TWI652858B - Beam-steering antenna - Google Patents
Beam-steering antenna Download PDFInfo
- Publication number
- TWI652858B TWI652858B TW106126253A TW106126253A TWI652858B TW I652858 B TWI652858 B TW I652858B TW 106126253 A TW106126253 A TW 106126253A TW 106126253 A TW106126253 A TW 106126253A TW I652858 B TWI652858 B TW I652858B
- Authority
- TW
- Taiwan
- Prior art keywords
- cylindrical
- edge
- slots
- metal layer
- slot
- Prior art date
Links
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Abstract
一種可調式波束切換天線,其主體為一圓柱狀共振腔,同時為一圓柱狀偏壓電路。此圓柱狀共振腔包括一圓柱狀外金屬層,其覆蓋於一圓柱狀基板的一外表面上。圓柱狀外金屬層被複數槽孔、複數第一間隙及複數第二間隙分割成多個電性分開的導電區域。每一槽孔包括彼此相對的一控制邊及一電源邊,用以設置一二極體於其內。第一間隙將每兩相鄰槽孔的兩控制邊電性分開 。第二間隙將同一槽孔的控制邊與電源邊電性分開。本發明直接將控制二極體開關的偏壓電路做成圓柱狀,以簡單結構同時達成波束切換及共振腔之功能。A tunable beam-switching antenna, the main body of which is a cylindrical resonant cavity and a cylindrical bias circuit. The cylindrical resonant cavity includes a cylindrical outer metal layer overlying an outer surface of a cylindrical substrate. The cylindrical outer metal layer is divided into a plurality of electrically separated conductive regions by the plurality of slots, the plurality of first gaps, and the plurality of second gaps. Each slot includes a control edge and a power supply edge opposite to each other for arranging a diode therein. The first gap electrically separates the two control sides of each two adjacent slots. The second gap electrically separates the control side of the same slot from the power supply side. The invention directly forms the bias circuit for controlling the diode switch into a cylindrical shape, and simultaneously realizes the functions of beam switching and resonant cavity in a simple structure.
Description
本發明與一種智慧型天線有關,特別是與一種波束切換天線有關。The invention relates to a smart antenna, and in particular to a beam switching antenna.
在無線通訊系統中,天線是影響通訊品質的重要元件之一,它是傳送和接收電磁波的重要窗口。因此,擁有良好性能的天線能夠有效地提升通訊品質。目前的智慧型天線大致可以分為兩類。第一種為適應型,它是利用數位訊號處理和適應性陣列的技術產生所需要波束場型,此種天線能讓波束準確地對準目標,並且同時抑制其他干擾訊號,以強化接收品質。第二種為波束切換天線,它能夠將波束場型的方向切換到接收端所需要的方位,讓接收端的訊號強度達到最大。In wireless communication systems, the antenna is one of the important components that affect the quality of communication. It is an important window for transmitting and receiving electromagnetic waves. Therefore, antennas with good performance can effectively improve communication quality. The current smart antennas can be roughly divided into two categories. The first is adaptive. It uses digital signal processing and adaptive array techniques to generate the required beam pattern. This antenna allows the beam to be accurately targeted to the target while suppressing other interfering signals to enhance reception quality. The second type is a beam-switching antenna, which can switch the direction of the beam pattern to the desired position of the receiving end, so that the signal strength of the receiving end is maximized.
波束切換天線與適應型天線相比較為簡單、成本較低。由於波束切換天線在通訊時可以適當的調整波束的角度,在傳輸的方向上可達到較好的通訊品質,因此在使用上也較為廣泛。The beam switching antenna is simpler and less expensive than the adaptive antenna. Since the beam switching antenna can appropriately adjust the beam angle during communication, a better communication quality can be achieved in the direction of transmission, and thus it is also widely used.
實現波束切換天線的方法之一是利用二極體的導通和不導通來改變天線的輻射方向,例如:利用相移器(Phase Shifter)以及巴特勒矩陣(Butler Matrix)等架構做為前端電路製造出相位差,並且在這些前端電路的終端接上天線,來達到波束切換的效果。One of the methods for implementing the beam-switching antenna is to change the radiation direction of the antenna by using the conduction and non-conduction of the diode, for example, using a phase shifter (Phase Shifter) and a Butler Matrix (Butler Matrix) as the front-end circuit manufacturing. The phase difference is obtained, and the antenna is connected to the terminals of these front-end circuits to achieve the effect of beam switching.
然而,這些前端電路的介入損耗(Insertion Loss)、面積和頻寬(Bandwidth)都會影響天線的性能。若要讓習知的波束切換天線擁有較多的切換角度,則其前端電路設計的複雜程度就會提高,而且介入損耗也越高。因此,習知波束切換天線的可切換角度往往受到限制,無法任意增加。However, the insertion loss, area, and bandwidth of these front-end circuits affect the performance of the antenna. In order for the conventional beam switching antenna to have more switching angles, the complexity of the front end circuit design is increased, and the insertion loss is also higher. Therefore, the switchable angle of the conventional beam switching antenna is often limited and cannot be arbitrarily increased.
本發明之目的在於提供一種不需要前端電路的可調式波束切換天線,利用簡單的偏壓電路結構即可在水平面上進行360度的波束切換功能,並避免複雜的前端電路設計及介入損耗等問題。The object of the present invention is to provide an adjustable beam-switching antenna that does not require a front-end circuit, and can perform a 360-degree beam switching function on a horizontal plane by using a simple bias circuit structure, and avoid complicated front-end circuit design and insertion loss. problem.
