 100 can have a textile substrate 102, and a layer of thermal insulation material 104 formed over the textile substrate 102. In such an embodiment, the composite textile 100 can be efficiently produced by a simple process. Therefore, the time and cost of production can be greatly reduced.

可藉由合適的塗佈製程將膠體混合物塗佈紡織品基材102上。在一些實施例中,塗佈製程可包括凹版印刷(gravure printing)、網版印刷(screen-printing)製程、輥塗佈(roll coating)製程、噴灑塗佈(spray coating)製程、刮刀塗佈(blade coating)製程、其他合適的沉積製程或上述之組合。 The colloidal mixture can be coated onto the textile substrate 102 by a suitable coating process. In some embodiments, the coating process may include a gravure printing, a screen-printing process, a roll coating process, a spray coating process, and a knife coating process ( Blade coating), other suitable deposition processes, or combinations thereof.

在膠體混合物形成之後,若是將膠體混合物放置一段時間(例如,24小時),則膠體混合物中的奈米複合粉體104a會逐漸地聚集並沉澱,而導致奈米複合粉體104a的粒徑增加。如此一來,將會降低吸收光能與釋放熱能的效率。 After the colloidal mixture is formed, if the colloidal mixture is left for a period of time (for example, 24 hours), the nanocomposite powder 104a in the colloidal mixture gradually aggregates and precipitates, resulting in an increase in the particle size of the nanocomposite powder 104a. . As a result, the efficiency of absorbing light energy and releasing heat energy will be reduced.

在另一些實施例中,可將上述膠體混合物(以下亦稱為「第一膠體混合物」)乾燥後,得到乾燥的奈米複合粉體104a。之後,再視需要將乾燥的奈米複合粉體104a溶解於合適的溶劑中,而再次形成膠體混合物(以下亦稱為「第二膠體混合物」)。接著,再將此第二膠體混合物塗佈於紡織品基材102上並乾燥,而得到複合紡織品100。在這樣的實施例中,經過乾燥的奈米複合粉體104a具有體積小且物理化學性質安定的優點。因此,經過乾燥的奈米複合粉體104a可不必立即使用,且於適當的保存條件下可保存相當長的時間(如,從數日到數月),而更為符合運用需求。如此一來,將可大幅改善製程的 靈活性。 In still other embodiments, the above colloidal mixture (hereinafter also referred to as "first colloidal mixture") may be dried to obtain dried nanocomposite powder 104a. Thereafter, the dried nanocomposite powder 104a is dissolved in a suitable solvent as needed, and a colloidal mixture (hereinafter also referred to as "second colloidal mixture") is formed again. Next, the second colloidal mixture is applied to the textile substrate 102 and dried to obtain a composite textile 100. In such an embodiment, the dried nanocomposite powder 104a has the advantage of being small in size and stable in physicochemical properties. Therefore, the dried nanocomposite powder 104a can be used without being used immediately, and can be stored for a relatively long period of time under appropriate storage conditions (for example, from several days to several months), and is more suitable for the application. As a result, the process will be greatly improved. flexibility.

奈米複合粉體104a的粒徑實質上可相等於膠體混合物中的膠體粒徑。舉例而言,將上述第一膠體混合物乾燥後,所得到的奈米複合粉體104a的粒徑實質上可相等於第一膠體混合物中的膠體粒徑。在另一些實施例中,將上述第二膠體混合物乾燥後,所得到的奈米複合粉體104a的粒徑實質上可相等於第二膠體混合物中的膠體粒徑。因此,可藉由測量膠體混合物中的膠體粒徑,而得知奈米複合粉體104a的粒徑。 The particle size of the nanocomposite powder 104a can be substantially equal to the colloidal particle size in the colloidal mixture. For example, after drying the first colloidal mixture, the particle size of the obtained nanocomposite powder 104a may be substantially equal to the colloidal particle size in the first colloidal mixture. In other embodiments, after drying the second colloidal mixture, the particle size of the resulting nanocomposite powder 104a may be substantially equal to the colloidal particle size in the second colloidal mixture. Therefore, the particle diameter of the nanocomposite powder 104a can be known by measuring the colloidal particle diameter in the colloidal mixture.

若奈米複合粉體104a的粒徑太大,則奈米複合粉體104a的表面積會降低。如此一來,會降低吸收光能與釋放熱能的效率。另一方面,為了製備粒徑較小的奈米複合粉體104a,可能需要花費較多的時間與成本。因此,可將奈米複合粉體104a的中值粒徑(median particle diameter)D50調整至特定的範圍之內。在一些實施例中,奈米複合粉體104a的中值粒徑D50為30-600nm。在另一些實施例中,奈米複合粉體104a的中值粒徑D50為35-200nm。在又一些實施例中,奈米複合粉體104a的中值粒徑D50為40-100nm。 When the particle diameter of the nanocomposite powder 104a is too large, the surface area of the nanocomposite powder 104a is lowered. As a result, the efficiency of absorbing light energy and releasing heat energy is reduced. On the other hand, in order to prepare the nanocomposite powder 104a having a small particle size, it may take a lot of time and cost. Therefore, the median particle diameter D50 of the nanocomposite powder 104a can be adjusted to a specific range. In some embodiments, the nanocomposite powder 104a has a median particle size D50 of 30-600 nm. In other embodiments, the nanocomposite powder 104a has a median particle size D50 of 35-200 nm. In still other embodiments, the nanocomposite powder 104a has a median particle diameter D50 of 40-100 nm.

仍請參照第1圖,保暖材料層104的厚度為T。若保暖材料層104的厚度T太小,則吸收光能與釋放熱能的效率降低。反之,若保暖材料層104的厚度T太大,則可能會有部分的奈米複合粉體104a剝落,降低最終產品的良率。再者,若保暖材料層104的厚度T太大,會降低複合紡織品100的透氣性,可能會造成使用者的不適感。因此,可將保暖材料層104的厚度T調整至特定的範圍之內。在一些實施例中,保暖材料層104的 厚度T為1-100μm。在另一些實施例中,保暖材料層104的厚度T為5-80μm。在又一些實施例中,保暖材料層104的厚度T為10-50μm。保暖材料層104的厚度可使用TECLOCK厚薄計(例如,製造廠商:日本得樂;產品型號:SM-112)進行測定。 Still referring to Fig. 1, the thickness of the heat retaining material layer 104 is T. If the thickness T of the heat retaining material layer 104 is too small, the efficiency of absorbing light energy and releasing heat energy is lowered. On the other hand, if the thickness T of the heat retaining material layer 104 is too large, a part of the nanocomposite powder 104a may peel off, which lowers the yield of the final product. Furthermore, if the thickness T of the heat retaining material layer 104 is too large, the breathability of the composite textile 100 may be lowered, which may cause discomfort to the user. Therefore, the thickness T of the heat retaining material layer 104 can be adjusted to a specific range. In some embodiments, the layer of thermal insulation material 104 The thickness T is 1-100 μm. In other embodiments, the thickness W of the layer of thermal insulation material 104 is between 5 and 80 microns. In still other embodiments, the thickness T of the layer of thermal insulation material 104 is 10-50 [mu]m. The thickness of the heat retaining material layer 104 can be measured using a TECLOCK thickness gauge (for example, manufacturer: Japan Dele; product model: SM-112).

