TWI652688B - Dynamic random access memory and its operation method - Google Patents

Dynamic random access memory and its operation method Download PDF

Info

Publication number
TWI652688B
TWI652688B TW107109086A TW107109086A TWI652688B TW I652688 B TWI652688 B TW I652688B TW 107109086 A TW107109086 A TW 107109086A TW 107109086 A TW107109086 A TW 107109086A TW I652688 B TWI652688 B TW I652688B
Authority
TW
Taiwan
Prior art keywords
circuit
read data
data
read
defect information
Prior art date
Application number
TW107109086A
Other languages
Chinese (zh)
Other versions
TW201928989A (en
Inventor
李忠勳
劉獻文
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/904,912 external-priority patent/US20190196902A1/en
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Application granted granted Critical
Publication of TWI652688B publication Critical patent/TWI652688B/en
Publication of TW201928989A publication Critical patent/TW201928989A/en

Links

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

本揭露提供一種具有資料更正功能之動態隨機存取記憶體(dynamic random access memory,DRAM)及其操作方法。該動態隨機存取記憶體包括一記憶體陣列;一控制電路,經配置以接收一讀取位址及該讀取位址的一缺陷資訊;一存取電路,經配置以根據來自該控制電路的該讀取位址而從該記憶體陣列產生一讀取資料;以及連接到該存取電路和該控制電路的一修改電路,其中該修改電路經配置以根據該缺陷資訊而修改該讀取資料的一部分。The disclosure provides a dynamic random access memory (DRAM) with a data correction function and an operation method thereof. The dynamic random access memory includes a memory array; a control circuit configured to receive a read address and a defect information of the read address; and an access circuit configured to receive the read information from the control circuit. Generating a read data from the memory array at the read address; and a modification circuit connected to the access circuit and the control circuit, wherein the modification circuit is configured to modify the read according to the defect information Part of the information.

Description

動態隨機存取記憶體及其操作方法Dynamic random access memory and operation method thereof

本申請案主張2017年12月26日申請之美國臨時申請案第62/610,341號及2018年2月26日申請之美國正式申請案第15/904,912號的優先權及益處,該美國臨時申請案及該美國正式申請案之內容以全文引用之方式併入本文中。 本揭露關於一種動態隨機存取記憶體(DRAM)及其操作方法,特別是關於一種具有資料更正功能之動態隨機存取記憶體及其操作方法。This application claims the priority and benefits of US Provisional Application No. 62 / 610,341 filed on December 26, 2017 and US Official Application No. 15 / 904,912 filed on February 26, 2018. And the content of the official US application is incorporated herein by reference in its entirety. The present disclosure relates to a dynamic random access memory (DRAM) and an operation method thereof, and more particularly to a dynamic random access memory with a data correction function and an operation method thereof.

動態隨機存取記憶體(dynamic random access memory,DRAM)是一種隨機存取記憶體的型態。該種型態的隨機存取記憶體將每個位元的資料儲存在單獨的電容器中最簡單的DRAM單元包括單個N型金屬氧化物半導體(n-type metal-oxide-semiconductor,NMOS)電晶體和單個電容器。如果電荷儲存在電容器中,則根據所使用的慣例,該單元被稱為儲存邏輯高。如果不存在電荷,則稱該單元儲存邏輯低。由於電容器中的電荷隨時間消耗,因此DRAM系統需要更新電路來週期性地更新儲存在電容器中的電荷。由於電容器只能儲存非常有限的電荷量,為了快速區分邏輯1和邏輯0之間的差異,通常每個位元使用兩個位元線(bit line,BL),其中位元線對中的第一位被稱為位線真(bit line true,BLT),另一個是位元線補數(bit line complement,BLC)。單個NMOS電晶體的閘極由字元線(word line,WL)控制。 上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。Dynamic random access memory (DRAM) is a type of random access memory. This type of random access memory stores each bit of data in a separate capacitor. The simplest DRAM cell includes a single n-type metal-oxide-semiconductor (NMOS) transistor. And a single capacitor. If the charge is stored in a capacitor, the unit is called storage logic high according to the convention used. If no charge is present, the cell is said to store a logic low. Since the charge in the capacitor is consumed over time, the DRAM system needs an update circuit to periodically update the charge stored in the capacitor. Since capacitors can only store a very limited amount of charge, in order to quickly distinguish the difference between logic 1 and logic 0, two bit lines (BL) are usually used for each bit. One bit is called bit line true (BLT), and the other is bit line complement (BLC). The gate of a single NMOS transistor is controlled by a word line (WL). The above description of the "prior art" is only for providing background technology. It does not recognize that the above description of the "prior technology" reveals the subject of this disclosure, does not constitute the prior technology of this disclosure, and any description of the "prior technology" above Neither shall be part of this case.

