TWI654446B - Floating imaging display device - Google Patents

Floating imaging display device

Info

Publication number
TWI654446B
TWI654446B TW107119685A TW107119685A TWI654446B TW I654446 B TWI654446 B TW I654446B TW 107119685 A TW107119685 A TW 107119685A TW 107119685 A TW107119685 A TW 107119685A TW I654446 B TWI654446 B TW I654446B
Authority
TW
Taiwan
Prior art keywords
triangular
floating
array
image
light source
Prior art date
Application number
TW107119685A
Other languages
Chinese (zh)
Other versions
TW202001344A (en
Inventor
林宇軒
楊智仲
蘇芳琪
李承儒
黃國政
周俊翰
郭嘉真
黃忠偉
Original Assignee
財團法人國家實驗研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人國家實驗研究院 filed Critical 財團法人國家實驗研究院
Priority to TW107119685A priority Critical patent/TWI654446B/en
Application granted granted Critical
Publication of TWI654446B publication Critical patent/TWI654446B/en
Publication of TW202001344A publication Critical patent/TW202001344A/en

Links

Abstract

一種浮空成像顯示裝置,係包括一顯示光源,其可以主動式或被動式投射出平面或立體等不同深度資訊之光學影像;以及至少一陣列式三角反射鏡結構,係於一透明基板上設有數個呈陣列排列之三角凹槽,該些三角凹槽可以穿透該透明基板或陷入該透明基板中,並於各該三角凹槽側壁鍍上反射材質,透過該陣列式三角反射鏡結構可將該顯示光源之光學影像投影於前方之實體物理空間中,無需散射介質即可成像出立體浮空投影影像;透過上述之組成,具有深度資訊之虛擬立體浮空投影影像可顯示於空氣之中,其位置可透過該陣列式三角反射鏡結構調控來使之位於鏡像對稱或非對稱之空間區域,用於藏匿該顯示光源或進階的動態顯示。本裝置並可進一步結合姿態感測系統與超聲波力學回饋 ,建立一套即時互動浮空投影系統,以達到物理空間中之即時互動功能,使其可廣泛應用於生活中。A floating imaging display device includes a display light source that can actively or passively project an optical image of different depth information such as a plane or a stereo; and at least one array of triangular mirror structures, which are provided on a transparent substrate a triangular groove arranged in an array, the triangular groove may penetrate the transparent substrate or be trapped in the transparent substrate, and a reflective material is plated on each side wall of the triangular groove, and the array type triangular mirror structure can be adopted The optical image of the display light source is projected in the physical physical space in front, and the stereoscopic floating projection image can be imaged without using the scattering medium; through the above composition, the virtual stereoscopic floating projection image with depth information can be displayed in the air. The position can be adjusted by the array of triangular mirror structures to be in a mirror-symmetrical or asymmetrical spatial region for hiding the display light source or advanced dynamic display. The device can further combine the attitude sensing system and the ultrasonic mechanical feedback to establish a set of instant interactive floating projection system to achieve the real-time interactive function in the physical space, so that it can be widely used in life.

Description

浮空成像顯示裝置Floating imaging display device

本發明係有關於一種浮空成像顯示裝置,尤指涉及一種裸眼式浮空投影顯示技術,特別係指不須穿戴任何裝置,可於實體物理空間中投影出立體浮空影像,並可應用於教學、廣告與互動影音等領域者。The present invention relates to a floating imaging display device, and more particularly to a naked eye floating projection display technology, in particular to a stereoscopic floating image that can be projected in a physical physical space without wearing any device. Teaching, advertising and interactive audio and video.