為了達到上述目的,本發明一種可調式波束切換天線,具有一圓柱狀共振腔,此圓柱狀共振腔包括一圓柱狀基板、一圓柱狀外金屬層及複數二極體。圓柱狀外金屬層覆蓋於圓柱狀基板的一外表面上,並且具有複數環帶狀排列的槽孔、複數第一間隙及複數第二間隙。每一槽孔的邊緣包括彼此相對的一控制邊及一電源邊。第一間隙分隔於每兩相鄰的槽孔的兩控制邊之間 。這些第一間隙將圓柱狀外金屬層分割出複數彼此電性分開的控制區。第二間隙分隔於同一槽孔的控制邊與電源邊之間。這些第二間隙及槽孔將圓柱狀外金屬層分割出至少一電源區,電源區與每一控制區電性分開。每一二極體設置於複數槽孔之其一內,與圓柱狀外金屬層組合而成一圓柱狀偏壓電路。每一二極體具有一正極及一負極,正極通過其對應的槽孔的電源邊而電性連接於電源區,負極通過其對應的槽孔的控制邊而電性連接於這些控制區之其一。In order to achieve the above object, an adjustable beam switching antenna of the present invention has a cylindrical resonant cavity including a cylindrical substrate, a cylindrical outer metal layer and a plurality of diodes. The cylindrical outer metal layer covers an outer surface of the cylindrical substrate, and has a plurality of annular strip-shaped slots, a plurality of first gaps and a plurality of second gaps. The edge of each slot includes a control edge and a power supply edge opposite each other. The first gap is separated between two control edges of each two adjacent slots. These first gaps divide the cylindrical outer metal layer into a plurality of control regions that are electrically separated from one another. The second gap is separated between the control edge of the same slot and the power supply side. The second gaps and slots divide the cylindrical outer metal layer into at least one power supply region, and the power supply region is electrically separated from each control region. Each of the diodes is disposed in one of the plurality of slots and combined with the cylindrical outer metal layer to form a cylindrical bias circuit. Each of the diodes has a positive electrode and a negative electrode. The positive electrode is electrically connected to the power supply region through the power supply side of the corresponding slot, and the negative electrode is electrically connected to the control region through the control edge of the corresponding slot. One.
在一實施例中,前述的槽孔橫向地排列為單一環帶,每兩相鄰的槽孔之間具有一間隔區。第一間隙從頂邊垂直向下延伸並終止於間隔區內。第二間隙橫向地貫穿間隔區而連接於兩相鄰的槽孔之間,並且與第一間隙相垂直而形成T字形連接。In one embodiment, the aforementioned slots are laterally arranged as a single endless belt with a spacer between each adjacent slot. The first gap extends vertically downward from the top edge and terminates in the spacing region. The second gap extends transversely through the spacer and is connected between the two adjacent slots and is perpendicular to the first gap to form a T-shaped connection.
在一實施例中,前述的槽孔包括複數上槽孔及複數下槽孔。多個上槽孔排列為一上環帶。多個下槽孔排列為一下環帶。每一上槽孔對齊於這些下槽孔之其一。每一上槽孔的電源邊位於其控制邊的下方。每一下槽孔的電源邊位於其控制邊的上方。每兩相鄰的上槽孔之間具有一上間隔區,每兩相鄰的下槽孔之間具有一下間隔區。每一第一間隙從圓柱狀外金屬層的一頂邊垂直向下延伸通過上間隔區及下間隔區而連接至圓柱狀外金屬層的一底邊。每一第二間隙從上槽孔的電源邊的一端垂直向下延伸至下槽孔的電源邊的一端。In one embodiment, the aforementioned slot includes a plurality of upper slots and a plurality of lower slots. The plurality of upper slots are arranged as an upper loop. A plurality of lower slots are arranged as a lower loop. Each of the upper slots is aligned with one of the lower slots. The power side of each upper slot is below its control edge. The power edge of each slot is above its control edge. There is an upper spacer between each two adjacent upper slots, and a lower spacer between each two adjacent lower slots. Each of the first gaps extends vertically downward from a top edge of the cylindrical outer metal layer through the upper spacer region and the lower spacer region to a bottom edge of the cylindrical outer metal layer. Each second gap extends vertically downward from one end of the power supply side of the upper slot to one end of the power supply side of the lower slot.
在一實施例中,圓柱狀基板具有一內表面,其位於外表面的背面,內表面上覆蓋一圓柱狀內金屬層,用以補償射頻訊號的耦合效應。In one embodiment, the cylindrical substrate has an inner surface on the back surface of the outer surface, and the inner surface is covered with a cylindrical inner metal layer to compensate for the coupling effect of the radio frequency signal.
在一實施例中,每一上槽孔的電源邊與其對應的下槽孔的電源邊之間係以兩條第二間隙連接,藉此將圓柱狀外金屬層分隔出一矩形電源區,矩形電源區內設有一通孔,通孔貫穿圓柱狀基板而連通圓柱狀內金屬層。In one embodiment, the power supply side of each upper slot is connected with the power edge of the corresponding lower slot by two second gaps, thereby separating the cylindrical outer metal layer from a rectangular power supply area, rectangular A through hole is formed in the power supply region, and the through hole penetrates the cylindrical substrate to communicate with the cylindrical inner metal layer.
在一實施例中,前述的可調式波束切換天線更包括一裙狀結構,用以增加可調式波束切換天線的增益值。裙狀結構環繞且連接於圓柱狀共振腔的一頂部及一底部二者之其一,其中裙狀結構與圓柱狀外金屬層為電性分開。In an embodiment, the foregoing adjustable beam switching antenna further includes a skirt structure for increasing the gain value of the adjustable beam switching antenna. The skirt structure surrounds and is connected to one of a top portion and a bottom portion of the cylindrical resonant cavity, wherein the skirt structure is electrically separated from the cylindrical outer metal layer.
在一實施例中,裙狀結構具有一金屬裙面,金屬裙面與水平面的夾角為12度至35度。In one embodiment, the skirt structure has a metallic skirt with an angle between the metal skirt and the horizontal plane of 12 to 35 degrees.
在一實施例中,金屬裙面具有一內緣及一外緣,內緣與圓柱狀共振腔連接,內緣與外緣之間的距離定義為一裙長,裙長為150 mm至400 mm。In one embodiment, the metal skirt has an inner edge and an outer edge, the inner edge is connected to the cylindrical resonant cavity, and the distance between the inner edge and the outer edge is defined as a skirt length of 150 mm to 400 mm. .
在一實施例中,圓柱狀共振腔的頂部設有一控制電路,用以控制二極體的導通或不導通,其中該控制電路產生的控制訊號藉由一控制線傳遞至該圓柱狀內金屬層頂部的一接點,通過該接點並穿過該圓柱狀基板而傳遞至該圓柱狀外金屬層的該控制區。In one embodiment, a control circuit is disposed on the top of the cylindrical resonant cavity for controlling conduction or non-conduction of the diode, wherein the control signal generated by the control circuit is transmitted to the cylindrical inner metal layer by a control line. A contact of the top portion is transferred to the control region of the cylindrical outer metal layer through the joint and through the cylindrical substrate.