相似地,若奈米複合粉體104a的量太少,則吸收光能與釋放熱能的效率降低。反之,若奈米複合粉體104a的量太多,則可能會有部分的奈米複合粉體104a剝落,降低最終產品的良率。因此,可將奈米複合粉體104a的量調整至特定的範圍之內。在一些實施例中,以100重量份之紡織品基材102為基準,奈米複合粉體104a為0.0001-600重量份。在另一些實施例中,以100重量份之紡織品基材102為基準,奈米複合粉體104a為0.01-100重量份。在另一些實施例中,以100重量份之紡織品基材102為基準,奈米複合粉體104a為0.1-50重量份。在又一些實施例中,以100重量份之紡織品基材102為基準,奈米複合粉體104a為1-10重量份。 Similarly, if the amount of the nanocomposite powder 104a is too small, the efficiency of absorbing light energy and releasing heat energy is lowered. On the other hand, if the amount of the nanocomposite powder 104a is too large, a part of the nanocomposite powder 104a may peel off, and the yield of the final product may be lowered. Therefore, the amount of the nanocomposite powder 104a can be adjusted to a specific range. In some embodiments, the nanocomposite powder 104a is from 0.0001 to 100,000 parts by weight based on 100 parts by weight of the textile substrate 102. In other embodiments, the nanocomposite powder 104a is from 0.01 to 100 parts by weight based on 100 parts by weight of the textile substrate 102. In other embodiments, the nanocomposite powder 104a is from 0.1 to 50 parts by weight based on 100 parts by weight of the textile substrate 102. In still other embodiments, the nanocomposite powder 104a is from 1 to 10 parts by weight based on 100 parts by weight of the textile substrate 102.

為了使複合紡織品100的顏色與紡織品基材102的顏色相同或相近,保暖材料層104可為透明性較高的薄膜。換言之,對波長為400-700nm範圍的可見光而言,保暖材料層104的光穿透率越高越好。在一些實施例中,在波長為400-700nm的範圍中,且保暖材料層104的厚度T為6μm的條件下,保暖材料層104的光穿透率為70-83%。在一些實施例中,保暖材料層104的可見光穿透率可使用紅外光/可見光吸收光譜儀(例如,UV/VIS/NIR光譜儀;製造廠商:JASCO INTERNATIONAL CO.,LTD.;產品型號:JASCO-V570)進行測定。再者,保暖材料層 104的光穿透率之值,是依據保暖材料層104的厚度T而決定。因此,當保暖材料層104的厚度T並非6μm時,保暖材料層104的光穿透率可由厚度T換算求得。舉例而言,假設某一保暖材料層104厚度為X μm時的光穿透率為Y,則當此保暖材料層104的厚度為6μm時的光穿透率可套用以下算式換算求得:光穿透率=1-{[6(1-Y)]/X}。 In order to make the color of the composite textile 100 the same or similar to the color of the textile substrate 102, the thermal insulation material layer 104 may be a film having higher transparency. In other words, for visible light having a wavelength in the range of 400 to 700 nm, the higher the light transmittance of the heat retaining material layer 104, the better. In some embodiments, the light-shielding material layer 104 has a light transmittance of 70-83% in a range of wavelengths of 400-700 nm and a thickness T of the heat-insulating material layer 104 of 6 μm. In some embodiments, the visible light transmittance of the layer of thermal insulation material 104 may be an infrared/visible absorption spectrometer (eg, UV/VIS/NIR spectrometer; manufacturer: JASCO INTERNATIONAL CO., LTD.; product model: JASCO-V570 ) Perform the measurement. Furthermore, the layer of thermal insulation The value of the light transmittance of 104 is determined in accordance with the thickness T of the layer of thermal insulation material 104. Therefore, when the thickness T of the heat retaining material layer 104 is not 6 μm, the light transmittance of the heat retaining material layer 104 can be obtained by converting the thickness T. For example, assuming that the light transmittance of a certain heat retaining material layer 104 is X μm, the light transmittance when the thickness of the warming material layer 104 is 6 μm can be obtained by converting the following formula: Penetration rate = 1 - {[6(1-Y)] / X}.

為了大幅改善複合紡織品100的保暖能力,保暖材料層104可為紅外線吸收能力較高的薄膜。換言之,保暖材料層104的紅外線吸收能力越高越好。更具體來說,對波長為1,000-2,500nm範圍的紅外線而言,保暖材料層104的光吸收率越高越好。在一些實施例中,在波長為1,000-2,500nm的範圍中,且保暖材料層104的厚度T為6μm的條件下,保暖材料層104的光吸收率為70-83%。在一些實施例中,保暖材料層104的紅外光吸收率可使用紅外光/可見光吸收光譜儀(例如,UV/VIS/NIR光譜儀;製造廠商:JASCO INTERNATIONAL CO.,LTD.;產品型號:JASCO-V570)進行測定。再者,保暖材料層104的光吸收率之值,是依據保暖材料層104的厚度T而決定。因此,當保暖材料層104的厚度T並非6μm時,保暖材料層104的光吸收率可由厚度T換算求得。舉例而言,假設某一保暖材料層104厚度為A μm時的光吸收率為B,則當此保暖材料層104的厚度為6μm時的光吸收率可套用以下算式換算求得:光吸收率=(6×B/A)。 In order to greatly improve the warming ability of the composite textile 100, the heat retaining material layer 104 may be a film having a high infrared absorbing ability. In other words, the higher the infrared absorbing ability of the heat retaining material layer 104, the better. More specifically, for infrared rays having a wavelength in the range of 1,000 to 2,500 nm, the higher the light absorptivity of the heat retaining material layer 104, the better. In some embodiments, the light-absorbing material layer 104 has a light absorptivity of 70-83% under the conditions of a wavelength of 1,000-2,500 nm and a thickness T of the heat retaining material layer 104 of 6 μm. In some embodiments, the infrared light absorption rate of the layer of thermal insulation material 104 may be an infrared/visible absorption spectrometer (eg, UV/VIS/NIR spectrometer; manufacturer: JASCO INTERNATIONAL CO., LTD.; product model: JASCO-V570 ) Perform the measurement. Furthermore, the value of the light absorption rate of the heat retaining material layer 104 is determined according to the thickness T of the heat retaining material layer 104. Therefore, when the thickness T of the heat retaining material layer 104 is not 6 μm, the light absorptivity of the heat retaining material layer 104 can be obtained by converting the thickness T. For example, if the light absorption rate of a certain heat retaining material layer 104 is A μm, the light absorptance when the thickness of the warming material layer 104 is 6 μm can be obtained by converting the following formula: light absorptivity = (6 × B / A).

第2圖為根據本發明之另一些實施例之複合紡織品100’的剖面示意圖。請參照第2圖,複合紡織品100’包括紡織 品基材102,以及形成於紡織品基材102之上的保暖材料層104。第2圖與第1圖相似,差別在於保暖材料層104包括奈米複合粉體104a及高分子載體104b。第2圖與第1圖中相同的元件使用相同的標號表示。為了簡化說明,關於相同於第1圖的元件及其形成製程步驟,在此不再贅述。 Figure 2 is a schematic cross-sectional view of a composite textile 100' in accordance with further embodiments of the present invention. Please refer to Figure 2, composite textile 100' including textile A substrate 102, and a layer of thermal insulation material 104 formed over the textile substrate 102. Fig. 2 is similar to Fig. 1 except that the heat retaining material layer 104 includes the nanocomposite powder 104a and the polymer carrier 104b. The same elements in Fig. 2 and Fig. 1 are denoted by the same reference numerals. In order to simplify the description, the components similar to those of FIG. 1 and the steps of forming the same are not described herein again.

