TWI652590B - Three-dimensional printing method and three-dimensional printing system - Google Patents

Three-dimensional printing method and three-dimensional printing system Download PDF

Info

Publication number
TWI652590B
TWI652590B TW106127726A TW106127726A TWI652590B TW I652590 B TWI652590 B TW I652590B TW 106127726 A TW106127726 A TW 106127726A TW 106127726 A TW106127726 A TW 106127726A TW I652590 B TWI652590 B TW I652590B
Authority
TW
Taiwan
Prior art keywords
lattice
simulated
parameter
design parameters
computer
Prior art date
Application number
TW106127726A
Other languages
Chinese (zh)
Other versions
TW201911087A (en
Inventor
陳申岳
Original Assignee
崴昊科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崴昊科技有限公司 filed Critical 崴昊科技有限公司
Priority to TW106127726A priority Critical patent/TWI652590B/en
Application granted granted Critical
Publication of TWI652590B publication Critical patent/TWI652590B/en
Publication of TW201911087A publication Critical patent/TW201911087A/en

Links

Abstract

立體列印方法包含利用電腦輔助設計系統產生物件的幾何形態資料;根據物件的幾何形態資料,利用電腦輔助工程系統,產生對應物件的複數個設計參數;根據該些設計參數,利用自動化晶格系統,模擬該物件的至少一個晶格結構;依據被模擬的至少一個晶格結構,產生至少一個比較參數;依據至少一個比較參數,利用智能晶格系統,將被模擬的至少一個晶格結構最佳化;電腦輔助工程系統依據最佳化的至少一個晶格結構,產生對應物件的複數個最佳化的設計參數;及立體列印機根據該些最佳化的設計參數列印物件。The three-dimensional printing method comprises the use of a computer-aided design system to generate geometrical data of the object; according to the geometrical data of the object, a computer-aided engineering system is used to generate a plurality of design parameters of the corresponding object; according to the design parameters, the automated lattice system is utilized. Simulating at least one lattice structure of the object; generating at least one comparison parameter according to at least one lattice structure being simulated; and optimizing at least one lattice structure to be simulated by using a smart lattice system according to at least one comparison parameter The computer-aided engineering system generates a plurality of optimized design parameters of the corresponding object according to the optimized at least one lattice structure; and the stereo printer prints the object according to the optimized design parameters.

Description

立體列印方法及立體列印系統Three-dimensional printing method and three-dimensional printing system

本發明描述一種立體列印方法及立體列印系統,尤指一種能最佳化物件晶格結構的立體列印方法及立體列印系統。The invention describes a three-dimensional printing method and a three-dimensional printing system, in particular to a three-dimensional printing method and a three-dimensional printing system which can optimize the lattice structure of the compound.

隨著科技日新月異,自動化以及高效率的列印技術也逐漸成熟。近年來,立體列印技術(又稱3D列印技術)已逐漸應用到各種物件的製造,並有逐漸取代以人力手工製程的趨勢。立體列印技術可以使用電腦輔助設計軟體或三維掃描器生成物件的建模資料,或以手動方式搜集製作立體圖像所需的幾何資料。根據這些物件的建模或是掃描資料,可以生成被掃描物體的三維電腦模型。在立體列印技術中,無論使用哪種立體建模軟體,生成的立體模型(例如 .skp、.dae、.3ds或其它格式)都需要轉換成立體印表機可以讀取的格式。隨後,立體印表機可以根據這些物件的建模資料,利用增量製造的程序,透過列印噴頭將材料沉積以及堆疊,最後形成實體的物件。As technology advances, automation and efficient printing technologies are maturing. In recent years, three-dimensional printing technology (also known as 3D printing technology) has gradually been applied to the manufacture of various objects, and has gradually replaced the trend of manual manual processing. Stereo printing technology can use computer-aided design software or 3D scanners to generate modeling data for objects, or manually collect the geometric data needed to create stereo images. Based on the modeling or scanning of these objects, a three-dimensional computer model of the object being scanned can be generated. In stereo printing technology, regardless of which stereo modeling software is used, the generated stereo model (for example, .skp, .dae, .3ds, or other formats) needs to be converted into a format that the printer can read. Subsequently, the three-dimensional printer can use the incremental manufacturing process to deposit and stack the material through the print head according to the modeling data of these objects, and finally form a solid object.

由於立體列印技術常被應用於製造建築物的物件或是具有承載能力的物件,因此物件的重量以及耐重力(或稱為,應力承受度)是兩個很重要的指標。舉例而言,設計者對於物件結構的需求可為:在容許的重量下,具有最強的耐重力。或是,在符合某一個耐重力的條件下,具有最輕的重量。因此,物件內部之晶格結構的排列方式、密度和形狀將會是非常重要的設計參數。Since three-dimensional printing technology is often used to manufacture objects in buildings or objects with load carrying capacity, the weight of objects and the resistance to gravity (or stress tolerance) are two important indicators. For example, the designer's need for the structure of the object can be: with the strongest resistance to gravity under the allowable weight. Or, with the lightest weight, it has the lightest weight. Therefore, the arrangement, density and shape of the lattice structure inside the object will be very important design parameters.

以目前市面上的軟體或系統而言,並無自動最佳化或是自動調整物件內部晶格結構排列的密度或形式之功能,因此無法自動產生合乎強度需求或重量需求的物件。換句話說,給定某些設計條件下,設計者必須手動地利用軟體模擬各種不同晶格結構之形式以及密度,並利用試誤法反覆地進行調整,慢慢地修正物件的內部結構來達到設計需求,因此會花費大量的人力和時間。In the current software or system on the market, there is no automatic optimization or automatic adjustment of the density or form of the arrangement of the internal lattice structure of the object, so that objects that meet the strength requirements or weight requirements cannot be automatically generated. In other words, given some design conditions, the designer must manually use the software to simulate the form and density of various different lattice structures, and use the trial and error method to repeatedly adjust and slowly correct the internal structure of the object to achieve Design requirements, so it takes a lot of manpower and time.