科技發展日新月異,現今時代越來越注重視覺感受,顯示技術不斷推陳出新,從以前的陰極射線管(Cathode ray tube, CRT)電視二維(Two-dimensional, 2D)顯示一直到現今虛擬實境(Virtual reality, VR) 、擴增實境(Augmented reality, AR)等等的三維(Three-dimensional, 3D)顯示技術,3D顯示技術自2009年電影阿凡達推出後便開始蓬勃發展,其中立體顯示技術又分為裸眼式及眼鏡式,裸眼式是不須穿戴任何裝置而將光學結構設置於顯示器上,而眼鏡式則是需帶上偏光鏡片或是濾光片等裝置,但其原理多是利用視差之方式讓兩眼觀看到不同之視角以合成一個3D立體影像。 在這些眾多3D立體顯示技術當中,近期又以裸眼顯示技術當中的浮空投影技術格外受到大家的注意,其特點為觀看者不需穿戴任何裝置且能夠在自由空間中投影出影像,使虛擬影像與實體物建結合,目前常被應用於大型表演藝術或是裝置藝術當中,未來更能夠結合相關回饋技術例如超聲波回饋技術等,讓浮空影像不再只是觀賞而能夠操控並與其影像互動。 傳統浮空投影技術分為散射式及半反射式,散射式主要利用薄紗網以及水幕之方式將影像投射在該介質上,經過光的散射使觀察者在不察覺散射介質之情況下觀看到影像,惟其影像不具立體性。而半反射式常見之技術為利用半穿半反鏡(又稱分光鏡(beam splitter, BS))41,經過分光鏡之反射讓觀察者42能夠看到虛擬之影像43並同時能夠觀看到實體空間如第6圖所示。近年反射式浮空投影技術則分為雙層垂直反射式及逆反射式。 上述技術主要差異在於,散射式浮空投影技術中水幕及紗網介質容易受到外在干擾使影像扭曲(如空氣擾動),成像品質甚劣,空間成本大,但容易製作大型影像;而半反射式浮空投影中主要優勢為影像畫質較高且較不受外在因素影響成像品質,但無法使虛擬影像落於實體物理空間中,並且受限於影像大小限制,若需要投射出較大型立體影像則需製作花費較高之大型半穿半反鏡,因此需要相當大之空間成本 ;逆反射式浮空投影成像品質較差,亦需相當大之空間成本;而雙層垂直反射式浮空投影受限於直角結構,無法調控虛擬影像位置,且其影像亦不具立體性。因反射式較易製為攜帶性裝置且不受外在因素影響以及呈現高畫質影像,故針對反射式相關技術延伸討論。 近年反射式浮空投影也有許多相關專利技術,如中華民國專利號I572899所提之擴充實境成像方法及其裝置,係利用視覺殘留原理,投影不同深度影像,透過反射鏡、聚焦透鏡及另一反射鏡後成像;惟此強調影像處理技術基於深度影像繪圖法(Depth Image Based Rendering, DIBR)之實現方式,並非浮空投影之技術概念。中華民國專利號I481905之可調整尺寸之立體成像裝置,係將待成像之物體影像之四個方向的二維視圖,即前視圖、後視圖、左視圖及右視圖,分別投影至一正四角椎體的四個側面,此一四角椎體係由特殊透光材質製成,可透過光的折射、反射而將投射至四邊側面之投射光合成立體影像;然而,此為最傳統之分光式浮空投影,虛擬影像落於屏幕後方之物理空間中,與本發明投射之屏幕前方不相同。中華民國專利號I608255之立體浮空影像顯示裝置,係利用兩片具有二面角反射器陣列之懸空影像板分別投射對應於左、右眼不同視角且不同偏極化狀態之會聚實像,該系統需搭配偏極化眼鏡以篩選偏極化之會聚光束,可使觀測者感知出立體浮空影像之效果;然而,此為傳統3D電視顯示之概念,需使用偏振眼鏡,無法裸視實現浮空投影。中華民國專利號I615634之透明自動立體顯示器,該顯示器(至少)具有至少一3D自動立體顯示模式(其中該顯示器被驅動且該光學配置係用於產生視圖),及一透明顯示模式(其中該顯示器及該光學配置經驅動至透明模式,以提供在該顯示器背後之影像之一無失真視圖);惟此裸視3D電視顯示之概念,立體影像落於屏幕內之虛擬空間。美國專利號US8702252之光學成像裝置及使用其的光學成像方法,係由日本主要從事影像處理之Asukanet公司針對浮空投影於2014年提出的一項專利技術,為一利用面鏡交錯陣列結構之盤狀光學元件,其結構由多個二維面鏡在不同水平面上交錯,使影像經過面鏡陣列後反射至對稱位形成一實像浮空影像;此技術係以雙次反射式結構達成浮空投影效果,結構為雙層直角交錯型態,無法調控影像位置,雖架構簡單只需一光學元件便可達成,但加工精細製作困難,且有可能產生多重影像需加裝偏光片,惟此便會降低其影像亮度。美國專利號US20120140325之使用雙面角型反射鏡陣列光學元件的顯示裝置,此系統包含一基板,於基板上方製作複數個反射面,反射面互相垂直,其反射面鏡凸出於基板,影像經過面鏡陣列後反射至對稱位形成一實像浮空影像;惟此專利為上述美國專利US8702252之反向結構,即凸起(或孔洞)結構,結構為單層直角型態,同樣無法調控影像位置。以及US4082426之具逆反射標記之逆反射片,該逆反射片(retro reflection sheet)係由複數個透明球體與反射背板組合而成,光線會透過球體與反射背板走一樣的光路徑,到相應位置成像;然而,圓球型態之逆反射(Retro-reflective)結構,其成像原理與本發明不相同。 而另一項技術則是在1968年C. B. Burckhardt等人提出的文獻(C. B. Burckhardt, R. J. Collier, E. T. Doherty, "Formation and Inversion of Pseudoscopic Images," Appl. Opt. 7, 627-631 (1968)),所提一光學薄膜(retro reflection)架構用於修正積分影像(Integral image)系統中反向立體(Pseudoscopic)之問題,其薄膜結構為將透鏡陣列排列,並於透鏡後方焦點位設置一反射層使其出射光線能夠延著其入射光之光路出射,達到一個反向的效果進而修正積分影像中反向立體之問題。 於2013年日本德島大學的Hirotsugu Yamamoto團隊提出一浮空投影架構,如第7圖所示,係利用一半穿半反鏡51、軟性光學元件-逆反射片52及LED面板(LED panel)光源53組成。其原理為影像經過半穿半反鏡51後反射至逆反射片52,經由原光路反射後於對稱位形成一影像54,其物與影像以分光鏡為對稱軸。惟此技術影像大小受限於逆反射薄膜大小,且因為經過多次反射影像亮度損耗極高。 鑑於上述前案需要複雜厚重系統,於系統體積、成像品質、投影空間及影像立體性等方面之表現皆不盡理想。故,ㄧ般習用者係無法符合使用者於實際使用時之所需。The development of science and technology is changing with each passing day. Nowadays, more and more attention is paid to the visual experience. The display technology is constantly innovating, from the previous cathode ray tube (CRT) TV two-dimensional (2D) display to the present virtual reality (Virtual Reality, VR), Augmented reality (AR) and other three-dimensional (3D) display technology, 3D display technology since the launch of the movie Avatar in 2009 began to flourish, including stereoscopic display technology For the naked eye and glasses type, the naked eye type does not need to wear any device to set the optical structure on the display, while the glasses type needs to be equipped with a polarizing lens or a filter, but the principle is to use parallax. The way is to let the two eyes see different perspectives to synthesize a 3D stereo image. Among these many 3D stereoscopic display technologies, the floating projection technology in the naked eye display technology has recently attracted the attention of the public. It is characterized in that the viewer does not need to wear any device and can project images in free space to make virtual images. Combined with physical construction, it is often used in large performing arts or installation art. In the future, it can be combined with related feedback technologies such as ultrasonic feedback technology to make floating images no longer just watch and can be manipulated and interacted with their images. The traditional floating projection technology is divided into a scattering type and a semi-reflective type. The scattering type mainly uses a gauze net and a water curtain to project an image on the medium, and the scattering of the light allows the observer to watch without observing the scattering medium. To the image, but the image is not stereoscopic. A common technique for semi-reflection is to use a half-transparent mirror (also known as a beam splitter (BS)) 41. After reflection by the beam splitter, the observer 42 can see the virtual image 43 while viewing the entity. The space is shown in Figure 6. In recent years, reflective floating projection technology is divided into two-layer vertical reflection type and retro-reflection type. The main difference of the above technology is that the water curtain and the gauze medium in the scattering floating projection technology are easily subject to external interference to make the image distorted (such as air disturbance), the image quality is very poor, the space cost is large, but it is easy to make a large image; The main advantage of reflective floating projection is that the image quality is higher and the image quality is less affected by external factors, but the virtual image cannot be placed in the physical physical space, and it is limited by the image size limitation. Large-scale stereoscopic images require large-scale semi-transparent mirrors, which require a relatively large space cost; retroreflective floating projection imaging is of poor quality and requires considerable space cost; and double-layer vertical reflection floats The air projection is limited by the right-angle structure, and the virtual image position cannot be adjusted, and the image is not stereoscopic. Since the reflective type is easier to manufacture as a portable device and is not affected by external factors and presents high-quality images, the discussion on