本揭露提供一種動態隨機存取記憶體(dynamic random-access memory,DRAM),包括一記憶體陣列;一控制電路,經配置以接收一讀取位址及該讀取位址的一缺陷資訊;一存取電路,經配置以根據來自該控制電路的該讀取位址而從該記憶體陣列產生一讀取資料;以及連接到該存取電路和該控制電路的一修改電路,其中該修改電路經配置以根據該缺陷資訊而修改該讀取資料的一部分。 在一些實施例中,該修改電路包括一翻轉電路,經配置以修改該讀取資料的該部分,該翻轉電路根據該缺陷資訊將該讀取資料的至少一個位元從一第一邏輯狀態翻轉至一第二邏輯狀態。 在一些實施例中,該修改電路更包括一位址暫存器,經配置以儲存來自該控制電路的該缺陷資訊。 在一些實施例中,該DRAM更包括一錯誤更正電路連接到該修改電路。 在一些實施例中,該修改電路經配置以修改該讀取資料的一第一部分,該錯誤更正電路經配置以更正未被該修改電路修改的該讀取資料的一第二部分。 本揭露另提供一種動態隨機存取記憶體,包括一記憶體陣列;一控制電路,經配置以接收一讀取位址;一存取電路,經配置以根據來自該控制電路的該讀取位址而從該記憶體陣列產生一讀取資料;一修改電路;以及一錯誤更正電路,連接到該修改電路且經配置以產生該讀取資料的一缺陷資訊;其中,該修改電路包括連接到該控制電路的一位址暫存器及連接到該存取電路的一翻轉電路,該位址暫存器連接到該錯誤更正電路以接收該讀取位址之該缺陷資訊,該翻轉電路經配置以根據該缺陷資訊而修改該讀取資料的一部分。 在一些實施例中,該翻轉電路經配置以修改該讀取資料的該部分,該翻轉電路根據該缺陷資訊將該讀取資料的至少一個位元從一第一邏輯狀態翻轉至一第二邏輯狀態。 在一些實施例中,該錯誤更正電路連接到該控制電路,該錯誤更正電路經配置當該讀取資料包括一無法更正錯誤時,則向該控制電路發送一訊號。 在一些實施例中,該控制電路經配置以排定該修改電路的一更正操作。 本揭露另提供一種動態隨機存取記憶體的操作方法,包括:接收一讀取位址;根據該讀取位址,從一記憶體陣列產生一讀取資料;接收該讀取資料的一缺陷資訊;以及根據該缺陷資料,修改該讀取資料的一部分以產生一修改資料。 在一些實施例中,修改該讀取資料的一部分包括:根據該缺陷資訊,將該讀取資料的至少一個位元從一第一邏輯狀態翻轉到一第二邏輯狀態。 在一些實施例中,該操作方法更包括:將該缺陷資訊儲存到一位址暫存器中,以及根據來自該位址暫存器的該缺陷資訊而將該讀取資料的至少一位元從一第一邏輯狀態翻轉到一第二邏輯狀態。 在一些實施例中,該操作方法包括:修改該讀取資料的一第一部分,以及更正該讀取資料的一第二部分。 在一些實施例中,修改該讀取資料的一第一部分是由一修改電路執行,更正該讀取資料的一第二部分是由一錯誤更正電路執行。 在一些實施例中,該操作方法更包括:判斷該修改資料是否包括一無法更正錯誤。 在一些實施例中,該操作方法更包括:當該修改資料包括一無法更正錯誤時,則產生一更新缺陷資訊。 在一些實施例中,該操作方法更包括:根據該更新缺陷資訊,修改該修改資料。 在一些實施例中,該操作方法更包括:排定一後續修改操作,以修改包括該無法更正錯誤的該修改資料。 在一些實施例中,產生該讀取位址的一缺陷資訊是在一錯誤更正電路執行一錯誤更正碼操作之後執行。 本揭露在資料進入ECC電路之前,藉由翻轉操作以執行資料更正,使得ECC電路不需要在資料更正操作上使用過多時間;相反地,如果翻轉操作未使用於更正資料,則ECC電路需要相對較長的時間來更正讀取資料。傳統上,如果一資料列具有一缺陷位元,則儲存在資料列中的所有資料將被標記並替換為另一行,這一過程需要額外的儲存空間。 上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。The disclosure provides a dynamic random-access memory (DRAM) including a memory array; a control circuit configured to receive a read address and a defect information of the read address; An access circuit configured to generate a read data from the memory array according to the read address from the control circuit; and a modification circuit connected to the access circuit and the control circuit, wherein the modification The circuit is configured to modify a portion of the read data based on the defect information. In some embodiments, the modification circuit includes a flip circuit configured to modify the portion of the read data, and the flip circuit flips at least one bit of the read data from a first logic state according to the defect information To a second logic state. In some embodiments, the modification circuit further includes a bit register, configured to store the defect information from the control circuit. In some embodiments, the DRAM further includes an error correction circuit connected to the modification circuit. In some embodiments, the modification circuit is configured to modify a first portion of the read data, and the error correction circuit is configured to correct a second portion of the read data that has not been modified by the modification circuit. The disclosure further provides a dynamic random access memory including a memory array; a control circuit configured to receive a read address; and an access circuit configured to respond to the read bit from the control circuit A read data is generated from the memory array; a modification circuit; and an error correction circuit connected to the modification circuit and configured to generate a defect information of the read data; wherein the modification circuit includes a connection to An address register of the control circuit and a flip circuit connected to the access circuit. The address register is connected to the error correction circuit to receive the defect information of the read address. Configured to modify a portion of the read data based on the defect information. In some embodiments, the flip circuit is configured to modify the portion of the read data, the flip circuit flips at least one bit of the read data from a first logic state to a second logic according to the defect information status. In some embodiments, the error correction circuit is connected to the control circuit, and the error correction circuit is configured to send a signal to the control circuit when the read data includes an uncorrectable error. In some embodiments, the control circuit is configured to schedule a corrective operation of the modification circuit. The disclosure also provides a method for operating a dynamic random access memory, including: receiving a read address; generating a read data from a memory array according to the read address; and receiving a defect of the read data. Information; and modifying a portion of the read data to generate a modified data based on the defective data. In some embodiments, modifying a part of the read data includes: flipping at least one bit of the read data from a first logic state to a second logic state according to the defect information. In some embodiments, the operation method further includes: storing the defect information in a bit register, and at least one bit of the read data according to the defect information from the address register. Flip from a first logic state to a second logic state. In some embodiments, the operation method includes: modifying a first part of the read data, and correcting a second part of the read data. In some embodiments, a first part of modifying the read data is performed by a modification circuit, and a second part of correcting the read data is performed by an error correction circuit. In some embodiments, the operation method further includes: determining whether the modified data includes an uncorrectable error. In some embodiments, the operation method further includes: when the modification data includes an uncorrectable error, generating update defect information. In some embodiments, the operation method further includes: modifying the modification data according to the updated defect information. In some embodiments, the operation method further includes: scheduling a subsequent modification operation to modify the modification data including the uncorrectable error. In some embodiments, a defect information generating the read address is performed after an error correction circuit performs an error correction code operation. This disclosure discloses that the data is corrected by the flip operation before the data enters the ECC circuit, so that the ECC circuit does not need to spend too much time on the data correction operation. On the contrary, if the flip operation is not used to correct the data, the ECC circuit needs to Long time to correct reading data. Traditionally, if a data row has a defective bit, all data stored in the data row will be marked and replaced with another row, which requires additional storage space. The technical features and advantages of this disclosure have been outlined quite extensively above, so that the detailed description of this disclosure below can be better understood. Other technical features and advantages that constitute the subject matter of the patent application of this disclosure will be described below. Those with ordinary knowledge in the technical field to which this disclosure belongs should understand that the concepts and specific embodiments disclosed below can be used quite easily to modify or design other structures or processes to achieve the same purpose as this disclosure. Those with ordinary knowledge in the technical field to which this disclosure belongs should also understand that such equivalent constructions cannot be separated from the spirit and scope of this disclosure as defined by the scope of the attached patent application.