本發明一實施例提出一種立體列印方法。立體列印方法包含利用電腦輔助設計系統產生物件的幾何形態資料,根據物件的幾何形態資料,利用電腦輔助工程系統,產生對應物件的複數個設計參數,根據該些設計參數,利用自動化晶格系統,模擬該物件的至少一個晶格結構,依據被模擬的至少一個晶格結構,產生至少一個比較參數,依據至少一個比較參數,利用智能晶格系統,將被模擬的至少一個晶格結構最佳化,電腦輔助設計系統依據最佳化的至少一個晶格結構,產生對應物件的複數個最佳化的設計參數,及立體列印機根據該些最佳化的設計參數列印物件。An embodiment of the invention provides a three-dimensional printing method. The three-dimensional printing method comprises using a computer-aided design system to generate geometrical data of the object, and using a computer-aided engineering system to generate a plurality of design parameters of the corresponding object according to the geometrical data of the object, and using the automated lattice system according to the design parameters. Simulating at least one lattice structure of the object, generating at least one comparison parameter according to at least one lattice structure to be simulated, and using the intelligent lattice system to optimize at least one lattice structure to be simulated according to at least one comparison parameter The computer-aided design system generates a plurality of optimized design parameters for the corresponding object based on the optimized at least one lattice structure, and the three-dimensional printer prints the object according to the optimized design parameters.

第1圖係為本發明之立體列印系統100之實施例的方塊圖。立體列印系統100包含電腦輔助設計(Computer Aided Design,CAD)系統10、電腦輔助工程(Computer Aided Engineering,CAE)系統11、自動化晶格系統12、智能晶格系統13以及立體列印機14。於此說明,電腦輔助設計系統10、電腦輔助工程系統11、自動化晶格系統12及智能晶格系統13可為獨立作業於不同電腦之系統。亦可為不同軟體所運行之系統並整合於單一電腦之中。電腦輔助設計系統10、電腦輔助工程系統11、自動化晶格系統12及智能晶格系統13也可以部分整合於單一電腦中,部分使用獨立之機台運行。任何合理的系統運行模式都屬於本發明所揭露的範疇。電腦輔助設計系統10可視為一種具有圖形介面的物件設計系統,設計者可以利用電腦軟體製作並模擬實物設計,例如調整物件的外型、結構、色彩、質感等。電腦輔助設計系統10會產生物件的幾何形態資料。例如,電腦輔助設計系統10會產生包含物件的形狀資料、尺寸資料、材質資料等等。在本實施例中,電腦輔助設計系統10可為任何二維或三維的物件之繪圖程式的軟體包,例如ANSYS幾何模型建構平台上的CAD軟體。電腦輔助工程系統11耦接於電腦輔助設計系統10,用以根據物件的幾何形態資料,產生對應物件的複數個設計參數。換句話說,電腦輔助工程系統11可利用電腦強大的計算功能來針對產品的設計特性進行模擬,並對於複雜的物件結構進行準確的計算。舉例而言,當使用者利用電腦輔助設計系統10的介面完成物件的幾何型態之設計後,電腦輔助工程系統11會將物件網格化,並計算之後模擬晶格所用之複數個晶格座標、晶格密度參數、物體能乘載之應力參數、晶格方向、晶格邊柱直徑及複數個晶格頂點的連接順序等等。在本實施例中,晶格方向也可以透過外部的介面輸入。例如,使用者可利用一個晶格方向輸入介面,輸入晶格走向參數。晶格走向參數可為固定走向(Conforming)參數或可變走向(Non-conforming)參數。自動化晶格系統12耦接於電腦輔助工程系統11,用於依據該些設計參數模擬物件的至少一個晶格結構。於此說明,前述提及之電腦輔助工程系統11可產生對應物件之複數個網格線(Grid Mesh),將物件之指定部分網格化。而自動化晶格系統12可將物件被指定網格化的部分進行處理,以鏤空的方式模擬物件的至少一個晶格結構。詳細的轉換過程將描述於後文。換句話說,物件的結構經過了電腦輔助工程系統11以及自動化晶格系統12的處理後,包覆著實心物件的網格線會被模擬為多孔性結構的晶格。在本實施例中,網格結構以及晶格結構可為四面體(Tetrahedron)的結構或是六面體(Hexahedron)的結構。然而,任何合理的形狀結構都可被應用於本發明的實施例中。1 is a block diagram of an embodiment of a three-dimensional printing system 100 of the present invention. The three-dimensional printing system 100 includes a Computer Aided Design (CAD) system 10, a Computer Aided Engineering (CAE) system 11, an automated lattice system 12, a smart lattice system 13, and a stereo printer 14. As described herein, the computer aided design system 10, the computer aided engineering system 11, the automated lattice system 12, and the intelligent lattice system 13 can be systems that operate independently on different computers. It can also be a system run by different software and integrated into a single computer. The computer aided design system 10, the computer aided engineering system 11, the automated lattice system 12, and the intelligent lattice system 13 may also be partially integrated into a single computer, and partially operated using an independent machine. Any reasonable system operating mode is within the scope of the present invention. The computer aided design system 10 can be regarded as an object design system with a graphical interface. The designer can use the computer software to create and simulate the physical design, such as adjusting the appearance, structure, color, texture and the like of the object. The computer aided design system 10 produces geometrical information about the object. For example, the computer aided design system 10 generates shape data, size data, material data, and the like including objects. In this embodiment, the computer aided design system 10 can be a software package for any 2D or 3D object drawing program, such as the CAD software on the ANSYS geometric model construction platform. The computer-aided engineering system 11 is coupled to the computer-aided design system 10 for generating a plurality of design parameters of the corresponding object according to the geometrical data of the object. In other words, the computer-aided engineering system 11 can utilize the powerful computing functions of the computer to simulate the design characteristics of the product and accurately calculate the complex object structure. For example, after the user uses the interface of the computer aided design system 10 to complete the geometric design of the object, the computer-aided engineering system 11 meshes the object and calculates a plurality of lattice coordinates for simulating the crystal lattice. , lattice density parameters, stress parameters of the object can be loaded, lattice direction, lattice side column diameter and the connection order of a plurality of lattice vertices. In this embodiment, the lattice direction can also be input through an external interface. For example, the user can enter a lattice orientation parameter using a lattice orientation input interface. The lattice progression parameter can be a fixed forming parameter or a non-conforming parameter. The automated lattice system 12 is coupled to the computer-aided engineering system 11 for simulating at least one lattice structure of the object based on the design parameters. As described herein, the aforementioned computer-aided engineering system 11 can generate a plurality of grid lines (Grid Mesh) of corresponding objects, and mesh the designated portions of the objects. The automated lattice system 12 can process the portion of the object that is designated to be meshed, and simulate at least one lattice structure of the object in a hollow manner. The detailed conversion process will be described later. In other words, after the structure of the object has been processed by the computer-aided engineering system 11 and the automated lattice system 12, the grid lines overlying the solid objects are modeled as a lattice of porous structures. In this embodiment, the lattice structure and the lattice structure may be a tetrahedral structure or a Hexahedron structure. However, any reasonable shape structure can be applied to embodiments of the present invention.