the reflective related technology is extended. In recent years, there are many related patented technologies for reflective floating projection. For example, the extended reality imaging method and its device proposed by the Republic of China Patent No. I572899 use the principle of visual residual to project different depth images, through mirrors, focusing lenses and another. Post-mirror imaging; however, the emphasis on image processing technology based on Depth Image Based Rendering (DIBR) is not a technical concept of floating projection. The adjustable size stereo imaging device of the Republic of China Patent No. I481905 projects a two-dimensional view of the four directions of the image of the object to be imaged, namely, the front view, the rear view, the left view and the right view, respectively, to a regular four-corner vertebra. The four sides of the body, the four-corner system is made of a special light-transmitting material, which can reflect the projected light projected onto the four sides by the refraction and reflection of light; however, this is the most traditional split-type floating Projection, the virtual image falls in the physical space behind the screen, which is different from the front of the screen projected by the present invention. The three-dimensional floating image display device of the Republic of China Patent No. I608255 utilizes two suspended image plates having a dihedral corner reflector array to respectively project a concentrated real image corresponding to different viewing angles of the left and right eyes and different polarization states. It is necessary to match the polarized glasses to screen the polarized concentrated beam, which can make the observer perceive the effect of the stereoscopic floating image; however, this is the concept of traditional 3D TV display, which requires the use of polarized glasses, and can not achieve floating in the naked eye. projection. A transparent autostereoscopic display of the Republic of China Patent No. I615634, the display having (at least) at least one 3D autostereoscopic display mode (wherein the display is driven and the optical configuration is for generating a view), and a transparent display mode (wherein the display) And the optical configuration is driven to a transparent mode to provide an undistorted view of the image behind the display; however, the concept of the naked-view 3D television display, the stereoscopic image falls within the virtual space within the screen. The optical imaging device of US Pat. No. 8,702,252 and the optical imaging method using the same are a patented technology proposed by Asukanet, which is mainly engaged in image processing in Japan, for floating projection in 2014, and is a disk using a mirror array of interlaced arrays. The optical element is structured by a plurality of two-dimensional mirrors staggered at different horizontal planes, so that the image is reflected by the mirror array and then reflected to the symmetrical position to form a real image floating image; this technique achieves a floating projection with a double-reflex structure. The effect is that the structure is a double-layered right-angled staggered pattern, and the image position cannot be adjusted. Although the structure is simple, only one optical component can be achieved, but the processing is difficult to produce, and it is possible to generate multiple images to be added with polarizers, but this will Reduce the brightness of its image. US Patent No. US20120140325 uses a double-sided angular mirror array optical element display device. The system includes a substrate, and a plurality of reflective surfaces are formed on the substrate. The reflective surfaces are perpendicular to each other, and the reflective mirror protrudes from the substrate. The mirror array is reflected back to the symmetrical position to form a real image floating image; however, the patent is the reverse structure of the above-mentioned US Pat. No. 8,702,252, that is, a convex (or hole) structure, the structure is a single layer right angle type, and the image position cannot be adjusted. . And a retroreflective sheeting of retroreflective sheeting of US4082426, the retroreflecting sheet is composed of a plurality of transparent spheres and a reflective backing plate, and the light passes through the same light path as the reflecting backing plate. The corresponding position is imaged; however, the retro-reflective structure of the spherical shape has an imaging principle that is different from the present invention. Another technique is the document by CB Burckhardt et al., 1968 (CB Burckhardt, RJ Collier, ET Doherty, "Formation and Inversion of Pseudoscopic Images," Appl. Opt. 7, 627-631 (1968)), A retro reflection architecture is used to correct the problem of Pseudoscopic in an Integral image system. The film structure is such that the lens array is arranged and a reflective layer is placed at the focal position behind the lens. The outgoing light can exit the optical path of the incident light to achieve a reverse effect and correct the problem of reverse stereo in the integrated image. In 2013, the Hirotsugu Yamamoto team at Tokushima University in Japan proposed a floating projection architecture. As shown in Figure 7, the half-reflecting mirror 51, the soft optical component-retroreflective sheet 52 and the LED panel light source were used. 53 composition. The principle is that the image is reflected by the half mirror 51 and then reflected to the retroreflective sheet 52. After being reflected by the original light path, an image 54 is formed at the symmetrical position, and the object and the image are separated by a beam splitter. However, the size of this technical image is limited by the size of the retroreflective film, and the brightness loss is extremely high due to multiple reflection images. In view of the fact that the previous case requires a complicated and heavy system, the performance in terms of system volume, imaging quality, projection space and image stereoscopicity are not satisfactory. Therefore, the user-like users cannot meet the needs of the user in actual use.

本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種浮空投影顯示技術,屬於裸眼式,不須穿戴任何裝置,可於實體物理空間中投影出立體浮空影像,不具備傳統技術之缺點,並可應用於教學、廣告與互動影音等領域之浮空成像顯示裝置。 本發明之次要目的係在於,提供一種嶄新之立體浮空投影技術,並不需要複雜與厚重之元件,成像品質與屏材之加工水準直接相關(機械精度與光學鍍膜品質),不受其他因子(如色差、環境變化)之影響,本裝置並可進一步結合姿態感測系統與超聲波力學回饋,建立一套即時互動浮空投影系統,以達到物理空間中之即時互動功能,使其可廣泛應用於生活中之浮空成像顯示裝置。 為達以上之目的,本發明係一種浮空成像顯示裝置,係包括:一顯示光源,其可以主動式或被動式投射出平面或立體等不同深度資訊之光學影像;以及至少一陣列式三角反射鏡結構,係於一透明基板上設有數個呈陣列排列之三角凹槽,該些三角凹槽可以穿透該透明基板或陷入該透明基板中,並於各該三角凹槽側壁鍍上反射材質,透過該陣列式三角反射鏡結構可將該顯示光源之光學影像投影於前方之實體物理空間中,無需散射介質即可成像出立體浮空投影影像;透過上述之組成,具有深度資訊之虛擬立體浮空投影影像可顯示於空氣之中,其位置可透過該陣列式三角反射鏡結構調控來使之位於鏡像對稱或非對稱之空間區域,用於藏匿該顯示光源或進階的動態顯示。 於本發明上述實施例中,該些三角凹槽之角度係介於30~150°。 於本發明上述實施例中,該陣列式三角反射鏡結構係可單獨使用,依該些三角凹槽之角度來自由調控浮空投影影像之位置。 於本發明上述實施例中,該陣列式三角反射鏡結構係可多層交疊,依各層三角凹槽之交互夾角來自由調控浮空投影影像之位置。 於本發明上述實施例中,依該陣列式三角反射鏡結構之設計,可有效擴大浮空投影之有效視角範圍。The main object of the present invention is to overcome the above problems encountered in the prior art and to provide a floating projection display technology, which belongs to the naked eye type and can project a stereoscopic floating image in a physical physical space without wearing any device. It has the shortcomings of traditional technology and can be applied to floating imaging display devices in the fields of teaching, advertising and interactive audio and video. The secondary object of the present invention is to provide a new three-dimensional floating projection technology, which does not require complicated and heavy components, and the image quality is directly related to the processing level of the screen material (mechanical precision and optical coating quality), and is not subject to other Factors such as color difference, environmental change, the device can be further combined with attitude sensing system and ultrasonic mechanical feedback to establish a set of real-time interactive floating projection system to achieve real-time interactive function in physical space, making it widely available It is applied to floating imaging display devices in life. For the purpose of the above, the present invention is a floating imaging display device comprising: a display light source capable of actively or passively projecting optical images of different depth information such as plane or stereo; and at least one array of triangular mirrors The structure is provided on a transparent substrate with a plurality of triangular grooves arranged in an array, the triangular grooves can penetrate the transparent substrate or fall into the transparent substrate, and the reflective material is plated on the sidewalls of the triangular grooves. Through the array type triangular mirror structure, the optical image of the display light source can be projected into the physical physical space in front, and the stereoscopic floating image can be imaged without using the scattering medium; through the above composition, the virtual three-dimensional floating with depth information The air-projected image can be displayed in the air, and its position can be adjusted by the array of triangular mirror structures to be in a mirror-symmetrical or asymmetrical spatial region for hiding the display light source or advanced dynamic display. In the above embodiment of the present invention, the angles of the triangular grooves are between 30 and 150 degrees. In the above embodiment of the present invention, the array type triangular mirror structure can be used alone, and the position of the floating projection image is controlled according to the angle of the triangular grooves. In the above embodiment of the present invention, the array type triangular mirror structure can be overlapped in multiple layers, and the position of the floating projection image is controlled according to the mutual angle of the triangular grooves of each layer. In the above embodiment of the present invention, according to the design of the array type triangular mirror structure, the effective viewing angle range of the floating projection can be effectively expanded.

請參閱『第1圖~第5圖』所示,係分別為本發明浮空成像顯示裝置之架構示意圖、本發明之陣列式三角反射鏡結構示意圖、本發明之陣列式三角反射鏡結構之多層交疊示意圖、本發明之平面方型成像面模擬圖、以及本發明之立體梯型成像面模擬圖。如圖所示:本發明係一種浮空成像顯示裝置,係包括一顯示光源1以及至少一陣列式三角反射鏡結構2所構成。 上述所提顯示光源1可以主動式或被動式投射出平面或立體等不同深度資訊之光學影像。 該陣列式三角反射鏡結構2如第2圖所示,係於一透明基板21上設有數個呈陣列排列之三角凹槽22,該些三角凹槽22可以穿透該透明基板21或陷入該透明基板21中,並於各該三角凹槽22側壁221鍍上反射材質222,透過該陣列式三角反射鏡結構2可將該顯示光源1之光學影像投影於前方之實體物理空間中,無需散射介質即可成像出立體浮空投影影像3。其中,該些三角凹槽22之角度可為30~150°,陣列式三角反射鏡結構2係可單獨使用(如第2圖所示),依該些三角凹槽22之角度來自由調控浮空投影影像之位置;亦可藉由多層交疊(如第3圖所示),依各層三角凹槽22之交互夾角來自由調控浮空投影影像之位置。 透過上述之組成,具有深度資訊之虛擬立體浮空投影影像3可顯示於空氣之中,其位置可透過該陣列式三角反射鏡結構2調控來使之位於鏡像對稱或非對稱之空間區域,用於藏匿該顯示光源1或進階的動態顯示。如是,藉由上述揭露之結構構成一全新之浮空成像顯示裝置。 本發明所提浮空成像顯示裝置,係一種透過陣列式三角反射鏡結構2以達到浮空成像的顯示裝置。承上述,該裝置係於一透明基板21上,製作數個採陣列排列之三角凹槽22,並於該些三角凹槽22側壁221鍍上反射材質222。透過此陣列式三角反射鏡結構2可將影像投影於前方之實體物理空間中,無需散射介質即可成像。 本發明所提浮空成像顯示裝置之浮空投影方式與透鏡成像原理不同,其顯示光源1投射不同深度之影像資訊後,可經過此陣列式三角反射鏡結構2後,顯示立體浮空投影影像3,並可依三角凹槽22之角度與多層交疊方式來調控浮空投影影像3位置。當運用時,本發明將架構建立於FRED非序列光學模擬設計軟體中,如第1圖所示,顯示光源1(物體)係一個梯形立方體,物體旋轉30度,因此兩個面對於陣列式三角反射鏡結構2之深度資訊不同,並將其轉換為平面資訊,且於觀察面設定兩面不同深度之分析面,由模擬結果觀察到不同深度之影像可以分別成像於兩個分析面,將兩個不同位置之分析面組合,以達到立體成像之目的,如第3、4圖所示,第3圖為平面方型成像面模擬圖,第4圖為立體梯型成像面模擬圖。 本裝置之優點為: 1. 可將影像投影於前方之實體物理空間中,無需散射介質即可成像。 2. 顯示光源投射不同深度之影像資訊後,可經過此結構屏材(即陣列式三角反射鏡結構)後,顯示立體浮空投影影像。 3. 可依三角凹槽角度與多層交疊方式來自由調控浮空投影影像位置。 4. 成像品質優,其解析度與陣列式三角反射鏡結構之最小加工尺度直接相關。 5. 浮空投影之有效視角可依陣列式三角反射鏡結構設計而有效擴大。 本發明所提浮空投影顯示技術,屬於裸眼式,不須穿戴任何裝置,係一種嶄新之立體浮空投影技術,可於實體物理空間中投影出立體浮空影像,不具備傳統技術之缺點,並具有深度資訊,可應用於教學、廣告與互動影音等領域。本發明並不需要複雜與厚重之元件,成像品質與屏材之加工水準直接相關(機械精度與光學鍍膜品質),不受其他因子(如色差、環境變化)之影響,本裝置並可進一步結合姿態感測系統與超聲波力學回饋,建立一套即時互動浮空投影系統,以達到物理空間中之即時互動功能,使其可廣泛應用於生活中。 綜上所述,本發明係一種浮空成像顯示裝置,可有效改善習用之種種缺點,顯示光源投射不同深度之影像資訊後,可經過陣列式三角反射鏡結構將影像投影於前方之實體物理空間中,無需散射介質即可成像出具有深度資訊的立體浮空投影影像,並可依三角凹槽角度與多層交疊方式來調控浮空影像位置,進而使本發明之産生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。 惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。Please refer to FIG. 1 to FIG. 5, which are respectively a schematic diagram of the architecture of the floating imaging display device of the present invention, a schematic diagram of the structure of the array type triangular mirror of the present invention, and a multilayer structure of the array type triangular mirror structure of the present invention. The overlapping schematic, the planar square imaging surface simulation of the present invention, and the stereoscopic imaging surface simulation of the present invention. As shown in the figure, the present invention is a floating imaging display device comprising a display light source 1 and at least one array of triangular mirror structures 2. The display light source 1 mentioned above can actively or passively project an optical image of different depth information such as a plane or a stereo. As shown in FIG. 2, the arrayed triangular mirror structure 2 is provided on a transparent substrate 21 with a plurality of triangular grooves 22 arranged in an array, and the triangular grooves 22 can penetrate the transparent substrate 21 or sink into the In the transparent substrate 21, a reflective material 222 is plated on the sidewall 221 of each of the triangular recesses 22, and the optical image of the display light source 1 is projected through the arrayed triangular mirror structure 2 in a physical physical space in front without scattering. The medium can image a stereoscopic floating image 3 . Wherein, the angles of the triangular grooves 22 may be 30-150°, and the array type triangular mirror structure 2 can be used alone (as shown in FIG. 2), and the floating grooves are controlled according to the angles of the triangular grooves 22. The position of the empty projected image; or by overlapping the layers (as shown in FIG. 3), the position of the floating projection image is controlled by the interactive angle of each layer of the triangular groove 22. Through the above composition, the virtual stereoscopic floating projection image 3 with depth information can be displayed in the air, and its position can be adjusted by the array triangular mirror structure 2 to be located in a mirror symmetrical or asymmetrical space area. To hide the display light source 1 or advanced dynamic display. Thus, a novel floating imaging display device is constructed by the above disclosed structure. The floating imaging display device of the present invention is a display device that transmits the arrayed triangular mirror structure 2 to achieve floating imaging. In the above, the device is mounted on a transparent substrate 21, and a plurality of triangular grooves 22 arranged in an array are formed, and a reflective material 222 is plated on the side walls 221 of the triangular grooves 22. Through the array of triangular mirror structure 2, the image can be projected into the physical physical space in front, and the image can be imaged without using a scattering medium. The floating projection mode of the floating imaging display device of the present invention is different from the lens imaging principle. After the display light source 1 projects image information of different depths, the array of triangular mirror structure 2 can be displayed to display a stereoscopic floating projection image. 3. The position of the floating projection image 3 can be adjusted according to the angle of the triangular groove 22 and the multi-layer overlapping manner. When used, the present invention establishes the architecture in the FRED non-sequential optical simulation design software. As shown in Fig. 1, the display light source 1 (object) is a trapezoidal cube, and the object is rotated by 30 degrees, so the two faces are for the array triangle. The depth information of the mirror structure 2 is different, and is converted into planar information, and the analysis surfaces of different depths on both sides are set on the observation surface. The simulation results show that images of different depths can be respectively imaged on two analysis surfaces, and two The analysis surfaces of different positions are combined to achieve the purpose of stereo imaging, as shown in Figs. 3 and 4, Fig. 3 is a plane square imaging surface simulation diagram, and Fig. 4 is a stereo ladder type imaging surface simulation diagram. The advantages of this device are: 1. The image can be projected in the physical physical space in front, and can be imaged without scattering media. 2. After the display source projects the image information of different depths, the stereoscopic floating projection image can be displayed after passing through the structural screen (ie, the array triangular mirror structure). 3. The position of the projected image of the floating projection can be controlled by the angle of the triangular groove and the overlapping of the layers. 4. The imaging quality is excellent, and its resolution is directly related to the minimum processing scale of the array triangular mirror structure. 5. The effective viewing angle of the floating projection can be effectively expanded according to the structure design of the array triangular mirror. The floating projection display technology of the invention belongs to the naked eye type and does not need to wear any device. It is a new three-dimensional floating projection technology, which can project a stereoscopic floating image in a physical physical space without the disadvantages of the conventional technology. With in-depth information, it can be applied to teaching, advertising and interactive audio and video. The invention does not require complicated and heavy components, and the image quality is directly related to the processing level of the screen material (mechanical precision and optical coating quality), and is not affected by other factors (such as color difference, environmental change), and the device can be further combined. The attitude sensing system and ultrasonic mechanics feedback, establish a set of real-time interactive floating projection system to achieve the real-time interactive function in the physical space, so that it can be widely used in life. In summary, the present invention is a floating imaging display device, which can effectively improve various shortcomings of the conventional use. After the display source projects the image information of different depths, the image can be projected into the physical physical space in front through the array triangular mirror structure. In the present, a stereoscopic floating image with depth information can be imaged without using a scattering medium, and the position of the floating image can be controlled according to the triangular groove angle and the multi-layer overlapping manner, thereby making the invention more progressive and practical. More in line with the needs of the user, it has indeed met the requirements of the invention patent application, and filed a patent application according to law. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto; therefore, the simple equivalent changes and modifications made in accordance with the scope of the present invention and the contents of the invention are modified. All should remain within the scope of the invention patent.