本揭露之以下說明伴隨併入且組成說明書之一部分的圖式,說明本揭露之實施例,然而本揭露並不受限於該實施例。此外,以下的實施例可適當整合以下實施例以完成另一實施例。 「一實施例」、「實施例」、「例示實施例」、「其他實施例」、「另一實施例」等係指本揭露所描述之實施例可包含特定特徵、結構或是特性,然而並非每一實施例必須包含該特定特徵、結構或是特性。再者,重複使用「在實施例中」一語並非必須指相同實施例,然而可為相同實施例。 為了使得本揭露可被完全理解,以下說明提供詳細的步驟與結構。顯然,本揭露的實施不會限制該技藝中的技術人士已知的特定細節。此外,已知的結構與步驟不再詳述,以免不必要地限制本揭露。本揭露的較佳實施例詳述如下。然而,除了實施方式之外,本揭露亦可廣泛實施於其他實施例中。本揭露的範圍不限於實施方式的內容,而是由申請專利範圍定義。 圖1是功能方塊圖,例示本揭露一些實施例之一動態隨機存取記憶體(DRAM) 100A。參照圖1,在一些實施例中,DRAM 100A包括一資料儲存器10,連接到資料儲存器10的一控制電路20,一記憶體陣列30,連接到控制電路20和記憶體陣列30的一存取電路40,連接到存取電路40和控制電路20的一修改電路50,以及連接到修改電路50的一錯誤更正碼(error-correction code,ECC)電路60。 在一些實施例中,資料儲存器10經配置以儲存缺陷記憶胞資訊的記憶體,此缺陷記憶胞資訊包括記憶胞位置,也就是包含位元的缺陷記憶胞的列位址。在一些實施例中,資料儲存器10包括經配置以儲存缺陷記憶胞資訊的一缺陷資料表。在一些實施例中,缺陷位元無法正常儲存電荷;例如,在測試時,缺陷位元始終處於低電壓,因此在工廠或運行時通過測試過程來識別。在一些實施例中,資料儲存器10可以選擇性地設置在DRAM 100A內部或外部。 在一些實施例中,控制電路20經配置以控制資料儲存器10、存取電路40和修改電路50。在一些實施例中,控制電路20從資料儲存器10的缺陷資料表中接收缺陷記憶胞資訊。在一些實施例中,在工廠或運行期間執行測試過程中,控制電路10執行一寫入週期以更新資料儲存器10中的缺陷資料表。在一些實施例中,控制電路20從外部元件,例如,外部控制器(圖未示出)接收一位址,例如讀取位址。 在一些實施例中,記憶體陣列30經配置以儲存資料;例如,記憶體陣列30包括複數個記憶胞,每個記憶胞經配置以儲存一位元資料,其中複數個記憶胞排列成矩陣,每一記憶胞藉由列解碼器和行解碼器來存取。 在一些實施例中,存取電路40經配置以執行一讀取週期從記憶體陣列30讀取資料。在一些實施例中,存取電路40經配置以執行一寫入週期而寫入資料至記憶體陣列30。 在一些實施例中,ECC電路經配置以執行一資料更正操作。許多不同的錯誤更正碼可被應用在資料更正操作;例如,可以使用漢明碼(Hamming Code)。在一些實施例中,用於ECC的方案取決於資料的複雜度、資料的長度和更正的時間。更正效能較強的"重度更正”需要更長的時間來處理,而更正效能較弱的“輕度更正”需要較短的時間來處理。 圖2是流程圖,例示圖1所示之動態隨機存取記憶體的操作方法200。操作方法200從操作201開始,在操作201中接收讀取位址和該讀取位址之缺陷資訊;例如,控制電路20從外部控制器接收讀取位址,並從資料儲存器10接收缺陷資訊(缺陷位址)。操作方法200進行到操作202,其中根據讀取位址從記憶體陣列產生讀取資料;例如,存取電路40根據讀取位址從記憶體陣列30讀取資料。接下來,操作方法200進行到操作203,其中根據缺陷位址修改讀取資料的一部分以產生修改資料;例如,修改電路50根據缺陷位址修改讀取資料的一部分以產生修改資料。 圖3是功能方塊圖,例示本揭露一些實施例之一種動態隨機存取記憶體(DRAM) 100B;在一些實施例中,修改電路包括一位址暫存器51,及一翻轉電路52。在一些實施例中,位址暫存器51經配置以儲存來自控制電路20的缺陷資訊;例如,位址暫存器51暫時儲存缺陷位址(缺陷位元的位置)等缺陷資訊,並將該缺陷位址提供給翻轉電路52。在一些實施例中,翻轉電路52經配置以翻轉來自存取電路40的讀取資料的至少一個位元。在一些實施例中,翻轉電路52包括複數個可控的反相器53,其中反相器53中的每一個經配置以將邏輯資料從第一邏輯狀態轉變為第二邏輯狀態;例如從邏輯“0”到邏輯“1”(或從邏輯“1”到邏輯“0”),或者直接輸出代表在缺陷位置處的資料位元的電壓高的邏輯訊號。 如圖3所示,在一些實施例中,控制電路20從外部元件接收讀取位址,並從資料儲存器10的缺陷資料表中接收讀取位址的缺陷資訊。在一些實施例中,控制電路20之後根據缺陷資料表中的缺陷資訊檢查讀取位址是否包括缺陷位址。在一些實施例中,缺陷資料表在資料儲存器10中儲存缺陷位址的缺陷位置資訊。在一些實施例中,資料儲存器10是非揮發性記憶體,可以設置在DRAM 100B的內部或外部。 在一些實施例中,當讀取位址包括缺陷位址,則控制電路20根據缺陷資訊以配置包括位址暫存器51和翻轉電路52的一修改電路50。在一些實施例中,控制電路20提供的缺陷位址(缺陷位元的位置)之後被儲存在位址暫存器51中。在一些實施例中,存取電路40根據控制電路20提供的讀取位址從記憶體陣列30讀取資料,存取電路40將讀取資料傳送到修改電路50的翻轉電路52。在一些實施例中,修改電路50的翻轉電路52接收讀取資料,並且根據儲存在位址暫存器51中的缺陷位址翻轉至少一個缺陷位元。在一些實施例中,翻轉操作之後,翻轉電路52輸出修改資料至ECC電路60以進一步處理而提供更正資料。在一些實施例中,翻轉電路52的翻轉操作經配置以將邏輯資料從第一邏輯狀態轉變為第二邏輯狀態;例如從邏輯“0”到邏輯“1”(或從邏輯“1”到邏輯“0”),或者直接輸出表示在缺陷位置處的資料位元的高電壓的邏輯訊號。 圖4是流程圖,例示圖3所示之DRAM 100B的操作方法300。操作方法300從操作301開始,其中接收讀取位址和缺陷資訊;例如,控制電路20接收來自外部控制器的讀取位址和來自資料儲存器10的缺陷資訊(例如,缺陷位址)。隨後,操作方法300進行到操作302,其中根據讀取位址產生DRAM之記憶體陣列的讀取資料;例如,存取電路40根據讀取位址從DRAM 100B的記憶體陣列30,產生讀取資料。接下來,操作方法300進行到操作303,其中判斷讀取位址是否包括缺陷位址;例如,控制電路20根據缺陷資訊以檢查讀取位址是否包括缺陷位址。如果檢查結果是否定的,則操作方法300進行到操作304,在此操作中輸出檢查通過的資料。 如果檢查結果是肯定的,則操作方法300進行到操作305,其中儲存讀取資料在翻轉電路中;例如,將讀取資料儲存在翻轉電路52中。接下來,操作方法300進行到操作306,其中儲存缺陷位址在位址暫存器;例如控制電路20提供的缺陷位址(缺陷位元的位置)被儲存在位址暫存器51中。 隨後,操作方法300進行到操作307,其中根據缺陷位址,修改讀取資料的部分以產生修改資料;例如,修改電路50的翻轉電路52藉由翻轉位於缺陷位址的資料,修改讀取資料的第一部分以產生修改資料。在一些實施例中,翻轉電路52接收讀取資料並根據儲存在位址暫存器51中的缺陷位址翻轉至少一個缺陷位元。在一些實施例中,在翻轉操作之後,翻轉電路52輸出修改資料到ECC電路60以進一步的資料更正。在一些實施例中,翻轉電路52輸出修改後資料後,操作方法300前進到操作308,其中對修改資料執行資料修正操作,以修改讀取資料的第二部分;例如,ECC電路60執行資料更正操作以修改讀取資料的第二部分(即,儲存在除了缺陷位元之外的位元資料)。 圖5是功能方塊圖,例示本揭露一些實施例之一種動態隨機存取記憶體(DRAM) 100C;在一些實施例中,如圖1中所述之控制電路20,經配置以控制存取電路40和修改電路50。如前所述,控制電路20控制存取電路40根據讀取位址從記憶體陣列30讀取資料,之後存取電路40將讀取資料傳送至修改電路50的翻轉電路52。在一些實施例中,翻轉電路52暫時儲存讀取資料並將讀取資料輸出至ECC電路60。在一些實施例中,ECC電路60檢查是否存在錯誤。如果沒有錯誤,則ECC電路60輸出正確的讀取資料;如果存在可更正的錯誤,則ECC電路60更正錯誤並輸出更正的讀取資料。在一些實施例中,如果具有無法更正的錯誤,則ECC電路60提供訊號提供給控制電路20以用於進一步的資料更正操作。在一些實施例中,控制電路20排定讀取操作和更正操作。 在一些實施例中,ECC電路60提供包括錯誤位元位址在內的缺陷資訊(錯誤位元資訊)給位址暫存器51,翻轉電路52之後根據來自位址暫存器51的錯誤位元資訊,翻轉儲存資料的至少一個錯誤位元。在一些實施例中,翻轉操作之後,翻轉電路52輸出修改資料。在一些實施例中,翻轉電路52將修改的資料提供給ECC電路60以判斷是否沒有錯誤或者錯誤是否可被更正;如果檢查結果是肯定的,則ECC電路60之後輸出正確的或更正的資料;如果存在無法更正的錯誤,則ECC電路60向控制電路20提供用於另一資料更正操作的訊號,例如,可執行第二翻轉操作以翻轉額外的錯誤位元。 圖6是流程圖,例示圖5所示之DRAM 100C的操作方法400。操作方法400以操作401開始,其中接收讀取位址;例如,控制電路20從外部控制器接收讀取位址。操作方法400進行到操作402,其中根據讀取位址從記憶體陣列產生讀取資料;例如,存取電路40根據讀取位址從記憶體陣列30讀取資料。接下來,操作方法400進行到操作403,其中儲存讀取資料在翻轉電路中;例如,存取電路40將讀取資料傳送到翻轉電路52,翻轉電路52暫時儲存讀取資料。 接下來,操作方法400進行到操作404,其中檢查讀取資料是否包括無法更正的錯誤;例如,ECC電路60檢查讀取資料是否包含無法更正的錯誤。如果檢查結果是否定的,則操作方法400前進到操作405,其中輸出檢查通過的資料,並且丟棄翻轉電路52中暫時儲存的讀取資料。如果檢查結果是肯定的,則操作方法400進行到操作406,其中排定資料更正操作;例如,控制電路20由ECC電路60引導以排定讀取操作和資料更正操作。隨後,操作方法400進行到操作407,其中提供缺陷資訊給位址暫存器;例如,ECC電路60將缺陷資訊,即錯誤位元資訊提供給位址暫存器51。接下來,操作方法400前進到操作408,其中根據缺陷資訊翻轉儲存資料中至少一個錯誤位元;例如,翻轉電路52根據缺陷資訊翻轉所儲存的資料中至少一個錯誤位元,之後將修改資料輸出到ECC電路60。隨後,操作方法400返回到操作404,其中檢查修改後的資料是否仍然包含無法正的錯誤。並且如果修改資料仍包含無法更正的錯誤,則重複資料更正循環(例如,步驟406、407和408)。 本揭露在資料進入ECC電路之前,藉由翻轉操作以執行資料更正,使得ECC電路不需要在資料更正操作上使用過多時間。相反地,如果翻轉操作未使用於更正資料,則ECC電路需要較長的時間來更正讀取資料。傳統上,如果一資料列具有一個或多個缺陷位元,則儲存在資料列中的所有資料將被標記並替換為另一行,這一過程需要額外的儲存空間。 本揭露提供一種動態隨機存取記憶體(DRAM),包括一記憶體陣列;一控制電路,經配置以接收一讀取位址及該讀取位址的一缺陷資訊;一存取電路,經配置以根據來自該控制電路的該讀取位址而從該記憶體陣列產生一讀取資料;以及連接到該存取電路和該控制電路的一修改電路,其中該修改電路經配置以根據該缺陷資訊,修改該讀取資料的一部分。 本揭露另提供一種動態隨機存取記憶體(DRAM),包括一記憶體陣列;一控制電路,經配置以接收一讀取位址;一存取電路,經配置以根據來自該控制電路的讀取位址而從該記憶體陣列產生一讀取資料;一修改電路,包括連接到該控制電路的一位址暫存器及連接到該存取電路的一翻轉電路;以及一錯誤更正電路,連接到該修改電路且經配置以產生該讀取資料的一缺陷資訊;其中該位址暫存器連接到該錯誤更正電路以接收該讀取位址之該缺陷資訊,該翻轉電路經配置以根據該缺陷資訊,修改該讀取資料的一部分。 本揭露另提供一種動態隨機存取記憶體(DRAM)的操作方法,包括:接收一讀取位址;根據該讀取位址而從一記憶體陣列產生一讀取資料;接收該讀取資料的一缺陷資訊;以及根據該缺陷資料修改該讀取資料的一部分部分以產生一修改資料。 雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。 再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟係包含於本申請案之申請專利範圍內。