TWI649467B - Kit for selecting neurological drug and uses thereof - Google Patents

Kit for selecting neurological drug and uses thereof Download PDF

Info

Publication number
TWI649467B
TWI649467B TW106112165A TW106112165A TWI649467B TW I649467 B TWI649467 B TW I649467B TW 106112165 A TW106112165 A TW 106112165A TW 106112165 A TW106112165 A TW 106112165A TW I649467 B TWI649467 B TW I649467B
Authority
TW
Taiwan
Prior art keywords
ienp
seq
sequence number
cells
cell
Prior art date
Application number
TW106112165A
Other languages
Chinese (zh)
Other versions
TW201837251A (en
Inventor
郭紘志
莊靜玉
葉蟬嫻
Original Assignee
中央研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央研究院 filed Critical 中央研究院
Priority to TW106112165A priority Critical patent/TWI649467B/en
Publication of TW201837251A publication Critical patent/TW201837251A/en
Application granted granted Critical
Publication of TWI649467B publication Critical patent/TWI649467B/en

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本揭示內容是關於包含數種轉錄因子之套組,可用以將一纖維母細胞誘發轉化一誘發性胚胎神經先驅細胞。該誘發性胚胎神經先驅細胞接著可分化為一星狀細胞、一寡樹突細胞或一神經元。本揭示內容亦提供該套組之用途,其可作為一種用以篩選治療神經性疾病之候選藥物的平台。The present disclosure relates to a kit comprising several transcription factors that can be used to induce transformation of a fibroblast into an evoked embryonic neural precursor cell. The induced embryonic neural precursor cells can then differentiate into a stellate cell, an oligodendrocyte or a neuron. The present disclosure also provides for the use of the kit as a platform for screening drug candidates for the treatment of neurological diseases.

Description

用以篩選神經藥物之套組及其用途Kit for screening neurological drugs and uses thereof

本揭示內容是關於治療神經性疾病。更具體來說,本揭示內容是關於包含特定分化因子之套組,其可作為篩選候選藥物之平台,藉以治療神經性疾病。The present disclosure relates to the treatment of neurological diseases. More specifically, the present disclosure relates to a kit comprising a specific differentiation factor that can serve as a platform for screening drug candidates for treating neurological diseases.

目前醫藥領域對於亨汀頓氏舞蹈症(Huntington’s Disease, HD)及阿茲海默症(Alzheimer’s disease, AD)等漸進性、退化性且最終具有致命性之神經性疾病尚缺乏有效的治療方式;因此,該些疾病之病理機制及有效的臨床治療方法仍有待後續研究進一步釐清。藉由多能性重整技術(pluripotency reprogramming technology),研究人員可將病患體細胞重整為疾病特定型誘發性多能幹細胞(induced pluripotent stem cell, iPSC)後,使其於活體外分化為各種與疾病相關之細胞類型,藉以建立疾病模式及研發治療藥物。然而,iPSC的癌化及自發性分化仍有可能帶來後續相關問題。除了iPSC,特定轉錄因子(transcription factor, TF)可直接將纖維母細胞(fibroblast, FB)轉化(convert)為誘發性神經元(induced neuron, iN),iN為活體外疾病模式及藥物測試提供另一種神經細胞來源。iN技術的優點在於可提供快速且簡單製備特定神經元亞型的方法,且可避免無法控制細胞分化及腫瘤發生(與人類iPSC相關)等問題。然而,誘發各神經元亞型產生需要不同的轉錄因子組合,且該些iN的產量往往遠低於臨床應用所需之細胞量。因此,在針對不同病患製備較大量之特定神經細胞時,可將體細胞直接轉化為可增生且具有多能神經分化潛力之神經幹細胞/先驅細胞(neural stem cell/progenitor, NSC/NP)的技術即顯得十分重要。At present, there is still no effective treatment for the progressive, degenerative and ultimately fatal neurological diseases such as Huntington's Disease (HD) and Alzheimer's disease (AD) in the medical field; Therefore, the pathological mechanism of these diseases and effective clinical treatment methods are still to be further clarified in subsequent studies. With pluripotency reprogramming technology, researchers can reorganize the patient's somatic cells into disease-specific pluripotent stem cells (iPSCs) and differentiate them in vitro. A variety of cell types associated with disease to establish disease patterns and develop therapeutic drugs. However, the canceration and spontaneous differentiation of iPSC may still bring follow-up related problems. In addition to iPSC, a specific transcription factor (TF) directly converts fibroblasts (FB) into induced neuron (iN), which provides additional in vitro disease patterns and drug testing. A source of nerve cells. The advantage of iN technology is that it provides a fast and simple method of preparing specific neuronal subtypes and avoids problems such as inability to control cell differentiation and tumorigenesis (associated with human iPSC). However, inducing the production of each neuron subtype requires a different combination of transcription factors, and the yield of these iNs is often much lower than the amount of cells required for clinical applications. Therefore, when a relatively large amount of specific nerve cells are prepared for different patients, the somatic cells can be directly transformed into neural stem cells/progenitors (NSC/NP) which are proliferative and have pluripotent neural differentiation potential. Technology is very important.

在先前技術中,已知可藉由過量表現不同的轉錄因子組合來使小鼠體細胞直接轉化為誘發性神經先驅細胞(induced NP, iNP)。依據先前報導,可調整多能性重整步驟,由纖維母細胞來製備具可增生性的iNP,產生的iNP可分化為神經元及神經膠細胞(glial cell)。之後,多項研究指出在有或無iPSC因子的環境中,以神經富含因子誘發產生的iNP可分化為中樞神經系統中三種主要的神經細胞類型。同時,報導亦指出轉錄因子可將人類體細胞轉化為iNP。在該些研究中,主要是利用包含至少一種iPS因子的轉錄因子組合來製備人類iNP,且該些iNP的分化傾向多侷限於中樞神經系統神經元。In the prior art, it is known that mouse somatic cells can be directly transformed into induced neural precursor cells (induced NP, iNP) by expressing a combination of different transcription factors in excess. According to previous reports, the pluripotent reforming step can be adjusted to prepare proliferative iNPs from fibroblasts, and the resulting iNPs can differentiate into neurons and glial cells. Later, several studies indicated that iNP induced by neurotrophic factors can differentiate into three major neuronal cell types in the central nervous system in the presence or absence of iPSC factors. At the same time, the report also pointed out that transcription factors can convert human somatic cells into iNP. In these studies, human iNPs were prepared primarily using a combination of transcription factors comprising at least one iPS factor, and the differentiation propensity of these iNPs was mostly restricted to central nervous system neurons.

人類胚胎幹細胞(human embryonic stem cell, hESC)可作為活體外的分化模式,藉以產生包含胚胎神經先驅細胞(embryonic NP, ENP)等處於不同發育狀態的神經表型,以及探討未知之影響神經發育的重要神經遺傳因子。基於人類ESC-ENP (human ESC-ENP, hESC-ENP)具有廣泛的分化潛力,可產生中樞神經系統及周邊神經系統之不同神經細胞類型,可利用會高度表現於hESC-ENP 細胞群之轉錄因子直接將纖維母細胞轉化為與hESC-ENP 相似的iNP。Human embryonic stem cells (hESC) can be used as an in vitro differentiation model to generate neural phenotypes containing embryonic neural precursor cells (EMP) in different developmental states, and to explore unknown effects on neurodevelopment. Important neurogenetic factors. Based on human ESC-ENP (human ESC-ENP, hESC-ENP) with wide differentiation potential, it can produce different neuronal cell types in the central nervous system and peripheral nervous system, and can utilize transcription factors that are highly expressed in the hESC-ENP cell population. Fibroblasts were directly transformed into iNPs similar to hESC-ENP.

在此,本揭示內容藉由比對基因表現圖譜,確認了一系列會高度表現於hESC-ENP 的神經轉錄因子(相較於纖維母細胞的表現量);其中,過量表現二種轉錄因子組合可有效將人類纖維母細胞轉化為多能iENP。該些iENP與hESC-ENP 具有許多相似之處,包含增生方式、基因表現圖譜及活體外與活體內的分化傾向。更重要的是,本揭示內容發現由不同轉錄因子組合所誘發的iENP細胞群具有不同的增生特性及區域分化偏好。本揭示內容亦證實源自AD-及HD-iENP的神經元可於活體外重現該些疾病的主要病理特徵。整體來看,本揭示內容提供一種具有潛力及再現性的策略,可由體細胞製備iENP,據以建立疾病模式及臨床相關應用。Here, the present disclosure confirms a series of neurotransit factors that are highly expressed in hESC-ENP (compared to the amount of fibroblasts) by comparing gene expression profiles; wherein, the excess expression of the two transcription factors can be Effectively convert human fibroblasts into pluripotent iENP. These iENPs have many similarities with hESC-ENP, including proliferative patterns, gene expression profiles, and differentiation tendencies in vitro and in vivo. More importantly, the present disclosure has found that iENP cell populations induced by different combinations of transcription factors have different proliferative properties and regional differentiation preferences. The present disclosure also demonstrates that neurons derived from AD- and HD-iENP can reproduce the major pathological features of these diseases in vitro. Overall, the present disclosure provides a strategy with potential and reproducibility to prepare iENP from somatic cells to establish disease patterns and clinically relevant applications.

發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容並非本揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。SUMMARY OF THE INVENTION The Summary of the Disclosure is intended to provide a basic understanding of the present disclosure. This Summary is not an extensive overview of the disclosure, and is not intended to be an

本揭示內容之第一態樣是關於一種可用以篩選一候選藥物的套組(以下稱為第一套組),藉以治療一神經性疾病。依據本揭示內容實施方式,第一套組包含6條多核苷酸,其係分別包含CBX2 (序列編號:1)、HES1 (序列編號:2)、ID1 (序列編號:3)、TFAP2A (序列編號:4)、ZFP42 (序列編號:5)及ZNF423 (序列編號:6)的基因。A first aspect of the present disclosure is directed to a kit (hereinafter referred to as a first kit) that can be used to screen a candidate drug for treating a neurological disorder. According to an embodiment of the present disclosure, the first set comprises six polynucleotides comprising CBX2 (SEQ ID NO: 1), HES1 (SEQ ID NO: 2), ID1 (SEQ ID NO: 3), TFAP2A (SEQ ID NO: :4), ZFP42 (SEQ ID NO: 5) and ZNF423 (SEQ ID NO: 6) genes.

依據本揭示內容可任選的實施方式,除了該第一到第六多核苷酸外,第一套組更包含其他多核苷酸。在一實施方式中,第一套組更包含9條多核苷酸,其係分別包含DACH1 (序列編號:7)、FOXG1 (序列編號:8)、MYCN (序列編號:9)、NR2F2 (序列編號:10)、NR6A1 (序列編號:11)、SOX2 (序列編號:12)、SOX11 (序列編號:13)、ZIC2 (序列編號:14)及ZIC3 (序列編號:15)的基因。在另一實施方式中,第一套組更包含19條多核苷酸,其係分別包含DACH1 (序列編號:7)、FOXG1 (序列編號:8)、MYCN (序列編號:9)、NR2F2 (序列編號:10)、NR6A1 (序列編號:11)、SOX2 (序列編號:12)、SOX11 (序列編號:13)、ZIC2 (序列編號:14)、ZIC3 (序列編號:15)、GATA3 (序列編號:16)、PAX6 (序列編號:17)、SALL2 (序列編號:18)、LHX2 (序列編號:19)、MBD2 (序列編號:20)、DEPDC 1 (序列編號:21)、MYEF2 (序列編號:22)、OTX2a (序列編號:23)、SIX3 (序列編號:24)及SOX1 (序列編號:25)的基因。In accordance with an optional embodiment of the present disclosure, in addition to the first to sixth polynucleotides, the first set further comprises additional polynucleotides. In one embodiment, the first set further comprises 9 polynucleotides comprising DACH1 (SEQ ID NO: 7), FOXG1 (SEQ ID NO: 8), MYCN (SEQ ID NO: 9), NR2F2 (SEQ ID NO: :10), NR6A1 (SEQ ID NO: 11), SOX2 (SEQ ID NO: 12), SOX11 (SEQ ID NO: 13), ZIC2 (SEQ ID NO: 14), and ZIC3 (SEQ ID NO: 15). In another embodiment, the first set further comprises 19 polynucleotides comprising DACH1 (SEQ ID NO: 7), FOXG1 (SEQ ID NO: 8), MYCN (SEQ ID NO: 9), NR2F2 (sequence), respectively. No.: 10), NR6A1 (sequence number: 11), SOX2 (sequence number: 12), SOX11 (sequence number: 13), ZIC2 (sequence number: 14), ZIC3 (sequence number: 15), GATA3 (sequence number: 16), PAX6 (sequence number: 17), SALL2 (sequence number: 18), LHX2 (sequence number: 19), MBD2 (sequence number: 20), DEPDC 1 (sequence number: 21), MYEF2 (sequence number: 22) ), OTX2a (SEQ ID NO: 23), SIX3 (SEQ ID NO: 24), and SOX1 (SEQ ID NO: 25) genes.

非必要性地,第一套組可更包含一報導多核苷酸,其係包含序列編號:26的序列。Optionally, the first set may further comprise a reporter polynucleotide comprising the sequence of SEQ ID NO: 26.

本揭示內容的第二態樣是關於另一種可用以篩選一候選藥物的套組(以下稱為第二套組),藉以治療一神經性疾病。依據本揭示內容實施方式,第二套組包含7條多核苷酸,其係分別包含TFAP2A (序列編號:4)、ZFP42 (序列編號:5)、FOXG1 (序列編號:8)、NR2F2 (序列編號:10)、GATA3 (序列編號:16)、PAX6 (序列編號:17)及SALL2 (序列編號:18)的基因。A second aspect of the present disclosure is directed to another kit (hereinafter referred to as a second set) that can be used to screen a candidate drug for treating a neurological disorder. According to an embodiment of the present disclosure, the second set comprises seven polynucleotides comprising TFAP2A (SEQ ID NO: 4), ZFP42 (SEQ ID NO: 5), FOXG1 (SEQ ID NO: 8), NR2F2 (SEQ ID NO: :10), GATA3 (SEQ ID NO: 16), PAX6 (SEQ ID NO: 17) and SALL2 (SEQ ID NO: 18) genes.

除了上述7條多核苷酸外,第二套組可更包含其他多核苷酸。在一實施方式中,第二套組更包含6條多核苷酸,其係分別包含CBX2 (序列編號:1)、HES1 (序列編號:2)、NR6A1 (序列編號:11)、SOX11 (序列編號:13)、ZIC2 (序列編號:14)及LHX2 (序列編號:19)的基因。在另一實施方式中,第二套組更包含18條多核苷酸,其係分別包含CBX2 (序列編號:1)、HES1 (序列編號:2)、ID1 (序列編號:3)、ZNF423 (序列編號:6)、DACH1 (序列編號:7)、MYCN (序列編號:9)、NR6A1 (序列編號:11)、SOX2 (序列編號:12)、SOX11 (序列編號:13)、ZIC2 (序列編號:14)、ZIC3 (序列編號:15)、LHX2 (序列編號:19)、MBD2 (序列編號:20)、DEPDC1 (序列編號:21)、MYEF2 (序列編號:22)、OTX2a (序列編號:23)、SIX3 (序列編號:24)及SOX1 (序列編號:25)的基因。In addition to the seven polynucleotides described above, the second set may further comprise other polynucleotides. In one embodiment, the second set further comprises 6 polynucleotides comprising CBX2 (SEQ ID NO: 1), HES1 (SEQ ID NO: 2), NR6A1 (SEQ ID NO: 11), SOX11 (SEQ ID NO: :13), ZIC2 (SEQ ID NO: 14) and LHX2 (SEQ ID NO: 19) genes. In another embodiment, the second set further comprises 18 polynucleotides comprising CBX2 (SEQ ID NO: 1), HES1 (SEQ ID NO: 2), ID1 (SEQ ID NO: 3), ZNF423 (sequence), respectively. No.: 6), DACH1 (sequence number: 7), MYCN (sequence number: 9), NR6A1 (sequence number: 11), SOX2 (sequence number: 12), SOX11 (sequence number: 13), ZIC2 (sequence number: 14), ZIC3 (sequence number: 15), LHX2 (sequence number: 19), MBD2 (sequence number: 20), DEPDC1 (sequence number: 21), MYEF2 (sequence number: 22), OTX2a (sequence number: 23) , SIX3 (sequence number: 24) and SOX1 (sequence number: 25) genes.

非必要性地,第二套組可更包含一報導多核苷酸,其係包含序列編號:27的序列。Optionally, the second set may further comprise a reporter polynucleotide comprising the sequence of SEQ ID NO:27.

依據本揭示內容一實施方式,本發明之第一或第二套組更包含一增強子(enhancer),其係選自由RepSox、PP242、DZNep、維生素C及其組合所組成之群組。In accordance with an embodiment of the present disclosure, the first or second kit of the present invention further comprises an enhancer selected from the group consisting of RepSox, PP242, DZNep, Vitamin C, and combinations thereof.

本揭示內容之第三態樣是關於一種用以篩選適用於治療一神經性疾病(例如一神經發育性疾病、一神經退化性疾病或一運動神經元疾病)之候選藥物的方法。依據本揭示內容某些實施方式,該方法包含: (a)將本揭示內容之第一或第二套組的多核苷酸轉入一纖維母細胞中,藉以誘發該纖維母細胞轉化為一誘發性胚胎神經先驅細胞(induced embryonic neural progenitor cell, iENP cell); (b)將步驟(a)之iENP細胞培養於一分化培養液中,藉以誘發該iENP細胞轉化為一星狀細胞(astrocyte)、一寡樹突細胞(oligodendrocyte)或一神經元(neuron); (c)使步驟(b)之該星狀細胞、該寡樹突細胞或該神經元與一或多待測藥物接觸;以及 (d)由該一或多待測藥物中篩選出該候選藥物,其中該候選藥物會改變該星狀細胞、該寡樹突細胞或該神經元的表型或基因表現。A third aspect of the present disclosure is directed to a method for screening for a drug candidate suitable for treating a neurological disorder, such as a neurodevelopmental disease, a neurodegenerative disease, or a motor neuron disease. According to some embodiments of the present disclosure, the method comprises: (a) transferring a first or a second set of polynucleotides of the present disclosure into a fibroblast to induce the transformation of the fibroblast into an induction (i) an embryonic neural progenitor cell (iENP cell); (b) culturing the iENP cell of step (a) in a differentiation culture medium, thereby inducing transformation of the iENP cell into an astrocyte, An oligodendrocyte or a neuron; (c) contacting the stellate cell of step (b), the oligodendrocyte or the neuron with one or more drugs to be tested; d) screening the candidate drug from the one or more test drugs, wherein the candidate drug changes the phenotype, gene expression of the stellate cell, the oligodendrocyte or the neuron.

基本上,該纖維母細胞可以源自一健康的個體或一罹患神經退化性疾病之個體。依據一較佳實施方式,該纖維母細胞是源自一罹患神經退化性疾病之個體。Basically, the fibroblast can be derived from a healthy individual or an individual suffering from a neurodegenerative disease. According to a preferred embodiment, the fibroblast is derived from an individual suffering from a neurodegenerative disease.

本揭示內容之另一態樣是關於一種用以治療一罹患或疑似罹患一神經退化性疾病之個體的方法。該方法包含: (a)由該個體分離一纖維母細胞; (b)將本揭示內容之第一套組的第一到第六多核苷酸或第二套組的第一到第七多核苷酸轉入該纖維母細胞中,藉以誘發該纖維母細胞轉化為一iENP細胞; (c)非必要性地,將步驟(b)之iENP細胞培養於一分化培養液中,藉以誘發該iENP細胞轉化為一星狀細胞、一寡樹突細胞或一神經元; (d)對該個體投予一有效量之步驟(b)的iENP細胞,或一有效量之步驟(c)的星狀細胞、寡樹突細胞或神經元,以減緩或降低與該神經性疾病相關之病徵。Another aspect of the present disclosure is directed to a method of treating an individual suffering from or suspected of suffering from a neurodegenerative disease. The method comprises: (a) isolating a fibroblast from the individual; (b) placing the first to sixth polynucleotides of the first set of the disclosure or the first to seventh of the second set Nucleotide is transferred into the fibroblast to induce the transformation of the fibroblast into an iENP cell; (c) optionally, the iENP cell of step (b) is cultured in a differentiation medium to induce the The iENP cell is transformed into a stellate cell, an oligodendrocyte or a neuron; (d) the subject is administered an effective amount of the iENP cell of step (b), or an effective amount of the star of step (c) Cells, oligodendrocytes or neurons to slow or reduce the symptoms associated with this neurological disease.

一般來說,該神經性疾病可以是一神經發育性疾病、一神經退化性疾病或一運動神經元疾病。Generally, the neurological disease can be a neurodevelopmental disease, a neurodegenerative disease, or a motor neuron disease.

本揭示內容亦提供由本發明套組所製備之細胞,包含一iENP細胞、一星狀細胞、一寡樹突細胞及一神經元。該些細胞可用以治療一神經性疾病;舉例來說,一神經發育性疾病、一神經退化性疾病或一運動神經元疾病。The disclosure also provides cells prepared from the kit of the invention comprising an iENP cell, a stellate cell, an oligodendrocyte, and a neuron. The cells can be used to treat a neurological disorder; for example, a neurodevelopmental disease, a neurodegenerative disease, or a motor neuron disease.

在參閱下文實施方式後,本發明所屬技術領域中具有通常知識者當可輕易瞭解本發明之基本精神及其他發明目的,以及本發明所採用之技術手段與實施態樣。The basic spirit and other objects of the present invention, as well as the technical means and implementations of the present invention, will be readily apparent to those skilled in the art of the invention.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。實施方式中涵蓋了多個具體實施例的特徵以及用以建構與操作這些具體實施例的方法步驟與其順序。然而,亦可利用其他具體實施例來達成相同或均等的功能與步驟順序。The description of the embodiments of the present invention is intended to be illustrative and not restrictive. The features of various specific embodiments, as well as the method steps and sequences thereof, are constructed and manipulated in the embodiments. However, other specific embodiments may be utilized to achieve the same or equivalent function and sequence of steps.