智能晶格系統13耦接於電腦輔助工程系統11以及自動化晶格系統12,可依據被模擬的至少一個晶格結構,呼叫電腦輔助工程系統11之函式運算而產生比較參數。自動化晶格系統12還可針對至少一個比較參數,將被模擬的至少一個晶格結構最佳化。舉例而言,當物件的至少一個晶格結構被模擬後,智能晶格系統13可呼叫電腦輔助工程系統11之函式,以計算此物件的模擬應力承受參數及物件之模擬重量參數。並試圖優化被模擬的至少一個晶格結構。舉例而言,設計者輸入之物件的應力承受參數為100以上的條件,若設計者所定義的規則為最小化物件的重量,則智能晶格系統13就會依此規則試圖找出最佳化的晶格結構參數。然而,智能晶格系統13可以用任何的演算法來進行最佳化的計算。舉例而言,智能晶格系統13可利用梯度值,配合數次迴圈後的收斂性判斷晶格結構是否已經最佳化。以上述的物件的應力承受參數限制以及最小化物件的重量為例,應力承受參數限制(越大越佳)以及最小化物件的重量可視為兩個不同方向的微分梯度值。智能晶格系統13會依據這些梯度值執行迴圈運算,並依據這些梯度值被迴圈運算的結果(例如經過了3次迴圈後,其數值已經收斂),優化被模擬的至少一個晶格結構。The intelligent lattice system 13 is coupled to the computer-aided engineering system 11 and the automated lattice system 12, and can call the computer-aided engineering system 11 according to the simulated at least one lattice structure to generate comparison parameters. The automated lattice system 12 can also optimize at least one lattice structure to be simulated for at least one comparison parameter. For example, after at least one of the lattice structures of the object is simulated, the intelligent lattice system 13 can call the function of the computer-aided engineering system 11 to calculate the simulated stress tolerance parameters of the object and the simulated weight parameters of the object. Attempts were made to optimize at least one lattice structure that was simulated. For example, if the stress input parameter of the object input by the designer is 100 or more, if the rule defined by the designer is the weight of the smallest piece, the intelligent lattice system 13 tries to find the optimization according to the rule. The lattice structure parameters. However, the intelligent lattice system 13 can perform optimization calculations using any algorithm. For example, the intelligent lattice system 13 can determine whether the lattice structure has been optimized by using the gradient value and the convergence after several rounds of loops. Taking the stress tolerance parameter limit of the above-mentioned object and the weight of the smallest compound as an example, the stress tolerance parameter limit (the larger the better) and the weight of the smallest compound can be regarded as the differential gradient values in two different directions. The intelligent lattice system 13 performs loop operations based on these gradient values, and according to the results of the loop operations (for example, after three loops, the values have converged), the at least one lattice that is simulated is optimized. structure.