若是奈米複合粉體104a與紡織品基材102之間的黏著性不足,則將導致部分的奈米複合粉體104a從紡織品基材102上剝落。在一些實施例中,保暖材料層104是由奈米複合粉體104a與高分子載體104b所形成的一層薄膜,如第2圖所繪示。在這樣的實施例中,高分子載體104b可發揮膠黏劑的功能,能夠進一步增強奈米複合粉體104a與紡織品基材102之間的黏著性。因此,可改善或避免上述奈米複合粉體104a剝落的問題。 If the adhesion between the nanocomposite powder 104a and the textile substrate 102 is insufficient, a portion of the nanocomposite powder 104a is peeled off from the textile substrate 102. In some embodiments, the layer of thermal insulation material 104 is a film formed from nanocomposite powder 104a and polymeric carrier 104b, as depicted in FIG. In such an embodiment, the polymer carrier 104b functions as an adhesive and can further enhance the adhesion between the nanocomposite powder 104a and the textile substrate 102. Therefore, the problem of peeling of the above-described nanocomposite powder 104a can be improved or avoided.

為了避免上述奈米複合粉體104a剝落,高分子載體104b對紡織品基材102的黏著性可優於奈米複合粉體104a對紡織品基材102的黏著性。再者,若是高分子載體104b與奈米複合粉體104a的相容性不佳,則高分子載體104b與奈米複合粉體104a可能會發生分層(delaminate)。亦即,奈米複合粉體104a可能會集中於高分子載體104b之頂部或底部,而不會均勻地分散於高分子載體104b之中。若高分子載體104b與奈米複合粉體104a發生分層,則無法有效地增強奈米複合粉體104a與紡織品基材102之間的黏著性。如此一來,將無法避免奈米複合粉體104a的剝落。因此,可選擇對紡織品基材102的黏著性良好且與奈米複合粉體104a的相容性亦良好的材料作為高分子載體 104b。 In order to avoid the peeling of the above-mentioned nanocomposite powder 104a, the adhesion of the polymer carrier 104b to the textile substrate 102 may be superior to the adhesion of the nanocomposite powder 104a to the textile substrate 102. Further, if the compatibility between the polymer carrier 104b and the nanocomposite powder 104a is not good, the polymer carrier 104b and the nanocomposite powder 104a may be delaminated. That is, the nanocomposite powder 104a may be concentrated on the top or bottom of the polymer carrier 104b without being uniformly dispersed in the polymer carrier 104b. When the polymer carrier 104b and the nanocomposite powder 104a are layered, the adhesion between the nanocomposite powder 104a and the textile substrate 102 cannot be effectively enhanced. As a result, peeling of the nanocomposite powder 104a cannot be avoided. Therefore, a material having good adhesion to the textile substrate 102 and good compatibility with the nanocomposite powder 104a can be selected as the polymer carrier. 104b.

在一些實施例中,高分子載體104b可包括聚氨酯、聚丙烯腈、聚偏二氟乙烯、聚丙烯酸酯、聚丙烯、聚醯胺、聚酯、熱塑性聚酯彈性體或上述之組合。然而,這些材料僅為例示性的材料,並非用以限定。在其他實施例中,高分子載體104b可以是其他任何合適的高分子。藉由添加高分子載體104b,能夠藉由紡絲製程製備包括奈米複合粉體104a與高分子載體104b的保暖材料層104。如此一來,可大幅改善奈米複合粉體104a的成膜性。 In some embodiments, the polymeric carrier 104b can comprise polyurethane, polyacrylonitrile, polyvinylidene fluoride, polyacrylate, polypropylene, polyamide, polyester, thermoplastic polyester elastomer, or combinations thereof. However, these materials are merely illustrative materials and are not intended to be limiting. In other embodiments, the polymeric carrier 104b can be any other suitable polymeric medium. By adding the polymer carrier 104b, the heat retaining material layer 104 including the nanocomposite powder 104a and the polymer carrier 104b can be prepared by a spinning process. As a result, the film formability of the nanocomposite powder 104a can be greatly improved.

用以製備如第2圖所繪示的複合紡織品100’的方法可為任何合適的方法。舉例而言,在一些實施例中,可將無機粒子、含吡咯烷酮的高分子及溶劑混合形成膠體混合物。接著,將此膠體混合物加入高分子載體104b中,並藉由靜電紡絲製成不織布薄膜。接著,將此不織布薄膜貼合於紡織品基材102上,即可得到複合紡織品100’。如同上文所述,在這樣的實施例中,可大幅降低生產的時間與成本。 The method for preparing the composite textile 100' as depicted in Figure 2 can be any suitable method. For example, in some embodiments, inorganic particles, pyrrolidone-containing polymers, and solvents can be combined to form a colloidal mixture. Next, this colloidal mixture was added to the polymer carrier 104b, and a nonwoven fabric film was formed by electrospinning. Next, the nonwoven fabric film is bonded to the textile substrate 102 to obtain a composite textile 100'. As described above, in such an embodiment, the time and cost of production can be greatly reduced.

在另一些實施例中,可將乾燥的奈米複合粉體104a溶解於合適的溶劑中,而形成膠體混合物。接著,再將此膠體混合物加入高分子載體104b中,並藉由靜電紡絲製成不織布薄膜。接著,將此不織布薄膜貼合於紡織品基材102上,即可得到複合紡織品100’。如同上文所述,在這樣的實施例中,可大幅改善製程的靈活性。 In other embodiments, the dried nanocomposite powder 104a can be dissolved in a suitable solvent to form a colloidal mixture. Next, this colloidal mixture was further added to the polymer carrier 104b, and a nonwoven fabric film was formed by electrospinning. Next, the nonwoven fabric film is bonded to the textile substrate 102 to obtain a composite textile 100'. As described above, in such an embodiment, the flexibility of the process can be greatly improved.

若是高分子載體104b相對於奈米複合粉體104a的比例太低,則無法增強奈米複合粉體104a與紡織品基材102之 間的黏著性。再者,若是高分子載體104b相對於奈米複合粉體104a的比例太低,則會增加保暖材料層104的表面粗造度,並且降低保暖材料層104的表面張力與機械強度。如此一來,將導致料層104的破損或剝落。反之,若是高分子載體104b相對於奈米複合粉體104a的比例太高,則吸收光能與釋放熱能的效率降低。因此,可將高分子載體104b相對於奈米複合粉體104a的比例調整至特定的範圍之內。在一些實施例中,在保暖材料層104中,以100重量份之奈米複合粉體104a為基準,高分子載體104b為0.1至60重量份。在另一些實施例中,在保暖材料層104中,以100重量份之奈米複合粉體104a為基準,高分子載體104b為1至40重量份。在另一些實施例中,在保暖材料層104中,以100重量份之奈米複合粉體104a為基準,高分子載體104b為5至20重量份。 If the ratio of the polymer carrier 104b to the nanocomposite powder 104a is too low, the nanocomposite powder 104a and the textile substrate 102 cannot be reinforced. Adhesion between. Further, if the ratio of the polymer carrier 104b to the nanocomposite powder 104a is too low, the surface roughness of the heat retaining material layer 104 is increased, and the surface tension and mechanical strength of the heat retaining material layer 104 are lowered. As a result, the material layer 104 will be damaged or peeled off. On the other hand, if the ratio of the polymer carrier 104b to the nanocomposite powder 104a is too high, the efficiency of absorbing light energy and releasing heat energy is lowered. Therefore, the ratio of the polymer carrier 104b to the nanocomposite powder 104a can be adjusted to a specific range. In some embodiments, in the heat retaining material layer 104, the polymer carrier 104b is 0.1 to 60 parts by weight based on 100 parts by weight of the nanocomposite powder 104a. In still other embodiments, the polymer carrier 104b is 1 to 40 parts by weight based on 100 parts by weight of the nano composite powder 104a in the heat retaining material layer 104. In other embodiments, the polymer carrier 104b is 5 to 20 parts by weight based on 100 parts by weight of the nanocomposite powder 104a in the heat retaining material layer 104.