The following description of this disclosure is accompanied by the drawings incorporated in and constitutes a part of the description to explain the embodiment of this disclosure, but this disclosure is not limited to this embodiment. In addition, the following embodiments can be appropriately integrated with the following embodiments to complete another embodiment. "One embodiment", "embodiment", "exemplified embodiment", "other embodiment", "another embodiment", etc. refer to the embodiment described in this disclosure may include specific features, structures, or characteristics, however Not every embodiment must include the particular feature, structure, or characteristic. Furthermore, the repeated use of the phrase "in the embodiment" does not necessarily refer to the same embodiment, but may be the same embodiment. In order that this disclosure may be fully understood, the following description provides detailed steps and structures. Obviously, the implementation of this disclosure does not limit the specific details known to those skilled in the art. In addition, the known structures and steps are not described in detail, so as not to unnecessarily limit the present disclosure. The preferred embodiments of the present disclosure are detailed below. However, in addition to the embodiments, the disclosure can be widely implemented in other embodiments. The scope of this disclosure is not limited to the content of the embodiments, but is defined by the scope of patent application. FIG. 1 is a functional block diagram illustrating a dynamic random access memory (DRAM) 100A according to some embodiments of the present disclosure. Referring to FIG. 1, in some embodiments, the DRAM 100A includes a data storage 10, a control circuit 20 connected to the data storage 10, a memory array 30, and a memory array 30 connected to the control circuit 20 and a memory array 30. The fetch circuit 40, a modification circuit 50 connected to the access circuit 40 and the control circuit 20, and an error-correction code (ECC) circuit 60 connected to the modification circuit 50. In some embodiments, the data storage 10 is configured to store memory of defective memory cell information, and the defective memory cell information includes a memory cell position, that is, a row address of a defective memory cell including a bit. In some embodiments, the data store 10 includes a defect data table configured to store defect memory cell information. In some embodiments, the defective bit cannot store the charge normally; for example, the defective bit is always at a low voltage during the test, and thus is identified through a test process at the factory or during operation. In some embodiments, the data storage 10 may be selectively disposed inside or outside the DRAM 100A. In some embodiments, the control circuit 20 is configured to control the data storage 10, the access circuit 40, and the modification circuit 50. In some embodiments, the control circuit 20 receives the defect memory cell information from the defect data table of the data storage 10. In some embodiments, the control circuit 10 executes a write cycle to update the defect data table in the data storage 10 during a test performed in a factory or during operation. In some embodiments, the control circuit 20 receives a bit address, such as a read address, from an external element, for example, an external controller (not shown). In some embodiments, the memory array 30 is configured to store data; for example, the memory array 30 includes a plurality of memory cells, each memory cell is configured to store one bit of data, wherein the plurality of memory cells are arranged in a matrix, Each memory cell is accessed by a column decoder and a row decoder. In some embodiments, the access circuit 40 is configured to perform a read cycle to read data from the memory array 30. In some embodiments, the access circuit 40 is configured to perform a write cycle to write data to the memory array 30. In some embodiments, the ECC circuit is configured to perform a data correction operation. Many different error correction codes can be applied to data correction operations; for example, Hamming Code can be used. In some embodiments, the scheme used for ECC depends on the complexity of the data, the length of the data, and the time of correction. A more powerful "severe correction" takes longer to process, while a weaker "slight correction" takes less time to process. FIG. 2 is a flowchart illustrating an operation method 200 of the dynamic random access memory shown in FIG. 1. The operation method 200 starts from operation 201 and receives the read address and the defect information of the read address in operation 201; for example, the control circuit 20 receives the read address from an external controller and receives the defect from the data storage 10 Information (defective address). The operation method 200 proceeds to operation 202, where read data is generated from the memory array according to the read address; for example, the access circuit 40 reads data from the memory array 30 according to the read address. Next, the operation method 200 proceeds to operation 203, in which a part of the read data is modified according to the defective address to generate modified data; for example, the modification circuit 50 modifies a part of the read data according to the defective address to generate modified data. FIG. 3 is a functional block diagram illustrating a dynamic random access memory (DRAM) 100B according to some embodiments of the present disclosure; in some embodiments, the modification circuit includes a bit address register 51 and a flip circuit 52. In some embodiments, the address register 51 is configured to store defect information from the control circuit 20; for example, the address register 51 temporarily stores defect information such as a defective address (the position of a defective bit), and This defect address is supplied to the flip circuit 52. In some embodiments, the flip circuit 52 is configured to flip at least one bit of the read data from the access circuit 40. In some embodiments, the flip circuit 52 includes a plurality of controllable inverters 53, wherein each of the inverters 53 is configured to transition logic data from a first logic state to a second logic state; for example, from logic "0" to logic "1" (or from logic "1" to logic "0"), or directly output a logic signal representing a high voltage of a data bit at a defect position. As shown in FIG. 3, in some embodiments, the control circuit 20 receives the read address from an external component, and receives defect information of the read address from the defect data table of the data storage 10. In some embodiments, the control circuit 