雖然用以界定本發明較廣範圍的數值範圍與參數皆是約略的數值,此處已盡可能精確地呈現具體實施例中的相關數值。然而,任何數值本質上不可避免地含有因個別測試方法所致的標準偏差。在此處,「約」通常係指實際數值在一特定數值或範圍的正負10%、5%、1%或0.5%之內。或者是,「約」一詞代表實際數值落在平均值的可接受標準誤差之內,視本發明所屬技術領域中具有通常知識者的考量而定。除了實驗例之外,或除非另有明確的說明,當可理解此處所用的所有範圍、數量、數值與百分比(例如用以描述材料用量、時間長短、溫度、操作條件、數量比例及其他相似者)均經過「約」的修飾。因此,除非另有相反的說明,本說明書與附隨申請專利範圍所揭示的數值參數皆為約略的數值,且可視需求而更動。至少應將這些數值參數理解為所指出的有效位數與套用一般進位法所得到的數值。在此處,將數值範圍表示成由一端點至另一段點或介於二端點之間;除非另有說明,此處所述的數值範圍皆包含端點。Although numerical ranges and parameters are used to define a broad range of values for the present invention, the relevant values in the specific embodiments have been presented as precisely as possible. However, any numerical value inherently inevitably contains standard deviations due to individual test methods. As used herein, "about" generally means that the actual value is within plus or minus 10%, 5%, 1%, or 0.5% of a particular value or range. Alternatively, the term "about" means that the actual value falls within the acceptable standard error of the average, depending on the considerations of those of ordinary skill in the art to which the invention pertains. Except for the experimental examples, or unless otherwise explicitly stated, all ranges, quantities, values, and percentages used herein are understood (eg, to describe the amount of material used, the length of time, the temperature, the operating conditions, the quantity ratio, and the like. Are all modified by "about". Therefore, unless otherwise indicated to the contrary, the numerical parameters disclosed in the specification and the appended claims are intended to be At a minimum, these numerical parameters should be understood as the number of significant digits indicated and the values obtained by applying the general carry method. Ranges of values are expressed herein as being from one endpoint to another or between two endpoints; unless otherwise stated, the numerical ranges recited herein are inclusive.

除非本說明書另有定義,此處所用的科學與技術詞彙之含義與本發明所屬技術領域中具有通常知識者所理解與慣用的意義相同。此外,在不和上下文衝突的情形下,本說明書所用的單數名詞涵蓋該名詞的複數型;而所用的複數名詞時亦涵蓋該名詞的單數型。The scientific and technical terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which the invention pertains, unless otherwise defined herein. In addition, the singular noun used in this specification covers the plural of the noun in the case of no conflict with the context; the plural noun of the noun is also included in the plural noun used.

在本揭示內容中,「轉入」(introduce)一詞是指將一多核苷酸(例如本發明套組之多核苷酸)轉入一細胞或生物體中。多核苷酸的核酸可以是裸露的DNA或RNA、與不同蛋白連接的DNA或RNA,或插入一載體的DNA或RNA。「轉入」(introduce)一詞在本揭示內容涵蓋了最廣泛的範圍;舉例來說,轉入包含以下方法所達成的傳送功效:轉染法(transfection,利用物理及/或化學處理將一多核苷酸轉入一真核細胞)、轉形法(transformation method,利用物理及/或化學處理將一多核苷酸轉入一原核細胞)、病毒法/病毒轉殖法(viral method/viral transduction method,以病毒或病毒載體將一多核苷酸轉入一真核及/或原核細胞)、接合法(conjugation method,藉由細胞-細胞直接接觸或細胞間的細胞質橋 ,將一多核苷酸由一細胞轉入另一細胞)及融合法(fusion method,融合二細胞,包含同型細胞融合及異型細胞融合)。In the present disclosure, the term "introduction" refers to the transfer of a polynucleotide (eg, a polynucleotide of the kit of the invention) into a cell or organism. The nucleic acid of the polynucleotide may be naked DNA or RNA, DNA or RNA linked to a different protein, or DNA or RNA inserted into a vector. The term "introduce" is used in the broadest scope of this disclosure; for example, transfer to a transfer effect that includes the following methods: transfection (transfection, physical and/or chemical treatment will be used) Polynucleotide transfer to a eukaryotic cell), transformation method (transformation method using a physical and / or chemical treatment to transfer a polynucleotide into a prokaryotic cell), viral method / viral transfection method (viral method / Viral transduction method, using a viral or viral vector to transfer a polynucleotide into a eukaryotic and/or prokaryotic cell), conjugation method, by cell-cell direct contact or intercellular cytoplasmic bridge, The nucleotide is transferred from one cell to another) and the fusion method (fusion of two cells, including homotypic cell fusion and heterotypic cell fusion).

在本揭示內容中,「神經性疾病」(neurological disease)一詞是指一由發育異常、疾病、基因缺陷、損傷或毒素所引發疾病或病症,其會造成神經系統的結構或功能異常。該些疾病或病症會影響中樞神經系統(例如大腦、腦幹及小腦)、周邊神經系統(例如腦神經、脊神經,以及交感與副交感神經系統)及/或自律神經系統(例如調控不隨意動作的神經系統及可分為交感與副交感神經系統的神經系統)。例示性之神經性疾病包含,但不限於,神經發育性疾病、神經退化性疾病及運動神經元疾病。In the present disclosure, the term "neurological disease" refers to a disease or condition caused by dysplasia, disease, genetic defect, injury or toxin which causes structural or functional abnormalities of the nervous system. Such diseases or conditions affect the central nervous system (eg, brain, brainstem, and cerebellum), peripheral nervous systems (eg, cranial nerves, spinal nerves, and sympathetic and parasympathetic nervous systems) and/or autonomic nervous systems (eg, regulation of involuntary movements) The nervous system and the nervous system that can be divided into the sympathetic and parasympathetic nervous systems). Exemplary neurological diseases include, but are not limited to, neurodevelopmental diseases, neurodegenerative diseases, and motor neuron diseases.

「個體」(subject)一詞是指包含人類的動物,其可接受本發明方法的治療。除非特定指出,否則「個體」(subject)一詞同時意指男性及女性,且包含任何年齡,例如小孩或成人。The term "subject" refers to an animal comprising humans which is acceptable for the treatment of the methods of the invention. Unless specifically stated otherwise, the term "subject" means both male and female and includes any age, such as a child or an adult.

本揭示內容提供三種套組,其中每種套組皆可用以誘發一纖維母細胞轉化為一iENP細胞,藉以篩選適用於治療神經退化性疾病(例如神經發育性疾病、神經退化性疾病或運動神經元疾病)的候選藥物。The present disclosure provides three kits, each of which can be used to induce the conversion of a fibroblast into an iENP cell, thereby screening for treatment of a neurodegenerative disease (eg, a neurodevelopmental disease, a neurodegenerative disease, or a motor nerve). Candidate drugs for meta-diseases.

第一種套組包含6條核苷酸(即第一到第六核苷酸),其係分別包含CBX2 (序列編號:1)、HES1 (序列編號:2)、ID1 (序列編號:3)、TFAP2A (序列編號:4)、ZFP42 (序列編號:5)及ZNF423 (序列編號:6)的基因;本揭示內容將該套組稱為6TF (6-轉錄因子)。The first kit contains 6 nucleotides (ie, first to sixth nucleotides), which contain CBX2 (SEQ ID NO: 1), HES1 (SEQ ID NO: 2), and ID1 (SEQ ID NO: 3), respectively. , TFAP2A (SEQ ID NO: 4), ZFP42 (SEQ ID NO: 5), and ZNF423 (SEQ ID NO: 6); the present disclosure refers to this set as 6TF (6-transcription factor).

依據使用需求的不同,該第一套組可更包含至少一基因,其係選自由DACH1 (序列編號:7)、FOXG1 (序列編號:8)、MYCN (序列編號:9)、NR2F2 (序列編號:10)、NR6A1 (序列編號:11)、SOX2 (序列編號:12)、SOX11 (序列編號:13)、ZIC2 (序列編號:14)、ZIC3 (序列編號:15)、GATA3 (序列編號:16)、PAX6 (序列編號:17)、SALL2 (序列編號:18)、LHX2 (序列編號:19)、MBD2 (序列編號:20)、DEPDC1 (序列編號:21)、MYEF 2 (序列編號:22)、OTX2a (序列編號:23)、SIX3 (序列編號:24)及SOX 1 (序列編號:25)所組成的群組。Depending on the needs of use, the first set may further comprise at least one gene selected from DACH1 (SEQ ID NO: 7), FOXG1 (SEQ ID NO: 8), MYCN (SEQ ID NO: 9), NR2F2 (SEQ ID NO: :10), NR6A1 (sequence number: 11), SOX2 (sequence number: 12), SOX11 (sequence number: 13), ZIC2 (sequence number: 14), ZIC3 (sequence number: 15), GATA3 (sequence number: 16) ), PAX6 (sequence number: 17), SALL2 (sequence number: 18), LHX2 (sequence number: 19), MBD2 (sequence number: 20), DEPDC1 (sequence number: 21), MYEF 2 (sequence number: 22) , OTX2a (sequence number: 23), SIX3 (sequence number: 24), and SOX 1 (sequence number: 25).

依據本揭示內容某些實施方式,該第一套組更包含9條多核苷酸(即第七到第十五多核苷酸),其係分別包含DACH1 (序列編號:7)、FOXG1 (序列編號:8)、MYCN (序列編號:9)、NR2F2 (序列編號:10)、NR6A1 (序列編號:11)、SOX2 (序列編號:12)、SOX11 (序列編號:13)、ZIC2 (序列編號:14)及ZIC3 (序列編號:15)的基因。本揭示內容將該包含15條多苷酸核(即第一到第十五多核苷酸)的套組稱為15TF。According to some embodiments of the present disclosure, the first set further comprises 9 polynucleotides (ie, seventh to fifteenth polynucleotides) comprising DACH1 (SEQ ID NO: 7), FOXG1 (sequence, respectively ) No.: 8), MYCN (sequence number: 9), NR2F2 (sequence number: 10), NR6A1 (sequence number: 11), SOX2 (sequence number: 12), SOX11 (sequence number: 13), ZIC2 (sequence number: 14) and ZIC3 (sequence number: 15) genes. The present disclosure refers to a set comprising 15 polynucleotide nucleuses (ie, first to fifteenth polynucleotides) as 15TF.

第二種套組包含7條多核苷酸(即第一到第七多核苷酸),其係分別包含TFAP2A (序列編號:4)、ZFP42 (序列編號:5)、FOXG1 (序列編號:8)、NR2F2 (序列編號:10)、GATA3 (序列編號:16)、PAX6 (序列編號:17)及SALL2 (序列編號:18)的基因;本揭示內容將該套組稱為7TF。The second kit contains 7 polynucleotides (ie, first to seventh polynucleotides) comprising TFAP2A (SEQ ID NO: 4), ZFP42 (SEQ ID NO: 5), and FOXG1 (SEQ ID NO: 8) ), NR2F2 (SEQ ID NO: 10), GATA3 (SEQ ID NO: 16), PAX6 (SEQ ID NO: 17), and SALL2 (SEQ ID NO: 18); the present disclosure refers to this set as 7TF.

一般來說,該第二套組可更包含至少一基因,其係選自由CBX2 (序列編號:1)、HES1 (序列編號:2)、ID1 (序列編號:3)、ZNF423 (序列編號:6)、DACH1 (序列編號:7)、MYCN (序列編號:9)、NR6A1 (序列編號:11)、SOX2 (序列編號:12)、SOX11 (序列編號:13)、ZIC2 (序列編號:14)、ZIC3 (序列編號:15)、LHX2 (序列編號:19)、MBD2 (序列編號:20)、DEPDC1 (序列編號:21)、MYEF2 (序列編號:22)、OTX2a (序列編號:23)、SIX 3 (序列編號:24)及SOX1 (序列編號:25)所組成的群組。In general, the second set may further comprise at least one gene selected from CBX2 (SEQ ID NO: 1), HES1 (SEQ ID NO: 2), ID1 (SEQ ID NO: 3), ZNF423 (SEQ ID NO: 6 ), DACH1 (sequence number: 7), MYCN (sequence number: 9), NR6A1 (sequence number: 11), SOX2 (sequence number: 12), SOX11 (sequence number: 13), ZIC2 (sequence number: 14), ZIC3 (sequence number: 15), LHX2 (sequence number: 19), MBD2 (sequence number: 20), DEPDC1 (sequence number: 21), MYEF2 (sequence number: 22), OTX2a (sequence number: 23), SIX 3 A group consisting of (sequence number: 24) and SOX1 (sequence number: 25).

依據本揭示內容某些實施方式,該第二套組更包含6條多核苷酸(即第八到第十三多核苷酸),其係分別包含CBX2 (序列編號:1)、HES1 (序列編號:2)、NR6A1 (序列編號:11)、SOX11 (序列編號:13)、ZIC2 (序列編號:14)及LHX2 (序列編號:19)的基因。本揭示內容將該包含13條多核苷酸(即第一到第十三多核苷酸)的套組稱為13TF。According to some embodiments of the present disclosure, the second set further comprises 6 polynucleotides (ie, eighth to thirteenth polynucleotides) comprising CBX2 (SEQ ID NO: 1), HES1 (sequence, respectively ) No.: 2), NR6A1 (sequence number: 11), SOX11 (sequence number: 13), ZIC2 (sequence number: 14), and LHX2 (sequence number: 19). The present disclosure refers to a set comprising 13 polynucleotides (ie, first to thirteenth polynucleotides) as 13TF.

第三種套組包含25條多核苷酸,其係分別包含CBX2 (序列編號:1)、HES1 (序列編號:2)、ID1 (序列編號:3)、TFAP2A (序列編號:4)、ZFP42 (序列編號:5)、ZNF423 (序列編號:6)、DACH1 (序列編號:7)、FOXG1 (序列編號:8)、MYCN (序列編號:9)、NR2F2 (序列編號:10)、NR6A1 (序列編號:11)、SOX2 (序列編號:12)、SOX11 (序列編號:13)、ZIC2 (序列編號:14)、ZIC3 (序列編號:15)、GATA3 (序列編號:16)、PAX6 (序列編號:17)、SALL2 (序列編號:18)、LHX2 (序列編號:19)、MBD2 (序列編號:20)、DEPDC1 (序列編號:21)、MYEF2 (序列編號:22)、OTX2a (序列編號:23)、SIX3 (序列編號:24)及SOX1 (序列編號:25)的基因。本揭示內容將該包含25條多核苷酸(即第一到第二十五多核苷酸)的套組稱為25TF。The third kit contains 25 polynucleotides containing CBX2 (SEQ ID NO: 1), HES1 (SEQ ID NO: 2), ID1 (SEQ ID NO: 3), TFAP2A (SEQ ID NO: 4), and ZFP42 ( SEQ ID NO: 5), ZNF423 (sequence number: 6), DACH1 (sequence number: 7), FOXG1 (sequence number: 8), MYCN (sequence number: 9), NR2F2 (sequence number: 10), NR6A1 (sequence number) :11), SOX2 (sequence number: 12), SOX11 (sequence number: 13), ZIC2 (sequence number: 14), ZIC3 (sequence number: 15), GATA3 (sequence number: 16), PAX6 (sequence number: 17) ), SALL2 (sequence number: 18), LHX2 (sequence number: 19), MBD2 (sequence number: 20), DEPDC1 (sequence number: 21), MYEF2 (sequence number: 22), OTX2a (sequence number: 23), SIX3 (SEQ ID NO: 24) and SOX1 (SEQ ID NO: 25) genes. The present disclosure refers to a set comprising 25 polynucleotides (ie, first to twenty-fifth polynucleotides) as 25TF.

依據本揭示內容某些非必要的實施方式,本發明套組(即6TF、7TF、13TF、15TF或25TF)可更包含一報導多核苷酸;舉例來說,PAX6:EGFP 或SOX1:EGFP 。在一實施方式中,套組6TF或15TF更包含PAX6:EGFP ,其係包含序列編號:26的序列。在另一實施方式中,套組7TF或13TF更包含SOX1:EGFP ,其係包含序列編號:27的序列。In accordance with certain non-essential embodiments of the present disclosure, the kit of the invention (i.e., 6TF, 7TF, 13TF, 15TF or 25TF) may further comprise a reporter polynucleotide; for example, PAX6: EGFP or SOX1: EGFP . In one embodiment, the kit 6TF or 15TF further comprises PAX6: EGFP , which comprises the sequence of SEQ ID NO: 26. In another embodiment, the kit 7TF or 13TF further comprises SOX1: EGFP , which comprises the sequence of SEQ ID NO: 27.

依據本揭示內容實施方式,本發明套組(即6TF、7TF、13TF、15TF或25TF)可用以誘發纖維母細胞轉化為iENP細胞,其中該iENP細胞在適當的條件下,可再分化為星狀細胞、寡樹突細胞及/或神經元(包含中樞神經系統及周邊神經系統的神經元亞型)。In accordance with embodiments of the present disclosure, a kit of the invention (ie, 6TF, 7TF, 13TF, 15TF or 25TF) can be used to induce the conversion of fibroblasts into iENP cells, wherein the iENP cells can be re-differentiated into stellate under appropriate conditions. Cells, oligodendrocytes, and/or neurons (including neuronal subtypes of the central nervous system and peripheral nervous system).

本揭示內容亦涵蓋一種用以誘發纖維母細胞轉化為iENP細胞的方法。該方法包含將該纖維母細胞與本揭示內容之任一態樣或實施方式所述的套組接觸。The present disclosure also encompasses a method for inducing the conversion of fibroblasts into iENP cells. The method comprises contacting the fibroblast with a kit of any aspect or embodiment of the present disclosure.

非必要性地,本發明套組(即6TF、7TF、13TF、15TF或25TF)可更包含一增強子,據以增加本發明套組於製備iENP細胞之功效。依據本揭示內容一實施方式,該增強子是選自由RepSox (一種轉變生長因子β (transforming growth factor-β, TGF-β)抑制劑)、PP242 (一種細胞自噬(autophage)活化劑)、DZNep (一種組蛋白甲基轉移酶(histone methyltransferase)抑制劑)、維生素C (一種DNA去甲基活化劑)及其組合所組成的群組。依據本揭示內容一實施方式,該增強子是RepSox。依據本揭示內容另一實施方式,該增強子是RepSox及PP242之組合。依據本揭示內容再另一實施方式,該增強子是RepSox、PP242、DZNep及維生素C之組合。Optionally, the kit of the invention (i.e., 6TF, 7TF, 13TF, 15TF or 25TF) may further comprise an enhancer to increase the efficacy of the kit of the invention in the preparation of iENP cells. According to an embodiment of the present disclosure, the enhancer is selected from the group consisting of RepSox (a transforming growth factor-β (TGF-β) inhibitor), PP242 (an autophage activator), DZNep (a group of histone methyltransferase inhibitors), vitamin C (a DNA demethylating activator), and combinations thereof. According to an embodiment of the present disclosure, the enhancer is RepSox. According to another embodiment of the present disclosure, the enhancer is a combination of RepSox and PP242. According to still another embodiment of the present disclosure, the enhancer is a combination of RepSox, PP242, DZNep, and vitamin C.

當可想見,本揭示內容亦包含由套組6TF、7TF、13TF、15TF或25TF包含之多核苷酸所編碼的多肽。舉例來說,本發明套組可包含第一到第六多肽,其係分別由6TF之CBX2 (序列編號:1)、HES1 (序列編號:2)、ID1 (序列編號:3)、TFAP2A (序列編號:4)、ZFP42 (序列編號:5)及ZNF423 (序列編號:6)的基因編碼而得。或者是,本發明套組可包含第一到第七多肽,其係分別由TFAP2A (序列編號:4)、ZFP42 (序列編號:5)、FOXG1 (序列編號:8)、NR2F2 (序列編號:10)、GATA3 (序列編號:16)、PAX6 (序列編號:17)及SALL2 (序列編號:18)的基因編碼而得。When conceivable, the disclosure also encompasses polypeptides encoded by polynucleotides comprised by the kits 6TF, 7TF, 13TF, 15TF or 25TF. For example, a kit of the invention may comprise first to sixth polypeptides consisting of 6TF of CBX2 (SEQ ID NO: 1), HES1 (SEQ ID NO: 2), ID1 (SEQ ID NO: 3), TFAP2A ( Sequence numbers: 4), ZFP42 (SEQ ID NO: 5) and ZNF423 (SEQ ID NO: 6) are encoded by genes. Alternatively, the kit of the invention may comprise first to seventh polypeptides consisting of TFAP2A (SEQ ID NO: 4), ZFP42 (SEQ ID NO: 5), FOXG1 (SEQ ID NO: 8), NR2F2 (SEQ ID NO: 10), GATA3 (SEQ ID NO: 16), PAX6 (SEQ ID NO: 17) and SALL2 (SEQ ID NO: 18) are encoded by genes.

本揭示內容之另一態樣是關於一種用以篩選適用於治療神經性疾病之候選藥物的方法,其係利用本揭示內容任一態樣或實施方式所述之套組來進行篩選。該方法包含: (a)將本發明套組之多核苷酸轉入一纖維母細胞中,藉以誘發該纖維母細胞轉化為一iENP細胞; (b)將步驟(a)之iENP細胞培養於一分化培養液中,藉以誘發該iENP細胞轉化為一星狀細胞、一寡樹突細胞或一神經元; (c)使步驟(b)之該星狀細胞、該寡樹突細胞或該神經元與一或多待測藥物接觸;以及 (d)由該一或多待測藥物中篩選該候選藥物,其中該候選藥物會改變該星狀細胞、該寡樹突細胞或該神經元的表型或基因表現。Another aspect of the present disclosure is directed to a method for screening for a drug candidate suitable for treating a neurological disorder, which is screened using a kit as described in any aspect or embodiment of the present disclosure. The method comprises: (a) transferring a polynucleotide of the kit of the invention into a fibroblast to induce the transformation of the fibroblast into an iENP cell; (b) cultivating the iENP cell of step (a) In the differentiation medium, the iENP cell is induced to transform into a stellate cell, an oligodendrocyte or a neuron; (c) the stellate cell, the oligodendrocyte or the neuron of step (b) Contacting one or more drugs to be tested; and (d) screening the candidate drug from the one or more drugs to be tested, wherein the drug candidate changes the phenotype of the stellate cell, the oligodendrocyte or the neuron Or genetic performance.

在步驟(a)中,是將本發明套組(即6TF、7TF、13TF、15TF或25TF)之多核苷酸轉入纖維母細胞中。例示性之用以將多核苷酸轉入細胞的方法包含,但不限於,磷酸鈣共沉澱(calcium phosphate co-precipitation)、電穿孔(electroporation)、核轉染(nucleofection)、細胞擠壓(cell squeezing,輕壓細胞膜)、超音波穿孔(sonoporation,利用高強度超音波於細胞膜形成孔洞)、光轉染(optical transfection,利用高聚焦雷射於細胞膜製造一微小孔洞)、基因交付(impalefection,將DNA連接至一奈米纖維表面並注入細胞中)、基因槍(gene gun,將DNA連接至一惰性固體之奈米粒子後,注入標的細胞核內)、磁轉染(magnetofection,利用磁力將DNA送至標的細胞內)、病毒轉染(viral transduction,利用病毒作為載體,將DNA送至標的細胞內)或以樹枝狀聚合物(dendrimer)、脂質體(liposome)及陽離子聚合物(cationic polymer)進行轉染。在一實施例中,是利用病毒轉染(例如慢病毒(lentivirus)轉染)的方法將多核苷酸轉入纖維母細胞中。依據本揭示內容實施方式,經轉入後,多核苷酸的表現會誘發纖維母細胞轉化為iENP細胞。或者是,當套組包含由上述6TF、7TF、13TF、15TF或25TF之多核苷酸所編碼的多肽時,將該多肽與纖維母細胞共同培養,亦可達到相同的功效。In step (a), the polynucleotide of the kit of the invention (i.e., 6TF, 7TF, 13TF, 15TF or 25TF) is transferred into the fibroblast. Exemplary methods for transferring polynucleotides into cells include, but are not limited to, calcium phosphate co-precipitation, electroporation, nucleofection, cell extrusion (cell) Squeezing, lightly pressing cell membranes, sonoporation (using high-intensity ultrasound to form pores in cell membranes), optical transfection (using a highly focused laser to create a tiny hole in the cell membrane), gene delivery (impalefection, DNA is attached to the surface of a nanofiber and injected into the cell), a gene gun (the DNA is attached to an inert solid nanoparticle and injected into the target nucleus), and magnetically transfected (magnetofection). To the target cells, viral transfection (viral transduction, using the virus as a vector, the DNA is delivered to the target cells) or by dendrimer, liposome and cationic polymer Transfection. In one embodiment, the polynucleotide is transferred to fibroblasts by viral transfection (e.g., lentivirus transfection). According to embodiments of the present disclosure, the expression of the polynucleotide induces the conversion of fibroblasts into iENP cells upon transfer. Alternatively, when the kit comprises a polypeptide encoded by the above 6TF, 7TF, 13TF, 15TF or 25TF polynucleotide, the polypeptide can be co-cultured with the fibroblast to achieve the same effect.

在步驟(b)中,是將步驟(a)之iENP細胞培養於一分化培養液中。依據使用需求的不同,該分化培養液可包含特定的分化因子,例如抗壞血酸(ascorbic acid)、神經生長因子(nerve growth factor, NGF)、腦源性神經滋養因子(brain-derived neurotrophic factor, BDNF)、纖維母細胞生長因子(fibroblast growth factor, FGF)、音蝟因子(sonic hedgehog, SHH)及N-[N-(3,5-二氟苯乙醯基)-L-丙胺醯基]-(S)- 苯基甘胺酸叔丁酯(N-[N-(3,5-difluorophenacetyl)-L-alanyl]-(S)-phenylglycine tert-butyl ester, DAPT),藉以使iENP細胞分化為星狀細胞、寡樹突細胞或神經元(可以是中樞神經系統神經元或是周邊神經系統神經元)。In step (b), the iENP cells of step (a) are cultured in a differentiation medium. The differentiation medium may contain specific differentiation factors such as ascorbic acid, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) depending on the needs of use. , fibroblast growth factor (FGF), sonic hedgehog (SHH) and N-[N-(3,5-difluorophenethyl)-L-alaninyl]-( S)-N-[N-(3,5-difluorophenacetyl)-L-alanyl-(S)-phenylglycine tert-butyl ester, DAPT), whereby iENP cells are differentiated into stars Cells, oligodendrocytes or neurons (may be central nervous system neurons or peripheral nervous system neurons).

經分化的細胞(即經分化之星狀細胞、寡樹突細胞或神經元)可作為一種篩選平台,據以供相關領域習知技藝人士研究參與神經訊息傳遞路徑之新穎機制及/或篩選候選藥物。在研究新穎機制時,可對經分化之細胞投予測試分子,以發現參與調控神經訊息傳遞路徑的潛力分子。或者是,可將經分化之細胞與一或多待測藥物接觸,藉此篩選一會影響步驟(c)及(d)之分化細胞之表型或基因表現的候選藥物。Differentiated cells (i.e., differentiated stellate cells, oligodendrocytes, or neurons) can serve as a screening platform for those skilled in the relevant art to study novel mechanisms and/or screening candidates involved in neural message delivery pathways. drug. In investigating novel mechanisms, test cells can be administered to differentiated cells to discover potential molecules involved in the regulation of neural signaling pathways. Alternatively, the differentiated cells can be contacted with one or more test drugs to screen for a candidate drug that affects the phenotype or gene expression of the differentiated cells of steps (c) and (d).

依據本揭示內容某些實施方式,步驟(a)之纖維母細胞是源自一健康個體。According to some embodiments of the present disclosure, the fibroblast of step (a) is derived from a healthy individual.

依據本揭示內容某些實施方式,步驟(a)之纖維母細胞是源自一罹患神經性疾病之個體;舉例來說,一罹患神經發育性疾病、神經退化性疾病或運動神經元疾病之個體。例示性之神經發育性疾病包含,但不限於,泛自閉症障礙(autism spectrum disorder, ASD)、胎兒酒精症候群(fetal alcohol spectrum disorder)、唐氏症(Down syndrome)、注意力不足過動症(attention deficit hyperactivity disorder)、門德爾森症候群(Mendelsohnn's syndrome)、精神分裂症(schizophrenia)及易脆X染色體症候群(fragile-X syndrome)。例示式之神經退化性疾病包含,但不限於,阿茲海默症(Alzheimer’s disease, AD)、帕金森氏症(Parkinson disease, PD)、亨汀頓氏舞蹈症(Huntington’s disease, HD)、額顳葉失智症(frontotemporal dementia, FTD)、福萊德瑞克氏運動失調症(Friedreich's ataxia)、年齡相關性黃斑部退化(age-related macular degeneration)及庫賈氏症(Creutzfeldt-Jakob disease)。運動神經元疾病包含,但不限於,肌肉萎縮性脊髓側索硬化症(amyotrophic lateral sclerosis, ALS)、原發性側索硬化症(primary lateral sclerosis, PLS)、脊髓肌萎縮症(spinal muscular atrophy, SMA)、進行性肌萎縮(progressive muscular atrophy, PMA)、進行性延髓麻痺(progressive bulbar palsy, PBP)、假性延髓麻痺(pseudobulbar palsy)、遺傳性痙攣性截癱(hereditary spastic paraplegia, HSP)、庫格勃-韋蘭德症候群(Kugelberg-Welander syndrome)、盧賈里格症(Lou Gehrig's disease)、杜氏癱瘓(Duchenne's paralysis)、沃尼克-霍夫曼症(Werdnig-Hoffmann disease)及良性灶性肌萎縮(benign focal amyotrophy)。依據本揭示內容某些實施方式,源自纖維母細胞之iENP及由該iENP分化之細胞具有與罹患神經性疾病之個體相似的病理特徵;據此,該iENP及分化細胞提供了一種用以研究潛力藥物的治療模式,可據以治療神經性疾病。According to some embodiments of the present disclosure, the fibroblast of step (a) is derived from an individual suffering from a neurological disease; for example, an individual suffering from a neurodevelopmental disease, a neurodegenerative disease, or a motor neuron disease . Exemplary neurodevelopmental diseases include, but are not limited to, autism spectrum disorder (ASD), fetal alcohol spectrum disorder, Down syndrome, attention deficit hyperactivity disorder (attention deficit hyperactivity disorder), Mendelsohn's syndrome, schizophrenia, and fragile-X syndrome. Exemplary neurodegenerative diseases include, but are not limited to, Alzheimer's disease (AD), Parkinson disease (PD), Huntington's disease (HD), amount Frontotemporal dementia (FTD), Friedreich's ataxia, age-related macular degeneration, and Creutzfeldt-Jakob disease. Motor neuron diseases include, but are not limited to, amyotrophic lateral sclerosis (ALS), primary lateral sclerosis (PLS), and spinal muscular atrophy (spinal muscular atrophy). SMA), progressive muscular atrophy (PMA), progressive bulbar palsy (PBP), pseudobulbar palsy, hereditary spastic paraplegia (HSP), library Kugelberg-Welander syndrome, Lou Gehrig's disease, Duchenne's paralysis, Werdnig-Hoffmann disease, and benign focal muscle atrophy ( Benign focal amyotrophy). According to some embodiments of the present disclosure, iENP derived from fibroblasts and cells differentiated from the iENP have pathological features similar to those of a neurological disease; accordingly, the iENP and differentiated cells provide a study for The treatment mode of potential drugs can be used to treat neurological diseases.

本揭示內容的另一態樣是關於一種用以治療一罹患或疑似罹患一神經退化性疾病之個體的方法。本發明方法包含對該個體投予一有效量之候選藥物,其中該候選藥物是依據本揭示內容任一態樣或實施方式所述之套組及/或方法篩選而得。Another aspect of the present disclosure is directed to a method of treating an individual suffering from or suspected of suffering from a neurodegenerative disease. The methods of the invention comprise administering to the individual an effective amount of a drug candidate, wherein the drug candidate is screened according to any of the aspects and embodiments of the present disclosure.

本揭示內容更提供利用本發明套組(即6TF、7TF、13TF、15TF或25TF)來治療一罹患或疑似罹患一神經退化性疾病之個體的方法。該方法包含: (a)由該個體分離一纖維母細胞; (b)將本發明套組之多核苷酸轉入該纖維母細胞中,藉以誘發該纖維母細胞轉化為一iENP細胞; (c)非必要性地,將步驟(b)之iENP細胞培養於一分化培養液中,藉以誘發iENP細胞轉化為一星狀細胞、一寡樹突細胞或一神經元; (d)對該個體投予一有效量之步驟(b)的iENP細胞,或一有效量之步驟(c)的星狀細胞、寡樹突細胞或神經元,以減緩或降低與該神經性疾病相關之病徵。The present disclosure further provides methods of treating an individual suffering from or suspected of having a neurodegenerative disease using a kit of the invention (ie, 6TF, 7TF, 13TF, 15TF, or 25TF). The method comprises: (a) isolating a fibroblast from the individual; (b) transferring the polynucleotide of the kit of the invention into the fibroblast to induce the transformation of the fibroblast into an iENP cell; Optionally, the iENP cell of step (b) is cultured in a differentiation culture medium to induce transformation of iENP cells into a stellate cell, an oligodendrocyte or a neuron; (d) the individual is cast An effective amount of iENP cells of step (b), or an effective amount of stellate cells, oligodendrocytes or neurons of step (c), is administered to slow or reduce the symptoms associated with the neurological condition.

在步驟(a)中,是由一罹患或疑似罹患神經性疾病之個體分離出纖維母細胞。該個體為一哺乳動物;舉例來說,人類、小鼠、大鼠、猴子、墨猩猩、貓或狗。較佳地,該個體為人類。可利用本發明方法治療的神經性疾病是一神經發育性疾病、一神經退化性疾病或一運動神經元疾病。In step (a), fibroblasts are isolated from an individual suffering from or suspected of having a neurological disorder. The individual is a mammal; for example, a human, a mouse, a rat, a monkey, a gorilla, a cat or a dog. Preferably, the individual is a human. The neurological disease treatable by the method of the invention is a neurodevelopmental disease, a neurodegenerative disease or a motor neuron disease.

用以治療神經性疾病之方法的步驟(b)及(c)分別與上述用以篩選候選藥物之方法的步驟(a)及(b)相同,為求簡潔,在此不再贅述。Steps (b) and (c) of the method for treating a neurological disease are the same as steps (a) and (b) of the method for screening a candidate drug, respectively, and are not described herein for brevity.

在步驟(d)中,是對該個體投予步驟(b)之iENP細胞,或是步驟(c)之經誘發形成的星狀細胞、寡樹突細胞或神經元。依據特定的治療功效,該些細胞可藉由任何適當的路徑投予至個體體內;舉例來說,腸內、口腔、鼻腔、非口服(例如肌肉內、靜脈內、動脈內、皮下、腹腔內、大腦內、腦室內或脊椎內注射)、局部或經黏膜等投予路徑。In step (d), the subject is administered the iENP cells of step (b), or the stellate cells, oligodendrocytes or neurons induced in step (c). Depending on the particular therapeutic effect, the cells can be administered to the subject by any suitable route; for example, enteral, buccal, nasal, non-oral (eg intramuscular, intravenous, intraarterial, subcutaneous, intraperitoneal) , intracerebral, intraventricular or intraspinal injection), local or transmucosal and other routes of administration.

本揭示內容亦包含由本發明套組(即6TF、7TF、13TF、15TF或25TF)誘發轉化的細胞,包含iENP細胞、星狀細胞、寡樹突細胞及神經元。依據本揭示內容某些實施方式,本發明iENP細胞可分化為星狀細胞、寡樹突細胞及/或神經元,其中該神經元可以是一中樞神經系統神經元或是一周邊神經系統神經元。該經誘發轉化的細胞可用以治療神經性疾病。依據本揭示內容某些實施方式,可對一罹患或疑似罹患神經性疾病之個體投予該經誘發轉化的iENP細胞;在該些實施方式中,該經誘發轉化的iENP細胞會整合至該個體之中樞神經系統或周邊神經系統中,且分化為星狀細胞、寡樹突細胞及神經元(可以是中樞神經系統神經元或周邊神經系統神經元)。The disclosure also encompasses cells that are transformed by the kits of the invention (ie, 6TF, 7TF, 13TF, 15TF or 25TF), including iENP cells, stellate cells, oligodendrocytes, and neurons. According to some embodiments of the present disclosure, the iENP cells of the present invention can be differentiated into stellate cells, oligodendrocytes, and/or neurons, wherein the neurons can be a central nervous system neuron or a peripheral nervous system neuron. . The transformed cells can be used to treat neurological diseases. According to certain embodiments of the present disclosure, the transformed iENP cells can be administered to an individual suffering from or suspected of having a neurological disorder; in these embodiments, the transformed iENP cells are integrated into the individual. In the central nervous system or peripheral nervous system, and differentiate into stellate cells, oligodendrocytes, and neurons (which may be central nervous system neurons or peripheral nervous system neurons).

一般來說,該神經性疾病可以由物理性傷害、發炎、老化或基因突變所造成。較佳地,該神經性疾病是一神經發育性疾病、一神經退化性疾病或一運動神經元疾病。可利用本發明方法及/或細胞治療的神經發育性疾病包含,但不限於,泛自閉症障礙、胎兒酒精症候群、唐氏症、注意力不足過動症、門德爾森症候群、精神分裂症(schizophrenia)及易脆X染色體症候群。神經退化性疾病包含,但不限於,阿茲海默症、帕金森氏症、亨汀頓氏舞蹈症、額顳葉失智症、福萊德瑞克氏運動失調症、年齡相關性黃斑部退化及庫賈氏症。例示性之運動神經元疾病包含,但不限於,肌肉萎縮性脊髓側索硬化症、原發性側索硬化症、脊髓肌萎縮症、進行性肌萎縮、進行性延髓麻痺、假性延髓麻痺、遺傳性痙攣性截癱、庫格勃-韋蘭德症候群、盧賈里格症、杜氏癱瘓、沃尼克-霍夫曼症及良性灶性肌萎縮。Generally, the neurological disease can be caused by physical injury, inflammation, aging or genetic mutation. Preferably, the neurological disease is a neurodevelopmental disease, a neurodegenerative disease or a motor neuron disease. Neurodevelopmental diseases that may be treated by the methods and/or cells of the invention include, but are not limited to, autism spectrum disorders, fetal alcohol syndrome, Down's syndrome, attention deficit hyperactivity disorder, Mendelssler syndrome, schizophrenia (schizophrenia) and fragile X chromosome syndrome. Neurodegenerative diseases include, but are not limited to, Alzheimer's disease, Parkinson's disease, Huntington's disease, frontotemporal dementia, Friedrich's movement disorder, age-related macular Degeneration and CJD. Exemplary motor neuron diseases include, but are not limited to, amyotrophic lateral sclerosis, primary lateral sclerosis, spinal muscular atrophy, progressive muscular atrophy, progressive bulbar palsy, pseudobulbar paralysis, Hereditary spastic paraplegia, KGB-Weland syndrome, Lujarig's disease, Duchenne, Wornick-Hoffman's disease and benign focal muscle atrophy.

下文提出多個實驗例來說明本發明的某些態樣,以利本發明所屬技術領域中具有通常知識者實作本發明,且不應將這些實驗例視為對本發明範圍的限制。據信習知技藝者在閱讀了此處提出的說明後,可在不需過度解讀的情形下,完整利用並實踐本發明。此處所引用的所有公開文獻,其全文皆視為本說明書的一部分。實施例 In the following, a plurality of experimental examples are set forth to illustrate certain aspects of the present invention, and the present invention is not limited by the scope of the present invention. It is believed that the skilled artisan, after reading the description set forth herein, may fully utilize and practice the invention without undue interpretation. All publications cited herein are hereby incorporated by reference in their entirety. Example

材料及方法Materials and methods

製備preparation iENPiENP

FOXG1 GATA3 MBD2 MYCN (皆源自transOMIC technologies)、SOX2 (FUW-teto-SOX2; Addgene)、CBX2 DACH1 DEPDC1 HES1 ID1 LHX2 MYEF2 NR2F2 NR6A1 OTX2a PAX6a SALL2 SIX3 SOX1 SOX11 TFAP2A ZFP42 ZIC2 ZIC3ZNF423 (皆取自源自人類ESC H9之神經先驅細胞的cDNA)的編碼序列來建構包含候選神經轉錄因子的載體。將編碼序列轉殖於FUW或FUW-teto載體,以進行後續實驗。將1.3kb PAX6 P1啟動子及1kb SOX1啟動子分別轉殖至FUW載體,以建構PAX6:EGFP 及SOX1:EGFP ;在本實驗中,是以UbC:EGFP 作為對照組。依據標準製備流程,利用攜帶候選轉錄因子的慢病毒顆粒及293FT細胞來製備iENP。以攜帶候選轉錄因子或報導基因的慢病毒感染CCD112SK包皮纖維母細胞、分離自一女性病患及一男性病患(二者皆具有431 CAG 重複的HTT)的HD纖維母細胞,以及分離自AD病患(具有APOE4/E4突變的AD1,具有PSEN1 E184D突變的AD2,及具有PSEN1 P264L 突變的AD3,皆取自Coriell細胞庫)的AD纖維母細胞 ,之後將細胞培養於纖維母細胞培養液(包含10%胎牛血清之DMEM)。感染一天後,將細胞培養液置換為神經誘發培養液(包含N2補體、每毫升20微克之bFGF、1% NEAA、2mM麩醯胺酸、1 mM丙酮酸鈉(Invitrogen)、每毫升2微克之去氧羥四環素(Sigma)、每毫升10奈克之LIF (Invitrogen)、3 µM CHIR99021 (Sigma)及2µM SB431542 (R&D)的DMEM/F12);每2天置換一次培養液。在投予小分子處理時,是將10 µM RepSox、0.1 µM DZNep、0.1 nM PP242 (Selleckchem)或每毫升50微克之維生素C (Sigma)加入神經誘發培養液中。誘發一週後,以BD FASCAriaII分類器純化會表現GFP的細胞,將其種植於以基質膠(matrigel)塗佈之細胞培養盤後,加入包含每毫升2微克去氧羥四環素之iENP培養液(N2B27:50% DMEM/F12、50% Neurobasal, 0.5倍之N2補體、0.5倍之B27補體、每毫升10微克之bFGF、1% NEAA、2mM麩醯胺酸、1 mM丙酮酸鈉、每毫升 10奈克之LIF (Invitrogen)、3 µM CHIR99021 (Sigma)及2 µM SB431542 (R&D))(第1B圖)。2或3天後,細胞會自發性地形成類神經球狀結構。收集類神經球狀結構,並以胰蛋白酶使其分散為單一細胞後,種植於以鳥胺酸-層連結蛋白(ornithine-laminin)塗佈之細胞培養盤,加入包含每毫升2微克去氧羥四環素之iENP培養液。以二種參數來評估iENP的製備功效:於慢病毒感染6天後,由PAX6:EGFP 或SOX1:EGFP 驅動之會表現GFP的細胞百分比,以及純化2天後,神經球形成的百分比。培養2到3代後,將去氧羥四環素由培養液中移除,每7天傳代培養一次。以不含去氧羥四環素之培養液培養2代後,以RT-PCR分析檢測iENP中神經基因、內源性神經基因及外源性基因的表現,利用PCR分析檢測外源性基因的插入,以及藉由ICC分析來檢測神經基因的表現。By FOXG1 , GATA3 , MBD2 , MYCN (both from transOMIC technologies), SOX2 (FUW-teto-SOX2; Addgene), CBX2 , DACH1 , DEPDC1 , HES1 , ID1 , LHX2 , MYEF2 , NR2F2 , NR6A1 , OTX2a , PAX6a , SALL2 The coding sequences of SIX3 , SOX1 , SOX11 , TFAP2A , ZFP42 , ZIC2 , ZIC3 and ZNF423 (all taken from the cDNA of neural precursor cells derived from human ESC H9) construct a vector containing a candidate neural transcription factor. The coding sequence was transferred to a FUW or FUW-teto vector for subsequent experiments. The 1.3 kb PAX6 P1 promoter and the 1 kb SOX1 promoter were separately transferred to the FUW vector to construct PAX6: EGFP and SOX1: EGFP ; in this experiment, UbC: EGFP was used as a control group. iENP was prepared using lentiviral particles carrying the candidate transcription factors and 293FT cells according to standard preparation procedures. HD fibroblasts infected with CCD112SK foreskin fibroblasts with a lentivirus carrying a candidate transcription factor or reporter gene, isolated from a female patient and a male patient (both with 431 CAG repeat HTT), and isolated from AD The patient (AD1 with APOE4/E4 mutation, AD2 with PSEN1 E184D mutation, and AD3 with PSEN1 P264L mutation, all from the Coriell cell bank) AD fibroblasts, and then cultured the cells in fibroblast culture medium ( DMEM containing 10% fetal bovine serum). One day after infection, the cell culture medium was replaced with a neuro-inducible culture medium (containing N2 complement, 20 μg of bFGF per ml, 1% NEAA, 2 mM glutamic acid, 1 mM sodium pyruvate (Invitrogen), 2 μg per ml) Deoxytetracycline (Sigma), 10 ng of LIF (Invitrogen), 3 μM CHIR99021 (Sigma), and 2 μM SB431542 (R&D) DMEM/F12); the culture was replaced every 2 days. In the administration of small molecule treatment, 10 μM RepSox, 0.1 μM DZNep, 0.1 nM PP242 (Selleckchem) or 50 μg of vitamin C (Sigma) per ml was added to the nerve-inducing medium. One week after induction, cells expressing GFP were purified by BD FASCAria II classifier, planted in matrigel-coated cell culture plates, and iENP medium containing 2 μg of deoxytetracycline per ml (N2B27) was added. : 50% DMEM/F12, 50% Neurobasal, 0.5-fold N2 complement, 0.5-fold B27 complement, 10 μg bFGF per ml, 1% NEAA, 2 mM glutamic acid, 1 mM sodium pyruvate, 10 μL per ml LIF (Invitrogen), 3 μM CHIR99021 (Sigma) and 2 μM SB431542 (R&D)) (Fig. 1B). After 2 or 3 days, the cells spontaneously form a neurogenic globular structure. The neurosphere-like structure was collected and dispersed into single cells by trypsin, and then planted in a cell culture plate coated with ornithine-laminin, and added with 2 μg of deoxyhydroxyl per ml. Tetracycline iENP medium. The efficacy of iENP preparation was evaluated by two parameters: the percentage of cells that exhibited GFP driven by PAX6: EGFP or SOX1: EGFP after 6 days of lentiviral infection, and the percentage of neurosphere formation after 2 days of purification. After 2 to 3 passages of culture, deoxytetracycline was removed from the culture solution and subcultured every 7 days. After cultured in a culture medium containing no deoxytetracycline for 2 generations, RT-PCR analysis was performed to detect the expression of nerve genes, endogenous nerve genes and exogenous genes in iENP, and PCR analysis was used to detect the insertion of exogenous genes. And detecting the expression of neural genes by ICC analysis.

分化及藥物測試Differentiation and drug testing

以分化培養液(Neurobasal、B27補體、1% NEAA、2 mM麩醯胺酸、1mM丙酮酸鈉、(Invitrogen)、每毫升300微克之dbcAMP、50µM 抗壞血酸(Sigma)、每毫升20奈克之BDNF、每毫升20奈克之GDNF、每毫升50奈克之NGF (Peprotech))來檢測一般神經分化,而以皮質神經分化培養液、多巴胺神經分化培養液及周邊神經系統神經分化培養液(皮質神經分化培養液:Neurobasal, N2補體、B27補體(Invitrogen)、每毫升100奈克之SHH、每毫升125奈克之Noggin、每毫升250奈克之DKK1、每毫升10奈克之BDNF、每毫升10奈克之bFGF (R&D)、2 µM XAV939、100 nM LDN93189、10 µM SB431542、200µM抗壞血酸、200 µM dbcAMP (Sigma);多巴胺神經分化培養液:DMEM/F12、N2補體(Invitrogen)、每毫升20奈克之BDNF、每毫升200奈克之SHH、每毫升100奈克之FGF8β (R&D)、200 µM抗壞血酸(Sigma);周邊神經系統神經分化培養液:DMEM/F12、N2補體(Invitrogen)、3 µM CHIR99021、10 µM SU5402、10 µM DAPT、200 µM dbcAMP)來檢測特定神經元的分化。在進行AD藥物測試時,是使AD及對照組的iENP進行皮質分化。分化7天後,對細胞投予SB415286、1-Azakenpaullone (Selleckchem)或DMSO (Sigma)處理2天。在進行HD實驗時,是誘發細胞分化後,如上述方法對其投予CGS21680處理。Differentiation medium (Neurobasal, B27 complement, 1% NEAA, 2 mM glutamic acid, 1 mM sodium pyruvate, (Invitrogen), 300 μg of dbcAMP per ml, 50 μM ascorbic acid (Sigma), 20 Ng of BDNF per ml, 20 Ng of GDNF per ml, 50 Ng of NGF (Peprotech) per ml to detect general neural differentiation, and cortical neural differentiation medium, dopamine nerve differentiation medium and peripheral nervous system neural differentiation medium (cortical neural differentiation medium) : Neurobasal, N2 complement, B27 complement (Invitrogen), SHH per 100 ng of SHH, Noggin of 125 ng per ml, DKK of 250 ng per ml, BDNF of 10 ng per ml, bFGF (R&D) of 10 ng per ml, 2 μM XAV939, 100 nM LDN93189, 10 μM SB431542, 200 μM ascorbic acid, 200 μM dbcAMP (Sigma); Dopamine neural differentiation medium: DMEM/F12, N2 complement (Invitrogen), 20 Ng of BDNF per ml, 200 Ng per ml SHH, 100 ng of FGF8β (R&D) per ml, 200 μM ascorbic acid (Sigma); peripheral nervous system neural differentiation medium: DMEM/F12, N2 complement (Invitrogen), 3 μM CHIR99021, 10 μM S U5402, 10 μM DAPT, 200 μM dbcAMP) to detect differentiation of specific neurons. In the AD drug test, the iENP of AD and the control group were subjected to cortical differentiation. Seven days after the differentiation, the cells were administered with SB415286, 1-Azakenpaullone (Selleckchem) or DMSO (Sigma) for 2 days. In the HD experiment, after cell differentiation was induced, CGS21680 was administered as described above.

測量measuring

將AD-iENP及CCD1112sk (CTL)-iENP種植於24孔洞盤(每孔洞8x105 個細胞)中,誘發使其分化為皮質神經元。20天後收集培養液,並儲存於-80°C中,以待後續分析使用。以Aβ42及40人類ELISA套組(KHB3544 and KHB3482, Thermo Fisher Scientific)及Benchmark plus微盤分光光度計(BIO-RAD)來測量分泌的Aβ42及40。各數據皆為三次獨立實驗分析結果。AD-iENP and CCD1112sk (CTL)-iENP were seeded in 24-well plates (8x10 5 cells per well) and induced to differentiate into cortical neurons. The culture broth was collected after 20 days and stored at -80 °C for later analysis. Secreted Aβ42 and 40 were measured using Aβ42 and 40 human ELISA kits (KHB3544 and KHB3482, Thermo Fisher Scientific) and Benchmark plus microplate spectrophotometer (BIO-RAD). Each data is the result of three independent experiments.

電生理分析Electrophysiological analysis

記錄電生理分析結果時,是將源自iENP的神經元與小鼠神經膠細胞共同培養於神經成熟培養液(B27:Neurobasal、B27補體、1% NEAA、2 mM麩醯胺酸、1 mM丙酮酸鈉(Invitrogen)、每毫升20奈克之BDNF、每毫升20奈克之GDNF、每毫升50奈克之NGF (Peprotech))中,培養2週。由P1 ICR小鼠腦部分離小鼠神經膠細胞,並將其培養超過3代以去除神經元,避免影響後續實驗;分別利用RT-PCR分析及ICC分析來檢測小鼠 Tuj1 mRNA及蛋白的表現量,以確認該結果。以外部溶液(115 mM NaCl、2 mM KCl、10mM HEPES、1.5mM MgCl2 、3mM CaCl2 、10mM葡萄糖;pH 7.4;300 mOsm)於室溫利用全細胞膜片箝制記錄來決定電生理特性;該膜片吸量管為5-10 MΩ,並填充有內部溶液(130 mM K-葡萄糖酸鹽、10 mM NaCl、2 mM MgCl2 、10 mM HEPES、0.5 mM EGTA、3 mM ATP)填充。外部溶液中的TTX (1µM)可用以阻斷TTX-敏感性鈉通道。整個細胞模組的密封電阻超過1GΩ。以20倍之Olympus BX51WI、水浸鏡頭及Sony CCD來觀察細胞;以全細胞電流箝制模組來記錄動作電位;且利用Signal軟體及Power 1401 (CED)控制之Multiclamp 700B (Molecular Devices)以電壓箝制模組來記錄鈉電流。以微軟Excel 2010來分析結果。When the electrophysiological analysis results were recorded, neurons derived from iENP were co-cultured with mouse glial cells in neural maturation medium (B27: Neurobasal, B27 complement, 1% NEAA, 2 mM branic acid, 1 mM acetone). Sodium (Invitrogen), 20 ng of BDNF per ml, 20 ng of GDNF per ml, and 50 ng of NGF (Peprotech) per ml were cultured for 2 weeks. Mouse glial cells were isolated from the brain of P1 ICR mice and cultured for more than 3 generations to remove neurons, avoiding subsequent experiments; RT-PCR analysis and ICC analysis were used to detect the expression of Tuj1 mRNA and protein in mice. Quantity to confirm the result. Electrophysiological properties were determined by external cell patch clamp recording at room temperature with an external solution (115 mM NaCl, 2 mM KCl, 10 mM HEPES, 1.5 mM MgCl 2 , 3 mM CaCl 2 , 10 mOsm); The tubette was 5-10 MΩ and was filled with an internal solution (130 mM K-gluconate, 10 mM NaCl, 2 mM MgCl 2 , 10 mM HEPES, 0.5 mM EGTA, 3 mM ATP). TTX (1 μM) in the external solution can be used to block the TTX-sensitive sodium channel. The sealing resistance of the entire cell module exceeds 1 GΩ. The cells were observed with 20 times Olympus BX51WI, water immersion lens and Sony CCD; the whole cell current clamp module was used to record the action potential; and the voltage was clamped with Signal software and Power 1401 (CED) controlled Multiclamp 700B (Molecular Devices). Module to record sodium current. Analyze the results with Microsoft Excel 2010.

反轉錄聚合酵素鏈反應Reverse transcription polymerase chain reaction (Reverse transcription-polymerase chain reaction, RT-PCR)(Reverse transcription-polymerase chain reaction, RT-PCR)

依據標準萃取流程(Molecular Research Center),利用TRIzol試劑來萃取RNA。以SuperScript III反轉錄酶(Invitrogen)將萃出的RNA反轉錄為cDNA。各PCR皆使用25奈克之cDNA。利用GoTaq Green Master Mix (Promega)進行RT-PCR分析。以SYBR® FAST 2倍qRT-PCR Master Mix (KAPA)及7900HT Fast Real-Time PCR系統(Applied Biosystems)進行定量PCR分析.RNA was extracted using TRIzol reagent according to the standard extraction procedure (Molecular Research Center). The extracted RNA was reverse transcribed into cDNA using SuperScript III reverse transcriptase (Invitrogen). 25 ng of cDNA was used for each PCR. RT-PCR analysis was performed using GoTaq Green Master Mix (Promega). Quantitative PCR analysis was performed with SYBR ® FAST 2x qRT-PCR Master Mix (KAPA) and 7900HT Fast Real-Time PCR System (Applied Biosystems).

流式細胞儀分析Flow cytometry analysis

為評估會表現GFP之細胞百分比,分離細胞並將其再懸浮於PBS中。利用BD FACSCalibur流式細胞儀來記錄及分析結果。以對照組標準化各組之比例來決定移除單一因子所造成的影響。To assess the percentage of cells that would show GFP, cells were detached and resuspended in PBS. The results were recorded and analyzed using a BD FACSCalibur flow cytometer. The effect of removing a single factor was determined by the proportion of each group normalized in the control group.

免疫細胞化學Immunocytochemistry (immunocytochemical, ICC)(immunocytochemical, ICC) 及免疫組織化學Immunohistochemistry (immnohistochemical, IHC)(immnohistochemical, IHC) 分析analysis

以前述方法進行ICC分析。在對移植大鼠腦部進行IHC分析時,是利用20%之溶於PBS的蔗糖使檢體脫水後,將其包埋於O.C.T.化合物(Tissue-Tek)中。以Leica CM3050S Sliding Microtome連續切片,每片組織切片的厚度為12微米。利用4%三聚甲醛於室溫固定組織切片30分鐘,再以冰甲醇處理30分鐘。利用表1所列之一級及二級抗體染色分析。以Zeiss顯微鏡及Spot軟體記錄細胞表現訊息。 表1 抗體 一級抗體 二級抗體 ICC analysis was performed in the aforementioned manner. In the IHC analysis of the brain of the transplanted rat, the sample was dehydrated by using 20% sucrose in PBS, and then embedded in an OCT compound (Tissue-Tek). The sections were serially sectioned with a Leica CM3050S Sliding Microtome and each tissue section was 12 microns thick. Tissue sections were fixed with 4% paraformaldehyde for 30 minutes at room temperature and treated with ice methanol for 30 minutes. Analysis was performed using one of the primary and secondary antibody staining listed in Table 1. Cell performance messages were recorded using a Zeiss microscope and a Spot software. Table 1 Antibody primary antibody Secondary antibody

動物實驗Animal experiment

對Long-Evans大鼠(7-8週大)進行右側中大腦動脈梗塞(middle cerebral artery occlusion, MCAO)及總頸動脈閉塞(common carotid artery occlusion, CCA occlusion)手術,使其處於缺血狀態30分鐘,接著將50,000個未分化之iENP-6F及iENP-7F細胞注射大鼠大腦(A/P:0.3公分,M/L:-2.0公分,D/V:-2.8公分,T/B:-3.0公分)。12週後,犠牲大鼠,並以溶於0.1M PB緩衝液之4%三聚甲醛進行固定,之後分離其腦組織。本揭示內容所有的動物實驗皆經中央研究院之動物照護及使用委員會許可,且依據其操作標準來進行相關實驗。Long-Evans rats (7-8 weeks old) underwent middle cerebral artery occlusion (MCAO) and common carotid artery occlusion (CCA occlusion) surgery, making them in an ischemic state 30 Minutes, then 50,000 undifferentiated iENP-6F and iENP-7F cells were injected into the rat brain (A/P: 0.3 cm, M/L: -2.0 cm, D/V: -2.8 cm, T/B:- 3.0 cm). After 12 weeks, the rats were sacrificed and fixed with 4% paraformaldehyde dissolved in 0.1 M PB buffer, after which the brain tissue was isolated. All animal experiments in this disclosure are approved by the Animal Care and Use Committee of the Academia Sinica and relevant experiments are performed in accordance with their operational standards.

分析細胞增生及死亡Analysis of cell proliferation and death

將iENP-6F、iENP-7F、NP及GFP對照組細胞種植於24孔洞盤中,並以不含去氧羥四環素的iENP培養液進行培養。於第1、2、3、4及5天計算細胞數量。將結果表示為相對於第1 天細胞數量的相對量。依據標準操作流程,利用BrdU (93-3943, Thermo Fisher Scientific)及TUNEL (G3250, Promega)試驗分析細胞數量。以Zeiss顯微鏡及Spot軟體來觀察影響,並以Metamorph軟體進行分析。The iENP-6F, iENP-7F, NP and GFP control cells were seeded in 24-well plates and cultured in iENP culture medium without deoxytetracycline. The number of cells was counted on days 1, 2, 3, 4 and 5. The results are expressed as relative amounts relative to the number of cells on day 1. Cell numbers were analyzed using BrdU (93-3943, Thermo Fisher Scientific) and TUNEL (G3250, Promega) assays according to standard protocols. The effects were observed with a Zeiss microscope and Spot software and analyzed with Metamorph software.

微陣列分析Microarray analysis

利用TRIzol試劑(Invitrogen)萃取真皮纖維母細胞、CCD112SK包皮纖維母細胞、源自人類ESC H9之神經先驅細胞、iENP-6F、iENP-7F、iENP-15F及iENP-13F之總RNA。每種細胞種類皆進行二次獨立分析。由台灣中央研究院之Affymetrix基因表達分析服務實驗室(Affymetrix Gene Expression Service Laboratory)分析所有基因表現結果。以Affymetrix GeneChip Scanner 7G掃描晶片,且以GeneSpring X軟體(Agilent, Santa Clara, CA, USA)分析數據。使用Robust Multichip Average對各次實驗數據獨立進行標準化分析。以Genespring軟體及Ingenuity Pathway Analysis軟體分析基因表現圖譜。本揭示內容之微陣列數據的NCBI登錄號為GSE81554。Total RNA of dermal fibroblasts, CCD112SK foreskin fibroblasts, neural precursor cells derived from human ESC H9, iENP-6F, iENP-7F, iENP-15F and iENP-13F were extracted using TRIzol reagent (Invitrogen). Each cell type was subjected to a second independent analysis. All gene expression results were analyzed by the Affymetrix Gene Expression Service Laboratory of the Academia Sinica. Wafers were scanned with Affymetrix GeneChip Scanner 7G and analyzed with GeneSpring X software (Agilent, Santa Clara, CA, USA). Standardized analysis was performed independently for each experimental data using Robust Multichip Average. Gene expression profiles were analyzed using Genespring software and Ingenuity Pathway Analysis software. The NCBI accession number for the microarray data of the present disclosure is GSE81554.

實施例Example 11 誘發人類纖維母細胞轉化為Inducing the conversion of human fibroblasts into iENPiENP

1.11.1 篩選轉錄因子Screening transcription factor

為篩選可製備iENP之潛力轉錄因子,本研究先利用微陣列分析來比對多種人類 ESC-ENP及纖維母細胞群的基因表現圖譜(第1A圖之圖a)。挑選24個轉錄因子,其於人類 ESC-ENP的表現量會高於纖維母細胞之表現量(第1圖之圖b)。亦挑選會影響神經分化的NR2F2 。基於hESC-ENP 轉錄因子會高度表現於源自人類ESC之異質(heterogeneous) ENP細胞群中,該25種hESC-ENP 轉錄因子的組合(25 TF)可能可誘發纖維母細胞分化為不同類型之ENP。已知PAX6SOX1 皆可於hESC-ENP 中進行表現,本研究建立了二種報導系統(PAX6:EGFPSOX1:EGFP ),藉以檢測神經細胞的轉化及評估ENP的誘發功效。第8A及8B圖之結果確認了該些報導子可於hESC-ENP 中表現。To screen for potential transcription factors that can be used to prepare iENP, this study first used microarray analysis to compare gene expression profiles of various human ESC-ENP and fibroblast populations (Fig. 1A, panel a). Twenty-four transcription factors were selected, which exhibited higher levels of expression in human ESC-ENP than in fibroblasts (Fig. 1 panel b). NR2F2, which affects neural differentiation, is also selected. The hESC-ENP-based transcription factor is highly expressed in a heterogeneous ENP cell population derived from human ESCs, and the combination of 25 hESC-ENP transcription factors (25 TF) may induce fibroblast differentiation into different types of ENP. . Both PAX6 and SOX1 are known to be expressed in hESC-ENP. Two reporter systems ( PAX6: EGFP and SOX1: EGFP ) were established to detect neuronal transformation and evaluate the eliciting effect of ENP. The results of Figures 8A and 8B confirm that these reporters can behave in hESC-ENP.

為建立iENP,接著以可分別編碼上述25種轉錄因子之慢病毒與神經報導子(即PAX6:EGFPSOX1:EGFP )共同感染纖維母細胞(第1B圖)。經慢病毒感染約6天後,可觀察到呈現圓形外觀的PAX6:EGFP + 細胞,而在以UbC:EGFP 感染之對照組纖維母細胞中則未觀察到任何外觀變化(第1C圖)。於以25種轉錄因子及SOX1:EGFP 感染之纖維母細胞亦可觀察到相似的結果(第1C圖)。PAX6:EGFP +SOX1:EGFP + 的細胞比例分別為5.31±0.38%及6.31±0.45% (第2D及4D圖)。利用FACS純化並培養PAX6:EGFP +SOX1:EGFP + 細胞後(第1B圖),經純化的細胞會於重新重植的第2天起,自發性地形成類神經球狀結構(第1C圖),而於對照組細胞則不會觀察到任何的類神經球狀結構(第1C圖)。接著利用不同分析方法來確認以25種轉錄因子製備之假定iENP (iENP-25F)的相關特性。利用ICC及RT-PCR分析可發現,PAX6:EGFP -及SOX1 :EGFP -iENP-25F會表現一般性的神經標誌(例如巢蛋白、OTX2及ZO1,第1D圖),以及神經基因(第1E圖)。To establish iENP, fibroblasts were subsequently co-infected with a lentivirus that encodes the above 25 transcription factors and a neural reporter (ie, PAX6: EGFP or SOX1: EGFP ) (Fig. 1B). After about 6 days of infection with lentivirus, PAX6:EGFP + cells with a rounded appearance were observed, while no change in appearance was observed in control fibroblasts infected with UbC:EGFP (Fig. 1C). Similar results were observed for fibroblasts infected with 25 transcription factors and SOX1:EGFP (Fig. 1C). The cell proportions of PAX6:EGFP + and SOX1:EGFP + were 5.31±0.38% and 6.31±0.45%, respectively (Fig. 2D and 4D). After purification and culture of PAX6:EGFP + or SOX1:EGFP + cells by FACS (Fig. 1B), the purified cells will spontaneously form neuron-like structures on the 2nd day after re-replantation (Fig. 1C) However, no neurogenic globular structure was observed in the control cells (Fig. 1C). Different analytical methods were then used to confirm the relevant properties of the putative iENP (iENP-25F) prepared with 25 transcription factors. Using ICC and RT-PCR analysis, it was found that PAX6:EGFP- and SOX1 : EGFP- iENP-25F exhibited general neuromarkers (eg, nestin, OTX2 and ZO1, Figure 1D), and neural genes (Fig. 1E). ).

為減少製備iENP所需的轉錄因子數量(第2A及4A圖),每次由25種轉錄因子中移除特定一種轉錄因子,並以剩餘的24種轉錄因子與PAX6:EGFPSOX1:EGFP 報導子共同感染纖維母細胞,藉以二步驟篩選誘發iENP產生的轉錄因子。之後利用流式細胞分析來評估被移除之轉錄因子對誘發PAX6:EGFP +SOX1:EGFP + 細胞產生的影響(第2B及4B圖)。據此確認了15種轉錄因子(CBX2 DACH1 FOXG1 HES1 ID1 MYCN NR2F2 NR6A1 SOX2 SOX11 TFAP2A ZFP42 ZIC2 ZIC3 ZNF423 )及13種轉錄因子(CBX2 FOXG1 GATA3 HES1 LHX2 NR2F2 NR6A1 PAX6 SALL2 SOX11 TFAP2A ZFP42 ZIC2 );相較於由25種轉錄因子所誘發產生的細胞數量,移除該些轉錄因子會顯著降低PAX6:EGFPSOX1:EGFP + 細胞的產生(第2B及4B圖)。為決定是否可利用較少量之轉錄因子組合來誘發纖維母細胞轉化為iENP,在以去氧羥四環素誘發之表現系統中,利用可編碼經篩選之15或13種轉錄因子(15 TF或13 TF)的慢病毒感染纖維母細胞。利用FACS純化PAX6:EGFP+ SOX1:EGFP+ 細胞後,結果證實與iENP-25F相似地,iENP-15F及iENP-13F亦可自發性地形成類神經球狀結構;ICC及RT-PCR分析顯示,該些細胞皆會表現神經標誌及基因(第9A-9B圖)。由PCR及RT-PCR分析結果可知,外源性轉殖基因會整合至基因體DNA中,且在移除去氧羥四環素後,可活化內源性ENP基因的表現(第9C-9D圖)。進一步的微陣列結果顯示,相較於原生纖維母細胞,iENP-15F及iENP-13F的基因表現圖譜會與hESC-ENP 更為相似(第2E及4E圖)。更重要的是,iENP-15F及-13F的活體外分化證實了其可自發性地產生TUJ1+ 神經元、GFAP+ 星狀細胞及GALC+ 寡樹突細胞(第9E圖)。該些結果指出,iENP-15F及iENP-13F具有NP的一般性特性,且可形成人類神經系統之主要組成成分。To reduce the number of transcription factors required for the preparation of iENP (Figures 2A and 4A), each transcription factor was removed from each of the 25 transcription factors and reported with the remaining 24 transcription factors and PAX6:EGFP or SOX1:EGFP The daughter is co-infected with fibroblasts, and the transcription factor that induces iENP production is screened in two steps. Flow cytometry was then used to assess the effect of the removed transcription factors on the induction of PAX6:EGFP + or SOX1:EGFP + cells (Figures 2B and 4B). Based on this, 15 transcription factors ( CBX2 , DACH1 , FOXG1 , HES1 , ID1 , MYCN , NR2F2 , NR6A1 , SOX2 , SOX11 , TFAP2A , ZFP42 , ZIC2 , ZIC3 , ZNF423 ) and 13 transcription factors ( CBX2 , FOXG1 , GATA3) were identified . , HES1 , LHX2 , NR2F2 , NR6A1 , PAX6 , SALL2 , SOX11 , TFAP2A , ZFP42 , ZIC2 ); removal of these transcription factors significantly reduces PAX6:EGFP or compared to the number of cells induced by 25 transcription factors SOX1: production of EGFP + cells (Figs. 2B and 4B). To determine whether a smaller amount of a combination of transcription factors can be used to induce the conversion of fibroblasts to iENP, in a deoxytetracycline-inducible expression system, 15 or 13 transcription factors (15 TF or 13) that can be screened can be encoded. TF) lentivirus infects fibroblasts. After purification of PAX6:EGFP + or SOX1:EGFP + cells by FACS, it was confirmed that similar to iENP-25F, iENP-15F and iENP-13F could spontaneously form neuron-like structures; ICC and RT-PCR analysis showed These cells all express neuromarkers and genes (Fig. 9A-9B). From the results of PCR and RT-PCR analysis, it was revealed that the exogenous transgenic gene was integrated into the genomic DNA, and the expression of the endogenous ENP gene was activated after removal of deoxytetracycline (Fig. 9C-9D). . Further microarray results showed that the gene expression profiles of iENP-15F and iENP-13F were more similar to hESC-ENP than the native fibroblasts (Figs. 2E and 4E). More importantly, in vitro differentiation of iENP-15F and -13F confirmed that it spontaneously produced TUJ1 + neurons, GFAP + stellate cells, and GALC + oligodendrocytes (Fig. 9E). These results indicate that iENP-15F and iENP-13F have the general characteristics of NP and can form the main components of the human nervous system.

為確定製備iENP時所需的最少轉錄因子數量,接著再進行另一輪的轉錄因子篩選(與上述流程相似之步驟),以挑選出最具潛力之誘發iENP生成的轉錄因子(第2C及4C圖)。在第二輪轉錄因子篩選後,研究發現分別由15 TF及13 TF組合中移除CBX2 HES1 ID1 TFAP2A ZFP42ZNF423 (6F)及FOXG1 GATA3 NR2A2 PAX6 SALL2 TFAP2AZFP42 (7F)會顯著降低PAX6:EGFP +SOX1:EGFP + 細胞的產生(第2C及4C圖)。在以上述6 TF或7 TF感染後,可經由FACS純化10.54±0.47%之PAX6:EGFP + 細胞及11.22±0.44%之SOX1:EGFP + 細胞(第2D及4D)。與iENP-25F、-15F及-13F之結果相似(第1C及9A圖),由FACS分離之iENP-6F及iENP-7F亦可自發性地形成類神經球狀結構(第2F及4F圖)。值得注意的是,由6-或7-TF組合中移除任一種因子,皆會顯著影響PAX6:EGFP +SOX1:EGFP + 細胞的產生(第11A-11B圖),以及類神經球狀結構的形成(第11C圖)。整體來看,該些結果指出在6-及7-TF組合中,各轉錄因子對iENP生成皆扮演著關鍵性的角色。此外,PCR分析確認了iENP-6F及iENP-7F基因體DNA中外源性轉殖基因的整合(第9C圖);而RT-PCR分析則顯示了移除去氧羥四環素可完全抑制iENP-6F及-7F外源性轉殖基因的表現,並活化對應之內源性基因的表現(第2G及4G圖)。以GeneSpring軟體分析之基因表現結果顯示,相較於其原生纖維母細胞,iENP-6F及-7F的基因表現圖譜會與hESC-ENP 表現更為相近(第2E及4E圖),ICC及RT-PCR分析同樣指出,該些細胞會表現ENP的標誌及基因(第2F、2H、4F及4H圖)。另外,iENP-6F及-7F在傳代培養超過20代後依然能維持正常核型(karyotype,第9A圖),且經冷凍及解凍處理後,可進一步增生而不會喪失其NP特性。整體來說,該些結果證實iENP-6F及-7F具有與hESC-ENP 相似之細胞形態及生化與分子特性。To determine the minimum number of transcription factors required to prepare iENP, another round of transcription factor screening (steps similar to those described above) was performed to select the most promising transcription factors for iENP production (2C and 4C). ). After the second round of transcription factor screening, the study found that CBX2 , HES1 , ID1 , TFAP2A , ZFP42 or ZNF423 (6F) and FOXG1 , GATA3 , NR2A2 , PAX6 , SALL2 , TFAP2A or ZFP42 were removed from the 15 TF and 13 TF combinations , respectively . (7F) significantly reduced the production of PAX6:EGFP + or SOX1:EGFP + cells (Fig. 2C and 4C). After infection with the above 6 TF or 7 TF, 10.54 ± 0.47% of PAX6: EGFP + cells and 11.22 ± 0.44% of SOX1: EGFP + cells (2D and 4D) were purified via FACS. Similar to the results of iENP-25F, -15F and -13F (Figures 1C and 9A), iENP-6F and iENP-7F isolated by FACS can also spontaneously form neurosphere-like structures (Fig. 2F and 4F). . It is worth noting that removal of either factor from the 6- or 7-TF combination significantly affects the production of PAX6:EGFP + or SOX1:EGFP + cells (Figures 11A-11B), as well as neuronal globular structures. Formation (Fig. 11C). Overall, these results indicate that in the 6- and 7-TF combinations, each transcription factor plays a key role in iENP production. In addition, PCR analysis confirmed the integration of exogenous transgenic genes in iENP-6F and iENP-7F gene DNA (Fig. 9C); RT-PCR analysis showed that removal of deoxytetracycline completely inhibited iENP-6F And the expression of the -7F exogenous transgenic gene, and activation of the corresponding endogenous gene performance (2G and 4G map). Gene expression analysis by GeneSpring software showed that the gene expression profiles of iENP-6F and -7F were more similar to those of hESC-ENP compared to their native fibroblasts (Figs. 2E and 4E), ICC and RT- PCR analysis also indicated that these cells exhibited the markers and genes of ENP (Figs. 2F, 2H, 4F and 4H). In addition, iENP-6F and -7F can maintain a normal karyotype (Fig. 9A) after subculture for more than 20 generations, and after being frozen and thawed, they can further proliferate without losing their NP characteristics. Overall, these results confirm that iENP-6F and -7F have similar cell morphology, biochemical and molecular properties to hESC-ENP.

1.21.2 小分子促進Small molecule promotion iENPiENP 的生成Generation

基於多項研究指出小分子可增加不同細胞系統之重整功效,本研究將探討小分子處理是否能進一步改善iENP的製備功效。本研究挑選了一系列包含TGF-β抑制劑、RepSox、細胞自噬活化劑、PP242、組蛋白甲基轉移酶抑制劑、DZNep、DNA去甲基活化劑及維生素C之候選小分子,已知該些小分子可促進多能性重整或細胞轉化。據此,在以可編碼6-或7-TF組合之病毒及PAX6:EGFP 或SOX1:EGFP 報導子感染纖維母細胞後,將該些小分子單獨或合併投予至細胞。利用FACS來分析會表現PAX6:EGFP 或SOX1:EGFP 的細胞,進而評估單一或多種小分子對iENP產生的影響(第12A及12B圖)。整體來說,該結果指出,投予RepSox或RepSox加上PP242可顯著改善iENP-6F或iENP-7F的製備功效(第12A及12B圖)。因此,該些結果證實小分子可增加轉錄因子的作用,誘發纖維母細胞轉化為iENP。Based on several studies indicating that small molecules can increase the reorganization efficiency of different cell systems, this study will explore whether small molecule treatment can further improve the efficacy of iENP preparation. This study selected a series of candidate small molecules including TGF-β inhibitors, RepSox, autophagy activators, PP242, histone methyltransferase inhibitors, DZNep, DNA demethyl activators and vitamin C. These small molecules can promote pluripotent reforming or cell transformation. Accordingly, after infection of the fibroblasts with a virus encoding a 6- or 7-TF combination and a PAX6: EGFP or SOX1: EGFP reporter, the small molecules are administered to the cells either alone or in combination. FACS was used to analyze cells that would exhibit PAX6: EGFP or SOX1: EGFP , and then to assess the effect of single or multiple small molecules on iENP production (Figures 12A and 12B). Overall, the results indicate that administration of RepSox or RepSox plus PP242 significantly improved the efficacy of preparation of iENP-6F or iENP-7F (Figures 12A and 12B). Therefore, these results confirm that small molecules can increase the role of transcription factors and induce the conversion of fibroblasts into iENP.

實施例Example 22 iENPiENP 的活體外多能性In vitro pluripotency

有鑑於功能性ENP可分化為星狀細胞、寡樹突細胞及神經元,本研究接著檢測iENP於活體外的分化能力(第3及5圖)。分化後2-3週後,在神經分化條件下,可於分化的iENP-6F (第3A-3D圖)及-7F細胞(第5A-5C圖)中,觀察到GFAP 及GALC 細胞及大量的類神經元細胞(具有髓突,且會表現MAP2、NEUN及TUJ1等神經元標誌)。值得注意的是,突觸標誌-突觸素(synaptophysin, SYP)亦會與成熟的神經元標誌-NFH共同表現(第3E圖)。此外,利用ICC來定量分析分化iENP中會表現TUJ1、GFAP及GALC的細胞比例,結果發現iENP-6F的神經分化能力與hESC-ENP 相似;而相較於hESC-ENP 及iENP-6F,iENP-15F則具有較弱之產生神經元的能力。該結果證實由15 TF組合中移除9種轉錄因子可進一步增加iENP-6F的神經元傾向(第3F圖)。iENP-6F及-15F的星狀細胞及寡樹突細胞分化能力皆顯著低於人類 ESC-ENP的星狀細胞及寡樹突細胞分化能力(第3F圖),其中相較於iENP-6F,iENP-15F具有較低之產生寡樹突細胞的能力(第3F圖)。另一方面,iENP-7F及-13F具有相似的神經分化能力,唯二者的神經分化能力皆低於hESC-ENP 的神經分化能力(第5D圖)。相較於hESC-ENP ,iENP-7F及-13F皆具有較低之產生星狀細胞及寡樹突細胞的能力(第5D圖)。Given that functional ENP can differentiate into stellate cells, oligodendrocytes, and neurons, this study then examined the ability of iENP to differentiate in vitro (Figures 3 and 5). 2-3 weeks after differentiation, GFAP + and GALC + cells can be observed in differentiated iENP-6F (Fig. 3A-3D) and -7F cells (Fig. 5A-5C) under conditions of neural differentiation. A large number of neuron-like cells (having medullary processes and exhibiting neuronal markers such as MAP2, NEUN, and TUJ1). It is worth noting that the synaptophysin (SYP) is also expressed together with the mature neuronal marker-NFH (Fig. 3E). In addition, ICC was used to quantitatively analyze the proportion of cells expressing TUJ1, GFAP and GALC in differentiated iENP. The results showed that the neuronal differentiation ability of iENP-6F was similar to that of hESC-ENP; whereas compared with hESC-ENP and iENP-6F, iENP- 15F has a weaker ability to produce neurons. This result demonstrates that removal of 9 transcription factors from the 15 TF combination further increases the neuronal propensity of iENP-6F (Fig. 3F). The differentiation ability of iENP-6F and -15F stellate cells and oligodendrocytes was significantly lower than that of human ESC-ENP stellate cells and oligodendrocytes (Fig. 3F), compared with iENP-6F. iENP-15F has a lower ability to produce oligodendrocytes (Fig. 3F). On the other hand, iENP-7F and -13F have similar neuronal differentiation capabilities, but their neural differentiation ability is lower than that of hESC-ENP (Fig. 5D). Both iENP-7F and -13F have lower ability to produce stellate cells and oligodendrocytes compared to hESC-ENP (Fig. 5D).

為決定iENP是否能分化為不同的神經元,接著利用不同的神經元標誌來檢測源自iENP-6F及-7F神經元細胞群(第3G-3M圖及第5E-5J圖)。 ICC 結果顯示,iENP-6F及-7F皆可產生不同的神經元亞型,包含GABA+ (第3G及5E圖)、TBR1+ 皮質神經元(第3H及5F圖)、TH+ 多巴胺神經元(第3I圖及5K-(a)圖)、HB9+ /ISL1+ 運動神經元(第3J、3K及5H圖)及BRN3A+ 、PRPH+ 或NAV1.7+ 周邊神經元(第3L、3M及5I-J圖)。基於可藉由外部刺激促使hESC-ENP 分化為特定神經元亞型,進一步檢測本研究之iENP是否亦能產生相似的反應。據此,以用以製備皮質、多巴胺及周邊神經元的分化條件處理iENP (第3N及5K圖)。利用抗TBR1、TH或PRPH抗體進行ICC分析,結果指出特定神經分化條件可顯著改善iENP產生代表性神經元亞型(皮質、多巴胺或周邊神經元)的能力(第3N及5K圖)。該些結果證實,iENP具有多能性,對特定的分化條件可產生與hESC-ENP 相似的反應。To determine whether iENP can differentiate into different neurons, different neuronal markers are then used to detect the iENP-6F and -7F neuronal cell populations (3G-3M and 5E-5J). ICC results showed that both iENP-6F and -7F produced different neuronal subtypes, including GABA + (3G and 5E maps), TBR1 + cortical neurons (3H and 5F maps), and TH + dopamine neurons ( 3I and 5K-(a)), HB9 + /ISL1 + motor neurons (3J, 3K, and 5H) and BRN3A + , PRPH + or NAV1.7 + peripheral neurons (3L, 3M, and 5I) -J map). Based on the ability of external stimulation to induce hESC-ENP to differentiate into specific neuronal subtypes, further testing of iENP in this study can also produce similar responses. Accordingly, iENP (Fig. 3N and 5K) was treated with differentiation conditions for preparing cortex, dopamine, and peripheral neurons. ICC analysis using anti-TBR1, TH or PRPH antibodies indicated that specific neuronal differentiation conditions significantly improved the ability of iENP to produce representative neuronal subtypes (cortex, dopamine or peripheral neurons) (Figs. 3N and 5K). These results confirm that iENP is pluripotent and produces a similar response to hESC-ENP for specific differentiation conditions.

接著檢測源自iENP之神經元是否具有與神經元相似的功能性電生理特性。將源自iENP的神經元培養於神經成熟培養液中2週,之後進行全細胞膜片箝制記錄分析,結果顯示源自iENP-6F之神經元的靜止膜電位為-35.25±0.64 mV (第3O-(a)圖),而源自iENP-7F之神經元的靜止膜電位則為-64.3±17.96 mV (第5L-(a)圖)。於電流箝制模組中,利用細胞膜去極化來引發動作電位(第3O-(b)圖;以及第5L-(b)圖),記錄源自iENP神經元之自發性動作電位(第5L-(c)圖)。以TTX (一種對Na+ 離子通道具有專一性之抑制劑)阻斷由鈉通道媒介之內向電流(第3O-(c)圖及5L-(d)圖)。該些結果指出,源自iENP的神經元具有與神經元相似之功能性電生理特性。Neurons derived from iENP are then tested for functional electrophysiological properties similar to neurons. Neurons derived from iENP were cultured in neurogenic medium for 2 weeks, and then subjected to whole-cell patch-clamp recording analysis. The results showed that the resting membrane potential of neurons derived from iENP-6F was -35.25±0.64 mV (3O- (a) Figure), while the resting membrane potential of neurons derived from iENP-7F is -64.3 ± 17.96 mV (Fig. 5L-(a)). In the current clamp module, the cell membrane is depolarized to induce action potentials (Fig. 3O-(b); and 5L-(b)), and spontaneous action potentials derived from iENP neurons are recorded (5L- (c) Figure). The inward current from the sodium channel media is blocked by TTX (an inhibitor of specificity for Na + ion channels) (Fig. 3O-(c) and 5L-(d)). These results indicate that neurons derived from iENP have functional electrophysiological properties similar to those of neurons.

實施例Example 33 移植的Transplanted iENPiENP 可整合並分化於大鼠腦部Integrates and differentiates into the rat brain

為分析iENP於活體內的分化能力,本實施例將iENP移植至大鼠腦部的胼胝體中,並於12週後進行相關分析(第3P及5M圖)。首先檢測iENP移植是否會於腦部造成腫瘤生成。腦部切片的H&E及進一步的RT-PCR與IHC分析皆顯示,移植12週後,於iENP移植的腦部不會觀察到與腫瘤相關之標誌的表現(第10圖)。有趣的是,研究發現部分移植細胞會轉移至腦室區(神經生成的大腦區域,會表現放射狀神經膠先驅細胞標誌-GFAP)(第3P-(a)及(b)圖;以及第5M-(a)及(b)圖)。與活體外分化結果一致,移植的iENP會於腦部分化為GFAP+ 星狀細胞(第3P-(c)圖及5M-(c)圖)、NG2+ 寡樹突細胞(第3P-(d)及(e)圖;以及第5M-(d)及(e)圖),以及TUJ1+ 或MAP2+ 神經元(第3P-(f)圖及第3P-(i)圖)。 整體來說,該些結果指出iENP會於活體內整合至大鼠腦部組織,且分化為主要的神經細胞類型。To analyze the differentiation ability of iENP in vivo, in this example, iENP was transplanted into the corpus callosum of the rat brain, and correlation analysis was performed after 12 weeks (Fig. 3P and 5M). First, it is tested whether iENP transplantation will cause tumor formation in the brain. H&E of brain sections and further RT-PCR and IHC analysis showed that after 12 weeks of transplantation, the expression of tumor-associated markers was not observed in the iENP-transplanted brain (Fig. 10). Interestingly, the study found that some of the transplanted cells metastasized to the ventricular zone (the neurogenic brain region, which expresses the radial nerve precursor cell marker - GFAP) (Fig. 3P-(a) and (b); and 5M- (a) and (b) map). Consistent with the results of in vitro differentiation, the transplanted iENP was partially localized into GFAP + stellate cells (3P-(c) and 5M-(c)), NG2 + oligodendrocytes (3P-(d) And (e) map; and 5M-(d) and (e) maps, and TUJ1 + or MAP2 + neurons (3P-(f) map and 3P-(i) map). Overall, these results indicate that iENP will integrate into rat brain tissue in vivo and differentiate into major neuronal cell types.

實施例Example 44 iENP-6FiENP-6F and -7F-7F 細胞群具有不同的發育傾向Cell populations have different developmental tendencies

如上所述,iENP-6F及-7F具有不同的神經分化傾向。據此將進一步探討二細胞群的差異性。首先利用微陣列來分析二iENP細胞群的基因表現圖譜。熱區圖結果指出, iENP-6F與-7F具有相似的基因表現圖譜(第6A-(a)圖)。經由IPA分析及檢測組合倍數變化與基因本體,可發現在iENP-6F與-7F之間有170組基因的表現具有顯著的差異性(≥2倍,第6A-(b)圖)。其中,相較於iENP-6F,數個與細胞週期及分裂相關之基因於iENP-7F中具有較低的表現量(第6B-(a)圖);IPA分析顯示,相較於iENP-6F,在iENP-7F中與細胞死亡相關之訊息傳遞路徑會呈現活化狀態(第6B-(b)圖)。具一致性地,iENP-6F的生長曲線與人類 ESC-ENP的生長曲線相似,而iENP-7F則具有較慢的生長速率(第6B-(c)圖)。進一步分析顯示,相較於iENP-7F,iENP-6F具有較多的BrdU+ 細胞比例及較低的TUNEL+ 細胞比例(第6B-(d)圖)。As mentioned above, iENP-6F and -7F have different propensity for neural differentiation. Based on this, the differences in the two cell population will be further explored. Microarray was first used to analyze the gene expression profile of the two iENP cell populations. The hot zone map results indicate that iENP-6F and -7F have similar gene expression profiles (Fig. 6A-(a)). By IPA analysis and detection of fold change and gene ontology, it was found that there were significant differences in the performance of 170 genes between iENP-6F and -7F (≥2 fold, Figure 6A-(b)). Among them, several genes associated with cell cycle and division have lower performance in iENP-7F than in iENP-6F (Fig. 6B-(a)); IPA analysis shows that compared to iENP-6F The message transmission pathway associated with cell death in iENP-7F is activated (Fig. 6B-(b)). Consistently, the growth curve of iENP-6F is similar to that of human ESC-ENP, while iENP-7F has a slower growth rate (Fig. 6B-(c)). Further analysis showed that iENP-6F had more BrdU + cell ratio and lower TUNEL + cell ratio than the iENP-7F (Fig. 6B-(d)).

為探討iENP-6F及-7F的發育傾向,接著檢測不同區域性標誌於該些細胞的表現(第6C-(a)圖)。利用ICC來分析未分化之iENP細胞群及其衍生的神經元(iENP-N),結果指出iENP-6F/-N中會表現BF1 (前腦標誌)的iENP/iENP-N比例顯著高於iENP-7F/-N;而相較於iENP-7F/-N,iENP-6F/-N則具有較低之會表現PITX3 (中腦標誌)、HOXB4 (後腦標誌)及p75或BRN3A (周邊神經系統標誌)的細胞比例(第6C-(b)圖及第6D圖)。與ICC結果一致,針對iENP-6F及7F進行比對全面性基因表現圖譜及RT-qPCR的分析結果指出,相較於iENP-7F,iENP-6F偏向表現與前腦、中腦及脊髓相關之基因;而相較於iENP-6F,iENP-7F則較偏向表現與後腦及周邊神經系統相關之基因(第6E及6F圖)。整體而言,該些結果指出iENP-6F及-7F為不同的NP亞細胞群,具有不同的神經基因表現、生長速率及發育傾向。To investigate the developmental propensities of iENP-6F and -7F, the expression of different regional markers in these cells was then examined (Fig. 6C-(a)). ICC was used to analyze the undifferentiated iENP cell population and its derived neurons (iENP-N). The results indicated that the iENP/iENP-N ratio of BF1 (forebrain marker) in iENP-6F/-N was significantly higher than that of iENP. -7F/-N; compared to iENP-7F/-N, iENP-6F/-N has lower performance of PITX3 (middle brain marker), HOXB4 (postbrain marker) and p75 or BRN3A (peripheral nervous system) The cell ratio of the marker) (Fig. 6C-(b) and Fig. 6D). Consistent with the ICC results, the comprehensive gene expression profiling and RT-qPCR analysis of iENP-6F and 7F indicated that the iENP-6F biased performance was related to the forebrain, midbrain and spinal cord compared to iENP-7F. Genes; compared to iENP-6F, iENP-7F is more biased to genes associated with the hindbrain and peripheral nervous system (Figures 6E and 6F). Overall, these results indicate that iENP-6F and -7F are different NP subpopulations with different neurogenic manifestations, growth rates, and developmental propensities.

實施例Example 55 病態Ill state iENPiENP 重現病理特徵Recurring pathological features

為探討iENP於建立疾病模式的潛力,接著由一位具有APOE4/E4 突變之AD病患(AD1)、二位具PSEN1 突變之AD病患(fAD,AD2及AD3),以及二位HD病患(男性及女性,於HTT 基因中具有41CAG 重複)分離其纖維母細胞,據以製備iENP。與野生型纖維母細胞相似,在投予6-TF或7-TF組合後,AD-及HD-纖維母細胞可轉化為PAX6:EGFP -或SOX1:EGFP+ 細胞(第13A圖),且該些細胞群會形成類神經元球狀結構,並表現NP標誌/基因(第7A及13B-13C圖)。此外,該些假定的AD-及HD-iENP可產生TUJ1+ 神經元、GFAP+ 星狀細胞及GALC+ 寡樹突細胞(第7B圖)。To explore the potential of iENP in establishing disease patterns, followed by an AD patient with ADOE4/E4 mutation (AD1), two AD patients with PSEN1 mutation (fAD, AD2 and AD3), and two HD patients (Male and female, having 41 CAG repeats in the HTT gene) were isolated from fibroblasts to prepare iENP. Similar to wild-type fibroblasts, after administration of a combination of 6-TF or 7-TF, AD- and HD-fibroblasts can be transformed into PAX6:EGFP- or SOX1:EGFP + cells (Fig. 13A), and These cell populations form neuron-like globular structures and exhibit NP markers/genes (Figs. 7A and 13B-13C). In addition, these putative AD- and HD-iENP can produce TUJ1 + neurons, GFAP + stellate cells, and GALC + oligodendrocytes (Fig. 7B).

之後,將檢測AD-及HD-iENP與其產生的神經元是否具有相關疾病的病理特徵。基於AD病患的神經元具有較高之類澱粉蛋白(Amyloid β, Aβ)表現量且會累積磷酸化TAU蛋白(pTAU),首先由AD-或對照組-iENP分化之神經元的條件培養液中,測量Aβ40及Aβ42的細胞外表現量。ELISA結果顯示,相較於源自對照組-iENP的神經元,二種Aβ同型異構物於源自二具有PSEN1 突變(AD2及AD3)之fAD-纖維母細胞群之AD-iENP所產生的神經元中具有顯著較高之表現量(第7C圖)。在源自fAD-iENP (由具有PSEN1 E184D突變(AD2)之fAD-纖維母細胞轉化而得)之神經元中,Aβ42/Aβ40亦具有較高的表現比例;然而,在源自fAD-iENP (由具有PSEN1 P264L突變(AD3)之fAD-纖維母細胞轉化而得) 之神經元中,則不會觀察到顯著增加的Aβ42/Aβ40比例;之前研究曾指出在會過量表現PSEN1 P264L的細胞中,Aβ42/Aβ40比例會些微增加。為探討在源自AD-iENP之神經元中pTAU 的病理特性,接著以可辨識pTAU之抗體(AT8)對源自AD1-及對照組-iENP之神經元進行ICC分析;在某些TUJ1+ 神經元的細胞反應中可觀察到pTAU 的表現,且該些塊狀pTAU主要會聚集於源自AD-iENP之神經元的細胞本體中,於AD病患之皮質及源自AD-iPS之神經元亦可觀察到相似的結果(第7D-(a)圖)。此外,相較於投予DMSO處理及源自對照組-iENP之神經元,對源自AD-iENP之神經元投予GSK3β抑制劑(SB415286及1-Aza可顯著減少pTAU的聚集(第7D圖)。Thereafter, it will be examined whether AD- and HD-iENP and the neurons they produce have pathological features of the disease in question. Neurons based on AD patients have higher levels of amyloid β (Aβ) and accumulate phosphorylated TAU protein (pTAU), first conditioned medium of neurons differentiated from AD- or control-iENP Among them, the extracellular expression of Aβ40 and Aβ42 was measured. The ELISA results showed that the two Aβ isoforms were produced by AD-iENP derived from two fAD-female cell populations with PSEN1 mutations (AD2 and AD3) compared to the control-iENP-derived neurons. There is a significantly higher amount of expression in neurons (Fig. 7C). In neurons derived from fAD-iENP (transformed from FAD-fibroblasts with PSEN1 E184D mutation (AD2)), Aβ42/Aβ40 also has a higher expression ratio; however, it is derived from fAD-iENP ( In neurons that were transformed from FAD-fibroblasts with the PSEN1 P264L mutation (AD3), a significantly increased Aβ42/Aβ40 ratio was not observed; previous studies have indicated that in cells that overexpress PSEN1 P264L, The Aβ42/Aβ40 ratio will increase slightly. To investigate the pathological properties of pTAU in neurons derived from AD-iENP, ICC analysis of neurons derived from AD1- and control-iENP was performed with antibodies recognizing pTAU (AT8); in some TUJ1 + neurons The expression of pTAU was observed in the cellular response, and the massive pTAU mainly accumulated in the cell body of AD-iENP-derived neurons, in the cortex of AD patients and neurons derived from AD-iPS. Similar results were observed (Fig. 7D-(a)). In addition, administration of GSK3β inhibitors to neurons derived from AD-iENP compared to DMSO-treated and control-iENP-derived neurons (SB415286 and 1-Aza significantly reduced aggregation of pTAU (Fig. 7D) ).

先前研究曾指出,源自HD-iPSC之神經元的DNA易受損傷,且對源自HD-iPSC之神經元投予特定促效劑來刺激A2A R可減少其DNA損傷的狀況/程度。為確認HD-iENP及其神經元衍生細胞是否可重現HD的病理特性,對HD-iENP及對照組-iENP投予特定的A2A R促效劑-CGS21680。以ICC對磷酸化γH2AX (一種DNA受損的標誌)表現的分析結果顯示,相較於對照細胞組,HD-iENP及其神經元衍生細胞具有顯著較高量之γH2AX+ 細胞核(第7E圖)。此外,CGS21680刺激可顯著減少HD-iENP及其神經元衍生細胞中gH2AX的表現,該結果顯示活化A2A R可減少該些細胞的DNA損傷(第7E-(b)圖及第7E-(d)圖)。整體來看,上述結果指出,病態iENP及其神經元衍生細胞可重現AD及HD的病理特性。Previous studies have indicated that DNA derived from HD-iPSC-derived neurons is susceptible to damage, and that administration of specific agonists to neurons derived from HD-iPSC to stimulate A 2A R reduces the extent/degree of DNA damage. To confirm whether HD-iENP and its neuron-derived cells can reproduce the pathological characteristics of HD, a specific A 2A R agonist, CGS21680, was administered to HD-iENP and control-iENP. Analysis of the expression of phosphorylated γH2AX (a marker of DNA damage) by ICC showed that HD-iENP and its neuron-derived cells had significantly higher amounts of γH2AX + nuclei compared to the control cell group (Fig. 7E). . In addition, CGS21680 stimulation significantly reduced the performance of gH2AX in HD-iENP and its neuron-derived cells, suggesting that activation of A 2A R can reduce DNA damage in these cells (Sections 7E-(b) and 7E-(d) )))). Overall, the above results indicate that pathological iENP and its neuron-derived cells can reproduce the pathological characteristics of AD and HD.

已知可利用不同的轉錄因子組合直接將纖維母細胞轉化為iNP。該些iNP具有神經元先趨細胞的一般特性,例如神經元標誌/基因表現,增生及分化傾向。與可分化為中樞神經系統及周邊神經系統神經元系之hESC-ENP 不同,iNP主要對中樞神經系統亞型具有發育潛力。然而,先前研究較少著墨於該些iNP是否具有發展為周邊神經系統之神經元亞型的潛力。本研究證實iENP-6F及iENP-7F可分化為中樞神經系統及周邊神經系統神經元系。此外,與hESC-ENP 相似,該些細胞可對相同的細胞外刺激產生反應,並產生特定的神經元亞型。在該些細胞中,全面性基因體總轉錄本圖譜亦確認由纖維母細胞誘發之ENP及其源自人類ESC之神經元具有高度相似性。據此,本研究證實相較於源自成人腦部之NPC,由hESC-ENP 轉錄因子重整之iENP細胞群與胚胎NPC具有較高的相似度。It is known that fibroblasts can be directly converted to iNP using different combinations of transcription factors. These iNPs have the general characteristics of neuronal pre-existing cells, such as neuronal markers/gene expression, proliferation and differentiation propensity. Unlike hESC-ENP, which can differentiate into the central nervous system and peripheral nervous system neuronal systems, iNP has a developmental potential for central nervous system subtypes. However, previous studies have focused less on whether these iNPs have the potential to develop into neuronal subtypes of the peripheral nervous system. This study confirmed that iENP-6F and iENP-7F can differentiate into central nervous system and peripheral nervous system neuron. Furthermore, similar to hESC-ENP, these cells respond to the same extracellular stimuli and produce specific neuronal subtypes. In these cells, the total genomic total transcript map also confirmed that the ENP induced by fibroblasts and their neurons derived from human ESC are highly similar. Accordingly, this study demonstrates that the iENP cell population reformed by the hESC-ENP transcription factor has a higher similarity to the embryonic NPC than the NPC derived from the adult brain.

即使本揭示內容之二種iENP細胞群具有相似的NP特徵,進一步分析結果卻顯示該些細胞群具有不同的功能特性。首先,分析證實相較於iENP-7F,iENP-6F具有較高的增生能力及呈現較少的細胞凋亡反應。第二,相較於神經膠細胞系,iENP-7F對神經元系具有較高的分化潛力。第三,分析iENP細胞群的神經分化潛力可發現,iENP-7F對末端神經元具有區域偏好,而iENP-6F則對前端神經元具有區域偏好。可以篩選轉錄因子及iENP的神經元報導子來解釋上述iENP-6F及7F之間的差異性。本揭示內容利用二種神經元報導子-PAX6及SOX1來檢測及評估hESC-ENP 的神經轉錄因子對神經元的轉化功效,藉此確認了6-及7-TF組合可分別用以誘發iENP-6F及-7F的產生。另一方面,PAX6及SOX1亦可用以篩選iENP-6F及7F細胞群。因此,透過該些神經元報導子的篩選似乎可決定產生之iENP細胞群的功能特性。已知源自人類ESC的神經細胞團(neural rosettes)及神經上皮層是由不同ENSC/ENP所組成,其與後續中樞及周邊神經系統的神經發育有關。因此,原篩出之25種會高量表現於hESC-ENP 的神經轉錄因子很可能於異質NP細胞群的形成過程中扮演著關鍵的角色。據此,由該25種轉錄因子中篩選出特定神經轉錄因子組合來誘發纖維母細胞表現,應可製備出具有特定神經元特性的iENP細胞群。整體來看,該些結果指出本揭示內容所闡述之流程可提供相關領域一種藉由自25種轉錄因子中篩選特定轉錄因子組合以有效製備特定iENP細胞群的方法,以及利用不同神經元報導子來製備iENP細胞群的方法。至於特定hESC-ENP 神經轉錄因子組合是否可用以定義iENP之功能性態樣,以及轉錄因子組合於促使纖維母細胞重整為iENP的作用機制,則需進一步的實驗來釐清。Even though the two iENP cell populations of the present disclosure have similar NP characteristics, further analysis shows that the cell populations have different functional properties. First, the analysis confirmed that iENP-6F has a higher proliferative capacity and exhibits less apoptotic response than iENP-7F. Second, iENP-7F has a higher differentiation potential for neuronal lines than glial cell lines. Third, analysis of the neural differentiation potential of the iENP cell population revealed that iENP-7F has a regional preference for terminal neurons, while iENP-6F has a regional preference for frontal neurons. Transcription factors and neuronal reporters of iENP can be screened to account for the differences between iENP-6F and 7F. The present disclosure utilizes two neuronal reporters, PAX6 and SOX1, to detect and evaluate the neuronal transcriptional effects of hESC-ENP on neurons, thereby confirming that the 6- and 7-TF combinations can be used to induce iENP-, respectively. Production of 6F and -7F. On the other hand, PAX6 and SOX1 can also be used to screen iENP-6F and 7F cell populations. Therefore, screening through these neuronal reporters appears to determine the functional properties of the resulting iENP cell population. It is known that neural rosettes and neuroepithelial layers derived from human ESC are composed of different ENSC/ENP, which are involved in the neural development of the subsequent central and peripheral nervous systems. Therefore, 25 of the previously screened neuronal transcription factors that are highly expressed in hESC-ENP are likely to play a key role in the formation of heterogeneous NP cell populations. Accordingly, a specific neurological transcription factor combination was selected from the 25 transcription factors to induce fibroblast expression, and an iENP cell population having specific neuronal characteristics should be prepared. Collectively, the results indicate that the procedures set forth in this disclosure provide a related art method for efficiently preparing specific iENP cell populations by screening specific transcription factor combinations from 25 transcription factors, as well as using different neuronal reporters. A method for preparing a population of iENP cells. As to whether a specific hESC-ENP neurotransitor combination can be used to define the functional aspect of iENP, and the combination of transcription factors to promote the transformation of fibroblasts into iENP, further experiments are needed to clarify.

已知轉錄因子組合(包含所有的iPSC因子、僅包含某些因子或僅包含單一因子)可直接將人類或小鼠的纖維母細胞轉化為iNP。由25種轉錄因子中,可進一步確認二種轉錄因子的組合-6 TF及7 TF,可分別誘發纖維母細胞轉化為iENP。整體而言,用以誘發製備iENP之轉錄因子的功能態樣與神經發育或神經細胞之維持相關。在6-TF組合中,該些轉錄因子主要是參與神經元的分化及維持NSC。在7-TF組合中,多數轉錄因子則是與中樞神經系統及周邊神經系統的早期發育,以及早期神經區域特定性相關。與多數用以製備iNP的轉錄因子組不同,本揭示內容之轉錄因子的功能皆與人類iPSC的生成無關,該結果顯示誘發纖維母細胞轉化為iENP的過程不需要iPSC因子。因此,該結果排除了由瞬態多能性狀態(transient pluripotent state)產生iENP的可能性,進而避免與iPSC因子相關之癌化機率。值得注意的是,二種轉錄因子組合皆包含二種轉錄因子-TFAP2AZFP42/REX1 。已知TFAP2A 參與胚胎發育時期不同組織的發育,特別是神經發育。ZFP42/REX1 會表現於ESC及NP中,對小鼠的多能性卻不具必要性。然而,以可編碼TFAP2A及ZFP42之慢病毒感染細胞不會產生iENP (結果未顯示),顯示其為誘發iENP生成時不可或缺之因子,唯單獨表現仍不足以促使iENP產生。It is known that a combination of transcription factors (including all iPSC factors, only certain factors or only a single factor) can directly convert human or mouse fibroblasts into iNPs. Among the 25 transcription factors, the combination of the two transcription factors, -6 TF and 7 TF, can be further confirmed to induce the transformation of fibroblasts into iENP, respectively. Overall, the functional aspects of the transcription factors used to induce the production of iENP are associated with maintenance of neural development or nerve cells. In the 6-TF combination, these transcription factors are mainly involved in the differentiation of neurons and maintenance of NSC. In the 7-TF combination, most transcription factors are associated with early development of the central nervous system and peripheral nervous system, as well as early neural specificity. Unlike most transcription factor sets used to prepare iNPs, the function of the transcription factors of the present disclosure is independent of the production of human iPSCs, which shows that the process of inducing the conversion of fibroblasts into iENP does not require iPSC factors. Therefore, this result excludes the possibility of iENP production by the transient pluripotent state, thereby avoiding the canceration probability associated with the iPSC factor. It is worth noting that the two transcription factor combinations contain two transcription factors - TFAP2A and ZFP42/REX1 . It is known that TFAP2A is involved in the development of different tissues during embryonic development, especially neurodevelopment. ZFP42/REX1 will be expressed in ESC and NP, but it is not necessary for pluripotency in mice. However, infection of cells with lentiviruses encoding TFAP2A and ZFP42 did not produce iENP (results not shown), indicating that it is an indispensable factor in inducing iENP production, but alone is not sufficient to promote iENP production.

iNP提供了一種細胞型平台,可用以建立神經退化性疾病模式及進行藥物研發。據此,本揭示內容由AD及HD病患之纖維母細胞誘發製備iENP,並證實該病態iENP及其神經元衍生細胞具有HD及AD的病理特性。舉例來說,本揭示內容之實施例指出,在源自AD-iENP的神經元可發現Aβ變異體及Aβ42/Aβ40的比例劇增,而pTAU的表現亦有所增加;投予GSK3β抑制劑可減少pTAU的表現,顯示源自AD-iENP的神經元重現了至少部分AD的病理特徵。已知壓力因子會造成DNA受損,並增加源自HD病患之神經細胞死亡。此外,先前報導亦指出A2A R促效劑於HD轉殖動物模式及源自HD-iPSC之神經元細胞群可產生助益性功效。有鑑於此,本揭示內容證實相較於由健康纖維母細胞產生的iENP及其神經元衍生細胞,HD-iENP及其神經元衍生細胞的DNA較易受到損傷。此外,投予CGS21680處理可減少 HD-iENP及其神經元衍生細胞的DNA損傷。整體而言,該些結果指出某種程度上,本發明iENP模式可重現與神經退化性疾病相關之病理特徵,進而用以確認相關致病機制及篩選新穎之治療藥劑。The iNP provides a cell-based platform for establishing neurodegenerative disease patterns and drug development. Accordingly, the present disclosure induces the preparation of iENP from fibroblasts of AD and HD patients, and demonstrates that the pathological iENP and its neuron-derived cells have pathological properties of HD and AD. For example, the examples of the present disclosure indicate that the proportion of Aβ variants and Aβ42/Aβ40 is rapidly increased in neurons derived from AD-iENP, and the expression of pTAU is also increased; administration of GSK3β inhibitors may be Decreasing the performance of pTAU, showing that neurons derived from AD-iENP reproduce at least part of the pathological features of AD. Pressure factors are known to cause DNA damage and increase neuronal cell death from HD patients. In addition, previous reports have also indicated that the A 2A R agonist can produce a beneficial effect in the HD transgenic animal model and the neuronal cell population derived from HD-iPSC. In view of this, the present disclosure demonstrates that DNA of HD-iENP and its neuron-derived cells is more susceptible to damage than iENP produced by healthy fibroblasts and its neuron-derived cells. In addition, administration of CGS21680 reduced DNA damage in HD-iENP and its neuron-derived cells. Collectively, these results indicate that to some extent, the iENP model of the present invention reproduces the pathological features associated with neurodegenerative diseases, thereby identifying relevant pathogenic mechanisms and screening novel therapeutic agents.

透過將iENP活體內移植至大鼠腦部可證實iENP可於成熟個體之大腦存活,並分化為不同的神經元亞型。該結果確認了與hESC-ENP 相似,iENP亦具有活體內分化傾向,證實本發明建立之iENP可作為一自體細胞來源,以治療諸如AD及HD等神經退化性疾病。然而,即使本揭示內容已證實移植12週後,於大鼠腦部未觀察到任何腫瘤的形成,iENP於腦部的癌化可能性仍需進一步確認。By transplanting iENP in vivo into the rat brain, it was confirmed that iENP can survive in the brain of mature individuals and differentiate into different neuronal subtypes. This result confirms that similar to hESC-ENP, iENP also has an in vivo differentiation tendency, and it is confirmed that the iENP established by the present invention can be used as an autologous cell source for treating neurodegenerative diseases such as AD and HD. However, even though the present disclosure has confirmed that no tumor formation was observed in the rat brain after 12 weeks of transplantation, the possibility of iENP canceration in the brain needs further confirmation.

總結上述,本揭示內容證實了一種藉由過量表現人類ESC-NP所富含之轉錄因子直接將人類體細胞轉化為多能性iENP的方法。本揭示內容之系統可用以製備具有特定神經分化傾向的增生性iNP細胞群(第6G圖),進而探討/研發神經化性疾病之新穎機制及治療藥劑。Summarizing the above, the present disclosure demonstrates a method for directly converting human somatic cells into pluripotent iENP by overexpressing transcription factors enriched by human ESC-NP. The system of the present disclosure can be used to prepare a population of proliferative iNP cells (Fig. 6G) with a specific tendency to differentiate nerves, thereby exploring/developing novel mechanisms and therapeutic agents for neurogenic diseases.

雖然上文實施方式中揭露了本發明的具體實施例,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不悖離本發明之原理與精神的情形下,當可對其進行各種更動與修飾,因此本發明之保護範圍當以附隨申請專利範圍所界定者為準。Although the embodiments of the present invention are disclosed in the above embodiments, the present invention is not intended to limit the invention, and the present invention may be practiced without departing from the spirit and scope of the invention. Various changes and modifications may be made thereto, and the scope of the invention is defined by the scope of the appended claims.

no

為讓本發明的上述與其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 1A-1E 利用會高量表現於hESC-ENP (hESC-ENP)中的25種神經轉錄因子來誘發人類纖維母細胞轉化為iENP。第1A圖:藉由比對纖維母細胞及hESC-ENP 的基因表現圖譜來確認hESC-ENP 所富含之神經轉錄因子。(a)hESC-ENP (NP1:E-MEXP-2668,ArrayExpress資料庫;NP2:由H9-SOX1:EGFP 收集之ND,第18天-NP)及纖維母細胞(FB1、FB2及FB3)之全面性基因表現圖譜的熱區圖分析結果。(b)篩選相較於纖維母細胞,於人類 ESC-ENP中具有較高表現量轉錄因子。第1B圖:用以直接將纖維母細胞轉化為iENP的實驗策略示意圖。第1C圖:以可編碼hESC-ENP 轉錄因子(25TF)的慢病毒及神經報導子感染纖維母細胞後,藉由FACS收集之細胞的生長狀況。以UbC:EGFP 感染之細胞作為對照組。第1D圖:以抗特定抗原之抗體進行ICC染色,分析與NP細胞群聚/球狀結構相似之iENP-25F細胞。第1E圖:以RT-PCR分析iENP-25F中特定基因的表現。FB:纖維母細胞;NC:負對照組(水)。亦可參照第8A-8B圖。 2A-2H 利用PAX6:EGFP 神經報導子篩選6種轉錄因子後,利用該些轉錄因子誘發纖維母細胞(FB)轉化為iENP。第2A圖:利用神經報導子PAX6:EGFP 來減少誘發iENP所需之轉錄因子之數量(由25種減少至6種)的實驗策略示意圖。第2B圖及第2C圖:由原25-TF組(第2B圖)及15-TF組(第2C圖)移除單一轉錄因子,逐步篩選用以製備iENP-6F 之具有潛力的iENP因子。由25-TF或15-TF組合移除單一轉錄因子後,將結果表示為PAX6:EGFP+ 細胞的相對百分比。第2D圖:比對25-、15-及6-TF組合於誘發纖維母細胞轉化為PAX6:EGFP+ 細胞的轉化功效。第2E圖:利用微陣列分析來決定纖維母細胞、hESC-ENP 、iENP-6F及iENP-15F之全面性基因表現熱區圖。第2F圖:以抗特定NP標誌之抗體對iENPs-6F進行ICC染色分析。第2G圖:利用萃取自iENP-6F 之mRNA進行RT-PCR試驗,以分析6 TF之內源性及外源性表現。第2H圖:利用萃取自iENP-6F的mRNA進行 RT-PCR試驗,以分析特定神經基因的表現。FB:纖維母細胞;NC:負對照組(水);質體:特定基因的表現質體。所有的定量數據皆是由三次獨立試驗分析而得,且表示為平均值±標準差。亦可參照第9-11圖。 3A-3P iENP-6F於活體外及活體內的多能性。第3A-3E圖:利用抗神經膠細胞標誌GFAP (第3A圖)、寡樹突細胞標誌GALC (第3B圖)、特定神經元標誌(第3C及3D圖)及突觸標誌SYN (第3E圖)之抗體對經分化之iENP-6F進行ICC染色。第3F圖:定量分析及比對於經分化之人類ESC-NP (對照組NPC)、iENP-6F及iENP-15F中TUJ1+ 、GFAP+ 及GALC+ 細胞的表現。第3G-3M圖:利用抗特定中樞神經系統及周邊神經系統之神經抗原的抗體對經分化之iENP-6F進行ICC染色。第3N圖:特定刺激可促使iENP-6F產生特定神經元亞型。(a)誘發iENP-6F產生特定神經元亞型之實驗流程示意圖。(b)利用抗特定中樞神經系統及周邊神經系統之神經抗原的抗體進行ICC染色,以確認在特定神經原亞型分化條件下經分化之iENP-6F的狀態。(c)定量分析以第3N-(a)圖所述之條件誘發產生的特定神經元亞型。GF- :無誘發物。GF+ 有誘發物;第3O圖:源自iENP-6F之神經元的全細胞膜片箝制記錄。(a)分化4到6週後神經元的電流記錄。(b)以-50到+120 pA之電流階引發動作電位。(c)以-40到+50 mV的電壓階引發內部Na+ 電流及外部Ca2+ 電流。利用河豚毒素(tetrodotoxin, TTX)來阻斷內部Na+ 電流。第3P圖:iENP-6F的活體內移植。(a)利用抗人類細胞核抗原(human nuclear antigen, HuNu)之抗體進行IHC染色,以分析包含 iENP-6F移植物之胼胝體。(b-i)利用抗HuNu、Stem121或特定神經抗原之抗體對移植12週後的腦部切片進行IHC染色分析。(j)移植後特定細胞的相對位置。比例尺=10微米(10 μm)。所有的定量數據皆是由三次獨立試驗分析而得,且表示為平均值±標準差。亦可參照第10圖。 4A-4H 利用SOX1:EGFP 神經報導子篩選7種轉錄因子後,利用該些轉錄因子誘發纖維母細胞轉化為iENP。第4A圖:利用神經報導子SOX1:EGFP 減少誘發iENP所需之轉錄因子之數量(由25種減少至7種)的實驗策略示意圖。第4B圖及第4C圖:由原25-TF組(第4B圖)及13-TF組(第4C圖)移除單一轉錄因子,逐步篩選用以製備iENP-7F之具有潛力的iENP因子。由TF組合移除單一轉錄因子後,將結果表示為SOX1:EGFP+ 細胞的相對百分比。第4D圖:比對25-、13-及7-TF組合於誘發纖維母細胞轉化為SOX1:EGFP+ 細胞的轉化功效。第4E圖:利用微陣列分析來決定纖維母細胞、hESC-ENP 、iENP-7F及iENP-13F之全面性基因表現熱區圖。第4F圖:以抗特定NP標誌之抗體對iENPs-7F進行ICC染色。第4G圖:利用萃取自iENP-7F 之mRNA進行RT-PCR試驗,以分析7種轉錄因子之內源性及外源性表現。第4H圖:以萃取自iENP-7F的mRNA進行 RT-PCR試驗,以分析特定神經基因的表現。FB:纖維母細胞;NC:負對照組(水);質體:特定基因的表現質體。所有的定量數據皆是由三次獨立試驗分析而得,且表示為平均值±標準差。亦可參照第9-11圖。 5A-5M 經分化之iENP-7F於活體外及活體內的多能性。第5A-5C圖:利用抗神經膠細胞標誌GFAP (第5A圖)、寡樹突細胞標誌GALC (第5B圖)及特定神經元標誌(第5C圖) 之抗體對經分化之iENP-7F進行ICC染色。第5D圖:定量分析及比對於經分化之人類ESC-NP (對照組NPC)、iENP-7F及iENP-13F中TUJ1+ 、GFAP+ 及GALC+ 細胞的表現。第5E-5J圖:利用抗特定中樞神經系統及周邊神經系統之神經抗原的抗體對經分化之iENP-7F進行ICC染色。第5K圖:特定刺激可促使iENP-7F產生特定神經元亞型。(a)利用抗特定中樞神經系統及周邊神經系統之神經抗原的抗體進行ICC染色,以確認在特定神經原亞型分化條件下經分化之iENP-7F的狀態。(b)定量分析以第3N-(a)圖所述之條件誘發產生之源自iENP-7F的神經元亞型。GF- :無誘發物;GF+ 有誘發物。第5L圖:源自iENP-7F之神經元的全細胞膜片箝制記錄。(a)分化4到6週後神經元的電流記錄。(b)以-80到+60 pA之電流階引發動作電位。(c)以-40 mV之次臨界振盪電位(subthreshold oscillatory potential)來記錄自發性動作電位(spontaneously firing action potential)。(d)以-40到+50 mV的電壓階引發內部Na+ 電流及外部Ca2+ 電流。利用TTX來阻斷內部Na+ 電流。第5M圖:iENP-7F的活體內移植。(a)利用抗HuNu抗體對包含 iENP-7F移植物之胼胝體進行IHC染色,結果指出iENP會轉移至腦室區。(b-i)利用抗HuNu、Stem121或特定神經抗原之抗體對移植12週後的腦部切片進行IHC染色分析。比例尺=10微米(10 μm)。所有的定量數據皆是由三次獨立試驗分析而得,且表示為平均值±標準差。亦可參照第10圖。 6A-6G iENP-6F及iENP-7F的差異性。第6A-(a)及(b)圖:對未分化之iENP-6F、iENP-7F及纖維母細胞的全面性基因表現圖譜進行熱區圖分析。第6B圖:(a)以特定GO確認基因表現的動態變化。紅色:表現增加;藍色:表現減少;(b) IPA分析與細胞死亡相關之活化路徑。(c)特定細胞群的生長曲線分析。(d)以BrdU及TUNEL試驗對iENP進行ICC染色及定量分析。利用DAPI (藍色)染色細胞核。第6C圖:iENP偏好表現大腦區域的標誌。(a)以抗特定大腦區域抗原的抗體對iENP進行ICC染色。(b)定量分析在iENP中,會表現特定大腦區域標誌之細胞的百分比。第6D圖:定量分析在源自iENP之神經元中,會表現特定大腦區域標誌之細胞的百分比。第6E圖:用以闡述在iENP-7F及-6F間表現增加及減少之與大腦區域亞型相關之基因的圓餅圖。第6F圖:利用RT-qPCR分析測量在iENP-7F及-6F中,與大腦區域相關之基因的相對表現量。第6G圖:利用不同hESC-ENP 轉錄因子組合及神經報導子,直接轉化具有不同分化傾向之iENP的策略示意圖。FB:前腦;MB:中腦;HB:後腦;SC:脊椎。所有的定量數據皆是由三次獨立試驗分析而得,且表示為平均值±標準差。 7A-7E 病態iENP及其神經元衍生細胞可重現疾病的表徵。第7A圖:(a) AD-iENP及(b) HD-iENP的外觀及ICC染色代表圖,其中該ICC是針對巢蛋白(Nestin)的表現來進行分析。第7B圖:源自AD-iENP之神經元(a)及源自HD-iENP之神經元(b)的相位差照片,以及利用抗GFAP、GALC及TUJ1抗體對AD-iENP衍生細胞(a)及HD-iENP衍生細胞(b)的ICC染色結果。第7C-(a)-(c)圖:分泌的Aβ42/40比值;源自AD-iENP 之神經元的Aβ42及Aβ40。AD2及AD3:帶有PSEN1 突變的病患。第7D圖:(a)利用抗TUJ1及pTAU之抗體(AT8)以ICC染色來分析pTAU於源自AD-iENP之神經元中的表現。(b)定量分析 1-Aza及SB415286於減少源自AD-iENP之神經元中pTAU表現之功效。AD1:帶有APOE4/E4 突變之病患。對照組為投予DNSO之處理。第7E圖:以ICC染色(a)及定量分析(b)來檢測在以對照載體(DMSO)-及CGS 21680處理之對照組及HD-iENP中,γH2AX+ 細胞的表現。(c)以ICC染色及(d)定量分析在以對照載體(DMSO)-及CGS 21680處理之對照組及源自HD-iENP之神經元中,γH2AX+ 細胞的表現所有的定量數據皆是由三次獨立試驗分析而得,且表示為平均值±標準差。亦可參照第13A-13C圖。 8A-8B 建構及確認PAX6:EGFP 及SOX1:EGFP 神經報導子。第8A圖:慢病毒構建體-PAX6:EGFP 及SOX1:EGFP 的示意圖。第8B圖:分別以抗GFP及PAX6或SOX1之抗體對以PAX6:EGFP -或SOX1:EGFP -轉染之源自人類ESC之神經細胞團(neural rosettes)(第20天)進行ICC染色分析。以DAPI (藍色)染色細胞核。 9A-9E 確認iENP-15F及iENP-13F。第9A圖:以抗特定NP標誌之抗體對利用15種(以PAX6:EGFP 篩選得到)及13種(以SOX1:EGFP 篩選得到)轉錄因子組合誘發產生之iENP進行ICC染色。以DAPI (藍色)染色細胞核。第9B圖:利用萃取自未分化之iENP-15F及-13F的mRNA,對特定基因進行RT-PCR分析。分別以hESC-ENP 及纖維母細胞作為正對照組及負對照組。第9C圖:利用萃取自未分化之iENP-15F、iENP-6F、iENP-13F及iENP-7F的基因體DNA,以PCR試驗來分析特定外源性轉殖基因的整合(integration)。以特定基因的質體作為正對照組。第9D圖:在移除去氧羥四環素(doxycycline)後,利用萃取自未分化之iENP-15F及iENP-13F的mRNA對特定內源性基因進行RT-PCR分析。以hESC-ENP 作為正對照組。第9E圖:以抗TUJ1、GFAP及GALC之抗體對經分化之iENP-15F及iENP-13F進行ICC染色。比例尺= 10微米(μm)。NC:負對照組(水)。以DAPI (藍色)染色細胞核。 10 在移植至由中大腦動脈梗塞(middle cerebral artery occlusion, MCAO)造成損傷之成鼠腦部後,iENP-6F及iENP-7不會產生腫瘤。在iENP-6F及iENP-7F移植12週後,對大鼠腦部進行HE染色分析。 11A-11C 製備iENP之必要性轉錄因子組合。第11A-11B圖:由6 TF組移除單一轉錄因子對誘發PAX6:EGFP + 細胞的影響(第11A圖),以及由7 TF組移除單一轉錄因子對誘發SOX1:EGFP + 細胞的影響(第11B圖)。第11C圖:以經轉染之轉錄因子組合誘發形成類iENP細胞群聚的相位差照片。在由原6 TF或7 TF組合中移除單一轉錄因子後,不會觀察到細胞群聚的形成。 12A-12B 投予小分子處理可改善iENP的產生。特定小分子對製備(第12A圖) iENP-6F及(第12B圖) iENP-7F之功效的影響。誤差槓代表平均值±標準差。顯著性:*P<0.05。(VitC:維生素C;PR:PP242+RepSox;DV:DZNep+維生素C;PRDV:PP242+RepSox+DZNep+維生素C)。 13A-13C 製備及確認HD-iENP及AD-iENP。第13A圖:HD及AD纖維母細胞形成SOX1:EGFP + (假定之 iENP-6F)及PAX6:EGFP + (假定之iENP-7F)的誘發率。誤差槓代表平均值±標準差。第13B圖:利用神經標誌NES之專一性抗體對AD2-及AD3-iENP進行ICC染色分析。第13C圖:利用萃取自未分化之HD-iENP-6F、HD-iENP-7F、AD-iENP-6F及AD-iENP-7F的mRNA,對特定基因進行RT-PCR分析。分別以hESC-ENP 及原纖維母細胞作為正對照組及負對照組。To make the above and other objects, features, advantages and embodiments can be more fully understood by reading the following description of the accompanying drawings: FIG 1A-1E using the first volume will show in hESC-ENP (hESC-ENP) 25 neuronal transcription factors to induce the conversion of human fibroblasts into iENP. Figure 1A: Confirmation of the neuronal transcription factors enriched by hESC-ENP by aligning the gene expression profiles of fibroblasts and hESC-ENP. (a) hESC-ENP (NP1: E-MEXP-2668, ArrayExpress database; NP2: ND collected by H9- SOX1: EGFP , day 18-NP) and fibroblasts (FB1, FB2 and FB3) The results of the hot zone map analysis of the gene expression profile. (b) Screening has a higher expression transcription factor in human ESC-ENP than fibroblasts. Figure 1B: Schematic diagram of an experimental strategy for directly converting fibroblasts into iENP. Figure 1C: Growth of cells collected by FACS after infection of fibroblasts with lentiviruses and neural reporters encoding the hESC-ENP transcription factor (25TF). UbC:EGFP- infected cells were used as a control group. Panel 1D: ICC staining with antibodies against specific antigens and analysis of iENP-25F cells similar to NP cell clustering/globular structure. Figure 1E: Analysis of the performance of specific genes in iENP-25F by RT-PCR. FB: fibroblast; NC: negative control (water). See also Figures 8A-8B. 2A-2H of FIG using PAX6: EGFP neural reported After 6 by transcription factors, transcription factors with which these induced fibroblasts (FB) into iENP. Figure 2A: Schematic diagram of an experimental strategy using the neural reporter PAX6:EGFP to reduce the number of transcription factors required to induce iENP (from 25 to 6). 2B and 2C: A single transcription factor was removed from the original 25-TF panel (Fig. 2B) and the 15-TF panel (Fig. 2C) to gradually screen for potential iENP factors for the preparation of iENP-6F. After removal of a single transcription factor from a combination of 25-TF or 15-TF, the results are expressed as the relative percentage of PAX6:EGFP + cells. Figure 2D: Comparison of the effect of 25-, 15- and 6-TF combinations on the induction of transformation of fibroblasts into PAX6:EGFP + cells. Figure 2E: Microarray analysis to determine the comprehensive gene expression thermogram of fibroblasts, hESC-ENP, iENP-6F and iENP-15F. Figure 2F: ICC staining analysis of iENPs-6F with antibodies against specific NP markers. Figure 2G: RT-PCR assay using mRNA extracted from iENP-6F to analyze endogenous and exogenous performance of 6 TF. Figure 2H: RT-PCR assays were performed using mRNA extracted from iENP-6F to analyze the performance of specific neural genes. FB: fibroblast; NC: negative control (water); plastid: the plastid of a specific gene. All quantitative data were obtained from three independent experiments and expressed as mean ± standard deviation. See also Figure 9-11. 3A-3P of FIG iENP-6F in vitro and in vivo pluripotency. Figure 3A-3E: Using anti-glial cell marker GFAP (Fig. 3A), oligodendrocyte marker GALC (Fig. 3B), specific neuronal markers (3C and 3D), and synaptic marker SYN (3E) The antibody of Figure) was subjected to ICC staining of differentiated iENP-6F. Figure 3F: Quantitative analysis and performance of TUJ1 + , GFAP + and GALC + cells in differentiated human ESC-NP (control group NPC), iENP-6F and iENP-15F. Figure 3G-3M: ICC staining of differentiated iENP-6F using antibodies against specific central nervous system and peripheral nervous system neuroantigens. Figure 3N: Specific stimuli can cause iENP-6F to produce a specific neuronal subtype. (a) Schematic diagram of the experimental procedure for inducing iENP-6F to produce a specific neuronal subtype. (b) ICC staining was performed using an antibody against a specific central nervous system and a neuropeptide of the peripheral nervous system to confirm the state of the differentiated iENP-6F under specific neuronal subtype differentiation conditions. (c) Quantitative analysis of specific neuronal subtypes induced by the conditions described in Figure 3N-(a). GF - : no inducer. GF + has an inducer; Figure 3O: Whole-cell patch-clamp recording of neurons derived from iENP-6F. (a) Current recording of neurons after 4 to 6 weeks of differentiation. (b) The action potential is induced by a current order of -50 to +120 pA. (c) Initiating internal Na + current and external Ca 2+ current at a voltage step of -40 to +50 mV. Tetrodotoxin (TTX) was used to block internal Na + currents. Figure 3P: In vivo transplantation of iENP-6F. (a) IHC staining using an antibody against human nuclear antigen (HuNu) to analyze a steroid containing the iENP-6F graft. (bi) IHC staining analysis of brain sections after 12 weeks of transplantation using antibodies against HuNu, Stem121 or specific neuroantigens. (j) Relative position of specific cells after transplantation. Scale bar = 10 microns (10 μm). All quantitative data were obtained from three independent experiments and expressed as mean ± standard deviation. See also Figure 10. FIGS. 4A-4H use of SOX1: EGFP neural reported After screening 7 kinds of transcription factors, transcription factors with which these induced into fibroblasts iENP. Figure 4A: Schematic diagram of an experimental strategy using the neural reporter SOX1:EGFP to reduce the number of transcription factors required to induce iENP (from 25 to 7). Figures 4B and 4C: A single transcription factor was removed from the original 25-TF panel (Fig. 4B) and the 13-TF panel (Fig. 4C), and the potential iENP factors used to prepare iENP-7F were screened step by step. After removing a single transcription factor from the TF combination, the results are expressed as the relative percentage of SOX1:EGFP + cells. Figure 4D: Comparison of the effect of 25-, 13- and 7-TF combination on the induction of transformation of fibroblasts into SOX1:EGFP + cells. Figure 4E: Microarray analysis to determine the comprehensive gene expression thermogram of fibroblasts, hESC-ENP, iENP-7F and iENP-13F. Figure 4F: ICC staining of iENPs-7F with antibodies against specific NP markers. Figure 4G: RT-PCR assays using mRNA extracted from iENP-7F to analyze the endogenous and exogenous manifestations of the seven transcription factors. Figure 4H: RT-PCR assays were performed on mRNA extracted from iENP-7F to analyze the performance of specific neural genes. FB: fibroblast; NC: negative control (water); plastid: the plastid of a specific gene. All quantitative data were obtained from three independent experiments and expressed as mean ± standard deviation. See also Figure 9-11. FIGS. 5A-5M of the differentiated iENP-7F pluripotency in vitro and in vivo. Figure 5A-5C: The differentiated iENP-7F was performed using antibodies against the glial cell marker GFAP (Fig. 5A), the oligodendrocyte marker GALC (Fig. 5B), and specific neuronal markers (Fig. 5C). ICC staining. Figure 5D: Quantitative analysis and performance of TUJ1 + , GFAP + and GALC + cells in differentiated human ESC-NP (control group NPC), iENP-7F and iENP-13F. 5E-5J: ICC staining of differentiated iENP-7F using antibodies against specific central nervous system and peripheral nervous system neuroantigens. Figure 5K: Specific stimuli can cause iENP-7F to produce a specific neuronal subtype. (a) ICC staining was performed using an antibody against a specific central nervous system and a neuropeptide of the peripheral nervous system to confirm the state of differentiated iENP-7F under specific neuronal subtype differentiation conditions. (b) Quantitative analysis of iENP-7F-derived neuronal subtypes induced by the conditions described in Figure 3N-(a). GF - : no inducer; GF + has an inducer. Figure 5L: Whole cell patch clamp recording of neurons derived from iENP-7F. (a) Current recording of neurons after 4 to 6 weeks of differentiation. (b) The action potential is induced by a current order of -80 to +60 pA. (c) Recording a spontaneously acting action potential with a subthreshold oscillatory potential of -40 mV. (d) Initiating internal Na + current and external Ca 2+ current at a voltage step of -40 to +50 mV. TTX is used to block internal Na + current. Figure 5M: In vivo transplantation of iENP-7F. (a) IHC staining of steroids containing iENP-7F grafts using anti-HuNu antibodies indicated that iENP would be transferred to the ventricular zone. (bi) IHC staining analysis of brain sections after 12 weeks of transplantation using antibodies against HuNu, Stem121 or specific neuroantigens. Scale bar = 10 microns (10 μm). All quantitative data were obtained from three independent experiments and expressed as mean ± standard deviation. See also Figure 10. FIGS. 6A-6G first iENP-6F and the difference of iENP-7F. Figure 6A-(a) and (b): Thermographic plot analysis of the comprehensive gene expression profiles of undifferentiated iENP-6F, iENP-7F and fibroblasts. Figure 6B: (a) Confirmation of dynamic changes in gene expression with specific GO. Red: increased performance; blue: reduced performance; (b) IPA analysis of activation pathways associated with cell death. (c) Growth curve analysis of specific cell populations. (d) ICC staining and quantitative analysis of iENP by BrdU and TUNEL tests. The nuclei were stained with DAPI (blue). Figure 6C: iENP preferences show signs of the brain area. (a) ICC staining of iENP with antibodies against specific brain region antigens. (b) Quantitative analysis of the percentage of cells in iENP that would be indicative of a particular brain region marker. Figure 6D: Quantitative analysis of the percentage of cells that express a particular brain region marker in neurons derived from iENP. Figure 6E: A pie chart illustrating the genes associated with brain region subtypes that increase and decrease between iENP-7F and -6F. Figure 6F: Measurement of relative expression of genes associated with brain regions in iENP-7F and -6F using RT-qPCR analysis. Figure 6G: Schematic diagram of a strategy for direct transformation of iENP with different differentiation propensities using different combinations of hESC-ENP transcription factors and neural reporters. FB: forebrain; MB: midbrain; HB: hindbrain; SC: spine. All quantitative data were obtained from three independent experiments and expressed as mean ± standard deviation. Figure 7A-7E Figure characterization of pathological iENP and its neuron-derived cells. Figure 7A: (a) AD-iENP and (b) HD-iENP appearance and ICC staining representative map, wherein the ICC is analyzed for the performance of nestin (Nestin). Figure 7B: Phase difference photographs of neurons derived from AD-iENP (a) and neurons derived from HD-iENP (b), and AD-iENP-derived cells using anti-GFAP, GALC and TUJ1 antibodies (a) And ICC staining results of HD-iENP-derived cells (b). Figure 7C-(a)-(c): Secreted Aβ42/40 ratio; Aβ42 and Aβ40 derived from AD-iENP neurons. AD2 and AD3: Patients with a PSEN1 mutation. Figure 7D: (a) The expression of pTAU in AD-iENP-derived neurons was analyzed by ICC staining using antibodies against TUJ1 and pTAU (AT8). (b) Quantitative analysis of the efficacy of 1-Aza and SB415286 in reducing pTAU expression in neurons derived from AD-iENP. AD1: A patient with an APOE4/E4 mutation. The control group was treated with DNSO. Figure 7E: ICC staining (a) and quantitative analysis (b) were used to detect the expression of γH2AX + cells in control and HD-iENP treated with control vehicle (DMSO)- and CGS 21680. (c) ICC staining and (d) quantitative analysis in the control vehicle (DMSO)- and CGS 21680-treated controls and HD-iENP-derived neurons, all quantitative data were obtained from γH2AX + cells. Three independent tests were performed and expressed as mean ± standard deviation. See also Figures 13A-13C. The first Figure 8A-8B construct and confirm PAX6: EGFP and SOX1: EGFP reporter is nervous. Figure 8A: Schematic representation of lentiviral construct - PAX6: EGFP and SOX1: EGFP . Figure 8B: ICC staining analysis of human ESC-derived neural rosettes (Day 20) transfected with PAX6: EGFP- or SOX1: EGFP- , respectively, with antibodies against GFP and PAX6 or SOX1. The nuclei were stained with DAPI (blue). 9A-9E of FIG confirmed iENP-15F and iENP-13F. Figure 9A: IC staining of iENP induced by a combination of 15 (selected by PAX6: EGFP ) and 13 (selected by SOX1: EGFP ) transcription factors with antibodies against specific NP markers. The nuclei were stained with DAPI (blue). Figure 9B: RT-PCR analysis of specific genes using mRNA extracted from undifferentiated iENP-15F and -13F. hESC-ENP and fibroblasts were used as positive control group and negative control group, respectively. Figure 9C: Integration of specific exogenous transgenic genes was analyzed by PCR assay using genomic DNA extracted from undifferentiated iENP-15F, iENP-6F, iENP-13F and iENP-7F. The plastid of a specific gene was used as a positive control group. Figure 9D: After removal of doxycycline, RT-PCR analysis of specific endogenous genes was performed using mRNA extracted from undifferentiated iENP-15F and iENP-13F. hESC-ENP was used as a positive control group. Figure 9E: ICC staining of differentiated iENP-15F and iENP-13F with antibodies against TUJ1, GFAP and GALC. Scale bar = 10 microns (μm). NC: Negative control group (water). The nuclei were stained with DAPI (blue). Figure 10 transplanted to neutral cerebral artery occlusion (middle cerebral artery occlusion, MCAO) causing damage to the brain of rats, iENP-6F and iENP-7 tumors do not occur. After 12 weeks of iENP-6F and iENP-7F transplantation, HE staining analysis was performed on the rat brain. Figure 11A-11C Diagram of the necessary transcription factor combinations for the preparation of iENP. Figure 11A-11B: Effect of removal of a single transcription factor from the 6 TF group on induction of PAX6: EGFP + cells (Fig. 11A), and removal of a single transcription factor from the 7 TF group on induction of SOX1: EGFP + cells ( Figure 11B). Figure 11C: Phase difference photographs of the formation of iENP-like cell clusters induced by a combination of transfected transcription factors. The formation of cell clustering was not observed after removal of a single transcription factor from the original 6 TF or 7 TF combination. 12A-12B of FIG small molecule treatment can be administered to improve the generated iENP. The effect of specific small molecules on the efficacy of preparation (Fig. 12A) iENP-6F and (Fig. 12B) iENP-7F. Error bars represent the mean ± standard deviation. Significance: *P<0.05. (VitC: vitamin C; PR: PP242 + RepSox; DV: DZNep + vitamin C; PRDV: PP242 + RepSox + DZNep + vitamin C). Preparation 13A-13C and FIGS confirmed HD-iENP and AD-iENP. Figure 13A: HD and AD fibroblasts form the induction rate of SOX1: EGFP + (assumed iENP-6F) and PAX6: EGFP + (assumed iENP-7F). Error bars represent the mean ± standard deviation. Figure 13B: ICC staining analysis of AD2- and AD3-iENP using a specific antibody to the neuronal marker NES. Figure 13C: RT-PCR analysis of specific genes using mRNA extracted from undifferentiated HD-iENP-6F, HD-iENP-7F, AD-iENP-6F and AD-iENP-7F. hESC-ENP and fibroblasts were used as positive control group and negative control group, respectively.