在一實施例中,圓柱狀共振腔適合饋入一同軸接頭的一訊號傳輸線,訊號傳輸線由圓柱狀共振腔底部往上延伸到頂部。In one embodiment, the cylindrical resonant cavity is adapted to feed a signal transmission line of a coaxial connector, and the signal transmission line extends from the bottom of the cylindrical resonant cavity to the top.
本發明的可調式波束切換天線藉由二極體的導通和不導通來控制天線的波束切換,並且直接將控制二極體開關的偏壓電路做成圓柱狀共振腔的型態,且實質上同時具備共振腔的功能。The adjustable beam switching antenna of the present invention controls the beam switching of the antenna by conducting and non-conducting the diode, and directly forms the bias circuit of the control diode switch into a cylindrical resonant cavity type, and the essence It also has the function of a resonant cavity.
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是用於參照隨附圖式的方向。因此,該等方向用語僅是用於說明並非是用於限制本發明。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. The directional terms mentioned in the following embodiments, such as upper, lower, left, right, front or rear, etc., are only used to refer to the directions of the accompanying drawings. Therefore, the directional terms are used for illustration only and are not intended to limit the invention.
請參照圖1A,第一實施例的可調式波束切換天線100,其主體是一個圓柱狀共振腔100A,同時也是一圓柱狀偏壓電路150。圓柱狀共振腔100A的頂部設有一控制電路160。圓柱狀共振腔100A有饋入一凸緣固定式(Flange Mount)同軸接頭,亦稱SMA接頭,此SMA接頭內的訊號傳輸線200往上延伸頂到圓柱狀共振腔100A頂部,但並未電性連接於控制電路160。Referring to FIG. 1A, the adjustable beam-switching antenna 100 of the first embodiment has a cylindrical resonant cavity 100A and is also a cylindrical biasing circuit 150. A control circuit 160 is provided on the top of the cylindrical resonant cavity 100A. The cylindrical resonant cavity 100A has a Flange Mount coaxial connector, also known as an SMA connector. The signal transmission line 200 in the SMA connector extends upwardly to the top of the cylindrical resonant cavity 100A, but is not electrically Connected to control circuit 160.
圓柱狀共振腔100A包括一圓柱狀基板110、一圓柱狀外金屬層120、一圓柱狀內金屬層130及多個二極體140。圓柱狀外金屬層120覆蓋於圓柱狀基板110的外表面112上,圓柱狀內金屬層130覆蓋於圓柱狀基板110的內表面114上。圓柱狀外金屬層120被多個排列成環帶狀的槽孔126、多條第一間隙122及多條第二間隙124分割成多個導電區域,例如圖1A所示的控制區121及電源區123。槽孔126的邊緣包括彼此相對的一控制邊1262及一電源邊1264。值得注意的是,第一間隙122分隔於每兩相鄰槽孔126的兩控制邊1262之間,用以分割圓柱狀外金屬層120而形成多個彼此電性分開的控制區121。第二間隙124分隔於同一槽孔126的控制邊1262與電源邊1264之間。這些第二間隙124及槽孔126用以將圓柱狀外金屬層120分割出一電源區123,此電源區123與所有的控制區121電性分開。The cylindrical resonant cavity 100A includes a cylindrical substrate 110, a cylindrical outer metal layer 120, a cylindrical inner metal layer 130, and a plurality of diodes 140. The cylindrical outer metal layer 120 covers the outer surface 112 of the cylindrical substrate 110, and the cylindrical inner metal layer 130 covers the inner surface 114 of the cylindrical substrate 110. The cylindrical outer metal layer 120 is divided into a plurality of conductive regions, such as the control region 121 and the power source shown in FIG. 1A, by a plurality of slots 126 arranged in an annular band shape, a plurality of first gaps 122, and a plurality of second gaps 124. District 123. The edge of the slot 126 includes a control edge 1262 and a power supply edge 1264 opposite each other. It should be noted that the first gap 122 is spaced between the two control edges 1262 of each two adjacent slots 126 for dividing the cylindrical outer metal layer 120 to form a plurality of control regions 121 electrically separated from each other. The second gap 124 is spaced between the control edge 1262 of the same slot 126 and the power supply side 1264. The second gaps 124 and the slots 126 are used to divide the cylindrical outer metal layer 120 into a power source region 123. The power source region 123 is electrically separated from all of the control regions 121.
槽孔126用以提供水平方向波束掃描的功能。當槽孔126內裝上二極體140之後,二極體140與圓柱狀外金屬層120組合而成圓柱狀偏壓電路150。控制電路160產生的控制訊號藉由一控制線162傳遞至圓柱狀內金屬層130頂部的接點128a,通過接點128a並穿過圓柱狀基板110而傳遞至圓柱狀外金屬層120的控制區121。 藉此路徑可控制槽孔126中二極體140的導通或不導通,並調整此槽孔126所幅射的電磁波方向及強弱。當某一槽孔126中二極體140不導通時,該槽孔126所幅射的電磁波較無槽孔的部位及其他二極體被導通的槽孔126強。當某一槽孔126二極體140被導通時,該槽孔126所幅射的電磁波較其二極體140不導通時弱。Slot 126 is used to provide horizontal beam scanning. After the diode 140 is mounted in the slot 126, the diode 140 is combined with the cylindrical outer metal layer 120 to form a cylindrical bias circuit 150. The control signal generated by the control circuit 160 is transmitted to the contact 128a at the top of the cylindrical inner metal layer 130 by a control line 162, and is transmitted to the control region of the cylindrical outer metal layer 120 through the contact 128a and through the cylindrical substrate 110. 121. The path can control the conduction or non-conduction of the diode 140 in the slot 126, and adjust the direction and strength of the electromagnetic wave radiated by the slot 126. When the diode 140 in a certain slot 126 is not conducting, the electromagnetic wave radiated by the slot 126 is stronger than the slot without the slot and the slot 126 in which the other diode is turned on. When a certain slot 126 diode 140 is turned on, the electromagnetic wave radiated by the slot 126 is weaker than when the diode 140 is not conducting.