下文特舉數實施例,來說明本發明所述之複合紡織品及製備複合紡織品的方法。 The composite textiles of the present invention and methods of making the composite textiles are described below by way of specific examples.

在本說明書中以摻雜鎵的氧化鋅(以下簡稱「GZO」)與摻雜鋁的氧化鋅(以下簡稱「AZO」)為例,說明無機粒子之製備方式。 In the present specification, a method of preparing inorganic particles will be described by taking gallium-doped zinc oxide (hereinafter referred to as "GZO") and aluminum-doped zinc oxide (hereinafter referred to as "AZO") as an example.

【製備例1】GZO(重量比:Ga/Zn=5.0/100.0)之製備: [Preparation Example 1] Preparation of GZO (weight ratio: Ga/Zn = 5.0/100.0):

將硝酸鋅10g與氯化鎵0.33g混合並溶解於水中,而得到混合鹽溶液。接著,將上述混合鹽溶液50ml與碳酸氫銨溶液50ml分別滴加到水中,並快速攪拌,而生成白色沉澱物。在此步驟中,溫度保持在40℃,且pH值控制在7.0-7.5。接 著,將上述白色沉澱物經過洗滌分離後烘乾,而得到白色粉末。所得到的白色粉末在混合了氫氣與氬氣(氫氣的分壓相同於氬氣的分壓)的環境下進行燒結。燒結溫度為50℃,且燒結時間為60分鐘。燒結後所得到的粉體,即為GZO無機粒子(重量比:Ga/Zn=5.0/100.0)。 10 g of zinc nitrate was mixed with 0.33 g of gallium chloride and dissolved in water to obtain a mixed salt solution. Next, 50 ml of the above mixed salt solution and 50 ml of an ammonium hydrogencarbonate solution were respectively added dropwise to water, and rapidly stirred to form a white precipitate. In this step, the temperature was maintained at 40 ° C and the pH was controlled at 7.0-7.5. Connect The white precipitate was washed and separated and dried to obtain a white powder. The obtained white powder was sintered in an environment in which hydrogen gas and argon gas (the partial pressure of hydrogen was the same as the partial pressure of argon gas) were mixed. The sintering temperature was 50 ° C and the sintering time was 60 minutes. The powder obtained after sintering is GZO inorganic particles (weight ratio: Ga/Zn = 5.0/100.0).

【製備例2】AZO(重量比:Al/Zn=0.4/100.0)之製備: [Preparation Example 2] Preparation of AZO (weight ratio: Al/Zn = 0.4/100.0):

將硝酸鋅10g與氯化鋁0.7g混合並溶解於水中,而得到混合鹽溶液。除此之外,進行與製備例1相同的操作步驟,而製備AZO無機粒子(重量比:Al/Zn=0.4/100.0)。 10 g of zinc nitrate was mixed with 0.7 g of aluminum chloride and dissolved in water to obtain a mixed salt solution. Except for this, the same procedure as in Preparation Example 1 was carried out to prepare AZO inorganic particles (weight ratio: Al/Zn = 0.4/100.0).

【實施例1-1】GZO/PVP奈米複合粉體之製備: [Example 1-1] Preparation of GZO/PVP nano composite powder:

將100克GZO(重量比:Ga/Zn=5.0/100.0)、5克聚乙烯吡咯烷酮(PVP;Mw=58,000)與400克二甲基乙醯胺(DMAc)混合並攪拌均勻,以形成第一膠體混合物。測定膠體的第一中值粒徑D50。在室溫下觀察其膠體混合物的穩定性,約可維持穩定分散至少24小時。將膠體混合物噴霧乾燥,而得到GZO/PVP奈米複合粉體。在保存14日後,將所得到的GZO/PVP奈米複合粉體溶解於二甲基乙醯胺中,以形成第二膠體混合物。測定膠體的第二中值粒徑D50。 100 g of GZO (weight ratio: Ga/Zn = 5.0/100.0), 5 g of polyvinylpyrrolidone (PVP; Mw = 58,000) and 400 g of dimethylacetamide (DMAc) were mixed and stirred to form a first Colloidal mixture. The first median particle size D50 of the colloid was determined. The stability of the colloidal mixture was observed at room temperature to maintain stable dispersion for at least 24 hours. The colloidal mixture was spray dried to obtain a GZO/PVP nano composite powder. After 14 days of storage, the obtained GZO/PVP nanocomposite powder was dissolved in dimethylacetamide to form a second colloidal mixture. The second median particle size D50 of the colloid was determined.

【實施例1-2】GZO/PVP奈米複合粉體之製備: [Example 1-2] Preparation of GZO/PVP nano composite powder:

將100克GZO(重量比:Ga/Zn=5.0/100.0)、5克PVP(Mw=10,000)與400克DMAc混合並攪拌均勻,以形成第一膠體混合物。測定膠體的第一中值粒徑D50。在室溫下觀察其膠體混合物的穩定性,約可維持穩定分散至少24小時。將膠體混合 物噴霧乾燥,而得到GZO/PVP奈米複合粉體。在保存14日後,將所得到的GZO/PVP奈米複合粉體溶解於二甲基乙醯胺中,以形成第二膠體混合物。測定膠體的第二中值粒徑D50。 100 g of GZO (weight ratio: Ga/Zn = 5.0/100.0), 5 g of PVP (Mw = 10,000) and 400 g of DMAc were mixed and stirred uniformly to form a first colloidal mixture. The first median particle size D50 of the colloid was determined. The stability of the colloidal mixture was observed at room temperature to maintain stable dispersion for at least 24 hours. Mixing colloids The spray was dried to obtain a GZO/PVP nano composite powder. After 14 days of storage, the obtained GZO/PVP nanocomposite powder was dissolved in dimethylacetamide to form a second colloidal mixture. The second median particle size D50 of the colloid was determined.

【實施例1-3】GZO/PVP奈米複合粉體之製備: [Example 1-3] Preparation of GZO/PVP nano composite powder:

將100克GZO(重量比:Ga/Zn=1.5/100.0)、5克PVP(Mw=1,280,000)與400克DMAc混合並攪拌均勻,以形成第一膠體混合物。測定膠體的第一中值粒徑D50。在室溫下觀察其膠體混合物的穩定性,約可維持穩定分散至少24小時。將膠體混合物噴霧乾燥,而得到GZO/PVP奈米複合粉體。在保存14日後,將所得到的GZO/PVP奈米複合粉體溶解於二甲基乙醯胺中,以形成第二膠體混合物。測定膠體的第二中值粒徑D50。 100 g of GZO (weight ratio: Ga/Zn = 1.5/100.0), 5 g of PVP (Mw = 1,280,000) and 400 g of DMAc were mixed and stirred uniformly to form a first colloidal mixture. The first median particle size D50 of the colloid was determined. The stability of the colloidal mixture was observed at room temperature to maintain stable dispersion for at least 24 hours. The colloidal mixture was spray dried to obtain a GZO/PVP nano composite powder. After 14 days of storage, the obtained GZO/PVP nanocomposite powder was dissolved in dimethylacetamide to form a second colloidal mixture. The second median particle size D50 of the colloid was determined.