由於電腦輔助工程系統11耦接於智能晶格系統13,因此,當智能晶格系統13將被模擬的至少一個晶格結構優化後,電腦輔助工程系統11會再次產生更新的複數個設計參數。類似地,自動化晶格系統12會依據更新的複數個設計參數再次產生至少一個模擬的晶格結構。智能晶格系統13會利用電腦輔助工程系統11,將至少一個比較參數與至少一個預設條件進行比對,以決定被優化的晶格結構是否已經達到最佳化的程度。換句話說,電腦輔助工程系統11、自動化晶格系統12以及智能晶格系統13可組成晶格最佳化系統15。物件首先會被網格化,產生實心的網格結構。接著,物件會被晶格化,以產生具有多孔性的晶格結構。隨後,晶格結構將會被最佳化,以滿足設計者所預定的條件(例如應力承受參數限制以及最小化物件的重量)。晶格最佳化系統15可透過迴圈計算,以產生最佳化的複數個晶格座標、晶格密度參數、物體能乘載之應力參數、晶格邊柱直徑及複數個晶格頂點的連接順序等等之設計參數。最後,晶格最佳化系統15會將這些最佳化的設計參數,輸入至立體光刻檔(Stereo Lithography File,STL File),並將立體光刻檔傳送至立體列印機14。立體列印機14接收到立體光刻檔後,可獲取這些最佳化的設計參數,並依此將物件進行立體列印。Since the computer-aided engineering system 11 is coupled to the intelligent lattice system 13, when the intelligent lattice system 13 optimizes at least one of the simulated lattice structures, the computer-aided engineering system 11 again generates updated plurality of design parameters. Similarly, the automated lattice system 12 will again generate at least one simulated lattice structure based on the updated plurality of design parameters. The intelligent lattice system 13 utilizes the computer-aided engineering system 11 to compare at least one comparison parameter with at least one predetermined condition to determine whether the optimized lattice structure has been optimized. In other words, the computer-aided engineering system 11, the automated lattice system 12, and the intelligent lattice system 13 can form a lattice optimization system 15. Objects are first meshed to produce a solid grid structure. The object is then crystallized to create a porous lattice structure. Subsequently, the lattice structure will be optimized to meet the conditions predetermined by the designer (eg stress tolerance parameter limits and minimum weight of the compound). The lattice optimization system 15 can be calculated through the loop to produce an optimized plurality of lattice coordinates, lattice density parameters, stress parameters of the object rideable, lattice side pillar diameter, and a plurality of lattice vertices. Design parameters such as connection order and so on. Finally, the lattice optimization system 15 inputs these optimized design parameters to a Stereo Lithography File (STL File) and transmits the stereolithography file to the stereo printer 14. After the stereolithography machine 14 receives the stereolithography file, these optimized design parameters can be obtained, and the object is stereolithographically printed accordingly.

如上述提及,電腦輔助設計系統10、電腦輔助工程系統11、自動化晶格系統12及智能晶格系統13可為不同軟體所運行之系統,並整合於單一電腦之中。因此,電腦輔助設計系統10、電腦輔助工程系統11、自動化晶格系統12及智能晶格系統13可利用程式語言的方式執行函式呼叫。電腦輔助設計系統10、電腦輔助工程系統11、自動化晶格系統12及智能晶格系統13中任何合理的通訊模式都屬於本發明所揭露的範疇。甚至,電腦輔助設計系統10及電腦輔助工程系統11可整合為一個多功能式的輸入/計算介面,使用者可以透過介面中的功能鍵或是對應的函式資料庫執行電腦輔助設計系統10以及電腦輔助工程系統11的功能。As mentioned above, the computer aided design system 10, the computer aided engineering system 11, the automated lattice system 12, and the intelligent lattice system 13 can be systems run by different software and integrated into a single computer. Therefore, the computer aided design system 10, the computer aided engineering system 11, the automated lattice system 12, and the intelligent lattice system 13 can perform a function call in a program language manner. Any reasonable communication mode in the computer aided design system 10, the computer aided engineering system 11, the automated lattice system 12, and the intelligent lattice system 13 is within the scope of the present invention. In addition, the computer aided design system 10 and the computer aided engineering system 11 can be integrated into a multifunctional input/calculation interface, and the user can execute the computer aided design system 10 through the function keys in the interface or the corresponding function database. The function of the computer aided engineering system 11.

第2圖係為立體列印系統100中,將物件Obj網格化的示意圖。為了簡化描述,立體列印系統100中所設計的物件Obj以立方體的物件為例子,且網格結構A可為六面體(Hexahedron)的結構,但本發明卻不限於此。如第2圖所示,電腦輔助工程系統11可產生對應該物件Obj之複數個網格線M。並且,複數個網格線M可包覆著物件Obj。以網格結構A而言,因其為六面體的結構,因此對應之頂點數量有8個。電腦輔助工程系統11會產生如何分割此物件Obj的網格線M。因此,對於單一的網格結構A而言,其頂點所包覆的空間為實心的物件材質。Fig. 2 is a schematic view showing the meshing of the object Obj in the three-dimensional printing system 100. In order to simplify the description, the object Obj designed in the three-dimensional printing system 100 is exemplified by a cubic object, and the mesh structure A may be a Hexahedron structure, but the present invention is not limited thereto. As shown in FIG. 2, the computer-aided engineering system 11 can generate a plurality of grid lines M corresponding to the object Obj. And, a plurality of grid lines M may cover the object Obj. In the case of the mesh structure A, since it is a hexahedral structure, there are eight corresponding vertices. The computer aided engineering system 11 will generate a grid line M of how to divide this object Obj. Therefore, for a single mesh structure A, the space covered by its vertices is a solid object material.

第3圖係為立體列印系統100中,物件Obj之網格結構A的示意圖。承上述,網格結構A可為六面體的結構,對應之頂點數量有8個。網格結構A的頂點可為頂點P1、頂點P2、頂點P3、頂點P4、頂點P5、頂點P6、頂點P7以及頂點P8。網格結構A的頂點連接順序也會決定了網格結構A的產生模式。例如,網格結構A的產生模式可為將8個頂點依序以頂點P1、頂點P2、頂點P3、頂點P4、頂點P5、頂點P6、頂點P7以及頂點P8之一筆畫的順序形成。然而,網格結構A的產生模式也可以使用不同的頂點連接順序而形成,只要電腦輔助工程系統11能將複數個頂點P1至P8對應至正確的頂點座標即可。Figure 3 is a schematic diagram of the grid structure A of the object Obj in the three-dimensional printing system 100. In view of the above, the grid structure A can be a hexahedron structure, and the number of corresponding vertices is eight. The vertices of the mesh structure A may be a vertex P1, a vertex P2, a vertex P3, a vertex P4, a vertex P5, a vertex P6, a vertex P7, and a vertex P8. The vertex connection order of the mesh structure A also determines the generation mode of the mesh structure A. For example, the generation mode of the mesh structure A may be formed in the order of 8 vertices sequentially drawn by one of the vertex P1, the vertex P2, the vertex P3, the vertex P4, the vertex P5, the vertex P6, the vertex P7, and the vertex P8. However, the generation pattern of the grid structure A can also be formed using different vertex connection sequences as long as the computer-aided engineering system 11 can map the plurality of vertices P1 to P8 to the correct vertex coordinates.