圖1A的實施例是利用多個槽孔126同時工作來增加可調式波束切換天線100之輻射增益。將多個槽孔126橫向地排列於圓柱狀外金屬層120的頂邊125及底邊127的中間,形成一環帶。將圖1A中的框選部分152放大如圖1B,每兩相鄰的槽孔126之間具有一間隔區154。第一間隙122從頂邊125垂直向下延伸並終止於間隔區154內。此外,第一間隙122與頂邊125的交界處設有一螺絲鎖附區128,在裝設圖2的裙狀金屬結構170(以下簡稱為「裙狀結構」)時,做為鎖螺絲之用。第二間隙124橫向地貫穿間隔區154而連接於兩相鄰的槽孔126之間,並且第二間隙124與第一間隙122相垂直而在間隔區154內形成T字形連接。圖1B顯示每一二極體140的正極P通過其對應的槽孔126的電源邊1264而電性連接於電源區123。此二極體140的負極N通過其對應的槽孔126的控制邊1262而電性連接於控制區121之其一。The embodiment of FIG. 1A utilizes multiple slots 126 to operate simultaneously to increase the radiation gain of the tunable beam-switched antenna 100. A plurality of slots 126 are laterally arranged in the middle of the top edge 125 and the bottom edge 127 of the cylindrical outer metal layer 120 to form an endless belt. The framed portion 152 of FIG. 1A is enlarged as shown in FIG. 1B, with a spacer 154 between each two adjacent slots 126. The first gap 122 extends vertically downward from the top edge 125 and terminates within the spacer 154. In addition, a screw locking area 128 is provided at the boundary between the first gap 122 and the top edge 125, and is used as a lock screw when the skirt metal structure 170 of FIG. 2 (hereinafter referred to as a "skirt structure") is installed. . The second gap 124 extends transversely through the spacer 154 and is connected between two adjacent slots 126, and the second gap 124 is perpendicular to the first gap 122 to form a T-shaped connection within the spacer 154. FIG. 1B shows that the positive electrode P of each diode 140 is electrically connected to the power supply region 123 through the power supply side 1264 of its corresponding slot 126. The negative pole N of the diode 140 is electrically connected to one of the control regions 121 through the control edge 1262 of its corresponding slot 126.
為了進一步地增加可調式波束切換天線100的輻射增益。本發明提供兩種方法:一種是如圖2所示的第二實施例,在圓柱狀共振腔100A的頂部及底部分別加上一第一裙狀結構170及一第二裙狀結構180,讓上方及下方的輻射能量能夠集中;另外一種是如圖5所示的第三實施例,在圓柱狀共振腔300的圓柱狀外金屬層320上增加另一條環帶狀排列的槽孔。In order to further increase the radiation gain of the tunable beam switching antenna 100. The present invention provides two methods: one is the second embodiment shown in FIG. 2, and a first skirt structure 170 and a second skirt structure 180 are respectively added to the top and bottom of the cylindrical resonant cavity 100A. The radiant energy above and below can be concentrated; the other is the third embodiment shown in FIG. 5, in which another annular strip-shaped slot is added to the cylindrical outer metal layer 320 of the cylindrical resonant cavity 300.
如圖3A,實務上,圓柱狀偏壓電路150的製作方法是在厚度0.2 mm的長條形電路板上表面的金屬層120A中間開設24個等間距的槽孔126。利用槽孔126的環帶狀排列及多條橫向的第二間隙124把長條形電路板的上表面金屬層分成上下兩半。槽孔126下方的金屬層做為電源區123。槽孔126上方的金屬層用24條第一間隙122分隔成24等分,每一等分做為一控制區121。As shown in Fig. 3A, in practice, the cylindrical biasing circuit 150 is formed by forming 24 equally spaced slots 126 in the middle of the metal layer 120A on the surface of the strip-shaped circuit board having a thickness of 0.2 mm. The upper surface metal layer of the elongated circuit board is divided into upper and lower halves by an annular strip arrangement of the slots 126 and a plurality of lateral second gaps 124. The metal layer under the slot 126 serves as the power supply area 123. The metal layer above the slot 126 is divided into 24 equal parts by 24 first gaps 122, each of which is used as a control area 121.
接著,將此長條形電路板捲成圓柱體而形成圖1A及圖2所示的圓柱狀偏壓電路150。具體來說,槽孔126中設置的是PIN二極體。圓柱狀共振腔100A的半徑R=75.2 mm、高度H=53.8 mm。槽孔126長度L=15.6 mm、槽孔126寬度W=3.5 mm。第一間隙122及第二間隙124的寬度S W為0.2 mm。操作時,圓柱狀偏壓電路150下半部的電源區123是固定施以偏壓5 V;上半部的每個控制區121則由單晶片控制電路160選擇性地施以0 V或者是5 V,藉此各別地控制每一槽孔126中的二極體140導通或不導通。 Next, the elongated circuit board is wound into a cylinder to form a cylindrical bias circuit 150 shown in FIGS. 1A and 2. Specifically, a PIN diode is disposed in the slot 126. The cylindrical resonant cavity 100A has a radius R = 75.2 mm and a height H = 53.8 mm. The slot 126 has a length L of 15.6 mm and a slot 126 with a width of W = 3.5 mm. The first gap 122 and the second gap 124 have a width S W of 0.2 mm. In operation, the power supply region 123 of the lower half of the cylindrical bias circuit 150 is fixedly biased by 5 V; each control region 121 of the upper half is selectively applied with 0 V by the single-chip control circuit 160 or It is 5 V, whereby the diodes 140 in each slot 126 are individually controlled to be conductive or non-conductive.
