TWI653668B - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
TWI653668B
TWI653668B TW107121194A TW107121194A TWI653668B TW I653668 B TWI653668 B TW I653668B TW 107121194 A TW107121194 A TW 107121194A TW 107121194 A TW107121194 A TW 107121194A TW I653668 B TWI653668 B TW I653668B
Authority
TW
Taiwan
Prior art keywords
semiconductor
manufacturing
diffusion
semiconductor substrate
semiconductor device
Prior art date
Application number
TW107121194A
Other languages
Chinese (zh)
Other versions
TW201935530A (en
Inventor
小笠原淳
六鎗廣野
Original Assignee
日商新電元工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商新電元工業股份有限公司 filed Critical 日商新電元工業股份有限公司
Application granted granted Critical
Publication of TWI653668B publication Critical patent/TWI653668B/en
Publication of TW201935530A publication Critical patent/TW201935530A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/228Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明的半導體裝置的的製造方法,包括:溶解步驟,將乳酸鋁溶於水後製作水溶液;混合步驟,製造水溶液與有機溶劑混合後的混合液,並製造含有混合液的半導體摻雜物液體源;塗布步驟,在進行混合步驟後,將含有水溶液的半導體摻雜物液體源塗布在半導體基板上,從而在半導體基板上形成擴散源覆蓋膜;燒成步驟,在進行塗布步驟後,在第一氣氛中,對半導體基板按第一溫度進行加熱處理,從而對擴散源覆蓋膜中的至少有機溶劑進行燒成;以及擴散步驟,在進行燒成步驟後,在第二氣氛中,對半導體基板按高於第一溫度的第二溫度進行加熱處理,使擴散源覆蓋膜中含有的鋁在半導體基板上擴散,從而在半導體基板上形成擴散層。 The method for manufacturing a semiconductor device of the present invention includes a dissolving step to prepare an aqueous solution after dissolving aluminum lactate in water; a mixing step to produce a mixed solution obtained by mixing an aqueous solution and an organic solvent; and manufacturing a semiconductor dopant liquid containing the mixed solution. A coating step, after the mixing step, a semiconductor dopant liquid source containing an aqueous solution is coated on the semiconductor substrate to form a diffusion source cover film on the semiconductor substrate; the firing step, after the coating step is performed, The semiconductor substrate is heated at a first temperature in an atmosphere to fire at least an organic solvent in the diffusion source cover film; and in a diffusion step, after the firing step is performed, the semiconductor substrate is fired in a second atmosphere. The heat treatment is performed at a second temperature higher than the first temperature to diffuse aluminum contained in the diffusion source cover film on the semiconductor substrate, thereby forming a diffusion layer on the semiconductor substrate.

Description

半導體裝置的製造方法 Manufacturing method of semiconductor device

本發明有關於半導體裝置的製造方法。 The present invention relates to a method for manufacturing a semiconductor device.

以往,有一種導體裝置的製造方法,是在半導體基板上形成含有鋁化合物和硼化合物的擴散源覆蓋膜來作為P型摻雜物,通過對形成有該擴散源覆蓋膜的半導體基板進行加熱,從而在該半導體基板上形成P型擴散層(參照特開2000-286205)。 Conventionally, there is a method of manufacturing a conductor device in which a diffusion source cover film containing an aluminum compound and a boron compound is formed on a semiconductor substrate as a P-type dopant, and the semiconductor substrate on which the diffusion source cover film is formed is heated. Thereby, a P-type diffusion layer is formed on the semiconductor substrate (see Japanese Patent Application Laid-Open No. 2000-286205).

特別是,為了得到P型的低濃度的且較深的擴散層,就需要採用擴散係數大的鋁。 In particular, in order to obtain a P-type low-concentration and deep diffusion layer, it is necessary to use aluminum having a large diffusion coefficient.

作為上述以往的半導體裝置的製造方法,可以例舉的有:將鋁化合物和硼化合物溶解於溶劑並塗布在晶片(Wafer)表面的方法,或將硼以及鋁粉末通過有機黏合劑(Organic binder)附著在薄膜狀的膜和矽晶片上使其擴散的方法。 Examples of the manufacturing method of the above-mentioned conventional semiconductor device include a method of dissolving an aluminum compound and a boron compound in a solvent and coating the compound on a wafer surface, or passing boron and aluminum powder through an organic binder. A method for attaching a thin film and a silicon wafer to diffusion.

但是,這些以往的半導體裝置的製造方法由於是在限定為氮等非氧化性的氣氛中使鋁和硼同時擴散的,因此很難將鋁單獨進行擴散。 However, since these conventional methods for manufacturing semiconductor devices diffuse aluminum and boron simultaneously in a non-oxidizing atmosphere limited to nitrogen or the like, it is difficult to diffuse aluminum alone.

另外,作為鋁化合物,由於包含氯化鋁、乙醇鋁、硬脂酸鋁等成分,因此鋁不會單獨在半導體基板上擴散。 In addition, since the aluminum compound contains components such as aluminum chloride, aluminum ethoxide, and aluminum stearate, aluminum does not diffuse on the semiconductor substrate alone.

也就是說,以往的半導體裝置的製造方法存在有以下問題:即,在擴散步驟中的氣氛中介質類型會被限定,並且,會降低對鋁向半導體基板擴散的可控性。 That is, the conventional method of manufacturing a semiconductor device has the following problems: that is, the medium type is limited in the atmosphere in the diffusion step, and controllability of aluminum diffusion to the semiconductor substrate is reduced.

因此,本發明鑒於上述問題,目的是提供一種半導體裝置的製造方法,其能夠在擴散步驟中的氣氛中拓寬介質類型的選擇幅度,並提升鋁向半導體基板擴散的可控性。 Therefore, in view of the above problems, the present invention aims to provide a method for manufacturing a semiconductor device, which can widen the selection range of the dielectric type in the atmosphere in the diffusion step and improve the controllability of aluminum diffusion to the semiconductor substrate.

本發明的一種形態涉及的半導體裝置的製造方法,其特徵在於,包括:溶解步驟,將乳酸鋁溶於水後製作水溶液;混合步驟,製造所述水溶液與有機溶劑混合後的混合液,並製造含有所述混合液的半導體摻雜物液體源;塗布步驟,在進行所述混合步驟後,將含有所述水溶液的所述半導體摻雜物液體源塗布在半導體基板上,從而在所述半導體基板上形成擴散源覆蓋膜;燒成步驟,在進行所述塗布步驟後,在第一氣氛中,對所述半導體基板按第一溫度進行加熱處理,從而對所述擴散源覆蓋膜中的至少所述有機溶劑進行燒成;以及擴散步驟,在進行所述燒成步驟後,在第二氣氛中,對所述半導體基板按高於所述第一溫度的第二溫度進行加熱處理,使所述擴散源覆蓋膜中含有的鋁在所述半導體基板上擴散,從而在半導體基板上形成擴散層。 A method for manufacturing a semiconductor device according to an aspect of the present invention includes a dissolution step of dissolving aluminum lactate in water to prepare an aqueous solution, and a mixing step of manufacturing a mixed solution in which the aqueous solution and an organic solvent are mixed, and manufacturing A semiconductor dopant liquid source containing the mixed solution; a coating step, after performing the mixing step, coating the semiconductor dopant liquid source containing the aqueous solution on a semiconductor substrate, so that the semiconductor substrate is A diffusion source cover film is formed thereon; in the firing step, after the coating step is performed, the semiconductor substrate is heat-treated at a first temperature in a first atmosphere, so that at least all of the diffusion source cover films are Firing the organic solvent; and a diffusion step, after performing the firing step, in a second atmosphere, heat-treating the semiconductor substrate at a second temperature higher than the first temperature, so that the semiconductor substrate The aluminum contained in the diffusion source cover film diffuses on the semiconductor substrate, thereby forming a diffusion layer on the semiconductor substrate.

在所述半導體裝置的製造方法中,所述有機溶劑具有不會使所述乳酸鋁溶解的特性。 In the method for manufacturing a semiconductor device, the organic solvent has a characteristic that the aluminum lactate is not dissolved.

在所述半導體裝置的製造方法中,所述有機溶劑為乙醇(Ethanol)、丙酮、丙醇、或酒精(Ethyl alcohol)中的任意一種。 In the method for manufacturing a semiconductor device, the organic solvent is any one of ethanol (Ethanol), acetone, propanol, or alcohol (Ethyl alcohol).

在所述半導體裝置的製造方法中,所述燒成步驟中的所述第一氣氛為氧化氣氛。 In the method for manufacturing a semiconductor device, the first atmosphere in the firing step is an oxidizing atmosphere.

在所述半導體裝置的製造方法中,所述擴散步驟中的所述第二氣氛為所述氧化氣氛。 In the method for manufacturing a semiconductor device, the second atmosphere in the diffusion step is the oxidation atmosphere.

在所述半導體裝置的製造方法中,所述氧化氣氛為含氧氣氛。 In the method for manufacturing a semiconductor device, the oxidizing atmosphere is an oxygen-containing atmosphere.

在所述半導體裝置的製造方法中,所述塗布步驟通過旋塗法(Spin coating)將所述半導體摻雜物液體源塗布在半導體基板上。 In the method for manufacturing a semiconductor device, the coating step coats the semiconductor dopant liquid source on a semiconductor substrate by a spin coating method.

在所述半導體裝置的製造方法中,所述燒成步驟中的所述第一溫度在400℃~600℃範圍內。 In the method for manufacturing a semiconductor device, the first temperature in the firing step is in a range of 400 ° C to 600 ° C.

在所述半導體裝置的製造方法中,所述擴散步驟中的所述第二溫度在1000℃~1300℃範圍內。 In the method for manufacturing a semiconductor device, the second temperature in the diffusion step is in a range of 1000 ° C to 1300 ° C.

在所述半導體裝置的製造方法中,所述半導體基板為N型矽晶片。 In the method for manufacturing a semiconductor device, the semiconductor substrate is an N-type silicon wafer.

在所述半導體裝置的製造方法中,進一步包括:剝離步驟,在進行所述擴散步驟後,將殘存在所述半導體基板上的膜通過剝離液剝離。 The method for manufacturing a semiconductor device further includes a peeling step, and after performing the diffusion step, peeling a film remaining on the semiconductor substrate with a peeling liquid.

在所述半導體裝置的製造方法中,所述剝離液為氟酸。 In the method for manufacturing a semiconductor device, the peeling liquid is fluoric acid.