【比較例1】GZO/PEI奈米複合粉體之製備: [Comparative Example 1] Preparation of GZO/PEI nano composite powder:

將100克GZO(重量比:Ga/Zn=1.5/100.0)、5克聚乙烯亞胺(polyethylenimine,PEI;Mw=10,000)與400克DMAc混合並攪拌均勻,以形成第一膠體混合物。測定膠體的第一中值粒徑D50。在室溫下觀察其膠體混合物的穩定性,僅可維持溶液狀態6小時。超過6小時,即產生沉澱。此外,由於PEI為液態的高分子,故無法得到GZO/PEI奈米複合粉體。 100 g of GZO (weight ratio: Ga/Zn = 1.5/100.0), 5 g of polyethylenimine (PEI; Mw = 10,000) and 400 g of DMAc were mixed and stirred uniformly to form a first colloidal mixture. The first median particle size D50 of the colloid was determined. The stability of the colloidal mixture was observed at room temperature, and only the solution state was maintained for 6 hours. Over 6 hours, a precipitate formed. Further, since PEI is a liquid polymer, GZO/PEI nano composite powder cannot be obtained.

【中值粒徑D50的測定】 [Measurement of median particle size D50]

使用雷射粒徑分析儀(製造廠商:Malvern;產品型號:Zetasizer Nano ZS)測定膠體的粒徑,並繪製粒徑分佈圖。從粒徑分佈圖中求得中值粒徑D50。 The particle size of the colloid was measured using a laser particle size analyzer (manufacturer: Malvern; product model: Zetasizer Nano ZS), and a particle size distribution map was drawn. The median diameter D50 was determined from the particle size distribution map.

實施例1-1、1-2、1-3及比較例1的實驗結果顯示於表1。請參照表1,實施例1-1、實施例1-2及實施例1-3的膠體混合物皆可維持穩定分散至少24小時。相較之下,比較例1的膠體混合物僅能維持穩定分散約6小時。由此可知,相較於不含吡咯烷酮的高分子,含吡咯烷酮的高分子與無機粒子所形成的膠體混合物具有較佳的穩定性。因此,有利於製備奈米複合粉體。 The experimental results of Examples 1-1, 1-2, 1-3 and Comparative Example 1 are shown in Table 1. Referring to Table 1, the colloidal mixture of Example 1-1, Example 1-2 and Example 1-3 can maintain stable dispersion for at least 24 hours. In contrast, the colloidal mixture of Comparative Example 1 was only able to maintain stable dispersion for about 6 hours. From this, it is understood that the colloidal mixture formed of the pyrrolidone-containing polymer and the inorganic particles has better stability than the pyrrolidone-free polymer. Therefore, it is advantageous to prepare a nano composite powder.

再者,實施例1-1、實施例1-2及實施例1-3的第一中值粒徑D50小於比較例1的第一中值粒徑D50。由此可知,實施例1-1、實施例1-2及實施例1-3的釋放熱能的效率優於比較例1的釋放熱能的效率。 Further, the first median diameter D50 of Example 1-1, Example 1-2, and Example 1-3 was smaller than the first median diameter D50 of Comparative Example 1. From this, it is understood that the efficiency of releasing heat energy of Example 1-1, Example 1-2, and Example 1-3 is superior to that of Comparative Example 1.

在實施例1-1、實施例1-2及實施例1-3中,皆可得到奈米複合粉體。相較之下,在比較例1中,則無法得到奈米複合粉體。此外,在實施例1-1、實施例1-2及實施例1-3中,第二中值粒徑D50皆與第一中值粒徑D50十分接近。由此可知,在實施例1-1、實施例1-2及實施例1-3中,即使經過一段時間的保存,奈米複合粉體的性質並未大幅的變化。 In Example 1-1, Example 1-2, and Example 1-3, a nano composite powder was obtained. In contrast, in Comparative Example 1, the nanocomposite powder could not be obtained. Further, in Example 1-1, Example 1-2, and Example 1-3, the second median diameter D50 is very close to the first median diameter D50. From this, it was found that in Example 1-1, Example 1-2, and Example 1-3, the properties of the nanocomposite powder did not largely change even after storage for a while.

【實施例2】 [Example 2]

將200克AZO(重量比:Al/Zn=0.4/100.0)、6克PVP(Mw=58,000)與800克二甲基亞碸(DMSO)混合並攪拌均勻,以形成膠體混合物。測得膠體的中值粒徑D50為102.8nm。將此膠體混合物利用凹版印塗佈在聚酯纖維布上並乾燥後,得到複合紡織品。相對於紡織品基材100重量份,測得AZO奈米複合粉體為0.15重量份。接著,對此複合紡織品進行如TN-037規範之照光溫升試驗以及紅外線吸收率試驗(測試波長為1,000-2,500nm)。 200 g of AZO (weight ratio: Al/Zn = 0.4/100.0), 6 g of PVP (Mw = 58,000) and 800 g of dimethylarylene (DMSO) were mixed and stirred to form a colloidal mixture. The median particle diameter D50 of the colloid was measured to be 102.8 nm. The colloidal mixture was coated on a polyester fiber cloth by gravure printing and dried to obtain a composite textile. The AZO nano composite powder was measured to be 0.15 parts by weight based on 100 parts by weight of the textile substrate. Next, the composite textile was subjected to an illumination temperature rise test such as TN-037 and an infrared absorption rate test (test wavelength of 1,000-2,500 nm).

【比較例2】 [Comparative Example 2]

使用200克氧化鋅ZnO取代200克AZO。除此之外,其他製程步驟皆與實施例2相同,在此不再詳述。 200 g of AZO was replaced with 200 g of zinc oxide ZnO. Except for this, other process steps are the same as those of Embodiment 2, and will not be described in detail herein.

實施例2及比較例2的實驗結果顯示於表2。在表2中,若A值越高,則代表複合紡織品吸收光能的能力越好。再者,若T值越高,則代表複合紡織品釋放熱能的能力越好。如表2所示,就吸收光能的能力與釋放熱能的能力而言,實施例2皆優於比較例2。換言之,相較於未摻雜的氧化鋅,摻雜鋁的氧化鋅具有較佳的吸收光能的能力與釋放熱能的能力。 The experimental results of Example 2 and Comparative Example 2 are shown in Table 2. In Table 2, the higher the A value, the better the ability of the composite textile to absorb light energy. Furthermore, the higher the T value, the better the ability of the composite textile to release thermal energy. As shown in Table 2, Example 2 was superior to Comparative Example 2 in terms of the ability to absorb light energy and the ability to release heat energy. In other words, aluminum-doped zinc oxide has better ability to absorb light energy and release heat energy than undoped zinc oxide.