本實施例在圓柱狀共振腔100A的頂部及底部分別裝上第一裙狀結構170與第二裙狀結構180,用以增加可調式波束切換天線100的增益值。第一裙狀結構170與第二裙狀結構180的內緣分別環繞且固定於圓形頂部170A及圓形底部180A。但需注意,第一裙狀結構170需要與圓柱狀外金屬層120電性分開,但第二裙狀結構180與圓柱狀外金屬層120之間則是可以電性分開也可以不分開。第一裙狀結構170的金屬裙面172與水平面的夾角 θs為12度至35度。第二裙狀結構180的金屬裙面182與水平面的夾角 θs亦為12度至35度。從金屬裙面172(或182)與圓柱狀共振腔100A內緣與其外緣之間的距離定義為一裙長Ls,裙長Ls為150 mm至400 mm。具體來說,第一裙狀結構170及第二裙狀結構180之裙長Ls為150 mm;金屬裙面172 (或182)與水平面的夾角 θs為15度。金屬裙面182(或172)的內緣延伸出一如圖2所示的固定部184,用以將第二裙狀結構180(或第一裙狀結構170)黏合或固定於圓柱狀共振腔100A的底邊(或頂邊)。 In this embodiment, a first skirt structure 170 and a second skirt structure 180 are respectively mounted on the top and bottom of the cylindrical resonant cavity 100A to increase the gain value of the adjustable beam switching antenna 100. The first skirt structure 170 and the inner edge of the second skirt structure 180 are respectively surrounded and fixed to the circular top portion 170A and the circular bottom portion 180A. It should be noted, however, that the first skirt structure 170 needs to be electrically separated from the cylindrical outer metal layer 120, but the second skirt structure 180 and the cylindrical outer metal layer 120 may or may not be electrically separated. The angle θ s of the metal skirt 172 of the first skirt structure 170 from the horizontal plane is from 12 degrees to 35 degrees. The angle θ s of the metal skirt 182 of the second skirt structure 180 from the horizontal plane is also from 12 degrees to 35 degrees. The distance from the metal skirt 172 (or 182) to the inner edge of the cylindrical cavity 100A and its outer edge is defined as a skirt length Ls, and the skirt length Ls is 150 mm to 400 mm. Specifically, the skirt length Ls of the first skirt structure 170 and the second skirt structure 180 is 150 mm; the angle θ s of the metal skirt 172 (or 182) from the horizontal plane is 15 degrees. The inner edge of the metal skirt 182 (or 172) extends a fixing portion 184 as shown in FIG. 2 for bonding or fixing the second skirt structure 180 (or the first skirt structure 170) to the cylindrical cavity. The bottom edge (or top edge) of the 100A.
關於第一裙狀結構170及第二裙狀結構180的金屬裙面172、182與水平面的夾角 θs與裙長Ls的一些參考數據如下: Some reference data regarding the angle θ s of the metal skirts 172, 182 of the first skirt structure 170 and the second skirt structure 180 from the horizontal plane and the skirt length Ls are as follows:
在 θs=15度時, <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 裙長Ls </td><td> 最大幅射增益 </td><td> 背向輻射 </td><td> 前後比 </td></tr><tr><td> 150mm </td><td> 10.04 dB </td><td> -4.37 dB </td><td> 14.4 dB </td></tr><tr><td> 200mm </td><td> 11.34 dB </td><td> 0.55 dB </td><td> 10.79 dB </td></tr><tr><td> 300mm </td><td> 12.46 dB </td><td> 1.50 dB </td><td> 10.96 dB </td></tr><tr><td> 400mm </td><td> 13.57 dB </td><td> 1.57 dB </td><td> 12 dB </td></tr></TBODY></TABLE>When θ s=15 degrees, <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td> skirt length Ls </td><td>Gain</td><td> Backward radiation</td><td> front to back ratio</td></tr><tr><td> 150mm </td><td> 10.04 dB </td><td > -4.37 dB </td><td> 14.4 dB </td></tr><tr><td> 200mm </td><td> 11.34 dB </td><td> 0.55 dB </td><td> 10.79 dB </td></tr><tr><td> 300mm </td><td> 12.46 dB </td><td> 1.50 dB </td><td> 10.96 dB </td ></tr><tr><td> 400mm </td><td> 13.57 dB </td><td> 1.57 dB </td><td> 12 dB </td></tr></TBODY ></TABLE>
在Ls=150mm時, <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 斜面角度 </td><td> 最大幅射增益 </td><td> 背向輻射 </td><td> 前後比 </td></tr><tr><td> 12度 </td><td> 8.27 dB </td><td> -4.38 </td><td> 12.65 dB </td></tr><tr><td> 15度 </td><td> 10.04 dB </td><td> -4.38 </td><td> 14.41 dB </td></tr><tr><td> 20度 </td><td> 11.42 dB. </td><td> -0.87 </td><td> 12.29 dB </td></tr><tr><td> 25度 </td><td> 11.54 dB </td><td> 1.28 </td><td> 10.26 dB </td></tr><tr><td> 30度 </td><td> 10.50 dB </td><td> -1.70 </td><td> 12.20 dB </td></tr><tr><td> 35度 </td><td> 7.50 dB </td><td> -8.37 </td><td> 15.87 dB </td></tr></TBODY></TABLE>When Ls=150mm, <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> bevel angle</td><td> maximum sharpness gain</td><td> back </td></tr><tr><td> 12 degrees</td><td> 8.27 dB </td><td> -4.38 </td>< Td> 12.65 dB </td></tr><tr><td> 15 degrees</td><td> 10.04 dB </td><td> -4.38 </td><td> 14.41 dB </td ></tr><tr><td> 20 degrees</td><td> 11.42 dB. </td><td> -0.87 </td><td> 12.29 dB </td></tr>< Tr><td> 25 degrees</td><td> 11.54 dB </td><td> 1.28 </td><td> 10.26 dB </td></tr><tr><td> 30 degrees< /td><td> 10.50 dB </td><td> -1.70 </td><td> 12.20 dB </td></tr><tr><td> 35 degrees</td><td> 7.50 dB </td><td> -8.37 </td><td> 15.87 dB </td></tr></TBODY></TABLE>
本實施例可以視需要而控制不導通的PIN二極體(P-intrinsic-N Diode)數量。經過實驗,在24個二極體中,當一個主方向及其相鄰的左右兩側各二個方向共五個方向上的二極體不導通,而其餘19個導通時,可以獲得較佳的最大輻射增益和前後比。若再加上裙狀結構的影響,在5.8 GHz的頻率可以有大於8 dB之最大輻射增益及大於10 dB的前後比。本發明中,天線的「前後比」定義為最大幅射方向(規定為0度)的功率通量密度與相反方向附近(規定為180度±20度)的最大功率通量密度之比值。In this embodiment, the number of non-conducting PIN diodes (P-intrinsic-N Diodes) can be controlled as needed. Through experiments, in the 24 diodes, when the main body direction and its adjacent left and right sides are in two directions, the diodes in the five directions are not turned on, and the other 19 are turned on, which is better. Maximum radiation gain and front-to-back ratio. Coupled with the effect of the skirt structure, there can be a maximum radiation gain of greater than 8 dB and a front-to-back ratio of greater than 10 dB at a frequency of 5.8 GHz. In the present invention, the "front-to-back ratio" of the antenna is defined as the ratio of the power flux density in the maximum radiation direction (defined as 0 degrees) to the maximum power flux density in the vicinity of the opposite direction (predetermined as 180 degrees ± 20 degrees).