第4圖係為立體列印系統100中,物件Obj之晶格結構B的示意圖。物件Obj之晶格結構B的頂點對應至網格結構A的頂點,因此其代號將沿用網格結構A之頂點的代號。換言之,晶格結構B也為六面體的結構,對應之頂點數量有8個,包含頂點P1、頂點P2、頂點P3、頂點P4、頂點P5、頂點P6、頂點P7以及頂點P8。如上述提及,由於自動化晶格系統12可接收複數個設計參數,因此可以取得複數個晶格頂點座標、複數個晶格頂點的連接順序及晶格邊柱直徑的資訊。接著,自動化晶格系統12將依據該些晶格頂點座標及連接順序,將成對的晶格頂點以符合該晶格邊柱直徑的柱體連接。舉例而言,該些晶格頂點的連接順序可依序為頂點P1、頂點P2、頂點P3、頂點P4、頂點P5、頂點P6、頂點P7以及頂點P8。首先,頂點P1至頂點P2為第一組成對的頂點,自動化晶格系統12會將頂點P1及頂點P2之間以符合晶格邊柱直徑的柱體R1連接。接著,頂點P2至頂點P3為第二組成對的頂點,自動化晶格系統12會將頂點P2及頂點P3之間以符合晶格邊柱直徑的柱體R2連接,依此類推。換句話說,在第3圖之網格結構A之邊線,經過了自動化晶格系統12之實心轉空心程序後,會變成晶格結構B的柱體。也可以說,原本的網格結構A之頂點P1至P8所包覆的體積為物件之實體的材料。然而,經過了自動化晶格系統12之實心轉空心程序後,晶格結構B會變成以柱體連接之孔狀結構。並且,晶格結構B之晶格邊柱直徑的上下限可使用自訂數值或是透過系統的建議數值,例如晶格結構B之晶格邊柱直徑可為0.04毫米至0.1毫米的範圍。隨後被執行的智能晶格系統13可在0.04毫米至0.1毫米的晶格邊柱直徑範圍內將晶格邊柱直徑最佳化。如第3圖以及第4圖所述,簡而言之,電腦輔助工程系統11可產生對應物件Obj之複數個網格線M,將物件Obj之指定部分網格化。自動化晶格系統12可將物件Obj被指定網格化的部分進行處理,以鏤空的方式模擬物件Obj的至少一個晶格結構。Figure 4 is a schematic illustration of the lattice structure B of the object Obj in the three-dimensional printing system 100. The vertex of the lattice structure B of the object Obj corresponds to the vertex of the grid structure A, so its code number will follow the code of the vertex of the grid structure A. In other words, the lattice structure B is also a hexahedral structure, and the number of corresponding vertices is eight, including the vertex P1, the vertex P2, the vertex P3, the vertex P4, the vertex P5, the vertex P6, the vertex P7, and the vertex P8. As mentioned above, since the automated lattice system 12 can receive a plurality of design parameters, information on the plurality of lattice vertex coordinates, the connection order of the plurality of lattice vertices, and the diameter of the lattice side pillars can be obtained. Next, the automated lattice system 12 will connect the paired lattice vertices to the cylinders conforming to the diameter of the lattice side pillars according to the lattice vertices coordinates and the joining order. For example, the connection order of the lattice vertices may be vertices P1, vertices P2, vertices P3, vertices P4, vertices P5, vertices P6, vertices P7, and vertices P8. First, the vertex P1 to the vertex P2 are the vertices of the first pair of pairs, and the automated lattice system 12 connects the vertex P1 and the vertex P2 with the column R1 conforming to the diameter of the lattice side column. Next, the vertex P2 to the vertex P3 are the vertices of the second constituent pair, and the automated lattice system 12 connects the vertex P2 and the vertex P3 with the column R2 conforming to the diameter of the lattice side column, and so on. In other words, the edge of the grid structure A in Fig. 3, after passing through the solid-turning hollow procedure of the automated lattice system 12, becomes the cylinder of the lattice structure B. It can also be said that the volume covered by the vertices P1 to P8 of the original mesh structure A is the material of the entity of the object. However, after the solid-turning hollow procedure of the automated lattice system 12, the lattice structure B becomes a pore-like structure connected by a cylinder. Moreover, the upper and lower limits of the lattice side column diameter of the lattice structure B may use a custom value or a suggested value through the system. For example, the lattice side column diameter of the lattice structure B may be in the range of 0.04 mm to 0.1 mm. The intelligent lattice system 13 that is subsequently executed can optimize the lattice side column diameter over a range of lattice side pillar diameters of 0.04 mm to 0.1 mm. As described in FIG. 3 and FIG. 4, in short, the computer-aided engineering system 11 can generate a plurality of grid lines M corresponding to the objects Obj, and mesh the designated portions of the objects Obj. The automated lattice system 12 can process the object Obj by a specified gridded portion to simulate at least one lattice structure of the object Obj in a hollow manner.