在所述半導體裝置的製造方法中,所述半導體摻雜物液體源進一步含有:溶解於所述有機溶劑並且將黏性付與所述半導體摻雜物液體源的增黏劑、以及多種無機粉末,在所述燒成步驟中,在將兩個所述半導體基板相向從而使所述兩個所述半導體基板的所述擴散源覆蓋膜接觸的狀態下,在所述第一氣氛中,對所述兩個所述半導體基板按所述第一溫度進行加熱處理,在所述擴散步驟中,在所述第二氣氛中,對所述兩個所述半導體基板按所述第二溫度進行加熱處理,所述無機粉末具有:在將所述兩個所述半導體基板疊層時,通過所述增黏劑來調整所述半導體基板的面方向上相鄰的無機粉末之間的間隔,從而來調整所述兩個所述半導體基板之間的間隔的面方向上的分佈的特性,所述無機粉末還具有:在將摻雜物加熱至高於所述第一溫度的,會生成摻雜物擴散供給源的所述第二溫度後,在將通過所述第二溫度加熱從而接合的所述兩個所 述半導體基板置於所述剝離液中時,通過維持所述兩個所述半導體基板之間的間隔,來使所述剝離液浸透在所述兩個所述半導體基板之間的特性,在所述剝離步驟中,相向的所述兩個所述半導體基板是分離的。 In the method of manufacturing a semiconductor device, the semiconductor dopant liquid source further includes a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor dopant liquid source, and a plurality of inorganic powders. In the firing step, in a state in which two of the semiconductor substrates face each other so that the diffusion source cover films of the two semiconductor substrates are in contact, in the first atmosphere, The two semiconductor substrates are heat-treated at the first temperature, and in the diffusion step, the two semiconductor substrates are heat-treated at the second temperature in the second atmosphere. The inorganic powder includes: when the two semiconductor substrates are laminated, the tackifier is used to adjust the interval between adjacent inorganic powders in the plane direction of the semiconductor substrate to adjust The distribution characteristics of the interval between the two semiconductor substrates in the plane direction, and the inorganic powder further has the following characteristics: when the dopant is heated to a temperature higher than the first temperature, the dopant diffusion is generated. After the temperature of the second supply source, so as to engage said heated by the second temperature in the two When the semiconductor substrate is placed in the peeling liquid, a characteristic of impregnating the peeling liquid between the two semiconductor substrates is maintained by maintaining a gap between the two semiconductor substrates. In the peeling step, the two semiconductor substrates facing each other are separated.

在所述半導體裝置的製造方法中,所述增黏劑的主要成分含有:纖維素、纖維束衍生物、或羥丙基纖維素。 In the method for manufacturing a semiconductor device, the main component of the thickener contains cellulose, a fiber bundle derivative, or hydroxypropyl cellulose.

在所述半導體裝置的製造方法中,在所述塗布步驟與所述燒成步驟之間進行預焙(Pre-baking),按低於所述第一溫度的第三溫度對所述半導體基板進行加熱處理,從而使所述擴散源覆蓋膜中的至少所述有機溶劑以及所述水蒸發。 In the method for manufacturing a semiconductor device, pre-baking is performed between the coating step and the firing step, and the semiconductor substrate is subjected to a third temperature lower than the first temperature. The heat treatment causes at least the organic solvent and the water in the diffusion source cover film to evaporate.

本發明的一種形態所涉及的半導體裝置的製造方法,包括:溶解步驟,將乳酸鋁溶於水後製作水溶液;混合步驟,製造水溶液與有機溶劑混合後的混合液,並製造含有混合液的半導體摻雜物液體源;塗布步驟,在進行混合步驟後,將含有水溶液的半導體摻雜物液體源塗布在半導體基板上,從而在半導體基板上形成擴散源覆蓋膜;燒成步驟,在進行塗布步驟後,在第一氣氛中,對半導體基板按第一溫度進行加熱處理,從而對擴散源覆蓋膜中的至少有機溶劑進行燒成;以及擴散步驟,在進行燒成步驟後,在第二氣氛中,對半導體基板按高於第一溫度的第二溫度進行加熱處理,使擴散源覆蓋膜中含有的鋁在半導體基板上擴散,從而在半導體基板上形成擴散層。 A method for manufacturing a semiconductor device according to an aspect of the present invention includes: a dissolving step of dissolving aluminum lactate in water to prepare an aqueous solution; a mixing step of manufacturing a mixed solution of an aqueous solution and an organic solvent; and manufacturing a semiconductor containing the mixed solution. Dopant liquid source; coating step; after the mixing step, a semiconductor dopant liquid source containing an aqueous solution is coated on a semiconductor substrate to form a diffusion source cover film on the semiconductor substrate; a firing step, and a coating step is performed Then, the semiconductor substrate is heated at a first temperature in a first atmosphere to fire at least an organic solvent in the diffusion source cover film; and a diffusion step is performed in a second atmosphere after the firing step is performed. Heating the semiconductor substrate at a second temperature higher than the first temperature to diffuse aluminum contained in the diffusion source cover film on the semiconductor substrate, thereby forming a diffusion layer on the semiconductor substrate.

並且,在擴散步驟中,作為鋁化合物的乳酸鋁中的鋁具有在半導體基板上單獨擴散的特性。 In addition, in the diffusion step, aluminum in aluminum lactate, which is an aluminum compound, has a characteristic of diffusing alone on a semiconductor substrate.

再有,該乳酸鋁雖然不溶於有機溶劑(乙醇),但通過預先與水混合,就能夠形成含有與有機溶劑(乙醇)的混合液的半導體摻雜物液體源。 In addition, although this aluminum lactate is insoluble in an organic solvent (ethanol), a semiconductor dopant liquid source containing a mixed solution with an organic solvent (ethanol) can be formed by mixing with water in advance.

這樣一來,根據本發明的半導體裝置的製造方法,在擴散步驟中,通過使用乳酸鋁作為鋁化合物來形成擴散源覆蓋膜,就能夠在不限定為非氧化性的氣氛中(氧化氣氛)使鋁單獨擴散。 In this way, according to the method for manufacturing a semiconductor device of the present invention, in the diffusion step, by using aluminum lactate as an aluminum compound to form a diffusion source cover film, it is possible to use a non-oxidizing atmosphere (oxidizing atmosphere). Aluminum diffuses separately.

即,根據本發明的半導體裝置的製造方法,就能夠在擴散步驟中的氣氛中拓寬介質類型的選擇幅度,並提升鋁向半導體基板擴散的可控性。 That is, according to the method for manufacturing a semiconductor device of the present invention, it is possible to widen the selection range of the medium type in the atmosphere in the diffusion step, and to improve the controllability of aluminum diffusion to the semiconductor substrate.

1-N‧‧‧N型半導體摻雜物液體源 1-N‧‧‧N-type semiconductor dopant liquid source

1-P‧‧‧P型半導體摻雜物液體源 1-P‧‧‧P-type semiconductor dopant liquid source

11-N‧‧‧N型摻雜物 11-N‧‧‧N-type dopants

11-P‧‧‧P型摻雜物 11-P‧‧‧P-type dopants

12‧‧‧有機溶劑 12‧‧‧organic solvents

13‧‧‧增黏劑 13‧‧‧Tackifier

14‧‧‧無機粉末 14‧‧‧ inorganic powder

2、X‧‧‧半導體基板 2. X‧‧‧ semiconductor substrate

2a‧‧‧塗布面 2a‧‧‧ coated surface

5‧‧‧烘烤板 5‧‧‧ baking plate

A‧‧‧水溶液 A‧‧‧water solution

S‧‧‧擴散源覆蓋膜 S‧‧‧ Diffusion source cover film

Sa‧‧‧擴散源覆蓋膜 Sa‧‧‧ Diffusion source cover film

Y‧‧‧擴散層 Y‧‧‧ diffusion layer

Z‧‧‧半導體摻雜物液體源 Z‧‧‧Semiconductor Dopant Liquid Source

第1圖是本發明的半導體裝置的製造方法的半導體摻雜物液體源的構成例展示圖。 FIG. 1 is a diagram showing a configuration example of a semiconductor dopant liquid source in a method of manufacturing a semiconductor device according to the present invention.

第2圖是實施例一涉及的半導體裝置的製造方法的步驟展示圖。 FIG. 2 is a step display diagram of the method for manufacturing a semiconductor device according to the first embodiment.

第3圖是繼第2圖後的,實施例一涉及的半導體裝置的製造方法的步驟展示圖。 FIG. 3 is a diagram showing steps of the method for manufacturing a semiconductor device according to the first embodiment following FIG. 2.

第4圖是繼第2圖後的,實施例一涉及的半導體裝置的製造方法的步驟展示圖。 FIG. 4 is a diagram showing steps of the method for manufacturing a semiconductor device according to the first embodiment following FIG. 2;

第5圖是繼第2圖後的,實施例一涉及的半導體裝置的製造方法的步驟展示圖。 FIG. 5 is a diagram showing steps of the method for manufacturing a semiconductor device according to the first embodiment following FIG. 2;

第6圖是實施例二涉及的半導體摻雜物液體源的製造方法流程圖。 FIG. 6 is a flowchart of a method for manufacturing a semiconductor dopant liquid source according to the second embodiment.

第7圖是實施例二涉及的半導體摻雜物液體源的製造方法中,用於說明P型半導體摻雜物液體源的製造方法的說明圖。 FIG. 7 is an explanatory diagram for explaining a method for manufacturing a P-type semiconductor dopant liquid source in the method for manufacturing a semiconductor dopant liquid source according to the second embodiment.

第8圖是實施例二涉及的半導體摻雜物液體源的製造方法中,用於說明N型半導體摻雜物液體源的製造方法的說明圖。 FIG. 8 is an explanatory diagram for describing a method for manufacturing an N-type semiconductor dopant liquid source in a method for manufacturing a semiconductor dopant liquid source according to the second embodiment.

第9圖是實施例二涉及的半導體裝置的製造方法流程圖。 FIG. 9 is a flowchart of a method of manufacturing a semiconductor device according to the second embodiment.

第10圖是實施例二涉及的半導體裝置的製造方法中,展示下滴步驟的概略截面圖。 FIG. 10 is a schematic cross-sectional view showing a dropping step in a method of manufacturing a semiconductor device according to a second embodiment.

第11圖是實施例二涉及的半導體裝置的製造方法中,繼第10圖後的,展示塗布步驟的概略截面圖。 FIG. 11 is a schematic cross-sectional view showing a coating step in the method of manufacturing a semiconductor device according to the second embodiment, following FIG. 10.

第12圖是實施例二涉及的半導體裝置的製造方法中,繼第11圖後的,展示乾燥步驟的概略截面圖。 FIG. 12 is a schematic cross-sectional view showing a drying step in the method of manufacturing a semiconductor device according to the second embodiment, following FIG. 11.

第13圖是實施例二涉及的半導體裝置的製造方法中,繼第12圖後的,展示疊層步驟的概略截面圖。 FIG. 13 is a schematic cross-sectional view showing a lamination step in the method of manufacturing a semiconductor device according to the second embodiment, following FIG. 12.

第14圖是實施例二涉及的半導體裝置的製造方法中,繼第13圖後的,展示燒成步驟的概略截面圖。 FIG. 14 is a schematic cross-sectional view showing a firing step in the method of manufacturing a semiconductor device according to the second embodiment, following FIG. 13.

第15圖是實施例二涉及的半導體裝置的製造方法中,展示擴散流程中溫度變遷的圖表。 FIG. 15 is a graph showing a temperature change in a diffusion process in the method for manufacturing a semiconductor device according to the second embodiment.

第16圖是實施例二涉及的半導體裝置的製造方法中,繼第14圖後的,展示沉積(Deposition)步驟的概略截面圖。 FIG. 16 is a schematic cross-sectional view showing a deposition step in the method of manufacturing a semiconductor device according to the second embodiment, following FIG. 14.

第17圖是實施例二涉及的半導體裝置的製造方法中,繼第16圖後的,展示擴散步驟的概略截面圖。 FIG. 17 is a schematic cross-sectional view showing a diffusion step following FIG. 16 in the method of manufacturing a semiconductor device according to the second embodiment.

第18圖是實施例二涉及的半導體裝置的製造方法中,繼第17圖後的,展示浸漬步驟的概略截面圖。 FIG. 18 is a schematic cross-sectional view showing a dipping step subsequent to FIG. 17 in the method for manufacturing a semiconductor device according to the second embodiment.