為了確保射頻訊號的完整性,並且增加射頻訊號的耦合效應,可以在圓柱狀基板110的內表面114的上半部覆蓋圓柱狀內金屬層130來補償其耦合效應,圓柱狀內金屬層130的展開狀態130A如圖3B中的斜線部分所示。In order to ensure the integrity of the RF signal and increase the coupling effect of the RF signal, the cylindrical inner metal layer 130 may be covered in the upper half of the inner surface 114 of the cylindrical substrate 110 to compensate for the coupling effect thereof, and the cylindrical inner metal layer 130 The unfolded state 130A is shown in the shaded portion in FIG. 3B.
圖4A及圖4B顯示天線100在XY平面的輻射場型。由於控制的二極體有24個,所以在XY平面上可以切換24個方位角,圖4A及圖4B分別為方位角0度和15度的狀況。圖4A及圖4B左下方的照片中,發光二極體燈亮代表該方位角上的二極體是不導通的狀態。4A and 4B show the radiation pattern of the antenna 100 in the XY plane. Since there are 24 controlled diodes, 24 azimuths can be switched in the XY plane, and FIGS. 4A and 4B are azimuth angles of 0 degrees and 15 degrees, respectively. In the photo at the lower left of FIGS. 4A and 4B, the light emitting diode lamp is lit to indicate that the diode in the azimuth is in a non-conducting state.
如圖5,第三實施例的圓柱狀共振腔300之圓柱狀外金屬層320包含雙槽孔陣列,雙槽孔陣列由多個上槽孔326a排列成的上環帶,以及多個下槽孔326b排列成的下環帶所組成,每一上槽孔326a對齊於下槽孔326b之其一。每一上槽孔326a的電源邊3264a位於其控制邊3262a的下方;每一下槽孔326b的電源邊3264b位於其控制邊3262b的上方。每兩相鄰的上槽孔326a之間具有一上間隔區354a;每兩相鄰的下槽孔326b之間具有一下間隔區354b。每條第一間隙322從頂邊325垂直向下延伸通過上間隔區354a及下間隔區354b而連接至底邊327。每條第二間隙324從上槽孔326a的電源邊3264a之一端垂直向下延伸至下槽孔326b的電源邊3264b之一端。As shown in FIG. 5, the cylindrical outer metal layer 320 of the cylindrical resonant cavity 300 of the third embodiment includes a double slot array, the double slot array is composed of a plurality of upper slots 326a, and a plurality of lower slots. Each of the upper slots 326a is aligned with one of the lower slots 326b. The power supply edge 3264a of each upper slot 326a is located below its control edge 3262a; the power supply edge 3264b of each lower slot 326b is located above its control edge 3262b. There is an upper spacer 354a between each two adjacent upper slots 326a; and a lower spacer 354b between each two adjacent lower slots 326b. Each of the first gaps 322 extends vertically downward from the top edge 325 through the upper spacer 354a and the lower spacer 354b to the bottom edge 327. Each of the second gaps 324 extends vertically downward from one end of the power supply side 3264a of the upper slot 326a to one end of the power supply side 3264b of the lower slot 326b.
在一具體的實施例中,上、下兩環帶分別位於圓柱狀共振腔300高度的1/4和3/4處,圓柱狀共振腔300的半徑R=75.7 mm,圓柱狀共振腔300的高度H=57.2 mm,上槽孔326a及下槽孔326b的長度L=13.6 mm,上槽孔326a及下槽孔326b的寬度W=4.5 mm,第一間隙322及第二間隙324的寬度為0.2 mm,圓柱狀共振腔300的厚度為0.2 mm。在PIN二極體的控制方面,當一個主方向及其相鄰的左右兩側各二個方向共五個方向上的二極體不導通時,會有最佳的輻射增益。因為採取雙槽孔陣列,所以控制不導通的PIN二極體數量是前述實施例的兩倍。在5.8 GHz的最大輻射增益約5 dB,前後比約為7.86 dB。In a specific embodiment, the upper and lower annular bands are respectively located at 1/4 and 3/4 of the height of the cylindrical resonant cavity 300, and the radius R of the cylindrical resonant cavity 300 is 75.7 mm, and the cylindrical resonant cavity 300 The height H=57.2 mm, the length L of the upper slot 326a and the lower slot 326b is=13.6 mm, the width of the upper slot 326a and the lower slot 326b is W=4.5 mm, and the width of the first gap 322 and the second gap 324 is 0.2 mm, the cylindrical cavity 300 has a thickness of 0.2 mm. In the control of the PIN diode, when a diode in a total direction of five directions in a main direction and its adjacent left and right sides is not turned on, there is an optimum radiation gain. Since a double slot array is employed, the number of PIN diodes that control non-conduction is twice that of the previous embodiment. The maximum radiation gain at 5.8 GHz is approximately 5 dB with a front-to-back ratio of approximately 7.86 dB.
跟第二實施例不同的是,第三實施例沒有裙狀結構。由於需要控制的槽孔從一列變成兩列,所以第三實施例的圓柱狀偏壓電路也有所不同。每一上槽孔326a的電源邊3264a與其對應的下槽孔326b的電源邊3264b之間係以兩條第二間隙324連接,分隔出一矩形電源區323,矩形電源區323中開設一通孔329,通孔329連接到背面的圓柱狀內金屬層330,以便給予直流偏壓。Unlike the second embodiment, the third embodiment has no skirt structure. Since the slots to be controlled are changed from one column to two columns, the cylindrical bias circuit of the third embodiment is also different. The power supply side 3264a of each upper slot 326a and the corresponding power supply side 3264b of the lower slot 326b are connected by two second gaps 324, and a rectangular power supply area 323 is partitioned, and a through hole 329 is defined in the rectangular power supply area 323. The via 329 is connected to the cylindrical inner metal layer 330 on the back side to give a DC bias.
圖6為一個單槽孔126的簡易型的圓柱狀共振腔10,用以觀察饋入圓柱狀共振腔10的電磁訊號通過槽孔126而發射到空氣中的情形。如圖7A的電場強度剖面圖,在圖6的槽孔126不導通時,槽孔126處輻射的電場明顯比其它地方強。當圖6的槽孔126因二極體140導通而被短路的時候,原本在圖7A槽孔126處輻射的電場就會減弱為如圖7B所示的狀態。Fig. 6 shows a simple cylindrical resonator 10 of a single slot 126 for observing the electromagnetic signal fed into the cylindrical resonator 10 to be emitted into the air through the slot 126. As shown in the electric field strength profile of Fig. 7A, when the slot 126 of Fig. 6 is not conducting, the electric field radiated at the slot 126 is significantly stronger than elsewhere. When the slot 126 of FIG. 6 is shorted due to the conduction of the diode 140, the electric field originally radiated at the slot 126 of FIG. 7A is weakened to the state shown in FIG. 7B.