第5圖係為立體列印系統100執行立體列印方法的流程圖。立體列印系統100執行立體列印方法的流程包含步驟S501至步驟S507。任何合理的步驟內容變更或是順序變動都屬於本發明所揭露的範疇。步驟S501至步驟S507之描述於下: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 步驟S501: </td><td> 利用電腦輔助設計系統10產生物件Obj的幾何形態資料; </td></tr><tr><td> 步驟S502: </td><td> 利用電腦輔助工程系統11產生對應物件Obj的複數個設計參數; </td></tr><tr><td> 步驟S503: </td><td> 根據該些設計參數,利用自動化晶格12系統,模擬物件Obj的至少一個晶格結構; </td></tr><tr><td> 步驟S504: </td><td> 依據被模擬的至少一個晶格結構,產生至少一個比較參數; </td></tr><tr><td> 步驟S505: </td><td> 依據至少一個比較參數,利用智能晶格系統13,優化被模擬的至少一個晶格結構,並決定優化的程度是否已經達到最佳化? 若是,執行步驟S506;若否,返回步驟S502; </td></tr><tr><td> 步驟S506: </td><td> 依據最佳化的至少一個晶格結構,產生對應物件Obj的複數個最佳化的設計參數; </td></tr><tr><td> 步驟S507: </td><td> 立體列印機14根據該些最佳化的設計參數列印物件Obj。 </td></tr></TBODY></TABLE>Figure 5 is a flow diagram of a three-dimensional printing system 100 performing a three-dimensional printing method. The flow of the stereolithography system 100 to perform the stereoscopic printing method includes steps S501 to S507. Any reasonable step content changes or order changes are within the scope of the present invention. Steps S501 to S507 are described below:  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Step S501: </td><td> Use the computer aided design system 10 to generate the geometry of the object Obj Morphological data; </td></tr><tr><td> Step S502: </td><td> using the computer-aided engineering system 11 to generate a plurality of design parameters of the corresponding object Obj; </td></tr ><tr><td> Step S503: </td><td> according to the design parameters, using the automated lattice 12 system, simulating at least one lattice structure of the object Obj; </td></tr><tr ><td> Step S504: </td><td> generates at least one comparison parameter according to at least one lattice structure being simulated; </td></tr><tr><td> Step S505: </td ><td> Optimum at least one lattice structure to be simulated by the intelligent lattice system 13 according to at least one comparison parameter, and determines whether the degree of optimization has been optimized? If yes, step S506 is performed; if not, return step S502; </td></tr><tr><td> Step S506: </td><td> generating a plurality of optimized design parameters corresponding to the object Obj according to the optimized at least one lattice structure ; </td></tr><tr><td> Step S507: </td><td> The three-dimensional printer 14 prints the object Obj according to the optimized design parameters. </td></tr></TBODY></TABLE>

步驟S501至步驟S507已描述於前文,故於此將不再贅述。在立體列印方法中,步驟S502、步驟S503、步驟S504以及步驟S505可視為將物件指定區域內之結構最佳化的迴圈程序。簡而言之,物件指定區域會先被網格化,在利用實心轉空心的處理方式,模擬出物件指定區域內的晶格結構。接著,立體列印系統100會將模擬的晶格結構最佳化,例如最佳化晶格邊柱直徑以及晶格密度等等。隨後,立體列印系統100會產生相容於立體列印機14的立體光刻檔(STL File)。立體列印機14可依據立體光刻檔內的最佳化數據將物件列印。因此,經由步驟S501至步驟S507之立體列印方法的流程,立體列印機14最終會產生符合結構最佳化的物件。並且,步驟S501至步驟S507可為自動執行的流程,因此可以大幅降低人力消耗。Steps S501 to S507 have been described in the foregoing, and thus will not be described again. In the three-dimensional printing method, step S502, step S503, step S504, and step S505 can be regarded as a loop program for optimizing the structure in the designated area of the object. In short, the specified area of the object will be meshed first, and the lattice structure in the specified area of the object is simulated by the solid-to-hollow processing. Next, the three-dimensional printing system 100 optimizes the simulated lattice structure, such as optimizing the lattice pillar diameter and lattice density, and the like. Subsequently, the three-dimensional printing system 100 produces a stereoscopic lithography file (STL File) that is compatible with the stereolithography printer 14. The three-dimensional printer 14 can print the objects based on the optimized data in the stereolithography file. Therefore, through the flow of the three-dimensional printing method of steps S501 to S507, the three-dimensional printing machine 14 eventually produces an article that conforms to the structural optimization. Moreover, the steps S501 to S507 can be a flow of automatic execution, and thus the labor consumption can be greatly reduced.

綜上所述,本發明描述了一種立體列印系統以及立體列印方法。立體列印系統利用有智慧運算能力的系統,以自動化的方式調整晶格之密度和形式,以使立體列印機最終會產生合乎強度以及重量需求的物件。並且,立體列印系統可將物件的指定區域或是全部區域網格化,在利用實心轉空心的處理方式,將網格化的區域模擬成晶格結構,再利用迴圈運算將晶格結構最佳化。因此,立體列印系統所輸出的檔案為相容於立體列印機的立體光刻檔,故可應用於各種不同形式的立體列印機。因此,本發明的立體列印系統以及立體列印方法,除了能產生符合結構最佳化的物件外,也可避免消耗大量人力以進行反覆調整設計參數的問題。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。In summary, the present invention describes a three-dimensional printing system and a three-dimensional printing method. The three-dimensional printing system utilizes a system with intelligent computing power to adjust the density and form of the crystal lattice in an automated manner so that the three-dimensional printing machine will eventually produce objects that meet the strength and weight requirements. Moreover, the three-dimensional printing system can mesh the designated area or the whole area of the object, and simulate the latticed area into a lattice structure by using a solid-turn hollow processing method, and then use the loop operation to form the lattice structure. optimization. Therefore, the file output by the three-dimensional printing system is compatible with the stereolithography file of the three-dimensional printing machine, so it can be applied to various types of three-dimensional printing machines. Therefore, the three-dimensional printing system and the three-dimensional printing method of the present invention can avoid the problem of consuming a large amount of manpower to repeatedly adjust the design parameters, in addition to the object that can be optimized in accordance with the structure. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100‧‧‧立體列印系統100‧‧‧Three-dimensional printing system