【實施例3】 [Example 3]

將200克GZO(重量比:Ga/Zn=5.0/100.0)、20克PVP(Mw=58,000)與800克DMAc混合並攪拌均勻,以形成膠體混合 物。測得膠體的中值粒徑D50為127.6nm。將此膠體混合物利用凹版印塗佈在尼龍纖維布上並乾燥後,得到複合紡織品。相對於紡織品基材100重量份,測得GZO奈米複合粉體為1.5重量份。接著,對此複合紡織品進行如TN-037規範之照光溫升試驗以及如上述的紅外線吸收率試驗。 Mix 200 g of GZO (weight ratio: Ga/Zn = 5.0/100.0), 20 g of PVP (Mw = 58,000) and 800 g of DMAc and mix well to form a colloidal mixture. Things. The colloidal median particle diameter D50 was measured to be 127.6 nm. The colloidal mixture was coated on a nylon fiber cloth by gravure printing and dried to obtain a composite textile. The GZO nanocomposite powder was found to be 1.5 parts by weight based on 100 parts by weight of the textile substrate. Next, the composite textile was subjected to an illumination temperature rise test such as the TN-037 specification and an infrared absorption rate test as described above.

【比較例3】 [Comparative Example 3]

使用尼龍纖維布進行TN-037規範之照光溫升試驗及紅外線吸收率試驗。 The NN-037 specification illumination temperature rise test and infrared absorption rate test were carried out using a nylon fiber cloth.

實施例3及比較例3的實驗結果顯示於表3。如表3所示,就吸收光能的能力與釋放熱能的能力而言,實施例3皆優於比較例3。換言之,相較於不包括奈米複合粉體的紡織品,包括奈米複合粉體的複合紡織品具有較佳的吸收光能的能力與釋放熱能的能力。 The experimental results of Example 3 and Comparative Example 3 are shown in Table 3. As shown in Table 3, Example 3 was superior to Comparative Example 3 in terms of the ability to absorb light energy and the ability to release heat energy. In other words, composite textiles including nano composite powders have better ability to absorb light energy and release heat energy than textiles that do not include nano composite powder.

【實施例4】 [Embodiment 4]

將200克GZO(重量比:Ga/Zn=5.0/100.0)、20克PVP(Mw=58,000)與800克DMAc混合並攪拌均勻,以形成膠體混合物。測得膠體的中值粒徑D50為127.6nm。將此膠體混合物加入聚氨酯(polyurethane,PU)中,利用凹版印刷將其塗佈在尼龍纖維布上並乾燥後,得到複合粉體紡織品。相對於紡織品基材100重量份,測得GZO奈米複合粉體為1.5重量份。接著,對此 複合紡織品進行如TN-037規範之照光溫升試驗以及如上述的紅外線吸收率試驗。 200 g of GZO (weight ratio: Ga/Zn = 5.0/100.0), 20 g of PVP (Mw = 58,000) and 800 g of DMAc were mixed and stirred uniformly to form a colloidal mixture. The colloidal median particle diameter D50 was measured to be 127.6 nm. This colloidal mixture was added to a polyurethane (PU), coated on a nylon fiber cloth by gravure printing, and dried to obtain a composite powder textile. The GZO nanocomposite powder was found to be 1.5 parts by weight based on 100 parts by weight of the textile substrate. Then, on this The composite textile is subjected to an illumination temperature rise test such as the TN-037 specification and an infrared absorption rate test as described above.

實施例4及比較例3的實驗結果顯示於表4。如表4所示,就吸收光能的能力與釋放熱能的能力而言,實施例4皆優於比較例3。換言之,相較於不包括奈米複合粉體的紡織品,同時包括高分子載體(即,PU)與奈米複合粉體的複合紡織品具有較佳的吸收光能的能力與釋放熱能的能力。 The experimental results of Example 4 and Comparative Example 3 are shown in Table 4. As shown in Table 4, Example 4 was superior to Comparative Example 3 in terms of the ability to absorb light energy and the ability to release heat energy. In other words, the composite textile including the polymer carrier (i.e., PU) and the nano composite powder has better ability to absorb light energy and release heat energy than textiles not including the nano composite powder.

【實施例5】 [Embodiment 5]

將100克GZO(重量比:Ga/Zn=1.5/100.0)、5克PVP(Mw=1,280,000)與400克DMAc混合並攪拌均勻,以形成膠體混合物。測得膠體的中值粒徑D50為62.0nm。將此膠體混合物加入聚丙烯腈(polyacrylonitrile,PAN)中,利用靜電紡絲製程不織布薄膜,將其貼合在尼龍纖維布上,得到複合粉體紡織品。相對於紡織品基材100重量份,測得GZO奈米複合粉體為1.0重量份。接著,對此複合紡織品進行如TN-037規範之照光溫升試驗以及如上述的紅外線吸收率試驗。 100 g of GZO (weight ratio: Ga/Zn = 1.5/100.0), 5 g of PVP (Mw = 1,280,000) and 400 g of DMAc were mixed and stirred uniformly to form a colloidal mixture. The median particle diameter D50 of the colloid was measured to be 62.0 nm. The colloidal mixture was added to polyacrylonitrile (PAN), and the non-woven fabric film of the electrospinning process was applied to a nylon fiber cloth to obtain a composite powder textile. The GZO nanocomposite powder was found to be 1.0 part by weight based on 100 parts by weight of the textile substrate. Next, the composite textile was subjected to an illumination temperature rise test such as the TN-037 specification and an infrared absorption rate test as described above.

實施例5及比較例3的實驗結果顯示於表5。相較於不包括奈米複合粉體的紡織品,同時包括高分子載體(即,PAN)與奈米複合粉體的複合紡織品具有較佳的吸收光能的能力與釋放熱能的能力。 The experimental results of Example 5 and Comparative Example 3 are shown in Table 5. Compared to textiles that do not include nanocomposite powders, composite textiles comprising both polymeric carriers (i.e., PAN) and nanocomposite powders have better ability to absorb light energy and release heat energy.

【實施例6】 [Embodiment 6]

將100克GZO(重量比:Ga/Zn=1.5/100.0)、5克PVP(Mw=1,280,000)與400克DMAc混合並攪拌均勻,以形成膠體混合物。測得膠體的中值粒徑D50為62.0nm。將此膠體混合物加入聚偏二氟乙烯(Polyvinylidene fluoride,PVDF)中,利用靜電紡絲製程不織布薄膜,將其貼合在尼龍纖維布上,得到複合粉體紡織品。相對於紡織品基材100重量份,測得GZO奈米複合粉體為1.0重量份。接著,對此複合紡織品進行如TN-037規範之照光溫升試驗以及如上述的紅外線吸收率試驗。 100 g of GZO (weight ratio: Ga/Zn = 1.5/100.0), 5 g of PVP (Mw = 1,280,000) and 400 g of DMAc were mixed and stirred uniformly to form a colloidal mixture. The median particle diameter D50 of the colloid was measured to be 62.0 nm. The colloidal mixture was added to polyvinylidene fluoride (PVDF), and the non-woven fabric film of the electrospinning process was applied to a nylon fiber cloth to obtain a composite powder textile. The GZO nanocomposite powder was found to be 1.0 part by weight based on 100 parts by weight of the textile substrate. Next, the composite textile was subjected to an illumination temperature rise test such as the TN-037 specification and an infrared absorption rate test as described above.

實施例6及比較例3的實驗結果顯示於表6。相較於不包括奈米複合粉體的紡織品,同時包括高分子載體(即,PVDF)與奈米複合粉體的複合紡織品具有較佳的吸收光能的能力與釋放熱能的能力。 The experimental results of Example 6 and Comparative Example 3 are shown in Table 6. Compared to textiles that do not include nanocomposite powders, composite textiles comprising both polymeric carriers (i.e., PVDF) and nanocomposite powders have better ability to absorb light energy and release heat energy.