20 then checks whether the read address includes a defect address according to the defect information in the defect data table. In some embodiments, the defect data table stores defect location information of the defect address in the data storage 10. In some embodiments, the data storage 10 is a non-volatile memory and may be disposed inside or outside the DRAM 100B. In some embodiments, when the read address includes a defective address, the control circuit 20 configures a modification circuit 50 including an address register 51 and a flip circuit 52 according to the defect information. In some embodiments, the defective address (the position of the defective bit) provided by the control circuit 20 is then stored in the address register 51. In some embodiments, the access circuit 40 reads data from the memory array 30 according to the read address provided by the control circuit 20, and the access circuit 40 transmits the read data to the flip circuit 52 of the modification circuit 50. In some embodiments, the flip circuit 52 of the modification circuit 50 receives the read data and flips at least one defective bit according to the defective address stored in the address register 51. In some embodiments, after the flip operation, the flip circuit 52 outputs the modified data to the ECC circuit 60 for further processing to provide the corrected data. In some embodiments, the flip operation of the flip circuit 52 is configured to transition the logic data from a first logic state to a second logic state; for example, from logic "0" to logic "1" (or from logic "1" to logic "0"), or directly output a logic signal indicating a high voltage of a data bit at a defect position. FIG. 4 is a flowchart illustrating an operation method 300 of the DRAM 100B shown in FIG. 3. The operation method 300 starts from operation 301, in which a read address and defect information are received; for example, the control circuit 20 receives a read address from an external controller and defect information (eg, a defect address) from the data storage 10. Subsequently, the operation method 300 proceeds to operation 302, where the read data of the memory array of the DRAM is generated according to the read address; for example, the access circuit 40 generates a read from the memory array 30 of the DRAM 100B according to the read address data. Next, the operation method 300 proceeds to operation 303, where it is determined whether the read address includes a defective address; for example, the control circuit 20 checks whether the read address includes a defective address according to the defect information. If the check result is negative, the operation method 300 proceeds to operation 304, in which the data passed by the check is output. If the check result is positive, the operation method 300 proceeds to operation 305, where the read data is stored in the flip circuit; for example, the read data is stored in the flip circuit 52. Next, the operation method 300 proceeds to operation 306, where the defective address is stored in the address register; for example, the defective address (the position of the defective bit) provided by the control circuit 20 is stored in the address register 51. Subsequently, the operation method 300 proceeds to operation 307, in which a portion of the read data is modified to generate modified data according to the defective address; for example, the flip circuit 52 of the modification circuit 50 modifies the read data by flipping the data located at the defective address The first part to generate modified information. In some embodiments, the flip circuit 52 receives the read data and flips at least one defective bit according to the defective address stored in the address register 51. In some embodiments, after the flip operation, the flip circuit 52 outputs the modified data to the ECC circuit 60 for further data correction. In some embodiments, after the flipped circuit 52 outputs the modified data, the operation method 300 proceeds to operation 308, where a data correction operation is performed on the modified data to modify the second part of the read data; for example, the ECC circuit 60 performs data correction Operate to modify the second part of the read data (ie, bit data stored in addition to the defective bit). 5 is a functional block diagram illustrating a dynamic random access memory (DRAM) 100C according to some embodiments of the present disclosure; in some embodiments, the control circuit 20 described in FIG. 1 is configured to control the access circuit 40 and modified circuit 50. As described above, the control circuit 20 controls the access circuit 40 to read data from the memory array 30 according to the read address, and then the access circuit 40 transmits the read data to the flip circuit 52 of the modification circuit 50. In some embodiments, the flip circuit 52 temporarily stores the read data and outputs the read data to the ECC circuit 60. In some embodiments, the ECC circuit 60 checks for errors. If there is no error, the ECC circuit 60 outputs correct read data; if there is a correctable error, the ECC circuit 60 corrects the error and outputs the corrected read data. In some embodiments, if there is an error that cannot be corrected, the ECC circuit 60 provides a signal to the control circuit 20 for further data correction operations. In some embodiments, the control circuit 20 schedules read operations and correction operations. In some embodiments, the ECC circuit 60 provides defect information (wrong bit information) including the wrong bit address to the address register 51, and the circuit 52 then flips the circuit according to the error bit from the address register 51. Meta information, flipping at least one error bit of the stored data. In some embodiments, after the flip operation, the flip circuit 52 outputs the modified data. In some embodiments, the flip circuit 52 provides the modified data to the ECC circuit 60 to determine whether there are no errors or whether the errors can be corrected; if the check result is positive, the ECC circuit 60 then outputs correct or corrected data; If there is an error that cannot be corrected, the ECC circuit 60 provides the control circuit 20 with a signal for another data correction operation, for example, a second flip operation may be performed to flip an extra error bit. FIG. 6 is a flowchart illustrating an operation method 400 of the DRAM 100C shown in FIG. 5. The operation method 400 starts with operation 401 in which a read address is received; for example, the control circuit 20 receives a read address from an external controller. The operation method 400 proceeds to operation 402, where read data is generated from the memory array according to the read address; for example, the access circuit 40 reads data from the memory array 30 according to the read address. Next, the operation method 400 proceeds to operation 403, where the read data is stored in the flip circuit; for example, the access circuit 40 transmits the read data to the flip circuit 52, and the flip circuit 52 temporarily stores the read data. Next, the operation method 400 proceeds to operation 404, where it is checked whether the read data includes an uncorrectable error; for example, the ECC circuit 60 checks whether the read data includes an uncorrectable error. If the check result is negative, the operation method 400 proceeds to operation 405, in which the data that passed the check is output, and the read data temporarily stored in the flip circuit 52 is discarded. If the check result is positive, the operation method 400 proceeds to operation 406 where a data correction operation is scheduled; for example, the control circuit 20 is guided by the ECC circuit 60 to schedule a read operation and a data correction operation. Subsequently, the operation method 400 proceeds to operation 407, where the defect information is provided to the address register; for example, the ECC circuit 60 provides the defect information, that is, the error bit information to the address register 51. Next, the operation method 400 proceeds to operation 408, in which at least one error bit in the stored data is flipped according to the defect information; for example, the flip circuit 52 flips at least one error bit in the stored data according to the defect information, and then outputs the modified data To ECC circuit 60. Subsequently, the operation method 400 returns to operation 404, where it is checked whether the modified data still contains uncorrectable errors. And if the modified data still contains errors that cannot be corrected, repeat the data correction cycle (for example, steps 406, 407, and 408). Before the data enters the ECC circuit, the disclosure performs data correction through a flip operation, so that the ECC circuit does not need to spend too much time on the data correction operation. Conversely, if the flip operation is not used to correct the data, the ECC circuit needs a longer time to correct the read data. Traditionally, if a data row has one or more defective bits, all data stored in the data row will be marked and replaced with another row. This process requires additional storage space. The disclosure provides a dynamic random access memory (DRAM) including a memory array; a control circuit configured to receive a read address and a defect information of the read address; an access circuit, via Configured to generate a read data from the memory array according to the read address from the control circuit; and a modification circuit connected to the access circuit and the control circuit, wherein the modification circuit is configured to Defect information, modify part of the read data. The disclosure further provides a dynamic random access memory (DRAM), which includes a memory array; a control circuit configured to receive a read address; and an access circuit configured to receive a read address from the control circuit. Taking an address to generate a read data from the memory array; a modification circuit including a bit register connected to the control circuit and a flip circuit connected to the access circuit; and an error correction circuit, A defect information connected to the modification circuit and configured to generate the read data; wherein the address register is connected to the error correction circuit to receive the defect information of the read address, and the flip circuit is configured to According to the defect information, a part of the read data is modified. The disclosure also provides a method for operating a dynamic random access memory (DRAM), which includes: receiving a read address; generating a read data from a memory array according to the read address; and receiving the read data A defect information of; and modifying a part of the read data according to the defect data to generate a modified data. Although the disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and substitutions can be made without departing from the spirit and scope of the disclosure as defined by the scope of the patent application. For example, many of the processes described above can be implemented in different ways, and many of the processes described above can be replaced with other processes or combinations thereof. Moreover, the scope of the present application is not limited to the specific embodiments of the processes, machinery, manufacturing, material compositions, means, methods and steps described in the description. Those skilled in the art can understand from the disclosure of this disclosure that according to this disclosure, they can use existing, or future developmental processes, machinery, manufacturing, materials that have the same functions or achieve substantially the same results as the corresponding embodiments described herein. Composition, means, method, or step. Accordingly, such processes, machinery, manufacturing, material compositions, means, methods, or steps are included in the scope of the patent application of this application.