10‧‧‧電腦輔助設計系統10‧‧‧Computer Aided Design System

11‧‧‧電腦輔助工程系統11‧‧‧Computer Aided Engineering System

12‧‧‧自動化晶格系統12‧‧‧Automated lattice system

13‧‧‧智能晶格系統13‧‧‧Intelligent lattice system

14‧‧‧立體列印機14‧‧‧Three-dimensional printing machine

15‧‧‧晶格最佳化系統15‧‧‧Lattice Optimization System

Obj‧‧‧物件Obj‧‧‧ objects

M‧‧‧網格線M‧‧‧ grid lines

A‧‧‧網格結構A‧‧‧ grid structure

P1至P8‧‧‧頂點P1 to P8‧‧‧ vertex

B‧‧‧晶格結構B‧‧‧ lattice structure

R1及R2‧‧‧柱體R1 and R2‧‧‧ cylinders

S501至S507‧‧‧步驟Steps S501 to S507‧‧

第1圖係為本發明之立體列印系統之實施例的方塊圖。 第2圖係為第1圖之立體列印系統中,將物件網格化的示意圖。 第3圖係為第1圖之立體列印系統中,物件之網格結構的示意圖。 第4圖係為第1圖之立體列印系統中,物件之晶格結構的示意圖。 第5圖係為第1圖之立體列印系統執行立體列印方法的流程圖。Figure 1 is a block diagram of an embodiment of a three-dimensional printing system of the present invention. Fig. 2 is a schematic view showing the meshing of objects in the three-dimensional printing system of Fig. 1. Fig. 3 is a schematic view showing the mesh structure of the object in the three-dimensional printing system of Fig. 1. Fig. 4 is a schematic view showing the lattice structure of the object in the three-dimensional printing system of Fig. 1. Fig. 5 is a flow chart showing a method of performing a three-dimensional printing method in the three-dimensional printing system of Fig. 1.

Claims (8)

一種立體列印方法,包含:利用一電腦輔助設計(Computer Aided Design)系統產生一物件的幾何形態資料;根據該物件的幾何形態資料,利用一電腦輔助工程(Computer Aided Engineering)系統,產生對應該物件的複數個設計參數;根據該些設計參數,利用一自動化晶格系統,模擬該物件的至少一個晶格結構;依據被模擬的該至少一個晶格結構,產生該物件之一模擬應力承受參數及該物件之一模擬重量參數;依據該模擬應力承受參數及該模擬重量參數,利用一智能晶格系統,產生該模擬應力承受參數及該模擬重量參數對應的兩梯度(Gradient)值;根據該模擬應力承受參數及該模擬重量參數對應的該兩梯度值執行一迴圈運算;該智能晶格系統依據該模擬應力承受參數及該模擬重量參數對應的該兩梯度值在該迴圈運算的收斂性,將被模擬的該至少一個晶格結構最佳化;該電腦輔助工程系統依據最佳化的至少一個晶格結構,產生對應該物件的複數個最佳化的設計參數;及一立體列印機根據該些最佳化的設計參數,列印該物件。 A three-dimensional printing method comprises: generating a geometrical shape of an object by using a Computer Aided Design system; and using a Computer Aided Engineering system to generate corresponding data according to the geometrical shape information of the object; a plurality of design parameters of the object; according to the design parameters, simulating at least one lattice structure of the object by using an automated lattice system; generating a simulated stress tolerance parameter of the object according to the at least one lattice structure being simulated And simulating a weight parameter of the object; and using the smart lattice system to generate the simulated stress bearing parameter and the two gradient (Gradient) values corresponding to the simulated weight parameter according to the simulated stress bearing parameter and the simulated weight parameter; The simulated stress bearing parameter and the two gradient values corresponding to the simulated weight parameter perform a loop operation; the intelligent lattice system converges on the loop operation according to the simulated stress bearing parameter and the two gradient values corresponding to the simulated weight parameter Characterizing the at least one lattice structure to be simulated; the electricity The brain assisted engineering system generates a plurality of optimized design parameters corresponding to the object based on the optimized at least one lattice structure; and a three-dimensional printer prints the object according to the optimized design parameters. 如請求項1所述的方法,其中該些設計參數包含複數個晶格座標、一晶格密度參數、該物體能乘載之一應力參數、一晶格方向、一晶格邊柱直徑及複數個晶格頂點的連接順序。 The method of claim 1, wherein the design parameters comprise a plurality of lattice coordinates, a lattice density parameter, a stress parameter of the object capable of riding, a lattice direction, a lattice side column diameter, and a plurality The order in which the vertices of the lattice are connected. 如請求項1所述的方法,另包含:該電腦輔助工程系統產生對應該物件之複數個網格(Grid Mesh)線,將該物件之 一指定部分網格化;及該自動化晶格系統將該物件被指定網格化的部分進行處理,以一鏤空的方式模擬該物件的該至少一個晶格結構。 The method of claim 1, further comprising: the computer-aided engineering system generating a plurality of Grid Mesh lines corresponding to the object, the object A designated portion is meshed; and the automated lattice system processes the object with the specified meshed portion to simulate the at least one lattice structure of the object in a hollow manner. 如請求項3所述的方法,其中該些網格線具有一四面體(Tetrahedron)網格線結構或一六面體(Hexahedron)網格線結構。 The method of claim 3, wherein the grid lines have a tetrahedral (Tetrahedron) grid line structure or a Hexahedron grid line structure. 如請求項3所述的方法,其中該自動化晶格系統將該物件被指定晶格化的部分進行處理,以該鏤空的方式模擬該物件的該至少一個晶格結構包含:由該些設計參數中,取得複數個晶格頂點座標、複數個晶格頂點的連接順序及一晶格邊柱直徑;及依據該些晶格頂點座標及連接順序,將成對的晶格頂點以一符合該晶格邊柱直徑的柱體連接。 The method of claim 3, wherein the automated lattice system processes the object by a specified latticed portion, and simulating the at least one lattice structure of the object in the hollowed out manner comprises: a plurality of lattice vertex coordinates, a connection order of a plurality of lattice vertices, and a lattice side column diameter; and according to the lattice vertex coordinates and the connection order, the pair of lattice vertices are aligned with the crystal The column of the diameter of the column is connected. 如請求項1所述的方法,另包含:輸入一晶格走向參數;其中被模擬的該至少一個晶格結構符合輸入之該晶格走向參數,且該晶格走向參數係為一固定走向參數或一可變走向參數。 The method of claim 1, further comprising: inputting a lattice orientation parameter; wherein the at least one lattice structure simulated corresponds to the input lattice orientation parameter, and the lattice orientation parameter is a fixed orientation parameter Or a variable strike parameter. 如請求項1所述的方法,另包含:該智能晶格系統將該模擬應力承受參數及該模擬重量參數與該至少一個預設條件進行比對,以決定該被模擬的至少一個晶格結構是否最佳化。 The method of claim 1, further comprising: the intelligent lattice system comparing the simulated stress bearing parameter and the simulated weight parameter with the at least one preset condition to determine the at least one lattice structure to be simulated Is it optimized? 如請求項1所述的方法,另包含: 產生包含該些最佳化的設計參數之一立體光刻檔(Stereo Lithography File,STL File);及將該立體光刻檔輸入至該立體列印機。 The method of claim 1, further comprising: Generating a Stereo Lithography File (STL File) including the optimized design parameters; and inputting the stereolithography file to the stereolithography machine.
TW106127726A 2017-08-16 2017-08-16 Three-dimensional printing method and three-dimensional printing system TWI652590B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106127726A TWI652590B (en) 2017-08-16 2017-08-16 Three-dimensional printing method and three-dimensional printing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106127726A TWI652590B (en) 2017-08-16 2017-08-16 Three-dimensional printing method and three-dimensional printing system