第19圖是變形例涉及的半導體摻雜物液體源的製造方法流程圖。 FIG. 19 is a flowchart of a method for manufacturing a semiconductor dopant liquid source according to a modification.

以下,將參照圖式對本發明涉及的實施方式進行說明。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

〔實施例一〕 [Example 1]

第1圖是本發明的半導體裝置的製造方法的半導體摻雜物液體源的構成例展示圖。第2圖至第5圖是實施例一涉及的半導體裝置的製造方法的步驟展示圖。 FIG. 1 is a diagram showing a configuration example of a semiconductor dopant liquid source in a method of manufacturing a semiconductor device according to the present invention. FIGS. 2 to 5 are diagrams showing steps of a method for manufacturing a semiconductor device according to the first embodiment.

實施例一涉及的半導體裝置的製造方法如第2圖至第5圖所示,按照“溶解步驟”、“混合步驟”、“塗布步驟”、“燒成步驟”、“擴散步驟”、以及“剝離步驟”的順序依次實施。下面,將按照上述步驟順序對實施例一涉及的半導體裝置的製造方法進行說明。 As shown in FIGS. 2 to 5, the method for manufacturing a semiconductor device according to the first embodiment is performed according to the “dissolution step”, “mixing step”, “coating step”, “firing step”, “diffusion step”, and “ The steps of "peeling step" are performed sequentially. Hereinafter, a method for manufacturing a semiconductor device according to the first embodiment will be described in the order of the above steps.

溶解步驟 Dissolution step

首先,將乳酸鋁溶於水中來製作水溶液A(第1圖)。 First, aluminum lactate was dissolved in water to prepare an aqueous solution A (Fig. 1).

此處,作為使P型摻雜物擴散在半導體基板X上的P型半導體摻雜物液體源,可以使用乳酸鋁來作為含有摻雜物的化合物。 Here, as the P-type semiconductor dopant liquid source for diffusing the P-type dopant on the semiconductor substrate X, aluminum lactate can be used as the dopant-containing compound.

水溶液A中乳酸鋁與水的比例,例如被設定為:乳酸鋁:水=8:100的程度。 The ratio of aluminum lactate to water in the aqueous solution A is set to, for example, about: aluminum lactate: water = 8: 100.

混合步驟 Mixing step

接著,製作水溶液A與有機溶劑混合後的混合液,並製作含有混合液的半導體摻雜物液體源Z(第1圖,混合步驟)。 Next, a mixed solution in which the aqueous solution A and the organic solvent are mixed is prepared, and a semiconductor dopant liquid source Z containing the mixed solution is prepared (FIG. 1, a mixing step).

已述有機溶劑具有至少不會使乳酸鋁溶解的特性。 The organic solvent has been described so that it does not dissolve at least aluminum lactate.

具體來說,該有機溶劑例如為乙醇、丙酮、丙醇、或酒精中的任意一種。 Specifically, the organic solvent is, for example, any one of ethanol, acetone, propanol, or alcohol.

通過這樣,在該混合步驟中,來製作水溶液與有機溶劑混合後的混合液,並製作含有混合液的半導體摻雜物液體源Z。 In this way, in this mixing step, a mixed solution in which an aqueous solution and an organic solvent are mixed is prepared, and a semiconductor dopant liquid source Z containing the mixed solution is prepared.

塗布步驟 Coating step

接著,在進行上述混合步驟後,在該塗布步驟中,將含有水溶液A的半導體摻雜物液體源Z塗布在半導體基板X上,從而在半導體基板X上形成擴散源覆蓋膜S(第2圖,塗布步驟)。 Next, after performing the above-mentioned mixing step, in this coating step, a semiconductor dopant liquid source Z containing an aqueous solution A is coated on the semiconductor substrate X, thereby forming a diffusion source cover film S on the semiconductor substrate X (FIG. 2) , Coating step).

在該塗布步驟中,通過旋塗法將半導體摻雜物液體源塗布在半導體基板X上。 In this coating step, a semiconductor dopant liquid source is coated on the semiconductor substrate X by a spin coating method.

半導體基板X例如為N型矽晶片。 The semiconductor substrate X is, for example, an N-type silicon wafer.

燒成步驟 Firing step

接著,在進行塗布步驟後,在第一氣氛中,對半導體基板X按第一溫度進行加熱處理,從而對擴散源覆蓋膜Sa中的至少有機溶劑進行燒成(第3圖,燒成步驟)。 Next, after the coating step is performed, the semiconductor substrate X is heat-treated at a first temperature in a first atmosphere, thereby firing at least an organic solvent in the diffusion source cover film Sa (FIG. 3, firing step). .

該燒成步驟中已述的第一氣氛為含氧氣氛。 The first atmosphere described in this firing step is an oxygen-containing atmosphere.

該燒成步驟中的第一溫度例如在400℃~600℃範圍內。 The first temperature in the firing step is, for example, in a range of 400 ° C to 600 ° C.

另外,可根據需要,在已述的塗布步驟與該燒成步驟之間進行預焙,按低於上述第一溫度的第三溫度對半導體基板X進行加熱處理,從而使擴散源覆蓋膜Sa中的至少有機溶劑以及水蒸發。當有機溶劑為乙醇以外的溶劑時尤其有效。 In addition, if necessary, pre-baking may be performed between the coating step and the firing step described above, and the semiconductor substrate X may be heat-treated at a third temperature lower than the first temperature, so that the diffusion source cover film Sa The evaporation of at least organic solvents as well as water. This is particularly effective when the organic solvent is a solvent other than ethanol.

擴散步驟 Diffusion step

接著,在進行燒成步驟後,在第二氣氛中,對半導體基板X按高於第一溫度的第二溫度進行加熱處理,使擴散源覆蓋膜Sa中含有的鋁在半導體基板X上擴散,從而在半導體基板X上形成擴散層Y(第4圖,擴散步驟)。 Next, after the firing step is performed, the semiconductor substrate X is heated at a second temperature higher than the first temperature in a second atmosphere to diffuse aluminum contained in the diffusion source cover film Sa on the semiconductor substrate X. Thus, a diffusion layer Y is formed on the semiconductor substrate X (FIG. 4, a diffusion step).

該擴散步驟中已述的第二氣氛為含氧氣氛。 The second atmosphere described in this diffusion step is an oxygen-containing atmosphere.

該擴散步驟中的已述第二溫度例如在1000℃~1300℃範圍內。 The aforementioned second temperature in the diffusion step is, for example, in a range of 1000 ° C to 1300 ° C.

剝離步驟 Stripping step

接著,在進行擴散步驟後,將殘存在半導體基板X上的膜Sb通過剝離液剝離(第5圖,剝離步驟)。 Next, after the diffusion step is performed, the film Sb remaining on the semiconductor substrate X is peeled by a peeling liquid (FIG. 5, peeling step).

另外,已述的剝離液例如為氟酸。 The aforementioned peeling liquid is, for example, hydrofluoric acid.

將多個半導體基板疊層後同時進行處理的例子 Example where multiple semiconductor substrates are stacked and processed simultaneously

在上述實施例一的半導體裝置的製造方法中,例如,可以將多個(兩個或以上)半導體基板X疊層後同時進行處理。 In the method for manufacturing a semiconductor device according to the first embodiment, for example, a plurality of (two or more) semiconductor substrates X may be stacked and processed simultaneously.

此情況下,使半導體摻雜物液體源Z進一步含有:溶解於有機溶劑並且將黏性付與半導體摻雜物液體源Z的增黏劑、以及多種無機粉末(例如,含有Si的粉末)。該增黏劑的主要成分含有:纖維素、纖維束衍生物、或羥丙基纖維素。 In this case, the semiconductor dopant liquid source Z is further made to contain a thickener which dissolves in an organic solvent and imparts viscosity to the semiconductor dopant liquid source Z, and various inorganic powders (for example, powders containing Si). The main component of the thickener contains cellulose, a fiber bundle derivative, or hydroxypropyl cellulose.

並且,在已述燒成步驟中,在將兩個半導體基板X相向從而使兩個半導體基板X的擴散源覆蓋膜接觸的狀態下,在第一氣氛中(例如氧化氣氛),對兩個半導體基板X按第一溫度(例如400℃~600℃)進行加熱處理。 In the firing step described above, in a state where the two semiconductor substrates X face each other and the diffusion source cover films of the two semiconductor substrates X are in contact, the two semiconductors are exposed to the first atmosphere (for example, an oxidizing atmosphere). The substrate X is heat-treated at a first temperature (for example, 400 ° C to 600 ° C).

進一步地,在已述擴散步驟中,在第二氣氛中(例如氧化氣氛),對兩個半導體基板X按第二溫度(例如1000℃~1300℃)進行加熱處理。 Further, in the diffusion step described above, the two semiconductor substrates X are heat-treated at a second temperature (for example, 1000 ° C. to 1300 ° C.) in a second atmosphere (for example, an oxidizing atmosphere).

該無機粉末具有:在將兩個半導體基板X疊層時,通過已述增黏劑來調整半導體基板X的面方向上相鄰的無機粉末之間的間隔,從而來調整兩個半導體基X板之間的間隔的面方向上的分佈的特性。 This inorganic powder has the following advantages: when two semiconductor substrates X are stacked, the distance between the inorganic powders adjacent to each other in the surface direction of the semiconductor substrate X is adjusted by the above-mentioned thickener to adjust the two semiconductor-based X plates. The characteristics of the distribution in the plane direction of the interval.

另外,該無機粉末還具有:在將摻雜物加熱至高於第一溫度的,會生成摻雜物擴散供給源的第二溫度後,在將通過該第二溫度加熱從而接合的兩個半導體基板X置於已述剝離液中時,通過維持兩個半導體基板X之間的間隔,來使剝離液浸透在兩個半導體基板X之間的特性。 In addition, the inorganic powder further includes two semiconductor substrates which are bonded by heating the dopant to a second temperature higher than the first temperature to generate a dopant diffusion supply source and then heating the second temperature. When X is placed in the above-mentioned peeling liquid, the characteristic of impregnating the peeling liquid between the two semiconductor substrates X is maintained by maintaining the interval between the two semiconductor substrates X.

在已述的剝離步驟中,相向的兩個半導體基板X是分離的。 In the aforementioned peeling step, the two semiconductor substrates X facing each other are separated.

通過以上步驟,就能夠在具備良好可控性的狀態下製造鋁擴散後的半導體裝置。 Through the above steps, a semiconductor device after aluminum diffusion can be manufactured in a state with good controllability.

如已述般,在擴散步驟中,作為鋁化合物的乳酸鋁中的鋁具有在半導體基板X上單獨擴散的特性。 As described above, in the diffusion step, aluminum in aluminum lactate, which is an aluminum compound, has a characteristic of diffusing on the semiconductor substrate X alone.

並且,該乳酸鋁雖然不溶於有機溶劑(乙醇),但通過預先與水混合,就能夠形成含有與有機溶劑(乙醇)的混合液的半導體摻雜物液體源Z。 In addition, although this aluminum lactate is insoluble in an organic solvent (ethanol), a semiconductor dopant liquid source Z containing a mixed solution with an organic solvent (ethanol) can be formed by mixing with water in advance.