綜上所述,本發明的可調式波束切換天線不需要前端電路,而是藉由PIN二極體的導通和不導通來控制其波束切換。PIN二極體設置在圓柱狀共振腔的槽孔內。圓柱狀共振腔上的槽孔數越多,在水平面上可以切換的方位角也越多。為了進一步增加天線水平方向上的輻射增益,本發明提供兩種方法:第一種方法是在圓柱狀共振腔的上下方加入兩個裙狀結構;第二種方法是在圓柱狀共振腔上,設計雙槽孔陣列。In summary, the tunable beam switching antenna of the present invention does not require a front end circuit, but controls the beam switching by turning on and off the PIN diode. The PIN diode is disposed in the slot of the cylindrical resonator. The more the number of slots on the cylindrical cavity, the more azimuth angles can be switched on the horizontal plane. In order to further increase the radiation gain in the horizontal direction of the antenna, the present invention provides two methods: the first method is to add two skirt structures above and below the cylindrical resonant cavity; the second method is on the cylindrical resonant cavity, Design a dual slot array.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. In addition, any of the objects or advantages or features of the present invention are not required to be achieved by any embodiment or application of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.
10‧‧‧簡易型的圓柱狀共振腔10‧‧‧Simplified cylindrical cavity
100‧‧‧可調式波束切換天線100‧‧‧Adjustable beam switching antenna
100A‧‧‧圓柱狀共振腔100A‧‧‧Cylindrical cavity
110‧‧‧圓柱狀基板110‧‧‧Cylindrical substrate
112‧‧‧圓柱狀基板的外表面112‧‧‧ outer surface of cylindrical substrate
114‧‧‧圓柱狀基板的內表面114‧‧‧The inner surface of the cylindrical substrate
120‧‧‧圓柱狀外金屬層120‧‧‧Cylindrical outer metal layer
120A‧‧‧長條形電路板上表面的金屬層120A‧‧‧metal layer on the surface of a long strip circuit board
121‧‧‧控制區121‧‧‧Control area
122‧‧‧第一間隙122‧‧‧First gap
123‧‧‧電源區123‧‧‧Power zone
124‧‧‧第二間隙124‧‧‧Second gap
125‧‧‧圓柱狀外金屬層的頂邊125‧‧‧Top edge of cylindrical outer metal layer
126‧‧‧槽孔126‧‧‧ slots
1262‧‧‧控制邊1262‧‧‧Control side
1264‧‧‧電源邊1264‧‧‧Power side
127‧‧‧圓柱狀外金屬層的底邊127‧‧‧Bottom of the cylindrical outer metal layer
128‧‧‧螺絲鎖附區128‧‧‧ Screw lock area
128a‧‧‧接點128a‧‧‧Contacts
130‧‧‧圓柱狀內金屬層130‧‧‧Cylindrical inner metal layer
130A‧‧‧圓柱狀內金屬層的展開狀態130A‧‧‧Unfolded state of the inner metal layer
140‧‧‧二極體140‧‧‧ diode
150‧‧‧圓柱狀偏壓電路150‧‧‧Cylindrical bias circuit
152‧‧‧圖1A中的框選部分152‧‧‧Selected part of Figure 1A
154‧‧‧間隔區154‧‧‧ interval zone
160‧‧‧控制電路160‧‧‧Control circuit
162‧‧‧控制線162‧‧‧Control line
170‧‧‧第一裙狀結構170‧‧‧First skirt structure
170A‧‧‧圓柱狀共振腔的圓形頂部170A‧‧‧Circular top of cylindrical resonator
172‧‧‧金屬裙面172‧‧‧Metal skirt
180‧‧‧第二裙狀結構180‧‧‧Second skirt structure
180A‧‧‧圓柱狀共振腔的圓形底部180A‧‧‧round bottom of cylindrical resonator
182‧‧‧金屬裙面182‧‧‧Metal skirt
184‧‧‧固定部184‧‧‧ Fixed Department
200‧‧‧訊號傳輸線200‧‧‧ signal transmission line
300‧‧‧圓柱狀共振腔300‧‧‧Cylindrical cavity
320‧‧‧圓柱狀外金屬層320‧‧‧Cylindrical outer metal layer
322‧‧‧第一間隙322‧‧‧First gap
323‧‧‧矩形電源區323‧‧‧Rectangular power supply area
325‧‧‧圓柱狀共振腔的頂邊325‧‧‧Top edge of cylindrical cavity
326a‧‧‧上槽孔326a‧‧‧Slot
326b‧‧‧下槽孔326b‧‧‧Slots
3262a‧‧‧上槽孔的控制邊3262a‧‧‧Control side of the upper slot
3264a‧‧‧上槽孔的電源邊3264a‧‧‧Power side of the upper slot
3262b‧‧‧下槽孔的控制邊3262b‧‧‧Control side of the lower slot
3264b‧‧‧下槽孔的電源邊3264b‧‧‧ power supply side of the slot
327‧‧‧圓柱狀共振腔的底邊327‧‧‧Bottom of cylindrical cavity
329‧‧‧通孔329‧‧‧through hole
330‧‧‧圓柱狀內金屬層330‧‧‧Cylindrical inner metal layer
354a‧‧‧上間隔區354a‧‧‧ upper compartment
354b‧‧‧下間隔區354b‧‧‧ lower compartment
P‧‧‧二極體的正極Positive pole of P‧‧‧ diode
N‧‧‧二極體的負極Negative pole of N‧‧‧ diode
R‧‧‧圓柱狀共振腔的半徑R‧‧‧ Radius of cylindrical cavity
H‧‧‧圓柱狀共振腔的高度H‧‧‧ Height of cylindrical resonator
L‧‧‧槽孔長度L‧‧‧Slot length
W‧‧‧槽孔寬度W‧‧‧Slot width
SW‧‧‧間隙寬度S W ‧‧‧ gap width
θs‧‧‧裙狀結構的金屬裙面與水平面的夾角 θ s‧‧‧ The angle between the metal skirt of the skirt structure and the horizontal plane
Ls‧‧‧裙長Ls‧‧‧ skirt length
圖1A為本發明之第一實施例的可調式波束切換天線的主體結構示意圖。FIG. 1A is a schematic diagram showing the main structure of an adjustable beam switching antenna according to a first embodiment of the present invention.