(本發明部分)(part of the invention)

1‧‧‧顯示光源1‧‧‧ display light source

2‧‧‧陣列式三角反射鏡結構2‧‧‧Arrayed triangular mirror structure

21‧‧‧透明基板21‧‧‧Transparent substrate

22‧‧‧三角凹槽22‧‧‧ triangular groove

221‧‧‧側壁221‧‧‧ side wall

222‧‧‧反射材質222‧‧‧Reflecting material

3‧‧‧浮空投影影像3‧‧‧Floating projection image

(習用部分)(customized part)

41‧‧‧半穿半反鏡41‧‧‧Half half mirror

42‧‧‧觀察者42‧‧‧ Observers

43‧‧‧影像43‧‧‧Image

51‧‧‧半穿半反鏡51‧‧‧Half half mirror

52‧‧‧軟性光學元件52‧‧‧Soft optical components

53‧‧‧光源53‧‧‧Light source

54‧‧‧影像54‧‧‧Image

第1圖,係本發明浮空成像顯示裝置之架構示意圖。 第2圖,係本發明之陣列式三角反射鏡結構示意圖。 第3圖,係本發明之陣列式三角反射鏡結構之多層交疊示意圖。 第4圖,係本發明之平面方型成像面模擬圖。 第5圖,係本發明之立體梯型成像面模擬圖。 第6圖,係習用半反射式浮空投影原理示意圖。 第7圖,係習用之逆反射式浮空投影架構示意圖。Fig. 1 is a schematic view showing the structure of a floating imaging display device of the present invention. Fig. 2 is a schematic view showing the structure of the array type triangular mirror of the present invention. Figure 3 is a schematic illustration of the multilayer overlap of the arrayed triangular mirror structure of the present invention. Fig. 4 is a plan view of a planar square imaging surface of the present invention. Fig. 5 is a perspective view of a three-dimensional ladder type imaging surface of the present invention. Figure 6 is a schematic diagram of a conventional semi-reflective floating projection principle. Figure 7 is a schematic diagram of a conventional retroreflective floating projection architecture.

Claims (3)

一種浮空成像顯示裝置,係包括:一顯示光源,其可以主動式或被動式投射出平面或立體等不同深度資訊之光學影像;以及至少一陣列式三角反射鏡結構,係於一透明基板上設有數個呈陣列排列之三角凹槽,該些三角凹槽可以穿透該透明基板或陷入該透明基板中,並於各該三角凹槽側壁鍍上反射材質,透過該陣列式三角反射鏡結構可將該顯示光源之光學影像投影於前方之實體物理空間中,無需散射介質即可成像出立體浮空投影影像,其中,該些三角凹槽之角度係介於30~150°;透過上述之組成,具有深度資訊之虛擬立體浮空投影影像可顯示於空氣之中,其位置可透過該陣列式三角反射鏡結構調控來使之位於鏡像對稱或非對稱之空間區域,用於藏匿該顯示光源或進階的動態顯示。 An floating imaging display device includes: a display light source that can actively or passively project an optical image of different depth information such as a plane or a stereo; and at least one array of triangular mirror structures disposed on a transparent substrate There are a plurality of triangular grooves arranged in an array, the triangular grooves can penetrate the transparent substrate or fall into the transparent substrate, and the reflective material is plated on the sidewalls of the triangular grooves, and the array type triangular mirror structure can be adopted. The optical image of the display light source is projected into the physical physical space in front, and the stereoscopic floating projection image can be imaged without using the scattering medium, wherein the angles of the triangular grooves are between 30 and 150 degrees; The virtual stereoscopic floating projection image with depth information can be displayed in the air, and the position thereof can be adjusted by the array triangle mirror structure to be located in a mirror symmetrical or asymmetrical space area for hiding the display light source or Advanced dynamic display. 依申請專利範圍第1項所述之浮空成像顯示裝置,其中,該陣列式三角反射鏡結構係可單獨使用,依該些三角凹槽之角度來自由調控浮空投影影像之位置。 The floating imaging display device according to claim 1, wherein the array type triangular mirror structure can be used alone, and the position of the floating projection image is controlled according to the angle of the triangular grooves. 依申請專利範圍第1項所述之浮空成像顯示裝置,其中,該陣列式三角反射鏡結構係可多層交疊,依各層三角凹槽之交互夾角來自由調控浮空投影影像之位置。 The floating imaging display device according to claim 1, wherein the array of triangular mirror structures can be stacked in multiple layers, and the position of the floating projection image is controlled according to the interaction angle of the triangular grooves of each layer.
TW107119685A 2018-06-07 2018-06-07 Floating imaging display device TWI654446B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107119685A TWI654446B (en) 2018-06-07 2018-06-07 Floating imaging display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107119685A TWI654446B (en) 2018-06-07 2018-06-07 Floating imaging display device