10‧‧‧資料儲存器10‧‧‧Data Storage

20‧‧‧控制電路 20‧‧‧Control circuit

30‧‧‧記憶體陣列 30‧‧‧Memory Array

40‧‧‧存取電路 40‧‧‧Access circuit

50‧‧‧修改電路 50‧‧‧ modify circuit

51‧‧‧位址暫存器 51‧‧‧Address Register

52‧‧‧翻轉電路 52‧‧‧ flip circuit

53‧‧‧反向器 53‧‧‧Inverter

60‧‧‧錯誤更正碼(Error correction code)電路 60‧‧‧Error correction code circuit

200‧‧‧操作方法 200‧‧‧operation method

201‧‧‧操作 201‧‧‧ Operation

202‧‧‧操作 202‧‧‧Operation

203‧‧‧操作 203‧‧‧Operation

300‧‧‧操作方法 300‧‧‧Operation method

301‧‧‧操作 301‧‧‧operation

302‧‧‧操作 302‧‧‧Operation

303‧‧‧操作 303‧‧‧operation

304‧‧‧操作 304‧‧‧ Operation

305‧‧‧操作 305‧‧‧operation

306‧‧‧操作 306‧‧‧operation

307‧‧‧操作 307‧‧‧operation

308‧‧‧操作 308‧‧‧Operation

400‧‧‧操作方法 400‧‧‧operation method

401‧‧‧操作 401‧‧‧operation

402‧‧‧操作 402‧‧‧operation

403‧‧‧操作 403‧‧‧operation

404‧‧‧操作 404‧‧‧operation

405‧‧‧操作 405‧‧‧operation

406‧‧‧操作 406‧‧‧Operation

407‧‧‧操作 407‧‧‧ Operation

408‧‧‧操作 408‧‧‧operation

100A‧‧‧動態隨機存取記憶體 100A‧‧‧Dynamic Random Access Memory

100B‧‧‧動態隨機存取記憶體 100B‧‧‧Dynamic Random Access Memory

100C‧‧‧動態隨機存取記憶體 100C‧‧‧Dynamic Random Access Memory

參閱實施方式與申請專利範圍合併考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號係指相同的元件。 圖1是功能方塊圖,例示本揭露一些實施例之一種動態隨機存取記憶體(dynamic random-access memory,DRAM); 圖2是流程圖,例示圖1之動態隨機存取記憶體的操作方法; 圖3是功能方塊圖,例示本揭露一些實施例之一種動態隨機存取記憶體; 圖4是流程圖,例示圖3之動態隨機存取記憶體的操作方法; 圖5是功能方塊圖,例示本揭露一些實施例之一種動態隨機存取記憶體; 圖6是流程圖,例示圖5之動態隨機存取記憶體的操作方法。When referring to the drawings combined with the embodiments and the scope of the patent application, the disclosure in this application can be understood more fully. The same component symbols in the drawings refer to the same components. FIG. 1 is a functional block diagram illustrating a dynamic random-access memory (DRAM) of some embodiments of the disclosure; FIG. 2 is a flowchart illustrating an operation method of the dynamic random-access memory of FIG. 1 3 is a functional block diagram illustrating a dynamic random access memory of some embodiments of the present disclosure; FIG. 4 is a flowchart illustrating an operation method of the dynamic random access memory of FIG. 3; FIG. 5 is a functional block diagram, An example of a dynamic random access memory of some embodiments of the present disclosure is illustrated. FIG. 6 is a flowchart illustrating an operation method of the dynamic random access memory of FIG. 5.

Claims (19)