圖1B為圖1A的間隙及槽孔放大示意圖。FIG. 1B is an enlarged schematic view of the gap and the slot of FIG. 1A.
圖2為本發明之第二實施例,具有裙狀結構的可調式波束切換天線示意圖。2 is a schematic diagram of an adjustable beam switching antenna having a skirt structure according to a second embodiment of the present invention.
圖3A為本發明之可調式波束切換天線的圓柱狀外金屬層展開示意圖。3A is a schematic view showing the development of a cylindrical outer metal layer of the adjustable beam switching antenna of the present invention.
圖3B為本發明之可調式波束切換天線的圓柱狀內金屬層展開示意圖。3B is a schematic view showing the development of a cylindrical inner metal layer of the adjustable beam switching antenna of the present invention.
圖4A為位於水平方位角0度附近的5個二極體不導通時,可調式波束切換天線的輻射場型圖。4A is a radiation pattern diagram of the adjustable beam switching antenna when the five diodes in the vicinity of the horizontal azimuth angle of 0 degrees are not turned on.
圖4B為位於水平方位角15度附近的5個二極體不導通時,可調式波束切換天線的輻射場型圖。FIG. 4B is a radiation pattern diagram of the adjustable beam switching antenna when the five diodes in the vicinity of the horizontal azimuth angle of 15 degrees are not turned on.
圖5為本發明之第三實施例,具有雙環帶狀排列之槽孔的可調式波束切換天線示意圖。FIG. 5 is a schematic diagram of an adjustable beam switching antenna having a slot with a double loop strip arrangement according to a third embodiment of the present invention.
圖6為單一槽孔的圓柱狀共振腔示意圖。Figure 6 is a schematic view of a cylindrical resonant cavity with a single slot.
圖7A為圖6的槽孔不導通時圓柱狀共振腔的電場分佈。7A is an electric field distribution of a cylindrical resonant cavity when the slot of FIG. 6 is not conducting.
圖7B為圖6的槽孔導通時圓柱狀共振腔的電場分佈。Fig. 7B is an electric field distribution of the cylindrical resonant cavity when the slot of Fig. 6 is turned on.
無no
無no
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106126253A TWI652858B (en) | 2017-08-03 | 2017-08-03 | Beam-steering antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106126253A TWI652858B (en) | 2017-08-03 | 2017-08-03 | Beam-steering antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI652858B true TWI652858B (en) | 2019-03-01 |
TW201911654A TW201911654A (en) | 2019-03-16 |
Family
ID=66590132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106126253A TWI652858B (en) | 2017-08-03 | 2017-08-03 | Beam-steering antenna |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI652858B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3032762A (en) | 1959-01-02 | 1962-05-01 | John L Kerr | Circularly arrayed slot antenna |
EP0172626B1 (en) | 1984-07-02 | 1990-09-12 | Canadian Patents and Development Limited | Adaptive array antenna |
US7477204B2 (en) | 2005-12-30 | 2009-01-13 | Micro-Mobio, Inc. | Printed circuit board based smart antenna |
US7646343B2 (en) | 2005-06-24 | 2010-01-12 | Ruckus Wireless, Inc. | Multiple-input multiple-output wireless antennas |
US7696946B2 (en) | 2004-08-18 | 2010-04-13 | Ruckus Wireless, Inc. | Reducing stray capacitance in antenna element switching |
-
2017
- 2017-08-03 TW TW106126253A patent/TWI652858B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3032762A (en) | 1959-01-02 | 1962-05-01 | John L Kerr | Circularly arrayed slot antenna |
EP0172626B1 (en) | 1984-07-02 | 1990-09-12 | Canadian Patents and Development Limited | Adaptive array antenna |
US7696946B2 (en) | 2004-08-18 | 2010-04-13 | Ruckus Wireless, Inc. | Reducing stray capacitance in antenna element switching |
US7646343B2 (en) | 2005-06-24 | 2010-01-12 | Ruckus Wireless, Inc. | Multiple-input multiple-output wireless antennas |
US7477204B2 (en) | 2005-12-30 | 2009-01-13 | Micro-Mobio, Inc. | Printed circuit board based smart antenna |
Also Published As
Publication number | Publication date |
---|---|
TW201911654A (en) | 2019-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102483161B1 (en) | Dual polarization antenna and dual polarization antenna assembly including the same | |
US7187337B2 (en) | Planar antenna with slot line | |
JP6335808B2 (en) | ANTENNA DEVICE AND ARRAY ANTENNA DEVICE | |
CN109037935B (en) | Millimeter wave low-profile broadband antenna | |
KR101750336B1 (en) | Multi Band Base station antenna | |
TWI536660B (en) | Communication device and method for designing multi-antenna system thereof | |
US11283193B2 (en) | Substrate integrated waveguide antenna | |
US10158176B2 (en) | Patch antenna having programmable frequency and polarization | |
US9711861B2 (en) | Antenna device | |
CN104600422A (en) | Dual-polarization coaxial yagi antenna system | |
KR102004294B1 (en) | Base Station Antenna Radiator Having Stable Polarization Characteristic | |
JP2005523628A (en) | Leaky wave dual polarization slot type antenna | |
KR102711801B1 (en) | Dual Polarization Antenna Using Shift Series Feed | |
KR101252244B1 (en) | Multi antenna | |
KR101888824B1 (en) | Base Station Antenna | |
KR20170094741A (en) | Patch antenna for narrow band antenna module and narrow band antenna module comprising the same | |
CN113451751A (en) | Multi-band antenna, radiating element assembly and parasitic element assembly | |
US20220263250A1 (en) | Zig-zag antenna array and system for polarization control | |
TWI652858B (en) | Beam-steering antenna | |
KR102125971B1 (en) | Dual Polarization Base Station Antenna | |
JP4542866B2 (en) | Directional control microstrip antenna | |
KR102049926B1 (en) | Circular Polarization Slot Antenna | |
CN211879607U (en) | Multi-band antenna, radiating element assembly and parasitic element assembly | |
US11133587B2 (en) | Antenna device and array antenna device | |
US20220123464A1 (en) | Systems and devices for mutual directive beam switch array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |