TWI650381B - Microwave heating composite material and its manufacturing method - Google Patents

Microwave heating composite material and its manufacturing method Download PDF

Info

Publication number
TWI650381B
TWI650381B TW106137712A TW106137712A TWI650381B TW I650381 B TWI650381 B TW I650381B TW 106137712 A TW106137712 A TW 106137712A TW 106137712 A TW106137712 A TW 106137712A TW I650381 B TWI650381 B TW I650381B
Authority
TW
Taiwan
Prior art keywords
composite material
carbon material
carbon
silicone
eucalyptus oil
Prior art date
Application number
TW106137712A
Other languages
Chinese (zh)
Other versions
TW201918527A (en
Inventor
黃原新
李家宏
許景棟
蔡群賢
李庭鵑
蔡群榮
Original Assignee
台灣奈米碳素股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣奈米碳素股份有限公司 filed Critical 台灣奈米碳素股份有限公司
Priority to TW106137712A priority Critical patent/TWI650381B/en
Application granted granted Critical
Publication of TWI650381B publication Critical patent/TWI650381B/en
Publication of TW201918527A publication Critical patent/TW201918527A/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一種微波發熱複合材料及其製造方法,其為先將一碳材料與一第一矽油均勻混合成一碳材料分散液,再將該碳材料分散液與一未硬化之第一矽膠材料、一第二矽油、一染色劑混合成一矽膠混合物,對該矽膠混合物進行分散,最後,加熱該矽膠混合物至一介於室溫至200℃之間的溫度以硬化而形成一微波發熱複合材料,該微波發熱複合材料的體積電阻率介於103Ω•m至1012Ω•m之間,藉由先製作出該碳材料分散液,使該碳材料在該第一矽膠材料中均勻分散,而可使該微波發熱複合材料均勻發熱,且矽膠的生物相容性好,於發熱時,更可達成仿生之效果。A microwave heating composite material and a manufacturing method thereof, which firstly uniformly mix a carbon material and a first eucalyptus oil into a carbon material dispersion liquid, and then the carbon material dispersion liquid and an uncured first rubber material, a second The eucalyptus oil and a coloring agent are mixed into a bismuth mixture, and the cerium mixture is dispersed. Finally, the cerium mixture is heated to a temperature between room temperature and 200 ° C to harden to form a microwave heating composite material. The microwave heating composite material is formed. The volume resistivity is between 103 Ω•m and 1012 Ω•m, and the carbon material is uniformly dispersed in the first silicone material by first making the carbon material dispersion, thereby making the microwave heat-generating composite uniform It is hot, and the biocompatibility of silicone is good. When it is hot, it can achieve the effect of bionics.

Description

微波發熱複合材料及其製造方法Microwave heating composite material and manufacturing method thereof

本發明為有關一種複合材料,尤指一種微波發熱複合材料及其製造方法。The invention relates to a composite material, in particular to a microwave heating composite material and a manufacturing method thereof.

微波本身係具有加熱效應,當微波從介質的表面進入並在其內部傳播時,微波所攜帶的能量將隨著深入介質而可轉化為熱能,此效應已廣泛應用在科學、醫學、工業等等的領域之中。The microwave itself has a heating effect. When the microwave enters from the surface of the medium and propagates inside it, the energy carried by the microwave will be converted into heat energy as it penetrates into the medium. This effect has been widely used in science, medicine, industry, etc. Among the fields.

以受微波加熱的介質來說,石墨原料在微波環境中,可有效率的吸收電磁波並將之轉化為熱量,因此,利用石墨或類似材料作為微波發熱的介質已屬常見之技術,如中華民國發明專利公開第201511039 之「微波加熱用導電性樹脂組成物」,該微波加熱用導電性樹脂組成物含有非為碳質的導電填料、具硬化性的絕緣性黏結劑樹脂及體積固有電阻值比前述非為碳質的導電填料為更高的碳質材料,相對於前述非為碳質的導電填料及具硬化性的絕緣性黏結劑樹脂的合計100質量份,含有縱橫比為20以下的碳質材料1~20質量份,其中,碳質材料可以為石墨、石墨烯、富勒烯類、碳奈米管等等。In the case of microwave-heated media, graphite materials can efficiently absorb electromagnetic waves and convert them into heat in a microwave environment. Therefore, it is a common technique to use graphite or similar materials as a medium for microwave heating, such as the Republic of China. Patent Publication No. 201511039, "Conductive Resin Composition for Microwave Heating", the conductive resin composition for microwave heating contains a non-carbonaceous conductive filler, a curable insulative binder resin, and a volume specific resistance ratio The non-carbonaceous conductive filler is a higher carbonaceous material, and contains carbon having an aspect ratio of 20 or less with respect to 100 parts by mass of the total of the non-carbonaceous conductive filler and the curable insulating binder resin. 1 to 20 parts by mass of the material, wherein the carbonaceous material may be graphite, graphene, fullerene, carbon nanotubes or the like.

以上開習知技術來說,雖主張透過材料的選用,來抑制接受微波發熱而產生火花的問題,但實際操作上,往往仍因材料分散不均勻,而還是有造成冒煙或起火,進而燒毀複合材料的狀況發生。因此,如何在製作微波發熱複合材料時達成分散均勻,實為一大課題。In view of the above-mentioned techniques, although it is advocated to suppress the problem of spark generation by receiving microwave heat through the selection of materials, in practice, it is often caused by uneven material dispersion, but still causes smoke or fire, and then burns. The condition of the composite material occurs. Therefore, how to achieve uniform dispersion in the production of microwave heating composite materials is a major issue.

本發明的主要目的,在於解決微波發熱複合材料,因分散不均勻而導致冒煙或起火的問題。The main object of the present invention is to solve the problem of smoke or fire caused by uneven dispersion of the microwave heat-generating composite material.

為達上述目的,本發明提供一種製造微波發熱複合材料的方法,其包含有以下步驟: S1:預先將一碳材料與一第一矽油均勻混合成一碳材料分散液,使該碳材料先分散於該第一矽油,其中,該碳材料為奈米碳管或石墨烯,且該碳材料於該碳材料分散液中的重量百分比介於0.01%至10%之間; S2:將該碳材料分散液與一未硬化之第一矽膠材料、一第二矽油、一染色劑混合成一矽膠混合物,該碳材料於該矽膠混合物中的重量百分比介於0.00001%至2%之間; S3:對該矽膠混合物進行分散;以及 S4:加熱該矽膠混合物至一介於室溫至200℃之間的溫度以硬化而形成一微波發熱複合材料,該微波發熱複合材料的體積電阻率介於103Ω•m至1012Ω•m之間。In order to achieve the above object, the present invention provides a method for manufacturing a microwave heat-generating composite material, which comprises the following steps: S1: uniformly mixing a carbon material with a first eucalyptus oil into a carbon material dispersion, and dispersing the carbon material first. The first eucalyptus oil, wherein the carbon material is a carbon nanotube or graphene, and the weight percentage of the carbon material in the carbon material dispersion is between 0.01% and 10%; S2: dispersing the carbon material The liquid is mixed with an unhardened first silicone material, a second oil, and a coloring agent to form a gum mixture, the weight percentage of the carbon material in the silicone mixture is between 0.00001% and 2%; S3: the silicone rubber Dissolving the mixture; and S4: heating the silicone mixture to a temperature between room temperature and 200 ° C to harden to form a microwave heat-generating composite having a volume resistivity of 103 Ω•m to 1012 Ω. Between m.

為達上述目的,本發明亦提供一種微波發熱複合材料,係以上述方法所製成。In order to achieve the above object, the present invention also provides a microwave heat-generating composite material which is produced by the above method.

綜上所述,本發明先形成該碳材料分散液,可以使該碳材料於該矽膠混合物中分散的更均勻,又該微波發熱複合材料的電阻較低,即表示該碳材料的分散性佳,故可使該微波發熱複合材料於短時間內達成均勻發熱,防止該微波發熱複合材料燒毀,並使該微波發熱複合材料之表面具有平滑的外觀與光滑的觸感,且矽膠的生物相容性好,於發熱時,更可達成仿生之效果,而可以應用於人工義肢、情趣用品及醫療用品等等。In summary, the present invention first forms the carbon material dispersion, which can make the carbon material disperse more uniformly in the ruthenium mixture, and the microwave heat-generating composite material has lower resistance, which means that the carbon material has good dispersibility. Therefore, the microwave heat-generating composite material can achieve uniform heat generation in a short time, preventing the microwave heat-generating composite material from being burnt, and the surface of the microwave heat-generating composite material has a smooth appearance and a smooth touch, and the biocompatible of the silicone rubber Good sex, when the fever, it can achieve the effect of bionics, but can be applied to artificial prosthetics, sex toys and medical supplies.

有關本發明的詳細說明及技術內容,現就配合圖式說明如下:The detailed description and technical content of the present invention will now be described as follows:

請參閱「圖1」所示,為本發明為一種微波發熱複合材料及其製造方法,其製作方法包含有以下步驟:Please refer to FIG. 1 , which is a microwave heating composite material and a manufacturing method thereof. The manufacturing method comprises the following steps:

S1:將一碳材料與一第一矽油均勻混合成一碳材料分散液,其中,該碳材料可以為奈米碳管(Carbon Nanotube,縮寫CNT)、石墨烯(Graphene)或其組合等,且該碳材料分散液中,該碳材料的重量百分比例介於0.01%至10 %之間,其餘為該第一矽油。本發明中,係在該碳材料與矽膠材料混合前,先與該第一矽油混合,使固態的該碳材料先充分分散於液態的該第一矽油,進而大幅提升分散性。於本實施例中,該第一矽油係一乙烯基矽油,於其他實施例中,該第一矽油亦可選用如甲基矽油、環氧基矽油及變性矽油等。S1: uniformly mixing a carbon material and a first eucalyptus oil into a carbon material dispersion, wherein the carbon material may be a carbon nanotube (CNT), graphene (Graphene) or a combination thereof, and the like In the carbon material dispersion, the weight percentage of the carbon material is between 0.01% and 10%, and the balance is the first eucalyptus oil. In the present invention, before the carbon material is mixed with the silicone material, it is first mixed with the first eucalyptus oil to sufficiently disperse the solid carbon material in the liquid first eucalyptus oil, thereby greatly improving the dispersibility. In this embodiment, the first oil is a vinyl eucalyptus oil. In other embodiments, the first eucalyptus oil may also be selected from the group consisting of methyl eucalyptus oil, epoxy eucalyptus oil, and denatured eucalyptus oil.

S2:將混合後的該碳材料分散液與一未硬化之第一矽膠材料、一第二矽油、一染色劑混合,而形成一矽膠混合物,於本實施例中,該第一矽膠材料包括分離的一A劑與一B劑,該A劑與該B劑於執行步驟S2時才和該碳材料分散液、該第二矽油及該染色劑共同混合,其中,A劑與B劑的重量百分比各為50%。該染色劑可以為色膏、色粉等,如百事隆® SC-COLOR系列色膏。該碳材料分散液於該矽膠混合物中的重量百分比為介於0.1%至20%之間(即該碳材料於該矽膠混合物中的重量百分比為介於0.00001%至2%之間),該第一矽膠材料的重量百分比為介於60%至95%之間,該第二矽油的重量百分比為介於3%至30%之間,該染色劑的重量百分比為介於0%至5%之間。於本實施例中,該第二矽油係一乙烯基矽油,於其他實施例中,該第二矽油亦可選用如甲基矽油、環氧基矽油及變性矽油等。S2: mixing the mixed carbon material dispersion with an unhardened first silicone material, a second oil, and a coloring agent to form a silicone mixture. In this embodiment, the first silicone material includes separation. The agent A and the agent B are mixed with the carbon material dispersion, the second oil and the coloring agent when performing step S2, wherein the weight percentage of the agent A and the agent B is Each is 50%. The coloring agent can be a color paste, a toner, etc., such as a PepsiCo® SC-COLOR series of color pastes. The weight percentage of the carbon material dispersion in the silicone mixture is between 0.1% and 20% (ie, the weight percentage of the carbon material in the silicone mixture is between 0.00001% and 2%), the first The weight percentage of a silicone material is between 60% and 95%, the weight percentage of the second oil is between 3% and 30%, and the weight percentage of the dye is between 0% and 5%. between. In this embodiment, the second eucalyptus oil is a vinyl eucalyptus oil. In other embodiments, the second eucalyptus oil may also be selected from the group consisting of methyl eucalyptus oil, epoxy eucalyptus oil and denatured eucalyptus oil.

S3:利用一混合機對該矽膠混合物進行分散,該混合機可以為滾筒或攪拌機。S3: Dispersing the silicone mixture using a mixer, which may be a drum or a mixer.

S4:最後,加熱該矽膠混合物至一介於室溫至200℃之間的溫度以硬化該矽膠混合物,而形成一微波發熱複合材料。由於本發明之方法乃先將該碳材料與該第一矽油混合形成液態的該碳材料分散液,再與其他載體或材料混合,如此得到的矽膠混合物,其中的該碳材料係具有優異的分散性,因此,該微波發熱複合材料的體積電阻率介於103Ω•m至1012Ω•m之間。S4: Finally, the silicone mixture is heated to a temperature between room temperature and 200 ° C to harden the silicone mixture to form a microwave heat-generating composite. Since the method of the present invention first mixes the carbon material with the first emu oil to form a liquid dispersion of the carbon material, and then mixes with other carriers or materials, the tantalum mixture thus obtained, wherein the carbon material has excellent dispersion. Therefore, the microwave heat-generating composite has a volume resistivity of between 103 Ω•m and 1012 Ω•m.

且於本實施例中,於步驟S4之後,更包含有以下步驟:In this embodiment, after step S4, the following steps are further included:

S5:塗覆一第二矽膠材料於該微波發熱複合材料之外表面。其中,該第二矽膠材料可以為不含有該碳材料,利用形成雙層結構來提高配色或溫度控制的自由度。S5: coating a second silicone material on the outer surface of the microwave heating composite. Wherein, the second silicone material may be free of the carbon material, and the two-layer structure is used to improve the degree of freedom of color matching or temperature control.

為進一步具體說明本發明方法,請參閱以下依據本發明所進行之實驗例,此僅為例舉說明之目的提供,而不意欲來限制本發明之範圍。表一和表二所示為各實驗例及對照例之化學組成。實驗例及對照例的差異乃碳材料的來源,其餘所選用的材料相同,在實驗例1至3中,係採用液態的該碳材料分散液,而於對照例1至5中,係將固態的碳材料直接和其他材料混合,並加熱成形,實驗例及對照例加熱溫度皆相同,會先於175℃的溫度下烘烤10分鐘,再於200℃的溫度下烘烤240分鐘。各實驗例及對照例中,該第一矽膠材料的A劑為由Momentive公司所提供型號為LSR-2010A的矽膠材料,該第一矽膠材料的B劑為由Momentive公司所提供型號為LSR-2010B的矽膠材料,該第二矽油選用上海華之潤化工有限公司提供的乙烯基矽油,該染色劑為黃色膏。In order to further clarify the method of the present invention, reference is made to the following examples of the invention in accordance with the present invention, which are provided for the purpose of illustration and are not intended to limit the scope of the invention. Tables 1 and 2 show the chemical compositions of the respective experimental examples and comparative examples. The difference between the experimental example and the comparative example is the source of the carbon material, and the other selected materials are the same. In the experimental examples 1 to 3, the liquid material dispersion liquid is used, and in the comparative examples 1 to 5, the solid state is solid. The carbon material was directly mixed with other materials and heat-formed. The experimental examples and the comparative examples were heated at the same temperature, and were baked at a temperature of 175 ° C for 10 minutes and then baked at a temperature of 200 ° C for 240 minutes. In each of the experimental examples and the comparative examples, the A agent of the first silicone material is a silicone material of the type LSR-2010A supplied by Momentive, and the agent B of the first silicone material is a model LSR-2010B supplied by Momentive. The enamel material is selected from the group consisting of vinyl eucalyptus oil supplied by Shanghai Huazhirun Chemical Co., Ltd., and the coloring agent is a yellow paste.

在實驗例1中,該碳材料分散液為奈米碳管粉末與該乙烯基矽油之混合,奈米碳管粉末在該碳材料分散液的重量百分比為2%,即奈米碳管粉末的重量為0.08g,實驗例1之碳濃度為0.28%;在實驗例2中,該碳材料分散液為奈米碳管粉末與該乙烯基矽油之混合,奈米碳管粉末在該碳材料分散液的重量百分比為2%,即奈米碳管粉末的重量為0.1g,實驗例2之碳濃度為0.09%;在實驗例3中,該碳材料分散液為奈米碳管粉末與該乙烯基矽油之混合,奈米碳管粉末在該碳材料分散液的重量百分比為2%,即奈米碳管粉末的重量為0.2g,實驗例3之碳濃度為0.18%。在對照例1中,碳材料的來源選用的是型號為Vulcan XC72-CB的導電碳黑粉末,碳濃度為1.6%;在對照例2中,碳材料的來源選用的是石墨粉末,碳濃度為1.6%;在對照例3至對照例5,碳材料的來源選用的是奈米碳管粉末,對照例3的碳濃度為0.32%,對照例4的碳濃度為7.5%,對照例5的碳濃度為1.6%。其中,實驗例2、實驗例3以及對照例6係用於驗證微波發熱複合材料的韌性,故並無添加染色劑。In Experimental Example 1, the carbon material dispersion is a mixture of a carbon nanotube powder and the vinyl eucalyptus oil, and the weight percentage of the carbon nanotube powder in the carbon material dispersion is 2%, that is, a carbon nanotube powder. The weight is 0.08 g, and the carbon concentration of the experimental example 1 is 0.28%. In the experimental example 2, the carbon material dispersion is a mixture of a carbon nanotube powder and the vinyl eucalyptus oil, and the carbon nanotube powder is dispersed in the carbon material. The weight percentage of the liquid is 2%, that is, the weight of the carbon nanotube powder is 0.1 g, and the carbon concentration of Experimental Example 2 is 0.09%; in Experimental Example 3, the carbon material dispersion is a carbon nanotube powder and the ethylene. The base oil was mixed, and the weight percentage of the carbon nanotube powder in the carbon material dispersion was 2%, that is, the weight of the carbon nanotube powder was 0.2 g, and the carbon concentration in Experimental Example 3 was 0.18%. In Comparative Example 1, the carbon material was selected from the model of Vulcan XC72-CB, and the carbon concentration was 1.6%. In Comparative Example 2, the source of the carbon material was graphite powder, and the carbon concentration was 1.6%; in Comparative Example 3 to Comparative Example 5, the carbon material was selected from the group consisting of carbon nanotube powder, the carbon concentration of Comparative Example 3 was 0.32%, and the carbon concentration of Comparative Example 4 was 7.5%, and the carbon of Comparative Example 5 was used. The concentration is 1.6%. Among them, Experimental Example 2, Experimental Example 3, and Comparative Example 6 were used to verify the toughness of the microwave heat-generating composite material, so that no dye was added.

利用上述實驗例及對照例得到的複合材料,將進行微波加熱測試,係以1000W的微波火力,並於每5秒量測各實驗例及對照例的溫度,結果如表三;此外,為進一步驗證依據本發明之複合材料的分散效果,還量測各實驗例及對照例之表面電阻與體電阻率,結果如表四。 表一、實驗例的組成 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> 碳材料分散液 </td><td> LSR-2010A </td><td> LSR-2010B </td><td> 第二乙烯基矽油 </td><td> 黃色膏 </td></tr><tr><td> 實驗例1 </td><td> 4g (碳濃度: 0.28%) </td><td> 10g </td><td> 10g </td><td> 3.6g </td><td> 1g </td></tr><tr><td> 實驗例2 </td><td> 5g (碳濃度: 0.09%) </td><td> 47.5g </td><td> 47.5g </td><td> 5g </td><td> 0 </td></tr><tr><td> 實驗例3 </td><td> 10g (碳濃度:0.18%) </td><td> 45g </td><td> 45g </td><td> 10g </td><td> 0 </td></tr></TBODY></TABLE>表二、各對照例的組成 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> 碳材料 </td><td> LSR-2010A </td><td> LSR-2010B </td><td> 第二乙烯基矽油 </td><td> 黃色膏 </td></tr><tr><td> 對照例1 </td><td> 0.4g (碳濃度: 1.6%) </td><td> 10g </td><td> 10g </td><td> 3.6g </td><td> 1g </td></tr><tr><td> 對照例2 </td><td> 0.4g (碳濃度: 1.6%) </td><td> 10g </td><td> 10g </td><td> 3.6g </td><td> 1g </td></tr><tr><td> 對照例3 </td><td> 0.08g (碳濃度: 0.32%) </td><td> 10g </td><td> 10g </td><td> 3.6g </td><td> 1g </td></tr><tr><td> 對照例4 </td><td> 2g (碳濃度:7.5%) </td><td> 10g </td><td> 10g </td><td> 3.6g </td><td> 1g </td></tr><tr><td> 對照例5 </td><td> 0.4g (碳濃度: 1.6%) </td><td> 10g </td><td> 10g </td><td> 3.6g </td><td> 1g </td></tr><tr><td> 對照例6 </td><td> 0 </td><td> 47.5g </td><td> 47.5g </td><td> 5g </td><td> 0 </td></tr></TBODY></TABLE>表三、微波火力1000W,微波時間與溫度對照表 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td></td><td> 溫度(℃) </td></tr><tr><td> 微波時間(Sec) </td><td> 實驗例1 </td><td> 對照例1 </td><td> 對照例2 </td><td> 對照例3 </td><td> 對照例4 </td><td> 對照例5 </td></tr><tr><td> 0 </td><td> 30.2 </td><td> 29.4 </td><td> 28.4 </td><td> 27.5 </td><td> 28.9 </td><td> 28.7 </td></tr><tr><td> 5 </td><td> 34.1 </td><td> 30.9 </td><td> 29.3 </td><td> 29.5 </td><td> 34 </td><td> 32.4 </td></tr><tr><td> 10 </td><td> 46 </td><td> 32.5 </td><td> 30.6 </td><td> 32.9 </td><td> 54 </td><td> 已起火 </td></tr><tr><td> 15 </td><td> 54 </td><td> 33.7 </td><td> 31.2 </td><td> 35 </td><td> 86 </td><td> N/A </td></tr><tr><td> 20 </td><td> 64.2 </td><td> 34.5 </td><td> 31.6 </td><td> 36 </td><td> 已冒煙 </td><td> N/A </td></tr><tr><td> 25 </td><td> 74 </td><td> 35 </td><td> 31.9 </td><td> 37 </td><td> N/A </td><td> N/A </td></tr><tr><td> 30 </td><td> 94 </td><td> 37.3 </td><td> 32.1 </td><td> 38.5 </td><td> N/A </td><td> N/A </td></tr></TBODY></TABLE>表四、各組表面電阻與體電阻率 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td></td><td> 實驗例1 </td><td> 對照例1 </td><td> 對照例2 </td><td> 對照例3 </td><td> 對照例4 </td><td> 對照例5 </td></tr><tr><td> 表面電阻(Ω/sq) </td><td> 2.77e8 </td><td> 1.39e12 </td><td> 1.79e12 </td><td> 4.69e11 </td><td> 9.64e4 </td><td> 小於1K </td></tr><tr><td> 體電阻率(Ω·m) </td><td> <E+11 </td><td> > E+12 </td><td> > E+12 </td><td> > E+12 </td><td> < E+6 </td><td> < E+2 </td></tr></TBODY></TABLE>The composite materials obtained by the above experimental examples and the comparative examples were subjected to a microwave heating test using a microwave power of 1000 W, and the temperatures of the respective experimental examples and the comparative examples were measured every 5 seconds. The results are shown in Table 3; The surface resistance and volume resistivity of each of the experimental examples and the comparative examples were also measured by verifying the dispersion effect of the composite material according to the present invention. The results are shown in Table 4. Table 1, the composition of the experimental examples  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> Carbon Material Dispersion</td><td> LSR-2010A </td><td> LSR-2010B </td><td> Second Vinyl Emu Oil</td><td> Yellow Paste</td></tr><tr><td> Experimental Example 1 </ Td><td> 4g (carbon concentration: 0.28%) </td><td> 10g </td><td> 10g </td><td> 3.6g </td><td> 1g </td> </tr><tr><td> Experimental Example 2 </td><td> 5g (carbon concentration: 0.09%) </td><td> 47.5g </td><td> 47.5g </td> <td> 5g </td><td> 0 </td></tr><tr><td> Experimental Example 3 </td><td> 10g (carbon concentration: 0.18%) </td><td > 45g </td><td> 45g </td><td> 10g </td><td> 0 </td></tr></TBODY></TABLE> Table 2, composition of each control  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> Carbon Material</td><td> LSR-2010A </ Td><td> LSR-2010B </td><td> second vinyl eucalyptus oil</td><td> yellow paste</td></tr><tr><td> Comparative Example 1 </td> <td> 0.4g (carbon concentration: 1.6%) </td><td> 10g </td><td> 10g </td><td> 3.6g </td><td> 1g </td>< /tr><tr><td> Comparative Example 2 </td><td> 0.4g (carbon concentration: 1.6%) </td><td> 10g </td><td> 10g </td><td > 3.6g </td><td> 1g </td></tr><tr><td> Comparative Example 3 </td><td> 0.08g (carbon concentration: 0.32%) </td><td > 10g </td><td> 10g </td><td> 3.6g </td><td> 1g </td></tr><tr><td> Comparative Example 4 </td><td > 2g (carbon concentration: 7.5%) </td><td> 10g </td><td> 10g </td><td> 3.6g </td><td> 1g </td></tr> <tr><td> Comparative Example 5 </td><td> 0.4g (carbon concentration: 1.6%) </td><td> 10g </td><td> 10g </td><td> 3.6g </td><td> 1g </td></tr><tr><td> Comparative Example 6 </td><td> 0 </td><td> 47.5g </td><td> 47.5 g </td><td> 5g </td><td> 0 </td></tr></TBODY></TABLE> Table 3, microwave firepower 1000W, microwave time and temperature comparison table  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td></td><td> Temperature (°C) </td></tr><tr ><td> Microwave time (Sec) </td><td> Experimental example 1 </td><td> Comparative example 1 </td><td> Comparative example 2 </td><td> Comparative example 3 < /td><td> Comparative Example 4 </td><td> Comparative Example 5 </td></tr><tr><td> 0 </td><td> 30.2 </td><td> 29.4 </td><td> 28.4 </td><td> 27.5 </td><td> 28.9 </td><td> 28.7 </td></tr><tr><td> 5 </td ><td> 34.1 </td><td> 30.9 </td><td> 29.3 </td><td> 29.5 </td><td> 34 </td><td> 32.4 </td>< /tr><tr><td> 10 </td><td> 46 </td><td> 32.5 </td><td> 30.6 </td><td> 32.9 </td><td> 54 </td><td> has caught fire</td></tr><tr><td> 15 </td><td> 54 </td><td> 33.7 </td><td> 31.2 </ Td><td> 35 </td><td> 86 </td><td> N/A </td></tr><tr><td> 20 </td><td> 64.2 </td ><td> 34.5 </td><td> 31.6 </td><td> 36 </td><td> smoked</td><td> N/A </td></tr>< Tr><td> 25 </td><td> 74 </td><td> 35 </td><td> 31.9 </td><td> 37 </td><td> N/A </ Td><td> N/A </td></tr><tr><td> 30 </td><td> 94 </td><td> 37.3 </td><td> 32.1 </td ><td> 38.5 </td><td> N/ A </td><td> N/A </td></tr></TBODY></TABLE> Table 4, surface resistance and volume resistivity of each group  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td></td><td> Experimental Example 1 </td><td> Comparative Example 1 < /td><td> Comparative Example 2 </td><td> Comparative Example 3 </td><td> Comparative Example 4 </td><td> Comparative Example 5 </td></tr><tr> <td> Surface resistance (Ω/sq) </td><td> 2.77e8 </td><td> 1.39e12 </td><td> 1.79e12 </td><td> 4.69e11 </td> <td> 9.64e4 </td><td> less than 1K </td></tr><tr><td> volume resistivity (Ω·m) </td><td> <E+11 </td ><td> > E+12 </td><td> > E+12 </td><td> > E+12 </td><td> < E+6 </td><td> < E +2 </td></tr></TBODY></TABLE>

從表三中可看,根據本發明之複合材料的發熱效率遠優於對照例,係因為本發明預先將該碳材料與該第一乙烯基矽油均勻混合成該碳材料分散液,使該碳材料於該矽膠混合物中可以均勻分散,而可以使該微波發熱複合材料於短時間內達成均勻發熱,而對照例4與對照例5則是因為奈米碳管粉末無法均勻的分散,而導致冒煙或起火。且若分散不均,會造成表面粗糙,影響終端產品的外觀與觸感。由於該碳材料的分散性難有標準可供量測,故在此採用電阻表達,若電阻較低則表示該碳材料的分散性較佳,但需特別說明的是,於同濃度下分散性越好,則電阻越低,但若兩者之濃度不同,電阻越低,並非代表分散性越好。It can be seen from Table 3 that the heat-generating efficiency of the composite material according to the present invention is much better than that of the comparative example because the carbon material is uniformly mixed with the first vinyl-cement oil into the carbon material dispersion in advance, so that the carbon The material can be uniformly dispersed in the silicone mixture, and the microwave heating composite can achieve uniform heating in a short time, while the comparative example 4 and the comparative example 5 are because the carbon nanotube powder cannot be uniformly dispersed, resulting in Smoke or fire. If the dispersion is uneven, the surface will be rough and affect the appearance and touch of the end product. Since the dispersibility of the carbon material is difficult to measure by standard, the resistance is expressed here. If the resistance is low, the dispersibility of the carbon material is better, but it is particularly noted that the dispersibility is the same concentration. The better, the lower the resistance, but if the concentrations of the two are different, the lower the resistance, the better the dispersion.

表四呈現實驗例和各對照例的電阻量測結果,其中,實驗例1因碳材料的分散性佳,因此電阻值係低於對照例1、2和3;至於對照例4與5,由前述微波加熱實驗可知,其碳材料的分散性不佳,故電阻值較低的貢獻係來自於較高的碳濃度。Table 4 shows the resistance measurement results of the experimental examples and the respective comparative examples, wherein the experimental example 1 has a good dispersibility of the carbon material, so the resistance value is lower than that of the comparative examples 1, 2 and 3; and as for the comparative examples 4 and 5, The microwave heating experiment described above shows that the dispersibility of the carbon material is not good, so the contribution of the lower resistance value is derived from the higher carbon concentration.

此外,矽膠的生物相容性好,當其可發熱時,更可有效達成仿生之效果,故所生產之終端產品可用於情趣用品、機器人仿生肌肉與皮膚、人工義肢等等,若用於情趣用品,因其可用微波爐加熱,所以等待時間短,使用者體驗佳,並可配合VR、AR、MR技術,或加裝其他裝置,例如震動元件等,以達到最佳的仿生與虛擬實境效果。In addition, silicone has good biocompatibility, and when it can be heated, it can effectively achieve the effect of bionics. Therefore, the end products produced can be used for sex toys, robotic bionic muscles and skin, artificial prostheses, etc. Supplies, because they can be heated in a microwave oven, so the waiting time is short, the user experience is good, and can be combined with VR, AR, MR technology, or other devices, such as vibration components, to achieve the best bionic and virtual reality effects .

且於應用時,該微波發熱複合材料的外部可以塗覆其他物質,以進行染色等動作。以下係製備其它實驗例來說明,實驗例2和實驗例1相同,外部未上色,而實驗例3為將實驗例1的外部進行上色,上色塗層的重量約為10.137g。針對實驗例2和實驗例3進行微波加熱測試,以1000W的微波火力,每5秒量測溫度,結果如表五;此外,還進一步針對實驗例2和實驗例3,測試其持溫能力,測試方法為停止施以微波,並將複合材料靜置於室溫環境,每5秒量測溫度,結果如表六。 表五、微波火力1000W,微波時間與溫度對照表 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 微波時間(Sec) </td><td> 實驗例2 </td><td> 實驗例3 </td></tr><tr><td> 0 </td><td> 27.6 </td><td> 27 </td></tr><tr><td> 5 </td><td> 29.7 </td><td> 28.8 </td></tr><tr><td> 10 </td><td> 43.8 </td><td> 43.5 </td></tr><tr><td> 15 </td><td> 50 </td><td> 58 </td></tr><tr><td> 20 </td><td> 68 </td><td> 70 </td></tr><tr><td> 25 </td><td> 83 </td><td> 80 </td></tr></TBODY></TABLE>表六、微波後靜置於室溫之時間與溫度對照表 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 靜置時間(Min) </td><td> 實驗例2 </td><td> 實驗例3 </td></tr><tr><td> 5 </td><td> 42.5 </td><td> 65 </td></tr><tr><td> 10 </td><td> 41 </td><td> 57 </td></tr><tr><td> 15 </td><td> 40 </td><td> 53 </td></tr><tr><td> 20 </td><td> 38.2 </td><td> 48 </td></tr><tr><td> 25 </td><td> 37.7 </td><td> 44 </td></tr><tr><td> 30 </td><td> 36.9 </td><td> 42 </td></tr><tr><td> 40 </td><td> 34.7 </td><td> 38 </td></tr><tr><td> 50 </td><td> 33 </td><td> 35 </td></tr><tr><td> 60 </td><td> 32.1 </td><td> 33 </td></tr></TBODY></TABLE>Moreover, when applied, the exterior of the microwave heat-generating composite material may be coated with other substances for performing dyeing and the like. In the following, other experimental examples were prepared to illustrate that Experimental Example 2 was the same as Experimental Example 1, and the exterior was not colored, and Experimental Example 3 was that the exterior of Experimental Example 1 was colored, and the weight of the colored coating layer was about 10.137 g. The microwave heating test was carried out for Experimental Example 2 and Experimental Example 3, and the temperature was measured every 5 seconds with a microwave power of 1000 W. The results are shown in Table 5; in addition, the temperature holding ability was further tested for Experimental Example 2 and Experimental Example 3, The test method is to stop applying microwave, and the composite material is placed in a room temperature environment, and the temperature is measured every 5 seconds. The results are shown in Table 6. Table 5, microwave firepower 1000W, microwave time and temperature comparison table  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Microwave Time (Sec) </td><td> Experimental Example 2 </td><td > Experimental Example 3 </td></tr><tr><td> 0 </td><td> 27.6 </td><td> 27 </td></tr><tr><td> 5 </td><td> 29.7 </td><td> 28.8 </td></tr><tr><td> 10 </td><td> 43.8 </td><td> 43.5 </td ></tr><tr><td> 15 </td><td> 50 </td><td> 58 </td></tr><tr><td> 20 </td><td> 68 </td><td> 70 </td></tr><tr><td> 25 </td><td> 83 </td><td> 80 </td></tr></ TBODY></TABLE> Table 6. Time and temperature comparison table after standing at room temperature after microwave  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Rest time (Min) </td><td> Experiment 2 </td>< Td> Experimental Example 3 </td></tr><tr><td> 5 </td><td> 42.5 </td><td> 65 </td></tr><tr><td> 10 </td><td> 41 </td><td> 57 </td></tr><tr><td> 15 </td><td> 40 </td><td> 53 </ Td></tr><tr><td> 20 </td><td> 38.2 </td><td> 48 </td></tr><tr><td> 25 </td><td > 37.7 </td><td> 44 </td></tr><tr><td> 30 </td><td> 36.9 </td><td> 42 </td></tr>< Tr><td> 40 </td><td> 34.7 </td><td> 38 </td></tr><tr><td> 50 </td><td> 33 </td>< Td> 35 </td></tr><tr><td> 60 </td><td> 32.1 </td><td> 33 </td></tr></TBODY></TABLE>

由上表可知,縱使有塗層的狀況下,實驗例3的升溫速度和發熱效率仍可維持一定能例,且兩者均有不錯的持溫效果。因此,可以配合各種需求,調整雙層結構之配色與溫控,以滿足所需。且除上述所說,亦可以應用在暖暖包、防凍手套、防凍頭套、防凍耳罩、防凍面罩、防凍安全帽內襯、面膜加熱材料及醫療熱敷材料等。As can be seen from the above table, even in the case of a coating, the temperature rising rate and the heat generation efficiency of Experimental Example 3 can be maintained as a certain example, and both have a good temperature holding effect. Therefore, it is possible to adjust the color matching and temperature control of the double-layer structure to meet various needs. In addition to the above, it can also be applied to warm packs, antifreeze gloves, antifreeze hoods, antifreeze earmuffs, antifreeze masks, antifreeze helmet linings, mask heating materials and medical hot compress materials.

此外,本案發明人更進一步發現,透過本發明之方法所得到的微波發熱複合材料,更具有優異韌性的特點,結果如「圖2」所示,「圖2」中線段B為針對實驗例2、線段C為針對實驗例3以及線段A為針對對照例6所得到之應力-應變曲線,曲線下之面積代表材料吸收外界給予拉伸變形能量的吸收能力,即韌性。計算其曲線下之面積,實驗例2為20350.3,實驗例3為21869.63,對照例6為14485.26,因此,實驗例2相較於對照例6,韌性係提升了40.49%,實驗例3相較於對照例6,韌性係提升了50.98%。Further, the inventors of the present invention have further found that the microwave heat-generating composite material obtained by the method of the present invention has superior toughness characteristics, and the result is as shown in "Fig. 2", and the line segment B in "Fig. 2" is for Experimental Example 2. Line C is the stress-strain curve obtained for Comparative Example 6 for the experimental example 3 and the line A. The area under the curve represents the absorption capacity of the material to absorb the tensile deformation energy, that is, the toughness. The area under the curve was calculated. Experimental Example 2 was 20350.3, Experimental Example 3 was 21869.63, and Comparative Example 6 was 14485.26. Therefore, in Experimental Example 2, the toughness system was improved by 40.49% compared with Comparative Example 6, and Experimental Example 3 was compared with Experimental Example 3. In Comparative Example 6, the toughness system was increased by 50.98%.

綜上所述,本發明具有以下特點:In summary, the present invention has the following features:

一、本發明預先將該碳材料與該第一乙烯基矽油均勻混合成該碳材料分散液,使該碳材料於該矽膠混合物可以均勻分散,又該微波發熱複合材料的電阻較低,即表示該碳材料的分散性佳,而可以使該微波發熱複合材料於短時間內達成均勻發熱,並使該微波發熱複合材料之表面具有平滑的外觀與光滑的觸感。1. The present invention uniformly mixes the carbon material with the first vinyl eucalyptus oil to form the carbon material dispersion, so that the carbon material can be uniformly dispersed in the crepe mixture, and the resistance of the microwave heating composite material is low, that is, The carbon material has good dispersibility, and the microwave heat-generating composite material can achieve uniform heat generation in a short time, and the surface of the microwave heat-generating composite material has a smooth appearance and a smooth touch.

二、矽膠的生物相容性好,當其可發熱時,更可有效達成仿生之效果,故所生產之產品可用於情趣用品、機器人仿生肌肉與皮膚、人工義肢、暖暖包、防凍手套、防凍頭套、防凍耳罩、防凍面罩、防凍安全帽內襯、面膜加熱材料等等。Second, silicone rubber has good biocompatibility. When it can be heated, it can effectively achieve the effect of bionics. Therefore, the products produced can be used for sex toys, robot bionic muscles and skin, artificial prosthetics, warm packs, antifreeze gloves, Antifreeze hood, antifreeze earmuffs, antifreeze mask, antifreeze helmet lining, mask heating material, etc.

三、藉由於該微波發熱複合材料之外表面再形成一層材料而形成雙層結構,可以提高配色或溫度控制的自由度。3. By forming a two-layer structure by forming a layer of material on the outer surface of the microwave heat-generating composite material, the degree of freedom in color matching or temperature control can be improved.

四、利用本發明之方法所得的該微波發熱複合材料,係具備優異的韌性。4. The microwave heat-generating composite material obtained by the method of the present invention has excellent toughness.

以上已將本發明做一詳細說明,惟以上所述者,僅爲本發明的一較佳實施例而已,當不能限定本發明實施的範圍。即凡依本發明申請範圍所作的均等變化與修飾等,皆應仍屬本發明的專利涵蓋範圍內。The present invention has been described in detail above, but the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the present application should remain within the scope of the patent of the present invention.

S1~S5‧‧‧步驟S1~S5‧‧‧Steps

A、B、C‧‧‧線段Lines A, B, C‧‧

圖1,為本發明一實施例的製作流程示意圖。 圖2,為本發明的應力-應變曲線圖。FIG. 1 is a schematic diagram of a manufacturing process according to an embodiment of the present invention. Figure 2 is a graph of stress-strain curves of the present invention.

Claims (8)