像這樣,在已述的擴散步驟中,通過使用乳酸鋁作為鋁化合物來形成擴散源覆蓋膜Sa,就能夠在不限定為非氧化性的氣氛中(氧化氣氛)使鋁單獨擴散。 As described above, in the diffusion step described above, by using aluminum lactate as the aluminum compound to form the diffusion source cover film Sa, aluminum can be individually diffused in an atmosphere (oxidizing atmosphere) that is not limited to a non-oxidizing atmosphere.

即,能夠在擴散步驟中的氣氛中拓寬介質類型的選擇幅度,並提升鋁向半導體基板X擴散的可控性。 That is, it is possible to widen the selection range of the medium type in the atmosphere in the diffusion step, and to improve the controllability of aluminum diffusion to the semiconductor substrate X.

綜上所述,本發明的實施例一涉及的半導體裝置的製造方法,包括:溶解步驟,將乳酸鋁溶於水後製作水溶液A;混合步驟,製造水溶液與有機溶劑混合後的混合液,並製造含有混合液的半導體摻雜物液體源Z;塗布步驟,在進行混合步驟後,將含有水溶液的半導體摻雜物液體源Z塗布在半導體基板上,從而在半導體基板X上形成擴散源覆蓋膜S;燒成步驟,在進行塗布步驟後,在第一氣氛中,對半導體基板X按第一溫度進行加熱處理,從而對擴散源覆蓋膜Sa中的至少有機溶劑進行燒成;以及擴散步驟,在進行燒成步驟後,在第二氣氛中,對半導體基板X按高於第一溫度的第二溫度進行加熱處理,使擴散源覆蓋膜中含有的鋁在半導體基板X上擴散,從而在半導體基板上形成擴散層Y。 In summary, the method for manufacturing a semiconductor device according to the first embodiment of the present invention includes: a dissolving step in which aluminum lactate is dissolved in water to prepare aqueous solution A; a mixing step in which a mixed solution in which an aqueous solution and an organic solvent are mixed, and Manufacturing a semiconductor dopant liquid source Z containing a mixed liquid; a coating step, and after performing the mixing step, a semiconductor dopant liquid source Z containing an aqueous solution is coated on a semiconductor substrate to form a diffusion source cover film on the semiconductor substrate X S; a firing step, after performing the coating step, heating the semiconductor substrate X at a first temperature in a first atmosphere, thereby firing at least an organic solvent in the diffusion source cover film Sa; and a diffusion step, After the firing step is performed, the semiconductor substrate X is heated at a second temperature higher than the first temperature in a second atmosphere, so that aluminum contained in the diffusion source cover film is diffused on the semiconductor substrate X, and the semiconductor A diffusion layer Y is formed on the substrate.

並且,在擴散步驟中,作為鋁化合物的乳酸鋁中的鋁具有在半導體基板上單獨擴散的特性。 In addition, in the diffusion step, aluminum in aluminum lactate, which is an aluminum compound, has a characteristic of diffusing alone on a semiconductor substrate.

再有,該乳酸鋁雖然不溶於有機溶劑(乙醇),但通過預先與水混合,就能夠形成含有與有機溶劑(乙醇)的混合液的半導體摻雜物液體源Z。 Although this aluminum lactate is insoluble in an organic solvent (ethanol), by mixing with water in advance, a semiconductor dopant liquid source Z containing a mixed solution with an organic solvent (ethanol) can be formed.

這樣一來,根據本發明的半導體裝置的製造方法,在擴散步驟中,通過使用乳酸鋁作為鋁化合物來形成擴散源覆蓋膜,就能夠在不限定為非氧化性的氣氛中(氧化氣氛)使鋁單獨擴散。 In this way, according to the method for manufacturing a semiconductor device of the present invention, in the diffusion step, by using aluminum lactate as an aluminum compound to form a diffusion source cover film, it is possible to use a non-oxidizing atmosphere (oxidizing atmosphere). Aluminum diffuses separately.

即,根據本發明的半導體裝置的製造方法,就能夠在擴散步驟中的氣氛中拓寬介質類型的選擇幅度,並提升鋁向半導體基板擴散的可控性。 That is, according to the method for manufacturing a semiconductor device of the present invention, it is possible to widen the selection range of the medium type in the atmosphere in the diffusion step, and to improve the controllability of aluminum diffusion to the semiconductor substrate.

〔實施例二〕 [Example 2]

上已述的實施例一種,對在一個半導體基板上使作為P型摻雜物的鋁擴散的形態進行了說明。不過,如已述般,通過將半導體基板疊層,就能夠在多個(兩個或以上)半導體基板上使作為P型摻雜物的鋁擴散。 In the embodiment described above, a mode in which aluminum, which is a P-type dopant, is diffused on one semiconductor substrate has been described. However, as described above, by stacking the semiconductor substrates, aluminum, which is a p-type dopant, can be diffused on a plurality of (two or more) semiconductor substrates.

在本實施例二中,將對通過將半導體基板疊層,從而在多個半導體基板上使期望的摻雜物進行擴散的形態進行詳細說明。在本實施例二中,將實施例一中的擴散步驟作為沉積步驟以及擴散步驟來進行說明。 In the second embodiment, a mode in which a desired dopant is diffused on a plurality of semiconductor substrates by laminating semiconductor substrates will be described in detail. In the second embodiment, the diffusion step in the first embodiment is described as a deposition step and a diffusion step.

(半導體摻雜物液體源) (Semiconductor Dopant Liquid Source)

首先,將對本實施例二涉及的半導體摻雜物液體源進行說明。 First, a semiconductor dopant liquid source according to the second embodiment will be described.

本實施例二涉及的半導體摻雜物液體源通過在被塗布在疊層後的多個半導體基板之間的狀態下被進行加熱,從而使摻雜物在多個半導體基板上擴散。像這樣,通過使摻雜物在疊層狀態下的多個半導體基板上擴散,就能夠使摻雜物在多個半導體基板上同時進行擴散,這樣一來,就能夠高效地進行摻雜物擴散。 The semiconductor dopant liquid source according to the second embodiment is heated in a state where the semiconductor dopant liquid source is applied between a plurality of stacked semiconductor substrates to diffuse the dopants on the plurality of semiconductor substrates. In this manner, by diffusing the dopant on a plurality of semiconductor substrates in a stacked state, the dopant can be diffused simultaneously on the plurality of semiconductor substrates, so that the dopant diffusion can be efficiently performed. .

在半導體摻雜物液體源中,含有混合後的:含有摻雜物的化合物(水溶液)、用於溶解化合物的有機溶劑、溶解於有機溶劑並將黏性付與半導體摻雜物液體源的增黏劑、以及直徑比摻雜物更大的無機粉末、半導體摻雜物液體源還可以進一步含有水。 The semiconductor dopant liquid source contains a mixed compound (aqueous solution) containing the dopant, an organic solvent for dissolving the compound, an organic solvent dissolved in the organic solvent, and viscosity of the semiconductor dopant liquid source. The adhesive, the inorganic powder having a larger diameter than the dopant, and the semiconductor dopant liquid source may further contain water.

當P型半導體摻雜物液體源在半導體基板上使P型摻雜物擴散時,作為摻雜物所含有的化合物,適合使用例如:硼酸、乳酸鋁等。 When the P-type semiconductor dopant liquid source diffuses the P-type dopant on the semiconductor substrate, as the compound contained in the dopant, for example, boric acid, aluminum lactate, and the like are suitably used.

當N型半導體摻雜物液體源在半導體基板上使N型摻雜物擴散時,作為摻雜物所含有的化合物,適合使用例如:焦磷酸等。 When the N-type semiconductor dopant liquid source diffuses the N-type dopant on the semiconductor substrate, as the compound contained in the dopant, for example, pyrophosphoric acid is suitably used.

有機溶劑具有將含有摻雜物的化合物溶解的特性。作為具有這種特性的有機溶劑,適合使用例如:主要成分中含有乙醇、丙酮、或丙醇等成分的有機溶劑。 The organic solvent has a characteristic of dissolving a compound containing a dopant. As the organic solvent having such characteristics, for example, an organic solvent containing a component such as ethanol, acetone, or propanol as a main component is suitably used.

增黏劑具有溶解於有機溶劑,並將黏性付與半導體摻雜物液體源的特性。另外,增黏劑也具有:在將半導體摻雜物液體源塗布在半導體基板的塗布面上時,通過將黏性付與半導體摻雜物液體源,從而在調整在沿塗布面的面方向上相鄰的無機粉末之間的間隔後,對摻雜物在塗布面上的分佈進行調整的特性。增黏劑還具有:通過使半導體摻雜物液體源加熱至使其乾燥的第一溫度,伴隨著有機溶劑的蒸發,使半導體摻雜物液體源沉積在相鄰的無機粉末之間從而來維持摻雜物在塗布面上的分佈的特性。 Tackifiers have the property of dissolving in organic solvents and imparting viscosity to a liquid source of semiconductor dopants. In addition, the tackifier also has a property that, when a semiconductor dopant liquid source is coated on a coating surface of a semiconductor substrate, the viscosity is imparted to the semiconductor dopant liquid source, thereby adjusting the surface direction along the coating surface. The characteristics of adjusting the distribution of dopants on the coated surface after the interval between adjacent inorganic powders. The tackifier also has: maintaining the semiconductor dopant liquid source to a first temperature to dry it, and accompanying evaporation of the organic solvent, depositing the semiconductor dopant liquid source between adjacent inorganic powders to maintain Distribution characteristics of dopants on the coated surface.

作為具有這種特性的增黏劑,適合使用例如主要成分中含有纖維素或其衍生物的增黏劑。而使用羥丙基纖維素來作為增黏劑則更為理想。 As the thickener having such characteristics, for example, a thickener containing cellulose or a derivative thereof as a main component is suitably used. It is more desirable to use hydroxypropyl cellulose as a thickener.

無機粉末具有:在將兩個半導體基板疊層時,通過增黏劑來調整半導體基板的面方向上相鄰的無機粉末之間的間隔,從而來調整兩個半導體基板之間的間隔的面方向上的分佈的特性。 The inorganic powder has a method in which, when two semiconductor substrates are laminated, a distance between adjacent inorganic powders in the surface direction of the semiconductor substrate is adjusted by a tackifier, thereby adjusting the surface direction of the interval between the two semiconductor substrates. Distribution characteristics.

另外,無機粉末還具有:在將摻雜物加熱至高於第一溫度的,會生成摻雜物擴散供給源的第二溫度後,在將通過第二溫度加熱從而接合的兩個半導體基板置於剝離液中時,通過維持兩個半導體基板之間的間隔,來使剝離液浸透在兩個半導體基板之間的特性。 In addition, the inorganic powder also includes: after heating the dopant to a temperature higher than the first temperature to generate a second temperature of the dopant diffusion supply source, placing the two semiconductor substrates bonded by heating at the second temperature; In the peeling liquid, the characteristic that the peeling liquid penetrates between the two semiconductor substrates is maintained by maintaining the interval between the two semiconductor substrates.

作為具有這種特性的無機粉末,適合使用例如主成分中含有從由Si、SiO2、SiC以及Si3N4構成的群中選取的至少一種物質的無機粉末。 As the inorganic powder having such characteristics, for example, an inorganic powder containing at least one substance selected from the group consisting of Si, SiO 2 , SiC, and Si 3 N 4 as a main component is suitably used.

另外,作為具有將通過無機粉末接合的半導體基板剝離的特性的剝離液,適合使用例如氟酸等液體。 Moreover, as a peeling liquid which has the characteristic which peels the semiconductor substrate joined by inorganic powder, a liquid, such as a hydrofluoric acid, is used suitably.

(半導體摻雜物液體源的製造方法) (Manufacturing method of semiconductor dopant liquid source)

接著,將對用於製造已述的半導體摻雜物液體源的製造方法進行說明。第6圖是實施例二涉及的半導體摻雜物液體源的製造方法流程圖。第7圖是實施例二涉及的半導體摻雜物液體源的製造方法中,用於說明P型半導體摻雜物液體源的製造方法的說明圖。 Next, a manufacturing method for manufacturing the aforementioned semiconductor dopant liquid source will be described. FIG. 6 is a flowchart of a method for manufacturing a semiconductor dopant liquid source according to the second embodiment. FIG. 7 is an explanatory diagram for explaining a method for manufacturing a P-type semiconductor dopant liquid source in the method for manufacturing a semiconductor dopant liquid source according to the second embodiment.

如第6圖所示,首先,生成將含有摻雜物的化合物(水溶液)、用於溶解該化合物的有機溶劑、以及溶解於有機溶劑(溶解步驟),並將黏性付與半導體摻雜物液體源的增黏劑混合後的混合液(混合步驟)(步驟S1)。 As shown in FIG. 6, first, a compound (aqueous solution) containing a dopant, an organic solvent for dissolving the compound, and an organic solvent (dissolution step) are generated, and the viscosity is imparted to the semiconductor dopant. The liquid mixture of the liquid source thickener (mixing step) (step S1).

並且,如第7圖所示,在生成P型半導體摻雜物液體源的混合液時,例如將粉末狀的乳酸鋁混合於水中,通過水浴使乳酸鋁完全溶解於水,從而生成乳酸鋁液。此時,如第7圖所示,通過一邊攪拌一邊水浴就能夠縮短乳酸 鋁的溶解時間。相比有機溶劑,乳酸鋁更加易溶解於水。通過在將乳酸鋁溶解於易溶解的水後與有機溶劑混合,就能夠正確地來生成混合液。 In addition, as shown in FIG. 7, when a mixed solution of a P-type semiconductor dopant liquid source is generated, for example, powdered aluminum lactate is mixed with water, and the aluminum lactate is completely dissolved in water by a water bath to generate an aluminum lactate solution . At this time, as shown in Fig. 7, the lactic acid can be shortened by a water bath while stirring. Dissolution time of aluminum. Compared with organic solvents, aluminum lactate is more soluble in water. By mixing aluminum lactate in easily soluble water and mixing it with an organic solvent, a mixed liquid can be accurately produced.

另外,如第7圖所示,將粉末狀的硼酸混合於乙醇中,通過水浴使硼酸完全溶解於乙醇,從而生成硼酸液。此時,如第7圖所示,通過一邊攪拌一邊水浴就能夠縮短硼酸的溶解時間。 In addition, as shown in FIG. 7, powdered boric acid was mixed with ethanol, and the boric acid was completely dissolved in ethanol with a water bath to generate a boric acid solution. At this time, as shown in FIG. 7, the dissolution time of the boric acid can be shortened by a water bath while stirring.

並且,如第7圖所示,通過將乳酸鋁液、硼酸液、有機溶劑、增黏劑混合,從而生成混合液。 Then, as shown in FIG. 7, an aluminum lactate solution, a boric acid solution, an organic solvent, and a thickener are mixed to produce a mixed solution.

第8圖是實施例二涉及的半導體摻雜物液體源的製造方法中,用於說明N型半導體摻雜物液體源的製造方法的說明圖。 FIG. 8 is an explanatory diagram for describing a method for manufacturing an N-type semiconductor dopant liquid source in a method for manufacturing a semiconductor dopant liquid source according to the second embodiment.

如第8圖所示,在生成P型半導體摻雜物液體源的混合液時,例如通過將焦磷酸、有機溶劑、增黏劑混合從而生成混合液。 As shown in FIG. 8, when a mixed solution of a P-type semiconductor dopant liquid source is generated, for example, pyrophosphate, an organic solvent, and a thickener are mixed to generate a mixed solution.

在生成混合液後,如第6圖所示,為了使混合液的黏性穩定,將混合液在預先設定的時間和規定的氣氛下進行保存(步驟S2)。 After the mixed solution is generated, as shown in FIG. 6, in order to stabilize the viscosity of the mixed solution, the mixed solution is stored under a predetermined time and a predetermined atmosphere (step S2).

在將混合液保存後,將具有比摻雜物更大直徑的無機粉末混合於混合液中(步驟S3)。這樣,就能夠得到半導體摻雜物液體源。 After the mixed solution is stored, an inorganic powder having a larger diameter than the dopant is mixed in the mixed solution (step S3). In this way, a semiconductor dopant liquid source can be obtained.

(半導體裝置的製造方法) (Manufacturing method of semiconductor device)

接下來,對使用已述的半導體摻雜物液體源的半導體裝置的製造方法進行說明。 Next, a method for manufacturing a semiconductor device using the aforementioned semiconductor dopant liquid source will be described.

第9圖是實施例二涉及的半導體裝置的製造方法流程圖。第10圖是實施例二涉及的半導體裝置的製造方法中,展示下滴步驟的概略截面圖。 FIG. 9 is a flowchart of a method of manufacturing a semiconductor device according to the second embodiment. FIG. 10 is a schematic cross-sectional view showing a dropping step in a method of manufacturing a semiconductor device according to a second embodiment.

首先,如第9圖所示,將半導體摻雜物液體源下滴在半導體基板上(步驟S11)。例如,如第10圖所示,將半導體基板2載置在塗布頭3上,並通 過噴嘴4從上方將P型半導體摻雜物液體源1-P下滴在半導體基板2的塗布面2a上。並且,如第10圖所示,在P型半導體摻雜物液體源1-P中,含有混合後的P型摻雜物11-P、有機溶劑12、增黏劑13、以及無機粉末14。P型半導體摻雜物液體源1-P中可以進一步含有水和乙醇。半導體基板2例如為矽單結晶基板。半導體基板2上也可以是摻雜物已擴散。 First, as shown in FIG. 9, a semiconductor dopant liquid source is dropped on a semiconductor substrate (step S11). For example, as shown in FIG. 10, the semiconductor substrate 2 is placed on the coating head 3, and The P-type semiconductor dopant liquid source 1-P is dropped on the coating surface 2a of the semiconductor substrate 2 through the nozzle 4 from above. As shown in FIG. 10, the P-type semiconductor dopant liquid source 1-P includes the mixed P-type dopants 11-P, the organic solvent 12, the thickener 13, and the inorganic powder 14. The P-type semiconductor dopant liquid source 1-P may further contain water and ethanol. The semiconductor substrate 2 is, for example, a silicon single crystal substrate. The semiconductor substrate 2 may be doped.

第11圖是實施例二涉及的半導體裝置的製造方法中,繼第10圖後的,展示塗布步驟的概略截面圖。 FIG. 11 is a schematic cross-sectional view showing a coating step in the method of manufacturing a semiconductor device according to the second embodiment, following FIG. 10.

在將半導體摻雜物液體源下滴後,如第9圖所示,將下滴的半導體摻雜物液體源塗布在半導體基板上(步驟S12)。例如,如第11圖所示,通過使塗布頭3沿旋轉方向r旋轉,使半導體基板2的塗布面2a上的P型半導體摻雜物液體源1-P伴隨載置在塗布頭3上的半導體基板2一同旋轉。P型半導體摻雜物液體源1-P會從塗布面2a的中心一側向周圍一側流動,最終被塗布在整個塗布面2a上。 After the semiconductor dopant liquid source is dropped, as shown in FIG. 9, the dropped semiconductor dopant liquid source is coated on the semiconductor substrate (step S12). For example, as shown in FIG. 11, by rotating the coating head 3 in the rotation direction r, the P-type semiconductor dopant liquid source 1-P on the coating surface 2 a of the semiconductor substrate 2 is accompanied by the The semiconductor substrate 2 rotates together. The P-type semiconductor dopant liquid source 1-P flows from the center side to the surrounding side of the coating surface 2a, and is finally coated on the entire coating surface 2a.

此時,依靠通過增黏劑13付與P型半導體摻雜物液體源1-P的黏性,就能夠調整無機粉末14向半導體基板2的周圍一側移動的速度。通過這樣,就能夠調整沿塗布面2a的面方向d上的相鄰的無機粉末14之間的間隔i。通過調整無機粉末14之間的間隔i,就能夠調整P型摻雜物11-P在塗布面2a上的分佈。例如,通過將相鄰的無機粉末14之間的間隔i調整為均等,就能夠將P型摻雜物11-P在塗布面2a上的分佈調整為均等。 At this time, the viscosity at which the P-type semiconductor dopant liquid source 1-P is imparted by the tackifier 13 can adjust the speed at which the inorganic powder 14 moves toward the peripheral side of the semiconductor substrate 2. By doing so, the interval i between the adjacent inorganic powders 14 in the plane direction d of the coating surface 2a can be adjusted. By adjusting the interval i between the inorganic powders 14, the distribution of the P-type dopant 11-P on the coating surface 2a can be adjusted. For example, by adjusting the interval i between the adjacent inorganic powders 14 to be equal, the distribution of the P-type dopant 11-P on the coating surface 2a can be adjusted to be equal.

第12圖是實施例二涉及的半導體裝置的製造方法中,繼第11圖後的,展示乾燥步驟的概略截面圖。 FIG. 12 is a schematic cross-sectional view showing a drying step in the method of manufacturing a semiconductor device according to the second embodiment, following FIG. 11.

在塗布半導體摻雜物液體源後,如第9圖所示,使塗布在半導體基板上的半導體摻雜物液體源乾燥(步驟S13)。例如,如第12圖所示,將塗布 有P型半導體摻雜物液體源1-P的半導體基板2載置在內置有發熱體的烘烤板5上,並將烘烤板5加熱至乾燥溫度(第一溫度)。通過這樣,有機溶劑和水就幾乎被蒸發。另一方面,如第12圖所示,增黏劑13被析出(即固化)後殘留。通過增黏劑13析出,就能夠通過增黏劑13來穩定地維持相鄰無機粉末14之間的間隔i。通過這樣,就能夠維持P型摻雜物11-P在塗布面2a上的分佈。 After the semiconductor dopant liquid source is applied, as shown in FIG. 9, the semiconductor dopant liquid source coated on the semiconductor substrate is dried (step S13). For example, as shown in Figure 12, apply The semiconductor substrate 2 having the P-type semiconductor dopant liquid source 1-P is placed on a baking plate 5 having a heating element built therein, and the baking plate 5 is heated to a drying temperature (first temperature). By this, the organic solvent and water are almost evaporated. On the other hand, as shown in FIG. 12, the tackifier 13 is left after being precipitated (that is, cured). When the thickener 13 is precipitated, the distance i between the adjacent inorganic powders 14 can be stably maintained by the thickener 13. By doing so, the distribution of the P-type dopant 11-P on the coating surface 2a can be maintained.

在使半導體摻雜物液體源乾燥後,利用同樣的步驟(步驟S11~S13),以半導體基板2的塗布面2a的相反側的表面為新的塗布面,使用摻雜物的導電類型不同的半導體摻雜物液體源。 After the semiconductor dopant liquid source is dried, the same steps (steps S11 to S13) are used, and the surface on the opposite side of the coating surface 2a of the semiconductor substrate 2 is a new coating surface. Semiconductor dopant liquid source.

通過這樣,就能夠在半導體基板2上形成含有無機粉末14以及P型摻雜物11-P的擴散源覆蓋膜。 In this way, a diffusion source cover film containing the inorganic powder 14 and the P-type dopant 11-P can be formed on the semiconductor substrate 2.

第13圖是實施例二涉及的半導體裝置的製造方法中,繼第12圖後的,展示疊層步驟的概略截面圖。 FIG. 13 is a schematic cross-sectional view showing a lamination step in the method of manufacturing a semiconductor device according to the second embodiment, following FIG. 12.

在使半導體基板正反兩面的塗布面上的半導體摻雜物液體源乾燥後,如第9圖所示,將多個半導體基板疊層(步驟S14)。例如,如第13圖所示,將多個半導體基板2疊層,從而使相同導電類型的半導體摻雜物液體源的塗布面之間相向。在第13圖中,符號11-N表示N型摻雜物。 After drying the semiconductor dopant liquid source on the coating surfaces on both the front and back sides of the semiconductor substrate, a plurality of semiconductor substrates are laminated as shown in FIG. 9 (step S14). For example, as shown in FIG. 13, a plurality of semiconductor substrates 2 are stacked so that the application surfaces of the semiconductor dopant liquid sources of the same conductivity type face each other. In FIG. 13, symbols 11-N indicate N-type dopants.

當相鄰的無機粉末14之間的間隔未被調整時,因無機粉末14分佈上的不均衡,可能會在局部出現半導體基板2之間不存在無機粉末14的部位。此情況下,在局部上不存在無機粉末14的部位上,就會因半導體基板2的重力導致半導體基板2之間的間隔變窄。這樣一來,半導體基板2之間的間隔在面方向上就會變得不均衡,從而半導體基板2之間的摻雜物在面方向上的配置狀態也會變得不均衡。其結果就是,難以維持摻雜物擴散的均衡性。 When the interval between the adjacent inorganic powders 14 is not adjusted, due to the imbalance in the distribution of the inorganic powders 14, portions where the inorganic powders 14 do not exist between the semiconductor substrates 2 may occur locally. In this case, at a portion where the inorganic powder 14 does not exist locally, the space between the semiconductor substrates 2 becomes narrow due to the gravity of the semiconductor substrates 2. In this way, the interval between the semiconductor substrates 2 becomes uneven in the plane direction, and the arrangement state of the dopants between the semiconductor substrates 2 in the plane direction becomes unbalanced. As a result, it is difficult to maintain the equilibrium of the dopant diffusion.

相對於此,在本實施方式中,由於在面方向d上的相鄰無機粉末14之間的間隔通過增黏劑13被調整,因此無機粉末14就能夠調整多個半導體基板2之間的間隔在面方向上的分佈。例如,無機粉末14能夠將多個半導體基板2之間的間隔在面方向上的分佈調整為均衡分佈。 On the other hand, in this embodiment, since the interval between the adjacent inorganic powders 14 in the plane direction d is adjusted by the thickener 13, the inorganic powder 14 can adjust the interval between the plurality of semiconductor substrates 2. Distribution in the face direction. For example, the inorganic powder 14 can adjust the distribution of the intervals between the plurality of semiconductor substrates 2 in the plane direction to a uniform distribution.

由於能夠提高半導體基板2之間的間隔在面方向上的分佈的均衡性,因此就能夠提高半導體基板2之間的摻雜物在面方向上的配置均衡性。其結果就是,能夠提高摻雜物擴散的均衡性。 Since the uniformity of the distribution of the intervals between the semiconductor substrates 2 in the planar direction can be improved, the uniformity of the arrangement of the dopants between the semiconductor substrates 2 in the planar direction can be improved. As a result, the uniformity of the dopant diffusion can be improved.

接著,第14圖是實施例二涉及的半導體裝置的製造方法中,繼第13圖後的,展示燒成步驟的概略截面圖。第15圖是實施例二涉及的半導體裝置的製造方法中,展示擴散流程中溫度變遷的圖表。 Next, FIG. 14 is a schematic cross-sectional view showing a firing step in the method for manufacturing a semiconductor device according to the second embodiment, following FIG. 13. FIG. 15 is a graph showing a temperature change in a diffusion process in the method for manufacturing a semiconductor device according to the second embodiment.

在將半導體基板疊層後,如已述的第9圖所示,實施將不需要的物質去除的燒成步驟(步驟S15)。例如,如第14圖所示,加工疊層後的半導體基板2按燒成溫度進行加熱後去除增黏劑13。具體來說,如第15圖所示,對疊層後的半導體基板2按固定的燒成溫度Ta以及固定的時間t1來進行加熱來啊去除增黏劑13。此時,由於在P型半導體摻雜物液體源1-P塗布時已通過增黏劑13對無機粉末14之間的間隔進行了調整,因此就能夠將P型摻雜物11-P儘量均衡地配置在半導體基板2的表面上。 After the semiconductor substrates are laminated, as shown in FIG. 9 described above, a firing step of removing unnecessary substances is performed (step S15). For example, as shown in FIG. 14, after processing the laminated semiconductor substrate 2, the tackifier 13 is removed after heating at the firing temperature. Specifically, as shown in FIG. 15, the laminated semiconductor substrate 2 is heated at a fixed firing temperature Ta and a fixed time t1 to remove the thickener 13. At this time, since the interval between the inorganic powders 14 has been adjusted by the thickener 13 when the P-type semiconductor dopant liquid source 1-P is coated, the P-type dopants 11-P can be balanced as much as possible. The ground is arranged on the surface of the semiconductor substrate 2.

第16圖是實施例二涉及的半導體裝置的製造方法中,繼第14圖後的,展示沉積步驟的概略截面圖。 FIG. 16 is a schematic cross-sectional view showing a deposition step in the method of manufacturing a semiconductor device according to the second embodiment, following FIG. 14.

在燒成後,如第9圖所示,實施將摻雜物玻璃化後生成擴散供給源的成績沉積步驟(步驟S16)。 After firing, as shown in FIG. 9, a step of depositing a dopant to generate a diffusion supply source after vitrification is performed (step S16).

例如,如第16圖所示,通過將P型摻雜物11-P加熱至沉積溫度(例如,實施例一的第二溫度中所包含的溫度),從而將P型摻雜物11-P玻璃化後生成擴散供給源。具體來說,如第15圖所示,通過按照比燒成溫度Ta更高的固定的沉積溫度Tb,並以比燒成時間t1更長的時間t2,來對P型摻雜物11-P進行加熱,從而將P型摻雜物11-P製作成擴散供給源。此時,P型摻雜物11-P會擴散至較淺的位置上。 For example, as shown in FIG. 16, the P-type dopant 11-P is heated by heating the P-type dopant 11-P to a deposition temperature (for example, a temperature included in the second temperature of the first embodiment), thereby heating the P-type dopant 11-P. After vitrification, a diffusion source is generated. Specifically, as shown in FIG. 15, the P-type dopants 11-P are formed by following a fixed deposition temperature Tb higher than the firing temperature Ta and a time t2 longer than the firing time t1. Heating is performed to prepare the P-type dopant 11-P as a diffusion supply source. At this time, the P-type dopant 11-P will diffuse to a shallower position.

此時,由於在P型半導體摻雜物液體源1-P塗布時,相鄰無機粉末14之間的間隔已通過增黏劑13被調整,因此就能夠將P型摻雜物11-P儘量均衡的配置在半導體基板2的表面上。這樣一來,就能夠使P型摻雜物11-P儘量均衡的擴散。這一點對於N型摻雜物11-N也是一樣的。 At this time, when the P-type semiconductor dopant liquid source 1-P is coated, the interval between adjacent inorganic powders 14 has been adjusted by the tackifier 13, so the P-type dopant 11-P can be as much as possible. They are evenly arranged on the surface of the semiconductor substrate 2. In this way, the P-type dopant 11-P can be diffused as uniformly as possible. The same is true for the N-type dopants 11-N.

另外,此時上下兩塊半導體基板2會被接合從而變為塊體狀態。 In addition, at this time, the upper and lower semiconductor substrates 2 are bonded to each other and become a bulk state.

第17圖是實施例二涉及的半導體裝置的製造方法中,繼第16圖後的,展示擴散步驟的概略截面圖。 FIG. 17 is a schematic cross-sectional view showing a diffusion step following FIG. 16 in the method of manufacturing a semiconductor device according to the second embodiment.

在實施沉積步驟後,如第9圖所示,實施使摻雜物擴散至規定深度的擴散步驟(步驟S17)。例如,如第17圖所示,通過將P型摻雜物11-P加熱至擴散溫度(例如,實施例一的第二溫度中所包含的溫度),從而使P型摻雜物11-P擴散至規定的深度。具體來說,如第15圖所示,通過按照比沉積溫度Tb更高的固定的擴散溫度Tc,並以比沉積時間t2更長的時間t3,來對P型摻雜物11-P進行加熱,從而使P型摻雜物11-P擴散至規定的深度。這一點對於N型摻雜物11-N也是一樣的 After the deposition step is performed, as shown in FIG. 9, a diffusion step is performed to diffuse the dopants to a predetermined depth (step S17). For example, as shown in FIG. 17, the P-type dopant 11-P is heated to a diffusion temperature (for example, a temperature included in the second temperature of the first embodiment) to thereby make the P-type dopant 11-P Spread to a specified depth. Specifically, as shown in FIG. 15, the P-type dopant 11-P is heated by following a fixed diffusion temperature Tc higher than the deposition temperature Tb and a time t3 longer than the deposition time t2. Thus, the P-type dopant 11-P is diffused to a predetermined depth. The same is true for N-type dopants 11-N

第18圖是實施例二涉及的半導體裝置的製造方法中,繼第17圖後的,展示浸漬步驟的概略截面圖。 FIG. 18 is a schematic cross-sectional view showing a dipping step subsequent to FIG. 17 in the method for manufacturing a semiconductor device according to the second embodiment.

在實施擴散步驟後,如第9圖、第18圖所示,在該剝離步驟中,將疊層後的半導體基板2浸漬在剝離液6中(步驟S18)。此時,如第18圖所示,由於半導體基板2之間的間隔已通過無機粉末14來維持,因此剝離液6就能夠從最外周的無機粉末14的部位輕鬆浸透至中心一側。 After the diffusion step is performed, as shown in FIGS. 9 and 18, in this peeling step, the laminated semiconductor substrate 2 is immersed in the peeling liquid 6 (step S18). At this time, as shown in FIG. 18, since the space between the semiconductor substrates 2 has been maintained by the inorganic powder 14, the peeling liquid 6 can easily permeate from the portion of the outermost inorganic powder 14 to the center side.

通過這樣,就能夠促進半導體基板2之間的剝離從而縮短剝離時間。 By doing so, it is possible to promote peeling between the semiconductor substrates 2 and shorten the peeling time.

在浸漬於剝離液後,如第9圖所示,將半導體基板2洗淨,乾燥後從疊層狀態進行剝離(步驟S19)。 After immersion in the peeling solution, as shown in FIG. 9, the semiconductor substrate 2 is washed, dried, and peeled from the laminated state (step S19).

下面,將對本實施例二所具有的作用進行說明。 Hereinafter, the functions of the second embodiment will be described.