Publications (2)

Publication Number Publication Date
TWI652590B true TWI652590B (en) 2019-03-01
TW201911087A TW201911087A (en) 2019-03-16

Family

ID=66590479

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106127726A TWI652590B (en) 2017-08-16 2017-08-16 Three-dimensional printing method and three-dimensional printing system

Country Status (1)

Country Link
TW (1) TWI652590B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12049043B2 (en) 2020-03-24 2024-07-30 Proto Labs, Inc. Methods and systems for generating a three-dimensional product having a cubic internal structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150190971A1 (en) 2014-01-09 2015-07-09 Siemens Product Lifecycle Management Software Inc. Method for structure preserving topology optimization of lattice structures for additive manufacturing
US20170228474A1 (en) 2016-02-10 2017-08-10 Autodeesk, Inc. Designing objects using lattice structure optimization
TWM547152U (en) 2017-03-20 2017-08-11 財團法人金屬工業研究發展中心 Medical imaging modeling apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150190971A1 (en) 2014-01-09 2015-07-09 Siemens Product Lifecycle Management Software Inc. Method for structure preserving topology optimization of lattice structures for additive manufacturing
US20170228474A1 (en) 2016-02-10 2017-08-10 Autodeesk, Inc. Designing objects using lattice structure optimization
TWM547152U (en) 2017-03-20 2017-08-11 財團法人金屬工業研究發展中心 Medical imaging modeling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12049043B2 (en) 2020-03-24 2024-07-30 Proto Labs, Inc. Methods and systems for generating a three-dimensional product having a cubic internal structure

Also Published As

Publication number Publication date
TW201911087A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
CN113348459B (en) Method, system and medium for converting grid geometry into watertight boundary representation
EP3092626B1 (en) Method for creating three dimensional lattice structures in computer-aided design models for additive manufacturing
CN107491610B (en) Car panel die intelligent design system and design method
CN106373184B (en) A kind of 3 D-printing model puts required amount of support Method of fast estimating
US10366535B2 (en) Method for generating hexahedral mesh based on closed-form polycube
WO2020097216A1 (en) Macrostructure topology generation with physical simulation for computer aided design and manufacturing
CN105844711B (en) Engraving 2D images on subdivision surfaces
Chen et al. Synthesis of filigrees for digital fabrication
JP2005038219A (en) Method for generating volume data from boundary expression data and program therefor
Ma et al. Creating novel furniture through topology optimization and advanced manufacturing
CN107066676A (en) A kind of finite element automation modeling method based on satellite plate and shell structure
CN106295032B (en) A kind of ceramic tile mold design software systems and its design method
US20190325098A1 (en) System, method, and computer program for part model generation and analysis and part production and validation
JP2019114260A (en) Design for 3d finite element mesh of 3d part including lattice structure
JP2019114266A (en) Design of 3d finite element mesh of 3d part including lattice structure
CN106204748B (en) A kind of CAD volume mesh model editing, optimization method based on feature
Xia Application of reverse engineering based on computer in product design
Asadollahi-Yazdi et al. Toward integrated design of additive manufacturing through a process development model and multi-objective optimization
CN113987856A (en) Complex multi-constraint structure grid generation method based on frame field
Gibson et al. Software issues for additive manufacturing
JP6861786B2 (en) Local control of surface design patterns to enhance physical properties
TWI652590B (en) Three-dimensional printing method and three-dimensional printing system
WO2024159862A1 (en) Modeling, analysis and optimization integration-oriented adaptive geometric modeling method for combined thin-walled element structure
CN104133923A (en) High-speed modification design method of vehicle body
US20230030783A1 (en) Watertight Spline Modeling for Additive Manufacturing