【比較例4】 [Comparative Example 4]

將100克GZO(重量比:Ga/Zn=1.5/100.0)、5克PEI(Mw=1,800)與400克DMAc混合並攪拌均勻,以形成膠體混合 物。測得膠體的中值粒徑D50為310.8nm。將此膠體混合物加入PVDF中並進行靜電紡絲製程。結果,無法將此含有PVDF的膠體混合物藉由靜電紡絲製成不織布薄膜。 Mix 100 g of GZO (weight ratio: Ga/Zn = 1.5/100.0), 5 g of PEI (Mw = 1,800) and 400 g of DMAc and mix well to form a colloidal mixture. Things. The median particle diameter D50 of the colloid was measured to be 310.8 nm. This colloidal mixture was added to PVDF and subjected to an electrospinning process. As a result, the colloidal mixture containing PVDF could not be formed into a nonwoven film by electrospinning.

由比較例4的結果可知,使用PEI的膠體混合物無法藉由靜電紡絲製成不織布薄膜。相較之下,使用PVP的膠體混合物(即,實施例6)可藉由靜電紡絲(Electrospinning;簡稱電紡)製成不織布薄膜。由於可適用的塗佈方法較多,因此,可改善製程的靈活性。此外,藉由傳統紡絲方式所製備出的纖維絲直徑不易小於1μm。相較之下,靜電紡絲不僅可將纖維直徑縮小至奈米等級,且所製備出的纖維具有高比表面積、高吸濕性、及高強度等效能。此外,靜電紡絲的製程比傳統紡絲方式更為簡易,不需藉由化學反應或高溫從液體裡生產固態纖維,而特別適合於大分子纖維或者複合物分子纖維的生產。又,靜電紡絲也可被用來從熔化液裡抽取纖維,如此一來,所獲得的最終產品中不會含有溶劑。再者,靜電紡絲亦具有成本低廉、可紡物質多、製程可控制等優點,已成為高效率製備奈米纖維材料的主要途徑之一。 From the results of Comparative Example 4, it was found that the nonwoven fabric using PEI could not be made into a nonwoven fabric film by electrospinning. In contrast, a non-woven film can be produced by electrospinning (electrospinning) using a colloidal mixture of PVP (i.e., Example 6). Process flexibility is improved due to the wide range of coating methods available. Further, the diameter of the fiber prepared by the conventional spinning method is not easily less than 1 μm. In contrast, electrospinning not only reduces the fiber diameter to the nanometer scale, but also produces fibers having a high specific surface area, high hygroscopicity, and high strength equivalent energy. In addition, the electrospinning process is simpler than the conventional spinning method, and does not require the production of solid fibers from liquids by chemical reaction or high temperature, and is particularly suitable for the production of macromolecular fibers or composite molecular fibers. Further, electrospinning can also be used to extract fibers from the melt, so that the final product obtained does not contain a solvent. Furthermore, electrospinning has the advantages of low cost, many spinnable materials, and controllable process, and has become one of the main ways to efficiently prepare nanofiber materials.

綜上所述,在一些實施例中提供一種複合紡織品及其製備方法。此複合紡織品及其製備方法至少具備以下優點: In summary, in some embodiments, a composite textile and a method of making the same are provided. The composite textile and the preparation method thereof have at least the following advantages:

(1)此複合紡織品包括特定的奈米複合粉體,且此奈米複合粉體能夠高效率地吸收紅外線等光的能量,並且在吸收光的能量之後,能夠以熱能的方式釋放所吸收的能量。因此,能夠在不會明顯增加紡織品的體積或重量的前提下,而大幅地改善紡 織品的保暖效果。 (1) The composite textile includes a specific nano composite powder, and the nano composite powder can efficiently absorb energy of light such as infrared rays, and after absorbing energy of light, can release absorbed energy by heat energy. . Therefore, it is possible to greatly improve the spinning without significantly increasing the volume or weight of the textile. The warmth of the fabric.

(2)將包括此奈米複合粉體的膠體混合物直接塗佈於紡織品基材上,可高效率地製作複合紡織品100。因此,可大幅降低生產的時間與成本。 (2) The colloidal mixture including the nanocomposite powder is directly coated on a textile substrate, and the composite textile 100 can be efficiently produced. Therefore, the time and cost of production can be greatly reduced.

(3)經過乾燥的奈米複合粉體能夠視需要而保存相當長的時間(如,從數日到數月)。因此,可大幅改善製程的靈活性。 (3) The dried nanocomposite powder can be stored for a long period of time (for example, from several days to several months) as needed. Therefore, the flexibility of the process can be greatly improved.

(4)保暖材料層更包括高分子載體,藉此可進一步增強奈米複合粉體與紡織品基材之間的黏著性。因此,可改善或避免奈米複合粉體剝落的問題。 (4) The layer of the heat retaining material further comprises a polymer carrier, whereby the adhesion between the nanocomposite powder and the textile substrate can be further enhanced. Therefore, the problem of peeling of the nano composite powder can be improved or avoided.

(5)保暖材料層為透明性高的薄膜,因此,能夠使複合紡織品的顏色與紡織品基材的顏色相同或相近。 (5) The layer of the heat retaining material is a film having high transparency, and therefore, the color of the composite textile can be the same as or similar to the color of the textile substrate.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.

Claims (15)