一種動態隨機存取記憶體(DRAM),包括:一記憶體陣列;一控制電路,經配置以接收一讀取位址及該讀取位址的一缺陷資訊;一存取電路,經配置以根據來自該控制電路的該讀取位址而從該記憶體陣列產生一讀取資料;以及一修改電路,連接到該存取電路和該控制電路,其中該修改電路經配置以根據該缺陷資訊而修改該讀取資料的一部分。A dynamic random access memory (DRAM) includes: a memory array; a control circuit configured to receive a read address and a defect information of the read address; an access circuit configured to Generating a read data from the memory array according to the read address from the control circuit; and a modification circuit connected to the access circuit and the control circuit, wherein the modification circuit is configured to be based on the defect information And modify a part of the read data. 如請求項1所述的DRAM,其中該修改電路包括一翻轉電路,經配置以修改該讀取資料的該部分,該翻轉電路根據該缺陷資訊將該讀取資料的至少一個位元從一第一邏輯狀態翻轉至一第二邏輯狀態。The DRAM according to claim 1, wherein the modification circuit includes a flip circuit configured to modify the portion of the read data, and the flip circuit changes at least one bit of the read data from a first bit according to the defect information. A logic state is inverted to a second logic state. 如請求項2所述的DRAM,其中該修改電路更包括一位址暫存器,經配置以儲存來自該控制電路的該缺陷資訊。The DRAM according to claim 2, wherein the modification circuit further comprises a bit address register configured to store the defect information from the control circuit. 如請求項1所述的DRAM,更包括一錯誤更正電路,連接到該修改電路。The DRAM according to claim 1, further comprising an error correction circuit connected to the modification circuit. 如請求項4所述的DRAM,其中該修改電路經配置以修改該讀取資料的一第一部分,該錯誤更正電路經配置以更正未被該修改電路修改的該讀取資料的一第二部分。The DRAM of claim 4, wherein the modification circuit is configured to modify a first portion of the read data, and the error correction circuit is configured to correct a second portion of the read data that has not been modified by the modification circuit . 一種動態隨機存取記憶體(DRAM),包括:一記憶體陣列;一控制電路,經配置以接收一讀取位址;一存取電路,經配置以根據來自該控制電路的該讀取位址而從該記憶體陣列產生一讀取資料;一修改電路,包括連接到該控制電路的一位址暫存器及連接到該存取電路的一翻轉電路;以及一錯誤更正電路,連接到該修改電路且經配置以產生該讀取資料的一缺陷資訊;其中該位址暫存器連接到該錯誤更正電路以接收該讀取位址之該缺陷資訊,該翻轉電路經配置以根據該缺陷資訊而修改該讀取資料的一部分。A dynamic random access memory (DRAM) includes: a memory array; a control circuit configured to receive a read address; and an access circuit configured to respond to the read bit from the control circuit A read data is generated from the memory array; a modification circuit including a bit register connected to the control circuit and a flip circuit connected to the access circuit; and an error correction circuit connected to The modification circuit is configured to generate defect information of the read data; wherein the address register is connected to the error correction circuit to receive the defect information of the read address, and the flip circuit is configured to Defect information and modify part of the read data. 如請求項6所述的DRAM,其中該翻轉電路經配置以修改該讀取資料的該修改部份,該翻轉電路根據該缺陷資訊將該讀取資料的至少一個位元從一第一邏輯狀態翻轉至一第二邏輯狀態。The DRAM according to claim 6, wherein the flip circuit is configured to modify the modified portion of the read data, and the flip circuit changes at least one bit of the read data from a first logic state according to the defect information Flip to a second logic state. 如請求項6所述的DRAM,其中該錯誤更正電路連接到該控制電路,該錯誤更正電路經配置當該讀取資料包括一無法更正錯誤時,則向該控制電路發送一訊號。The DRAM according to claim 6, wherein the error correction circuit is connected to the control circuit, and the error correction circuit is configured to send a signal to the control circuit when the read data includes an uncorrectable error. 如請求項6所述的DRAM,其中該控制電路經配置以排定該修改電路的一更正操作。The DRAM of claim 6, wherein the control circuit is configured to schedule a corrective operation of the modification circuit. 一種動態隨機存取記憶體的操作方法,包括:接收一讀取位址;根據該讀取位址,從一記憶體陣列產生一讀取資料;接收該讀取資料的一缺陷資訊;以及根據該缺陷資訊,修改該讀取資料的一部分以產生一修改資料。A method for operating a dynamic random access memory includes: receiving a read address; generating a read data from a memory array according to the read address; receiving a defect information of the read data; and The defect information modifies a part of the read data to generate a modified data. 如請求項10所述的操作方法,其中修改該讀取資料的一部分包括:根據該缺陷資訊,將該讀取資料的至少一個位元從一第一邏輯狀態翻轉到一第二邏輯狀態。The operating method according to claim 10, wherein modifying a part of the read data comprises: flipping at least one bit of the read data from a first logic state to a second logic state according to the defect information. 如請求項10所述的操作方法,更包括:將該缺陷資訊儲存到一位址暫存器中,以及根據來自該位址暫存器的該缺陷資訊而將該讀取資料的至少一位元從一第一邏輯狀態翻轉到一第二邏輯狀態。The operation method according to claim 10, further comprising: storing the defect information in a bit register, and at least one bit of the read data according to the defect information from the address register. The element flips from a first logic state to a second logic state. 如請求項10所述的操作方法,包括:修改該讀取資料的一第一部分,以及更正該讀取資料的一第二部分。The operation method according to claim 10 includes: modifying a first part of the read data, and correcting a second part of the read data. 如請求項13所述的操作方法,其中修改該讀取資料的一第一部分是由一修改電路執行,更正該讀取資料的一第二部分是由一錯誤更正電路執行。The operation method according to claim 13, wherein a first part of modifying the read data is performed by a modification circuit, and a second part of correcting the read data is performed by an error correction circuit. 該如請求項10所述的操作方法,更包括:判斷該修改資料是否包括一無法更正錯誤。The operation method according to claim 10 further includes: determining whether the modification data includes an uncorrectable error. 如請求項15所述的操作方法,更包括:當該修改資料包括一無法更正錯誤時,則產生一更新缺陷資訊。The operation method according to claim 15, further comprising: when the modification data includes an uncorrectable error, generating update defect information. 如請求項16所述的操作方法,更包括:根據該更新缺陷資訊,修改該修改資料。The operation method according to claim 16, further comprising: modifying the modification data according to the update defect information. 如請求項16所述的操作方法,更包括:排定一後續修改操作,以修改包括該無法更正錯誤的該修改資料。The operation method described in claim 16 further includes: scheduling a subsequent modification operation to modify the modification data including the uncorrectable error. 如請求項10所述的操作方法,其中產生該讀取位址的一缺陷資訊是在一錯誤更正電路執行一錯誤更正碼操作之後執行。The operation method of claim 10, wherein a defect information generating the read address is executed after an error correction circuit performs an error correction code operation.
TW107109086A 2017-12-26 2018-03-16 Dynamic random access memory and its operation method TWI652688B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762610341P 2017-12-26 2017-12-26
US62/610,341 2017-12-26
US15/904,912 US20190196902A1 (en) 2017-12-26 2018-02-26 Dynamic random access memory and method of operating the same
US15/904,912 2018-02-26

Publications (2)

Publication Number Publication Date
TWI652688B true TWI652688B (en) 2019-03-01
TW201928989A TW201928989A (en) 2019-07-16

Family

ID=66590717

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107109086A TWI652688B (en) 2017-12-26 2018-03-16 Dynamic random access memory and its operation method

Country Status (1)

Country Link
TW (1) TWI652688B (en)

Also Published As

Publication number Publication date
TW201928989A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
TWI690933B (en) Variable resistance random-access memory
US7861138B2 (en) Error correction in memory devices
US8161355B2 (en) Automatic refresh for improving data retention and endurance characteristics of an embedded non-volatile memory in a standard CMOS logic process
US8379471B2 (en) Refresh operation control circuit, semiconductor memory device including the same, and refresh operation control method
US7200780B2 (en) Semiconductor memory including error correction function
US7277306B2 (en) Associative memory capable of searching for data while keeping high data reliability
JP5045242B2 (en) Semiconductor memory, semiconductor memory operating method and system
US8286054B2 (en) Semiconductor memory, operating method of semiconductor memory, and system
JP6190462B2 (en) Semiconductor memory device
US20080094898A1 (en) Non-volatile semiconductor storage device
JP2010165400A (en) Nonvolatile semiconductor memory device and system thereof
US7385849B2 (en) Semiconductor integrated circuit device
US11037620B1 (en) Memory device having fault detection functionality and control system including the same
US10229752B2 (en) Memory device correcting data error of weak cell
JP2008021390A (en) Semiconductor storage device
US8127201B2 (en) Nonvolatile semiconductor memory and method of access evaluation to the same
US9984770B2 (en) Method for managing a fail bit line of a memory plane of a non volatile memory and corresponding memory device
JP4050091B2 (en) Semiconductor memory device
TWI652688B (en) Dynamic random access memory and its operation method
US10671477B2 (en) Memory device and operation method of the same
CN110010188B (en) Memory device and method of operating the same
US20190196902A1 (en) Dynamic random access memory and method of operating the same
JP2013030251A (en) Memory system
US11698835B2 (en) Memory and operation method of memory
TW202343449A (en) Semiconductor memory device and method for reading semiconductor memory device