如上述般,本實施例涉及的半導體摻雜物液體源含有混合後的:含有摻雜物的化合物、用於溶解化合物的有機溶劑、溶解於有機溶劑並將黏性付與半導體摻雜物液體源的增黏劑、以及具有比摻雜物更大直徑的無機粉末。 As described above, the semiconductor dopant liquid source involved in this embodiment contains the mixed: a compound containing the dopant, an organic solvent for dissolving the compound, a solvent dissolved in the organic solvent, and a viscosity of the semiconductor dopant liquid. Source thickener, and inorganic powder with larger diameter than dopant.

增黏劑具有:在將半導體摻雜物液體源塗布在半導體基板的塗布面上時,通過將黏性付與半導體摻雜物液體源,從而在調整在沿塗布面的面方向上相鄰的無機粉末之間的間隔後,對摻雜物在塗布面上的分佈進行調整,並通過使半導體摻雜物液體源加熱至使其乾燥的第一溫度,伴隨著有機溶劑的蒸發,使半導體摻雜物液體源沉積在相鄰的無機粉末之間從而來維持摻雜物在塗布面上的分佈的特性。 When the semiconductor dopant liquid source is coated on the coating surface of the semiconductor substrate, the tackifier has the following properties: by applying the viscosity to the semiconductor dopant liquid source, it adjusts the After the interval between the inorganic powders, the distribution of the dopant on the coated surface is adjusted, and the semiconductor dopant liquid source is heated to a first temperature for drying, and the semiconductor is doped with the evaporation of the organic solvent The debris liquid source is deposited between adjacent inorganic powders to maintain the distribution characteristics of the dopant on the coated surface.

無機粉末具有:在將多個半導體基板疊層時,通過增黏劑來調整半導體基板的面方向上相鄰的無機粉末之間的間隔,從而來調整多個半導體基板之間的間隔的面方向上的分佈,並在將摻雜物加熱至高於第一溫度的,會生成摻雜物擴散供給源的第二溫度後,在將通過第二溫度加熱從而接合的多個半 導體基板置於剝離液中時,通過維持多個半導體基板之間的間隔,來使剝離液浸透在多個半導體基板之間的特性。 The inorganic powder has a method of adjusting the interval between the plurality of semiconductor substrates by adjusting the interval between the adjacent inorganic powders in the surface direction of the semiconductor substrate with a tackifier when the plurality of semiconductor substrates are laminated. After heating the dopant to a temperature higher than the first temperature, a second temperature of the dopant diffusion supply source is generated, and a plurality of halves that are heated by the second temperature to join When the conductor substrate is placed in the peeling liquid, the characteristics of impregnating the peeling liquid between the plurality of semiconductor substrates are maintained by maintaining the interval between the plurality of semiconductor substrates.

這樣一來,根據本發明,就能夠:在塗布半導體摻雜物液體源時,通過增黏劑的黏性來調整摻雜物在塗布面上的分佈,在將半導體摻雜物液體源加熱至使其乾燥的第一溫度時,增黏劑被析出在相鄰的無機粉末之間從而來維持摻雜物在塗布面上的分佈,在將多個半導體基板疊層時,通過增黏劑的黏性來調整面方向上的無機粉末之間的間隔,從而來調整多個半導體基板之間的間隔的面方向上的分佈,並在將多個半導體基板置於剝離液中時,通過維持多個半導體基板之間的間隔,來使剝離液浸透在多個半導體基板之間。 In this way, according to the present invention, when coating a semiconductor dopant liquid source, it is possible to adjust the distribution of the dopant on the coating surface through the viscosity of the tackifier, and heat the semiconductor dopant liquid source to At the first temperature for drying, the tackifier is precipitated between adjacent inorganic powders to maintain the distribution of dopants on the coating surface. When multiple semiconductor substrates are laminated, the The viscosity is used to adjust the interval between the inorganic powders in the plane direction, so as to adjust the distribution in the plane direction of the interval between the plurality of semiconductor substrates. The space between the semiconductor substrates allows the peeling liquid to permeate between the plurality of semiconductor substrates.

通過這樣,就能夠在確保摻雜物擴散的均衡性的同時,縮短半導體基板剝離所需的時間,從而提升半導體裝置的製造效率。 By doing so, it is possible to shorten the time required for the peeling of the semiconductor substrate while ensuring the uniformity of the dopant diffusion, thereby improving the manufacturing efficiency of the semiconductor device.

另外,在摻雜薄膜中,為了避免因大量有機黏合劑(binder)所導致氣體急劇產生後引發異常燃燒,有必要按固定溫度對摻雜薄膜進行預焙。不過,在半導體摻雜物液體源中,由於使用了不會引發異常燃燒的有機溶劑,因此就不需要在燒成前進行預焙。這樣一來,就能夠壓縮步驟數量從而進一步提升製造效率。 In addition, in the doped film, in order to avoid abnormal combustion caused by the rapid generation of gas caused by a large amount of binder, it is necessary to pre-bake the doped film at a fixed temperature. However, in the semiconductor dopant liquid source, since an organic solvent that does not cause abnormal combustion is used, pre-baking is not required before firing. In this way, the number of steps can be reduced to further improve manufacturing efficiency.

(變形例) (Modification)

除了上述實施例以外,本發明還能夠適用多種變形例。 In addition to the embodiments described above, the present invention can be applied to various modifications.

第19圖是變形例涉及的半導體摻雜物液體源的製造方法流程圖。例如,如第19圖所示,在製造半導體摻雜物液體源時,可以在保存混合液之前對其進行攪拌(步驟S4)。通過攪拌混合液,就能夠進一步穩定增黏劑的 黏度。而通過穩定增黏劑的黏度,在製造半導體裝置時,就能夠更加有效地確保摻雜物擴散的均衡性。 FIG. 19 is a flowchart of a method for manufacturing a semiconductor dopant liquid source according to a modification. For example, as shown in FIG. 19, when manufacturing a semiconductor dopant liquid source, the mixed liquid may be stirred before it is stored (step S4). By stirring the mixture, the viscosity of the thickener can be further stabilized. Viscosity. By stabilizing the viscosity of the thickener, it is possible to more effectively ensure the uniformity of dopant diffusion when manufacturing a semiconductor device.

另外,相對於半導體摻雜物液體源整體的無機粉末的質量濃度(wt%)可以低於相對於半導體摻雜物液體源整體的增黏劑的質量濃度(wt%)。 In addition, the mass concentration (wt%) of the inorganic powder relative to the entire semiconductor dopant liquid source may be lower than the mass concentration (wt%) of the thickener relative to the entire semiconductor dopant liquid source.

此時,當無機粉末的質量濃度高於增黏劑的質量濃度時,由於增黏劑無法發揮合適的黏性從而導致半導體摻雜物液體源難以延展開,因此即便想要獲得期望的黏性從而對增黏劑的材料進行選定,也很難正確地來調整增黏劑的黏度。 At this time, when the mass concentration of the inorganic powder is higher than the mass concentration of the tackifier, the semiconductor dopant liquid source is difficult to expand because the tackifier cannot exhibit appropriate viscosity, so even if it is desired to obtain the desired viscosity Therefore, when the material of the thickener is selected, it is difficult to adjust the viscosity of the thickener correctly.

相對於此,當無機粉末的質量濃度低於增黏劑的質量濃度時,由於增黏劑能夠發揮合適的黏性,從而通過對增黏劑的材料進行選定,就能夠正確地來調整增黏劑的黏度。 In contrast, when the mass concentration of the inorganic powder is lower than the mass concentration of the tackifier, the tackifier can exhibit appropriate viscosity, so by selecting the material of the tackifier, the tackifier can be adjusted correctly The viscosity of the agent.

另外,相對於半導體摻雜物液體源整體的無機粉末的質量濃度可以低於相對於半導體摻雜物液體源整體的有機溶劑的質量濃度。 In addition, the mass concentration of the inorganic powder relative to the entire semiconductor dopant liquid source may be lower than the mass concentration of the organic solvent relative to the entire semiconductor dopant liquid source.

此時,當無機粉末的質量濃度高於有機溶劑的質量濃度時,由於會顯著有損半導體摻雜物液體源的流動性,因此即便增加對流動體付加黏性的增黏劑,也會因用於付與黏性的流動體(有機溶劑)過少,從而導致增黏劑無法發揮合適的黏性。 At this time, when the mass concentration of the inorganic powder is higher than the mass concentration of the organic solvent, since the fluidity of the semiconductor dopant liquid source is significantly impaired, even if a thickening agent is added to the fluid, There are too few fluids (organic solvents) to be used for viscous properties, which results in the tackifier not exhibiting proper viscosity.

因此,即便想要獲得期望的黏性從而對增黏劑的材料進行選定,也很難正確地來調整增黏劑的黏度。相對於此,當無機粉末的質量濃度低於有機溶劑的質量濃度時,由於能確保用於付與黏性的足夠的有機溶劑,因此增黏劑就能夠發揮合適的黏性。這樣一來,通過對增黏劑的材料進行選定,就能夠正確地來調整增黏劑的黏度。 Therefore, even if it is desired to obtain the desired viscosity and select the material of the thickener, it is difficult to adjust the viscosity of the thickener correctly. In contrast, when the mass concentration of the inorganic powder is lower than the mass concentration of the organic solvent, since a sufficient organic solvent for imparting viscosity can be ensured, the tackifier can exhibit appropriate viscosity. In this way, by selecting the material of the thickener, the viscosity of the thickener can be adjusted accurately.

另外,也可以將已述的實施例一、實施例二、以及變形例中涉及的半導體裝置的製造方法所涉及的發明分別進行組合後來實施。 In addition, the inventions related to the method for manufacturing a semiconductor device according to the first, second, and modified examples described above may be combined and implemented separately.

以上,就本發明的具體實施方式進行了說明,這些實施方式是作為舉例而提示的,並沒有限定發明範圍的意圖。這些實施方式可以被其他的各種形態所實施,並且可以在不脫離發明要旨的範圍內進行種種的省略、替換、以及更改。這些實施方式或是其變形例是包含於發明範圍或要旨中的,同時,也是包含於與申請專利範圍所記載的發明相均等的範圍中的。 The specific embodiments of the present invention have been described above. These embodiments are presented as examples, and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments or modifications thereof are included in the scope or gist of the invention, and are also included in a range equivalent to the invention described in the patent application scope.