Publications (2)

Publication Number Publication Date
TWI654446B true TWI654446B (en) 2019-03-21
TW202001344A TW202001344A (en) 2020-01-01

Family

ID=66591032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107119685A TWI654446B (en) 2018-06-07 2018-06-07 Floating imaging display device

Country Status (1)

Country Link
TW (1) TWI654446B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240038A (en) * 2020-03-10 2020-06-05 像航(上海)科技有限公司 Retroreflection floating imaging system and manufacturing method of retroreflection mirror
TWI740282B (en) * 2019-10-22 2021-09-21 大陸商上海蔚蘭動力科技有限公司 Display system
CN114546180A (en) * 2021-10-07 2022-05-27 达运精密工业股份有限公司 Floating image generating device and floating image touch device
TWI770502B (en) * 2020-05-07 2022-07-11 晶將科技股份有限公司 Beamsplitter used in floating projection device
CN116736415A (en) * 2020-09-21 2023-09-12 郭生文 Optical waveguide lens
CN114546180B (en) * 2021-10-07 2024-04-26 达运精密工业股份有限公司 Floating image generating device and floating image touch device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI783772B (en) * 2021-11-08 2022-11-11 達運精密工業股份有限公司 Floating image generation device and electronic device
TWI808672B (en) * 2022-03-08 2023-07-11 財團法人工業技術研究院 Floating image display device
TWI810897B (en) * 2022-04-14 2023-08-01 達運精密工業股份有限公司 Floating image generation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740282B (en) * 2019-10-22 2021-09-21 大陸商上海蔚蘭動力科技有限公司 Display system
CN111240038A (en) * 2020-03-10 2020-06-05 像航(上海)科技有限公司 Retroreflection floating imaging system and manufacturing method of retroreflection mirror
TWI770502B (en) * 2020-05-07 2022-07-11 晶將科技股份有限公司 Beamsplitter used in floating projection device
CN116736415A (en) * 2020-09-21 2023-09-12 郭生文 Optical waveguide lens
CN114546180A (en) * 2021-10-07 2022-05-27 达运精密工业股份有限公司 Floating image generating device and floating image touch device
CN114546180B (en) * 2021-10-07 2024-04-26 达运精密工业股份有限公司 Floating image generating device and floating image touch device

Also Published As

Publication number Publication date
TW202001344A (en) 2020-01-01

Similar Documents

Publication Publication Date Title
TWI654446B (en) Floating imaging display device
KR102450992B1 (en) Encoded energy waveguides for holographic super-resolution
US5764411A (en) Apparatus for displaying an image
CN102169282B (en) Multi-view desktop type three-dimensional display device
US20130114007A1 (en) Auto-stereoscopic multi-dimensional display component and display thereof
WO2015043098A1 (en) Multi-viewing angle naked-eye three-dimensional display system and display method therefor
KR100616558B1 (en) Three-dimensional display device with background image display
US8459797B2 (en) Image viewing systems with an integrated screen lens
JP2014240960A (en) Aerial image projector
JP4546505B2 (en) Spatial image projection apparatus and method
CN109856808B (en) Suspension display device
TW201631358A (en) Three-dimension light field construction apparatus
CN111105735A (en) All-solid-state holographic projector
Kakeya MOEVision: simple multiview display with clear floating image
Li et al. Full-parallax three-dimensional display using new directional diffuser
KR102595087B1 (en) Lens panel and display device including the same
JP2018508841A (en) Adjustable optical stereo glasses
KR102172408B1 (en) Three-dimensional image projection apparatus
CN117192801A (en) Suspension 3D display system based on retro-reflective film
JP2004226928A (en) Stereoscopic picture display device
CN209879155U (en) Stereoscopic projection device based on double gratings
KR101951123B1 (en) Retro-reflect micro mirror array including parabolic surface
US10605968B2 (en) Imaging system
JP2012008298A (en) Three dimensional picture display device
TWI608255B (en) Stereoscopic floating image display apparatus