一種複合紡織品,包括:一紡織品基材;以及一保暖材料層,形成於該紡織品基材之上,其中該保暖材料層包括一奈米複合粉體,且該奈米複合粉體由以下成分所組成:一含吡咯烷酮的高分子,其中該含吡咯烷酮的高分子為聚乙烯吡咯烷酮、聚乙烯吡咯烷酮之衍生物或上述之組合;以及一無機粒子,其中該無機粒子為由一第一金屬MA、一摻雜金屬MB及氧所構成之金屬氧化物;其中該無機粒子佔該奈米複合粉體62.5-99.9重量%。 A composite textile comprising: a textile substrate; and a layer of thermal insulation material formed on the textile substrate, wherein the thermal insulation material layer comprises a nano composite powder, and the nano composite powder is composed of the following components The composition comprises: a pyrrolidone-containing polymer, wherein the pyrrolidone-containing polymer is polyvinylpyrrolidone, a derivative of polyvinylpyrrolidone or a combination thereof; and an inorganic particle, wherein the inorganic particle is composed of a first metal M A , a metal oxide composed of a doped metal M B and oxygen; wherein the inorganic particles account for 62.5-99.9 wt% of the nano composite powder. 如申請專利範圍第1項所述之複合紡織品,其中該金屬氧化物以下述通式(I)表示:(MA)(MB)O (I)其中,該第一金屬MA為鋅、銦、或錫;該摻雜金屬MB為錫、鋁、鎵、鐵、或銻。 The composite textile of claim 1, wherein the metal oxide is represented by the following general formula (I): (M A )(M B )O (I) wherein the first metal M A is zinc, Indium, or tin; the doping metal M B is tin, aluminum, gallium, iron, or antimony. 如申請專利範圍第2項所述之複合紡織品,其中在該無機粒子中,以100重量份之該第一金屬MA為基準,該摻雜金屬MB為0.1至20重量份。 The composite textile according to claim 2, wherein the inorganic particles have a doping metal M B of 0.1 to 20 parts by weight based on 100 parts by weight of the first metal M A . 如申請專利範圍第1項所述之複合紡織品,其中該奈米複合粉體的中值粒徑D50為30-600nm。 The composite textile according to claim 1, wherein the nano composite powder has a median diameter D50 of 30 to 600 nm. 如申請專利範圍第1項所述之複合紡織品,其中該含吡咯烷酮的高分子的重量平均分子量為3,000-1,500,000。 The composite textile according to claim 1, wherein the pyrrolidone-containing polymer has a weight average molecular weight of 3,000 to 1,500,000. 如申請專利範圍第1項所述之複合紡織品,其中該聚 乙烯吡咯烷酮之衍生物包括末端具異氰酸酯基之聚乙烯吡咯烷酮、末端具甲氧基之聚乙烯吡咯烷酮、末端具乙氧基之聚乙烯吡咯烷酮、末端具羧酸基之聚乙烯吡咯烷酮或上述之組合。 The composite textile according to claim 1, wherein the composite Derivatives of vinylpyrrolidone include polyvinylpyrrolidone having an isocyanate group at the end, polyvinylpyrrolidone having a methoxy group at the end, polyvinylpyrrolidone having an ethoxy group at the end, polyvinylpyrrolidone having a carboxylic acid group at the end, or a combination thereof. 如申請專利範圍第1項所述之複合紡織品,其中該保暖材料層更包括一高分子載體。 The composite textile of claim 1, wherein the warming material layer further comprises a polymer carrier. 如申請專利範圍第7項所述之複合紡織品,其中該高分子載體包括聚氨酯、聚丙烯腈、聚偏二氟乙烯、聚丙烯酸酯、聚丙烯、聚醯胺、聚酯、熱塑性聚酯彈性體或上述之組合。 The composite textile according to claim 7, wherein the polymer carrier comprises polyurethane, polyacrylonitrile, polyvinylidene fluoride, polyacrylate, polypropylene, polyamide, polyester, thermoplastic polyester elastomer. Or a combination of the above. 如申請專利範圍第7項所述之複合紡織品,其中在該保暖材料層中,以100重量份之該奈米複合粉體為基準,該高分子載體為0.1至60重量份。 The composite textile according to claim 7, wherein the polymer carrier is 0.1 to 60 parts by weight based on 100 parts by weight of the nano composite powder in the heat retaining material layer. 如申請專利範圍第1項所述之複合紡織品,其中以100重量份之該紡織品基材為基準,該奈米複合粉體為0.0001-600重量份。 The composite textile according to claim 1, wherein the nano composite powder is 0.0001 to 100 parts by weight based on 100 parts by weight of the textile substrate. 如申請專利範圍第1項所述之複合紡織品,其中該保暖材料層為一薄膜。 The composite textile of claim 1, wherein the layer of thermal insulation material is a film. 如申請專利範圍第11項所述之複合紡織品,其中該薄膜的厚度為1-100μm。 The composite textile of claim 11, wherein the film has a thickness of from 1 to 100 μm. 如申請專利範圍第11項所述之複合紡織品,其中在波長為400-700nm的範圍中,且該薄膜的膜厚為6μm的條件下,該薄膜的光穿透率為70-83%。 The composite textile according to claim 11, wherein the film has a light transmittance of 70 to 83% in a range of a wavelength of 400 to 700 nm and a film thickness of the film of 6 μm. 如申請專利範圍第11項所述之複合紡織品,其中在波長為1,000-2,500nm的範圍中,且該薄膜的膜厚為6μm的條件下,該薄膜的光吸收率為70-83%。 The composite textile according to claim 11, wherein the film has a light absorptivity of 70 to 83% in a range of from 1,000 to 2,500 nm and a film thickness of the film of 6 μm. 如申請專利範圍第1項所述之複合紡織品,其中該紡織品基材包括聚乙烯纖維紡織品、聚丙烯纖維紡織品、聚醯胺纖維紡織品、聚酯纖維紡織品、纖維素纖維紡織品、醋酸纖維紡織品、動物纖維紡織品或上述之組合。 The composite textile of claim 1, wherein the textile substrate comprises a polyethylene fiber textile, a polypropylene fiber textile, a polyamide fiber textile, a polyester fiber textile, a cellulose fiber textile, an acetate fiber textile, an animal. Fiber textile or a combination of the above.
TW106146490A 2017-12-29 2017-12-29 Composite textile TWI655329B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106146490A TWI655329B (en) 2017-12-29 2017-12-29 Composite textile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106146490A TWI655329B (en) 2017-12-29 2017-12-29 Composite textile

Publications (2)

Publication Number Publication Date
TWI655329B true TWI655329B (en) 2019-04-01
TW201930667A TW201930667A (en) 2019-08-01

Family

ID=66995856

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106146490A TWI655329B (en) 2017-12-29 2017-12-29 Composite textile

Country Status (1)

Country Link
TW (1) TWI655329B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550657A (en) * 2009-05-14 2009-10-07 苏州大学 Method for preparing functional textile of nano materials
TW201202498A (en) * 2010-07-12 2012-01-16 Ind Tech Res Inst Fibers having infrared absorption ability, fabrication methods thereof and fabrics containing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550657A (en) * 2009-05-14 2009-10-07 苏州大学 Method for preparing functional textile of nano materials
TW201202498A (en) * 2010-07-12 2012-01-16 Ind Tech Res Inst Fibers having infrared absorption ability, fabrication methods thereof and fabrics containing the same

Also Published As

Publication number Publication date
TW201930667A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
KR102120534B1 (en) Optoelectronic device comprising a solution-processable metal oxide buffer layer
CN105057003B (en) A kind of nano titania preparation method of composite film
CN103437146B (en) Nano-fabric finishing agent and its preparation method and application
Xue et al. Bioinspired MXene-based soft actuators exhibiting angle-independent structural color
CN110982114A (en) Aramid fiber/carbon nanotube hybrid aerogel film, and preparation method and application thereof
KR101597176B1 (en) Light absorbing-heat emitting fabrics and clothing using the same
Turky et al. Enhanced the structure and optical properties for ZnO/PVP nanofibers fabricated via electrospinning technique
CN108993167A (en) A kind of preparation and application of the Electrospun nano-fibers air filting material of antibacterial
CN105702900B (en) A kind of preparation for the p-aramid fiber nanofiber lithium ion battery separator for being pyrolyzed pore
US10399115B2 (en) Method for coating with dispersions of active ingredients coated in a polymer layer
TWI623658B (en) Composite fabrics
KR20140030424A (en) Graphene-nanoparticle composite catalyst-decorated metal oxide nanorod, method for fabricating the same and sensors comprising the same
WO2021022777A1 (en) Nano composite thin film having infrared absorption function, and manufacturing method therefor and application thereof
CN106757785A (en) Silver-loaded chitosan/polyvinyl alcohol micron belt and preparation method and application thereof
TWI655329B (en) Composite textile
CN110920191B (en) Preparation method of non-woven material with high radiation refrigeration effect for clothes
CN107557718B (en) A method of inorganic nano material layer is prepared on flexible material surface
US10519595B2 (en) Composite textile
WO2017092234A1 (en) Mesoporous zirconium-phosphate loaded nano-silver antibacterial polyester fiber and method for preparation thereof
US20230063352A1 (en) Unidirectional Moisturizing Nanofiber Facial Mask Substrate with Asymmetric Wettability and Preparation Thereof
CN105255199A (en) Silk protein glue/silicon dioxide composite material of hollow structure and preparation method thereof
CN109986848A (en) Composite fabric
WO2019025899A1 (en) Production of metal oxide nanoparticles dispersed on fibres
CN107604635A (en) A kind of W18O49Coat carbon fibre composite and preparation method thereof
JP5890169B2 (en) Endothermic member