Claims (15)

一種半導體裝置的製造方法,其包括:溶解步驟,將乳酸鋁溶於水後製作水溶液;混合步驟,製造該水溶液與有機溶劑混合後的混合液,並製造含有該混合液的半導體摻雜物液體源;塗布步驟,在進行該混合步驟後,將含有該水溶液的該半導體摻雜物液體源塗布在半導體基板上,從而在該半導體基板上形成擴散源覆蓋膜;燒成步驟,在進行該塗布步驟後,在第一氣氛中,對該半導體基板按第一溫度進行加熱處理,從而對該擴散源覆蓋膜中的至少該有機溶劑進行燒成;以及擴散步驟,在進行該燒成步驟後,在第二氣氛中,對該半導體基板按高於該第一溫度的第二溫度進行加熱處理,使該擴散源覆蓋膜中含有的鋁在該半導體基板上擴散,從而在半導體基板上形成擴散層。A method for manufacturing a semiconductor device, comprising: a dissolving step of dissolving aluminum lactate in water to prepare an aqueous solution; a mixing step of manufacturing a mixed solution of the aqueous solution and an organic solvent; and manufacturing a semiconductor dopant liquid containing the mixed solution A coating step, after performing the mixing step, coating the semiconductor dopant liquid source containing the aqueous solution on a semiconductor substrate, thereby forming a diffusion source cover film on the semiconductor substrate; a firing step, performing the coating After the step, the semiconductor substrate is heat-treated at a first temperature in a first atmosphere to fire at least the organic solvent in the diffusion source cover film; and a diffusion step. After the firing step is performed, In a second atmosphere, the semiconductor substrate is heat-treated at a second temperature higher than the first temperature to diffuse aluminum contained in the diffusion source cover film on the semiconductor substrate, thereby forming a diffusion layer on the semiconductor substrate. . 如申請專利範圍第1項所述之半導體裝置的製造方法,其中該有機溶劑具有不會使該乳酸鋁溶解的特性。The method for manufacturing a semiconductor device according to item 1 of the application, wherein the organic solvent has a property that the aluminum lactate is not dissolved. 如申請專利範圍第2項所述之半導體裝置的製造方法,其中該有機溶劑為乙醇、丙酮、丙醇、或酒精中的任意一種。The method for manufacturing a semiconductor device according to item 2 of the scope of patent application, wherein the organic solvent is any one of ethanol, acetone, propanol, or alcohol. 如申請專利範圍第3項所述之半導體裝置的製造方法,其中該燒成步驟中的該第一氣氛為氧化氣氛。The method for manufacturing a semiconductor device according to item 3 of the scope of patent application, wherein the first atmosphere in the firing step is an oxidizing atmosphere. 如申請專利範圍第4項所述之半導體裝置的製造方法,其中該擴散步驟中的該第二氣氛為該氧化氣氛。The method for manufacturing a semiconductor device according to item 4 of the scope of patent application, wherein the second atmosphere in the diffusion step is the oxidation atmosphere. 如申請專利範圍第5項所述之半導體裝置的製造方法,其中該氧化氣氛為含氧氣氛。The method for manufacturing a semiconductor device according to item 5 of the scope of patent application, wherein the oxidizing atmosphere is an oxygen-containing atmosphere. 如申請專利範圍第6項所述之半導體裝置的製造方法,其中該塗布步驟通過旋塗法將該半導體摻雜物液體源塗布在半導體基板上。The method for manufacturing a semiconductor device according to item 6 of the application, wherein the coating step applies the semiconductor dopant liquid source on the semiconductor substrate by a spin coating method. 如申請專利範圍第7項所述之半導體裝置的製造方法,其中該燒成步驟中的該第一溫度在400℃~600℃範圍內。The method for manufacturing a semiconductor device according to item 7 of the scope of patent application, wherein the first temperature in the firing step is in a range of 400 ° C to 600 ° C. 如申請專利範圍第8項所述之半導體裝置的製造方法,其中該擴散步驟中的該第二溫度在1000℃~1300℃範圍內。The method for manufacturing a semiconductor device according to item 8 of the scope of patent application, wherein the second temperature in the diffusion step is in a range of 1000 ° C to 1300 ° C. 如申請專利範圍第7項所述之半導體裝置的製造方法,其中該半導體基板為N型矽晶片。The method for manufacturing a semiconductor device according to item 7 of the scope of patent application, wherein the semiconductor substrate is an N-type silicon wafer. 如申請專利範圍第10項所述之半導體裝置的製造方法,其進一步包括:剝離步驟,在進行該擴散步驟後,將殘存在該半導體基板上的膜通過剝離液剝離。The method for manufacturing a semiconductor device according to item 10 of the scope of patent application, further comprising a peeling step, and after performing the diffusion step, peeling off the film remaining on the semiconductor substrate with a peeling liquid. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該剝離液為氟酸。The method for manufacturing a semiconductor device according to item 11 of the scope of patent application, wherein the stripping solution is hydrofluoric acid. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該半導體摻雜物液體源進一步含有:溶解於該有機溶劑並且將黏性付與該半導體摻雜物液體源的增黏劑、以及多種無機粉末,在該燒成步驟中,在將兩個該半導體基板相向從而使該兩個該半導體基板的該擴散源覆蓋膜接觸的狀態下,在該第一氣氛中,對該兩個該半導體基板按該第一溫度進行加熱處理,在該擴散步驟中,在該第二氣氛中,對該兩個該半導體基板按該第二溫度進行加熱處理,該無機粉末具有:在將該兩個該半導體基板疊層時,通過該增黏劑來調整該半導體基板的面方向上相鄰的無機粉末之間的間隔,從而來調整該兩個該半導體基板之間的間隔的面方向上的分佈的特性,該無機粉末還具有:在將摻雜物加熱至高於該第一溫度的,會生成摻雜物擴散供給源的該第二溫度後,在將通過該第二溫度加熱從而接合的該兩個該半導體基板置於該剝離液中時,通過維持該兩個該半導體基板之間的間隔,來使該剝離液浸透在該兩個該半導體基板之間的特性,在該剝離步驟中,相向的該兩個該半導體基板是分離的。The method for manufacturing a semiconductor device according to item 11 of the application, wherein the semiconductor dopant liquid source further comprises: a tackifier that dissolves in the organic solvent and imparts viscosity to the semiconductor dopant liquid source, And a plurality of inorganic powders, in the firing step, in a state where the two semiconductor substrates face each other so that the diffusion source cover films of the two semiconductor substrates are in contact, the two The semiconductor substrate is heat-treated at the first temperature. In the diffusion step, the two semiconductor substrates are heat-treated at the second temperature in the second atmosphere. The inorganic powder has: When stacking the two semiconductor substrates, the interval between the adjacent inorganic powders in the plane direction of the semiconductor substrate is adjusted by the tackifier, so as to adjust the interval in the plane direction of the interval between the two semiconductor substrates. Distribution characteristics, the inorganic powder also has: after heating the dopant above the first temperature to generate the second temperature of the dopant diffusion supply source, When the two semiconductor substrates that are joined by heating at the second temperature are placed in the peeling liquid, the peeling liquid is impregnated between the two semiconductor substrates by maintaining a gap between the two semiconductor substrates. In the stripping step, the two semiconductor substrates facing each other are separated. 如申請專利範圍第13項所述之半導體裝置的製造方法,其中該增黏劑的主要成分含有:纖維素、纖維束衍生物、或羥丙基纖維素。The method for manufacturing a semiconductor device according to item 13 of the scope of patent application, wherein the main component of the thickener contains cellulose, a fiber bundle derivative, or hydroxypropyl cellulose. 如申請專利範圍第1項所述之半導體裝置的製造方法,其中在該塗布步驟與該燒成步驟之間進行預焙,按低於該第一溫度的第三溫度對該半導體基板進行加熱處理,從而使該擴散源覆蓋膜中的至少該有機溶劑以及該水蒸發。The method for manufacturing a semiconductor device according to item 1 of the scope of patent application, wherein pre-baking is performed between the coating step and the firing step, and the semiconductor substrate is heat-treated at a third temperature lower than the first temperature. Therefore, at least the organic solvent and the water in the diffusion source cover film are evaporated.
TW107121194A 2018-02-02 2018-06-20 Manufacturing method of semiconductor device TWI653668B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??PCT/JP2018/003554 2018-02-02
PCT/JP2018/003554 WO2019150547A1 (en) 2018-02-02 2018-02-02 Method for producing semiconductor device

Publications (2)

Publication Number Publication Date
TWI653668B true TWI653668B (en) 2019-03-11
TW201935530A TW201935530A (en) 2019-09-01

Family

ID=65655852

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107121194A TWI653668B (en) 2018-02-02 2018-06-20 Manufacturing method of semiconductor device

Country Status (4)

Country Link
JP (1) JP6480087B1 (en)
CN (1) CN110352471B (en)
TW (1) TWI653668B (en)
WO (1) WO2019150547A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11894232B2 (en) 2022-03-22 2024-02-06 Applied Materials, Inc. Methods for forming charge layers using gas and liquid phase coatings

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019011B2 (en) * 1996-10-28 2000-03-13 サンケン電気株式会社 Method for manufacturing semiconductor device
JP2000090734A (en) * 1998-09-16 2000-03-31 Murata Mfg Co Ltd Conductive paste, and solar battery using it
JP3039646B1 (en) * 1999-03-29 2000-05-08 サンケン電気株式会社 Method for manufacturing semiconductor device
JP2002299274A (en) * 2001-04-02 2002-10-11 Sanken Electric Co Ltd Manufacturing method for semiconductor device
JP2006346877A (en) * 2005-06-13 2006-12-28 Konica Minolta Photo Imaging Inc Silica dispersion, its producibility evaluating method and manufacturing method of recording medium
CN104517820A (en) * 2013-09-30 2015-04-15 东京应化工业株式会社 Diffusant composition, method for forming impurity diffusion layer
JP6072129B2 (en) * 2014-04-30 2017-02-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Doping of substrates using dopant-containing polymer films
US9620354B2 (en) * 2014-10-03 2017-04-11 Tokyo Ohka Kogyo Co., Ltd. Method for manufacturing semiconductor substrate with diffusion agent composition
US20160293425A1 (en) * 2015-04-03 2016-10-06 Tokyo Ohka Kogyo Co., Ltd. Method for manufacturing semiconductor substrate

Also Published As

Publication number Publication date
JP6480087B1 (en) 2019-03-06
JPWO2019150547A1 (en) 2020-02-06
CN110352471A (en) 2019-10-18
WO2019150547A1 (en) 2019-08-08
CN110352471B (en) 2022-12-23
TW201935530A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
US20220073801A1 (en) Adhesive composition for optical irradiation peeling, laminate body, and laminate body production method and peeling method
TWI653668B (en) Manufacturing method of semiconductor device
TWI523080B (en) Film forming apparatus
EP2578721A3 (en) Coating fluid for boron diffusion
JP2012048906A5 (en)
JP2018512727A (en) Periodic continuous processing to form high quality thin films
US20150279662A1 (en) Photolithographic method for forming a coating layer
TWI685022B (en) Semiconductor dopant liquid source, method for manufacturing semiconductor dopant liquid source, and method for manufacturing semiconductor device
TW200303944A (en) Process and apparatus for epitaxially coating a semiconductor wafer, and epitaxially coated semiconductor wafer
JP2013004956A (en) Rotation system for forming thin film and method for the same
KR100966832B1 (en) Manufacturing method for semiconductor wafer supporting device
JP6100471B2 (en) Method for diffusing impurity diffusion component and method for manufacturing solar cell
JP2011171600A (en) Diffusion method of impurity diffusing component, and method of manufacturing solar cell
TW201840573A (en) Impurity diffusion agent composition, and method for manufacturing semiconductor substrate
TW201920747A (en) Antimony co-doping with phosphorus to form ultrashallow junctions using atomic layer deposition and annealing
JPH11186182A (en) P-type diffusion source and manufacture of semiconductor device using it
JP7051633B2 (en) Manufacturing method of silicon wafer
TW202123481A (en) Method for forming perovskite layer and forming structure comprising perovskite layer
TW201946116A (en) Impurity diffusion composition, method for producing semiconductor device using same, and method for manufacturing solar cell
JP3019011B2 (en) Method for manufacturing semiconductor device
FR3061210B1 (en) SOL-GEL PROCESS FOR MANUFACTURING AN ANTICORROSION COATING ON METALLIC SUBSTRATE
JP3067177B2 (en) Rotary coating device
JP2012030998A (en) Method for producing silicon carbide substrate product, and silicon carbide substrate product
JP2013105924A (en) Manufacturing method of silicon epitaxial wafer
JP2013187433A (en) Method for manufacturing crystal silicon solar cell