一種製造微波發熱複合材料的方法,其包含有以下步驟:S1:預先將一碳材料與一第一矽油混合成一碳材料分散液,使該碳材料先分散於該第一矽油中,其中,該第一矽油和該第二矽油係獨立地擇自於乙烯基矽油、甲基矽油、環氧基矽油及變性矽油所組成的群組,該碳材料為奈米碳管或石墨烯,且該碳材料於該碳材料分散液中的重量百分比介於0.01%至10%之間;S2:將該碳材料分散液與一未硬化之第一矽膠材料、一第二矽油、一染色劑混合成一矽膠混合物,該碳材料於該矽膠混合物中的重量百分比介於0.00001%至2%之間;S3:對該矽膠混合物進行分散;以及S4:加熱該矽膠混合物至一介於室溫至200℃之間的溫度以硬化形成一微波發熱複合材料,該微波發熱複合材料的體積電阻率介於103Ω.m至1012Ω.m之間。 A method for manufacturing a microwave heat-generating composite material, comprising the steps of: S1: mixing a carbon material with a first eucalyptus oil into a carbon material dispersion liquid, wherein the carbon material is first dispersed in the first eucalyptus oil, wherein The first eucalyptus oil and the second eucalyptus oil are independently selected from the group consisting of vinyl eucalyptus oil, methyl eucalyptus oil, epoxy eucalyptus oil and denatured eucalyptus oil, and the carbon material is a carbon nanotube or graphene, and the carbon The weight percentage of the material in the carbon material dispersion is between 0.01% and 10%; S2: mixing the carbon material dispersion with an unhardened first silicone material, a second oil, and a coloring agent to form a silicone a mixture, the weight percentage of the carbon material in the silicone mixture is between 0.00001% and 2%; S3: dispersing the silicone mixture; and S4: heating the silicone mixture to a temperature between room temperature and 200 °C The temperature is hardened to form a microwave heat-generating composite material, and the volume resistivity of the microwave heat-generating composite material is between 103 Ω. m to 1012Ω. Between m. 如申請專利範圍第1項所述之製造微波發熱複合材料的方法,其中於步驟S2,在該矽膠混合物中,該碳材料分散液的重量百分比為介於0.1%至20%之間,該第一矽膠材料的重量百分比為介於60%至95%之間,該第二矽油的重量百分比為介於3%至30%之間,該染色劑的重量百分比為介於0%至5%之間。 The method for producing a microwave heat-generating composite material according to claim 1, wherein in the step S2, the weight percentage of the carbon material dispersion is between 0.1% and 20%, the first The weight percentage of a silicone material is between 60% and 95%, the weight percentage of the second oil is between 3% and 30%, and the weight percentage of the dye is between 0% and 5%. between. 如申請專利範圍第1項所述之製造微波發熱複合材料的方法,其中該染色劑選自於由色膏、色粉及其組合所組成之群組。 The method of producing a microwave heat-generating composite material according to claim 1, wherein the coloring agent is selected from the group consisting of color pastes, toners, and combinations thereof. 如申請專利範圍第1項所述之製造微波發熱複合材料的方法,其中於步驟S3之中,係利用一混合機分散該矽膠混合物。 The method for producing a microwave heat-generating composite material according to claim 1, wherein in step S3, the silicone rubber mixture is dispersed by a mixer. 如申請專利範圍第4項所述之製造微波發熱複合材料的方法,其中該混合機為滾筒。 A method of producing a microwave heat-generating composite material according to claim 4, wherein the mixer is a drum. 如申請專利範圍第4項所述之製造微波發熱複合材料的方法,其中該混合機為攪拌機。 A method of producing a microwave heat-generating composite material according to claim 4, wherein the mixer is a mixer. 如申請專利範圍第1項所述之製造微波發熱複合材料的方法,其中於步驟S4之後,更包含有以下步驟:S5:塗覆一第二矽膠材料於該微波發熱複合材料之外表面。 The method for manufacturing a microwave heat-generating composite material according to claim 1, wherein after step S4, the method further comprises the step of: coating a second silicone material on the outer surface of the microwave heat-generating composite material. 一種微波發熱複合材料,係以申請專利範圍第1至7項任一項的方法所製成。A microwave heat-generating composite material produced by the method of any one of claims 1 to 7.
TW106137712A 2017-11-01 2017-11-01 Microwave heating composite material and its manufacturing method TWI650381B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106137712A TWI650381B (en) 2017-11-01 2017-11-01 Microwave heating composite material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106137712A TWI650381B (en) 2017-11-01 2017-11-01 Microwave heating composite material and its manufacturing method

Publications (2)

Publication Number Publication Date
TWI650381B true TWI650381B (en) 2019-02-11
TW201918527A TW201918527A (en) 2019-05-16

Family

ID=66213613

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137712A TWI650381B (en) 2017-11-01 2017-11-01 Microwave heating composite material and its manufacturing method

Country Status (1)

Country Link
TW (1) TWI650381B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114982831A (en) * 2022-03-25 2022-09-02 江南大学 Flavor-enhanced prefabricated chili oil and microwave processing method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307440A (en) * 2000-02-02 2001-08-08 姜锡高 Heating graphite pulp and its preparation and application
CN101864271A (en) * 2010-04-02 2010-10-20 邱凤阳 Heat generating material capable of absorbing microwave and ceramic bonding heat generating material prepared by using same
CN102276189A (en) * 2011-05-23 2011-12-14 俞金龙 Heating board special for microwave oven and manufacturing process thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307440A (en) * 2000-02-02 2001-08-08 姜锡高 Heating graphite pulp and its preparation and application
CN101864271A (en) * 2010-04-02 2010-10-20 邱凤阳 Heat generating material capable of absorbing microwave and ceramic bonding heat generating material prepared by using same
CN102276189A (en) * 2011-05-23 2011-12-14 俞金龙 Heating board special for microwave oven and manufacturing process thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114982831A (en) * 2022-03-25 2022-09-02 江南大学 Flavor-enhanced prefabricated chili oil and microwave processing method and application thereof
CN114982831B (en) * 2022-03-25 2023-08-25 江南大学 Flavor-enhanced prefabricated chili oil and microwave processing method and application thereof

Also Published As

Publication number Publication date
TW201918527A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
CN103725000B (en) A kind of heat-resistant polymer base electro-magnetic screen function-graded material
CN105764169A (en) Graphene electric cloth preparation method and application
TWI650381B (en) Microwave heating composite material and its manufacturing method
CN104945728A (en) Low-smoke zero-halogen flame-retardant sheathing material for ultra-high-voltage cable and preparation method of sheathing material
CN106189085A (en) A kind of Graphene thermo electric material and preparation method thereof
JP2014530941A5 (en)
CN108753081A (en) Floor anti-flaming dope
PT894541E (en) OBJECT WITH ANTI-ADHESIVE COATING
CN106497313A (en) A kind of high temperature resistant microwave absorbing coating and its application
CN110408149A (en) A kind of high cold resistance polyvinyl chloride cable material and preparation method thereof
CN109749457B (en) Microwave heating composite material and manufacturing method thereof
CN106147612B (en) A kind of ceramic absorbing material, preparation method and applications
KR100954567B1 (en) Paint for heating panel of electronic hair iron, preparing method thereof, coating method using this, and heating panel of electronic hair iron using the same
CN108299830A (en) Silicon rubber base Flexible graphene heating film and preparation method thereof, heating device and application
CN109456562A (en) A kind of refractory glass fibre composite-material formula and preparation method thereof
JP2011184532A (en) Clay-like shaping material and crosslinking method of the same
CN107815288A (en) Adiabatic gum, heat shield, the preparation method of the preparation method of adiabatic gum and heat shield
US2945773A (en) Lamination or coating of fluorine-substituted polyethylenes with or on other substances
CN110105766A (en) A kind of preparation process of silicon rubber glass fibre ceramic conduit
CN106118187A (en) A kind of electric power facility installation insulation acid and alkali-resistance flame retardant coating
EP1894902A3 (en) Method of producing heat-resistant inorganic textile and heat-resistant inorganic textile produced using the method
CN107141804A (en) A kind of high-temperature-resisting silicon rubber and preparation method thereof
CN106243788B (en) Antiradar coatings and preparation method thereof, suction wave attachment and microwave bake and bank up with earth utensil
CN104494246B (en) A kind of preparation method of high-flexibility carbon nanotube paper/glass fiber flame retardant composite
CN107954639A (en) Magnesia insulation felt material of nano aluminum and preparation method thereof