no

<110> 中央研究院 <120> 用以篩選神經藥物之套組及其用途 <130> P2998-TW <160> 27 <170> BiSSAP 1.3 <210> 1 <211> 1599 <212> DNA <213> 人工序列 <220> <223> CBX2基因 <400> 1 atggaggagc tgagcagcgt gggcgagcag gtcttcgccg ccgagtgcat cctgagcaag 60 cggctccgca agggcaagct ggagtacctg gtcaagtggc gcggctggtc ctccaaacat 120 aacagctggg agccggagga gaacatcctg gacccgaggc tgctcctggc cttccagaag 180 aaggaacatg agaaggaggt gcagaaccgg aagagaggca agaggccgag aggccggcca 240 aggaagctca ctgccatgtc ctcctgcagc cggcgctcca agctcaagga acccgatgct 300 ccctccaaat ccaagtccag cagttcctcc tcttcctcca cgtcatcctc ctcttcctca 360 gatgaagagg atgacagtga cttagatgct aagaggggtc cccggggccg cgagacccac 420 ccagtgccgc agaagaaggc ccagatcctg gtggccaaac ccgagctgaa ggatcccatc 480 cggaagaagc ggggacgaaa gcccctgccc ccagagcaaa aggcaacccg aagacccgtg 540 agcctggcca aggtgctgaa gaccgcccgg aaggatctgg gggccccggc cagcaagctg 600 ccccctccac tcagcgcccc cgttgcaggc ctggcagctc tgaaggccca cgccaaggag 660 gcctgtggcg gccccagtgc catggccacc ccagagaacc tggccagcct aatgaagggc 720 atggccagta gccccggccg gggtggcatc agctggcaga gctccatcgt gcactacatg 780 aaccggatga cccagagcca ggcccaggct gccagcaggt tggcgctgaa ggcccaggcc 840 accaacaagt gcggcctcgg gctggacctg aaggtgagga cgcagaaagg ggagctggga 900 atgagccctc caggaagcaa aatcccgaag gcccccagcg gtggggctgt ggagcagaaa 960 gtggggaaca cagggggccc cccgcacacc catggtgcca gcagggtgcc tgctgggtgc 1020 ccaggccccc agccagcacc cacccaggag ctgagcctcc aggtcttgga cttgcagagt 1080 gtcaagaatg gcatgcccgg ggtgggtctc cttgcccgcc acgccaccgc caccaagggt 1140 gtcccggcca ccaacccagc ccctgggaag ggcactggga gtggcctcat tggggccagc 1200 ggggccacca tgcccaccga cacaagcaaa agtgagaagc tggcttccag agcagtggcg 1260 ccacccaccc ctgccagcaa gagggactgt gtcaagggca gtgctacccc cagtgggcag 1320 gagagccgca cagcccccgg agaagcccgc aaggcggcca cactgccaga gatgagcgca 1380 ggtgaggaga gtagcagctc ggactccgac cccgactccg cctcgccgcc cagcactgga 1440 cagaacccat cagtgtccgt tcagaccagc caggactgga agcccacccg cagcctcatc 1500 gagcacgtat ttgtcaccga cgtcactgcc aacctcatca ccgtcacagt gaaggagtct 1560 cccaccagcg tgggcttctt caacctgagg cattactga 1599 <210> 2 <211> 843 <212> DNA <213> 人工序列 <220> <223> HES1基因 <400> 2 atgccagctg atataatgga gaaaaattcc tcgtccccgg tggctgctac cccagccagt 60 gtcaacacga caccggataa accaaagaca gcatctgagc acagaaagtc atcaaagcct 120 attatggaga aaagacgaag agcaagaata aatgaaagtc tgagccagct gaaaacactg 180 attttggatg ctctgaagaa agatagctcg cggcattcca agctggagaa ggcggacatt 240 ctggaaatga cagtgaagca cctccggaac ctgcagcggg cgcagatgac ggctgcgctg 300 agcacagacc caagtgtgct ggggaagtac cgagccggct tcagcgagtg catgaacgag 360 gtgacccgct tcctgtccac gtgcgagggc gttaataccg aggtgcgcac tcggctgctc 420 ggccacctgg ccaactgcat gacccagatc aatgccatga cctaccccgg gcagccgcac 480 cccgccttgc aggcgccgcc accgccccca ccgggacccg gcggccccca gcacgcgccg 540 ttcgcgccgc cgccgccact cgtgcccatc cccgggggcg cggcgccccc tcccggcggc 600 gccccctgca agctgggcag ccaggctgga gaggcggcta aggtgtttgg aggcttccag 660 gtggtaccgg ctcccgatgg ccagtttgct ttcctcattc ccaacggggc cttcgcgcac 720 agcggccctg tcatccccgt ctacaccagc aacagcggca cctccgtggg ccccaacgca 780 gtgtcacctt ccagcggccc ctcgcttacg gcggactcca tgtggaggcc gtggcggaac 840 tga 843 <210> 3 <211> 468 <212> DNA <213> 人工序列 <220> <223> ID1基因 <400> 3 atgaaagtcg ccagtggcag caccgccacc gccgccgcgg gccccagctg cgcgctgaag 60 gccggcaaga cagcgagcgg tgcgggcgag gtggtgcgct gtctgtctga gcagagcgtg 120 gccatctcgc gctgcgccgg gggcgccggg gcgcgcctgc ctgccctgct ggacgagcag 180 caggtaaacg tgctgctcta cgacatgaac ggctgttact cacgcctcaa ggagctggtg 240 cccaccctgc cccagaaccg caaggtgagc aaggtggaga ttctccagca cgtcatcgac 300 tacatcaggg accttcagtt ggagctgaac tcggaatccg aagttggaac ccccgggggc 360 cgagggctgc cggtccgggc tccgctcagc accctcaacg gcgagatcag cgccctgacg 420 gccgaggcgg catgcgttcc tgcggacgat cgcatcttgt gtcgctga 468 <210> 4 <211> 1296 <212> DNA <213> 人工序列 <220> <223> TFAP2A基因 <400> 4 atgttagttc acagtttttc agccatggac cgtcacgacg gcaccagcaa cgggacggca 60 cggttgcccc agctgggcac tgtaggtcaa tctccctaca cgagcgcccc gccgctgtcc 120 cacaccccca atgccgactt ccagccccca tacttccccc caccctacca gcctatctac 180 ccccagtcgc aagatcctta ctcccacgtc aacgacccct acagcctgaa ccccctgcac 240 gcccagccgc agccgcagca cccaggctgg cccggccaga ggcagagcca ggagtctggg 300 ctcctgcaca cgcaccgggg gctgcctcac cagctgtcgg gcctggatcc tcgcagggac 360 tacaggcggc acgaggacct cctgcacggc ccacacgcgc tcagctcagg actcggagac 420 ctctcgatcc actccttacc tcacgccatc gaggaggtcc cgcatgtaga agacccgggt 480 attaacatcc cagatcaaac tgtaattaag aaaggccccg tgtccctgtc caagtccaac 540 agcaatgccg tctccgccat ccctattaac aaggacaacc tcttcggcgg cgtggtgaac 600 cccaacgaag tcttctgttc agttccgggt cgcctctcgc tcctcagctc cacctcgaag 660 tacaaggtca cggtggcgga agtgcagcgg cggctctcac cacccgagtg tctcaacgcg 720 tcgctgctgg gcggagtgct ccggagggcg aagtctaaaa atggaggaag atctttaaga 780 gaaaaactgg acaaaatagg attaaatctg cctgcaggga gacgtaaagc tgccaacgtt 840 accctgctca catcactagt agagggagaa gctgtccacc tagccaggga ctttgggtac 900 gtgtgcgaaa ccgaatttcc tgccaaagca gtagctgaat ttctcaaccg acaacattcc 960 gatcccaatg agcaagtgac aagaaaaaac atgctcctgg ctacaaaaca gatatgcaaa 1020 gagttcaccg acctgctggc tcaggaccga tctcccctgg ggaactcacg gcccaacccc 1080 atcctggagc ccggcatcca gagctgcttg acccacttca acctcatctc ccacggcttc 1140 ggcagccccg cggtgtgtgc cgcggtcacg gccctgcaga actatctcac cgaggccctc 1200 aaggccatgg acaaaatgta cctcagcaac aaccccaata gccacacgga caacaacgcc 1260 aaaagcagtg acaaagagga gaagcacaga aagtga 1296 <210> 5 <211> 933 <212> DNA <213> 人工序列 <220> <223> ZFP42基因 <400> 5 atgagccagc aactgaagaa acgggcaaag acaagacacc agaaaggcct gggtggaaga 60 gcccccagtg gggctaagcc caggcaaggc aagtcaagcc aagacctgca ggcggaaata 120 gaacctgtca gcgcggtgtg ggccttatgt gatggctatg tgtgctatga gcctggccct 180 caggctctcg gaggggatga tttctcagac tgttacatag aatgcgtcat aaggggtgag 240 ttttctcaac ccatcctgga agaggactca ctttttgagt ccttggaata cctaaagaaa 300 ggatcagaac aacagctttc tcaaaaggtt ttcgaagcaa gctcccttga atgttctttg 360 gaatacatga aaaaaggggt aaagaaagag cttccacaaa agatagttgg agagaattcg 420 cttgagtatt ctgagtacat gacaggcaag aagcttccgc ctggaggaat acctggcatt 480 gacctatcag atcctaaaca gctcgcagaa tttgctagaa agaagccccc cataaataaa 540 gaatatgaca gtctgagcgc aatcgcttgt cctcagagtg gatgcactag gaagttgagg 600 aatagagctg ccctgagaaa gcatctcctc attcatggtc cccgagacca cgtctgtgcg 660 gaatgtggga aagcgttcgt tgagagctca aaactaaaga gacatttcct ggttcatact 720 ggagagaagc cgtttcggtg cacttttgaa gggtgcggaa agcgcttctc tctggacttt 780 aatttgcgta cgcacgtgcg catccacacg ggggagaaac gtttcgtgtg tccctttcaa 840 ggctgcaaca ggaggtttat tcagtcaaat aacctgaaag cccacatcct aacgcatgca 900 aatacgaaca agaatgaaca agagggaaag tag 933 <210> 6 <211> 3855 <212> DNA <213> 人工序列 <220> <223> ZNF423基因 <400> 6 atgcataaga agagggttga agagggggag gcctcagact tctcgctggc ctgggattcc 60 tccgtgacag cagcaggagg cctagaagga gagccagagt gcgatcagaa aaccagccgt 120 gcgctggaag acaggaacag cgtgacaagt caagaggaga gaaatgagga tgatgaagac 180 atggaggatg aatcaattta cacctgcgat cactgtcagc aggacttcga gtctctggca 240 gacctgacgg accaccgggc ccaccgctgt cctggagatg gtgatgacga cccacaactc 300 tcctgggtgg cctcgtctcc ctccagcaag gatgttgcgt cacccacgca gatgatcgga 360 gatggttgtg acctcggcct cggcgaggag gaagggggca cgggcctgcc atacccttgc 420 cagttctgcg acaagtcctt catccgcttg agctacttga agaggcacga gcagatccac 480 agcgacaagc tgccgttcaa gtgcacctac tgcagccgcc tcttcaagca caagaggagc 540 cgtgaccggc acatcaagct gcatacgggc gacaagaagt atcactgcca cgagtgcgag 600 gcagccttct cccgcagcga ccacctcaag atccacctga agacccacag ctccagcaag 660 cccttcaagt gcactgtgtg caagcgcggc ttctcctcca ccagctcgct gcagagccac 720 atgcaggccc acaaaaagaa caaggagcat ctggccaagt cggagaagga agccaagaag 780 gacgacttca tgtgcgacta ctgcgaggac accttcagcc agacggagga gctggagaag 840 cacgtgctca cccgccaccc gcagctgtcc gagaaggcgg acctgcagtg cattcactgc 900 cctgaggtct tcgtcgacga gaacacactg ctcgcccata tccaccaagc ccacgccaac 960 cagaaacaca agtgccccat gtgccctgag cagttctcct cagtggaagg tgtctactgc 1020 cacctggaca gccaccggca gcccgactcc agcaaccaca gtgtcagtcc cgaccctgta 1080 ctgggcagcg tggcctccat gagcagcgcc acacccgact ccagcgcctc tgtggagcgt 1140 ggctccaccc cggactccac cttgaagccg ctgcgggggc agaagaagat gcgggatgac 1200 gggcagggct ggaccaaggt ggtctatagc tgcccctatt gttccaagcg ggactttaac 1260 agcctggccg tgctggagat ccacctgaag accatccacg cggacaagcc ccagcagagc 1320 cacacatgtc agatctgcct ggactccatg cccaccctct acaacctcaa cgagcacgtt 1380 cgcaagctgc acaagaacca tgcctaccct gtgatgcagt ttggcaacat ctctgccttc 1440 cactgcaact actgccccga gatgttcgcc gacatcaata gcctgcagga gcacatccgc 1500 gtctcccact gcggccccaa cgccaacccc tctgacggta ataatgcttt cttctgcaac 1560 cagtgctcca tgggtttcct tactgagtcc tccctcaccg agcacatcca gcaggcccac 1620 tgcagtgtgg gcagtgccaa actagagtct ccggtggtgc agcccacgca gtccttcatg 1680 gaggtctatt cctgccccta ctgcaccaac tcccccatct ttggctccat cctgaaactc 1740 accaagcaca tcaaggagaa ccacaagaac attccactgg cccacagcaa gaagtccaag 1800 gccgagcaga gcccagtctc gtccgatgtg gaggtgtctt ccccgaagcg gcagcggctc 1860 tcagcaagcg ccaactccat ctccaatggg gagtatcctt gcaatcaatg cgacctcaag 1920 ttctccaact ttgagagctt ccagacccac ctgaagctgc acctggagct gctgctgcgg 1980 aagcaagcgt gcccccagtg caaagaggac tttgactccc aggagtccct cctgcagcac 2040 ctgacagtgc attacatgac cacgtcgacc cactatgtgt gcgagagctg cgacaagcaa 2100 ttttcctcgg tggatgacct gcagaagcac ctgctggaca tgcacacctt tgtgttgtac 2160 cactgcaccc tgtgtcagga ggtcttcgac tccaaggtgt ccatccaggt gcacctggcg 2220 gtgaagcaca gcaatgagaa gaagatgtac cgctgcacgg cctgcaactg ggacttccgc 2280 aaggaggctg acctgcaggt gcacgtcaaa cacagccacc tgggcaaccc ggccaaggct 2340 cacaagtgca tcttctgtgg ggagaccttc agcaccgagg tggagctgca gtgccacatc 2400 accacacaca gcaagaagta taactgtaag ttctgcagca aggccttcca cgccatcatc 2460 ctgctggaga agcacctgcg ggagaagcac tgtgtgtttg atgctgcgac cgagaacggc 2520 acggccaatg gggtaccccc aatggccacc aagaaagctg agcctgctga cctgcagggc 2580 atgctgctta agaaccctga ggcacctaac agccatgagg ccagcgagga tgacgtggac 2640 gcgtcggagc ccatgtacgg ctgtgacatc tgtggggcgg cctacaccat ggaggtgctg 2700 ctgcagaatc accggctgcg ggaccacaat atccggccgg gcgaggatga tggctcacgc 2760 aagaaggctg agtttatcaa gggcagtcac aagtgcaacg tttgttcacg gactttcttc 2820 tcggagaacg ggctacggga gcacctgcag acgcaccggg gccctgccaa gcactacatg 2880 tgtcccatct gtggtgagcg cttcccttcg ctgctgacgc tcaccgaaca caaggtgacc 2940 cacagcaaga gcctggacac gggcacctgt cgcatctgca agatgcccct gcagagcgag 3000 gaggagttta ttgagcactg ccagatgcac cctgacctgc gcaactcact cacgggcttc 3060 cgctgtgtgg tctgcatgca gacagtcact tccacgcttg agctcaagat ccatggcacc 3120 ttccacatgc agaagctggc gggcagctca gcggcgtcct cccccaatgg ccaggggctg 3180 cagaagctct acaagtgcgc cctgtgcctc aaggagttcc gcagcaagca ggacctggtg 3240 aagcttgacg tcaatgggct gccctacggc ctctgcgccg gctgcatggc ccgcagcgcc 3300 aacggacagg tgggtggcct ggccccgccc gagcccgccg accggccctg tgccggcctc 3360 cgttgccccg agtgcagtgt caagtttgag agtgccgaag acctggagag ccacatgcag 3420 gtggaccacc gtgacctcac gccggagacc agtgggcccc ggaaaggcac ccagacatcg 3480 ccagtgcccc ggaaaaagac ataccagtgc atcaagtgcc agatgacctt cgagaacgag 3540 agagagatcc aaatccacgt tgccaaccac atgattgagg aaggcatcaa ccacgagtgt 3600 aagctgtgca accagatgtt cgactccccg gccaagctcc tctgtcacct cattgagcac 3660 agcttcgagg gcatgggcgg caccttcaaa tgccccgtgt gtttcacagt cttcgtccag 3720 gccaacaagt tgcagcagca catctttgcc gtgcacgggc aggaggacaa gatctacgac 3780 tgctcacagt gccctcagaa gttcttcttc cagaccgagc tgcagaacca cacgatgagc 3840 cagcacgcac agtga 3855 <210> 7 <211> 2127 <212> DNA <213> 人工序列 <220> <223> DACH1基因 <400> 7 atggcagtgc cggcggcttt gatccctccg acccagctgg tcccccctca acccccaatc 60 tccacgtctg cttcctcctc tggcaccacc acctccacct cttcggcgac ttcgtctccg 120 gctccttcca tcggaccccc ggcgtcctct gggccaactc tgttccgccc ggagcccatc 180 gcttcggcgg cggcggcggc ggccacagtc acctctaccg gcggcggcgg cggcggcggc 240 ggcggcggca gcggaggcgg cggcggcagc agcggcaacg gaggcggcgg tggcggcggc 300 ggcggtggca gcaactgcaa ccccaacctg gcggccgcga gcaacggcag cggcggcggc 360 ggcggcggca tcagcgctgg cggcggcgtc gcttccagca cccccatcaa cgccagcacc 420 ggcagcagca gcagcagcag tagcagcagc agcagcagca gcagtagtag cagcagcagc 480 agtagcagca gcagctgcgg ccccctcccc gggaaacccg tgtactcaac cccgtcccca 540 gtggaaaaca cccctcagaa taatgagtgc aaaatggtgg atctgagggg ggccaaagtg 600 gcttccttca cggtggaggg ctgcgagctg atctgcctgc cccaggcttt cgacctgttc 660 ctgaagcact tggtgggggg cttgcatacg gtctacacca agctgaagcg gctggagatc 720 acgccggtgg tgtgcaatgt ggaacaagtt cgcatcctga ggggactggg cgccatccag 780 ccaggagtga accgctgcaa actcatctcc aggaaggact tcgagaccct ctacaatgac 840 tgcaccaacg caagttctag acctggaagg cctcctaaga ggactcaaag tgtcacctcc 900 ccagagaact ctcacatcat gccgcattct gtccctggtc tcatgtctcc tgggataatt 960 ccaccaacag gtctgacagc agccgctgca gcagctgctg ctgctaccaa tgcagctatt 1020 gctgaagcaa tgaaggtgaa aaaaatcaaa ttagaagcca tgagcaacta tcatgccagt 1080 aataaccaac atggagcaga ctctgaaaac ggggacatga attcaagtgt cggactggaa 1140 cttcctttta tgatgatgcc ccaccctcta attcctgtca gcctacctcc agcatctgtc 1200 accatggcaa tgagccagat gaaccacctc agcaccattg caaatatggc agcagcagca 1260 caagttcaga gtcccccatc cagagttgag acatcagtta ttaaggagcg tgttcctgat 1320 agcccctcac ctgccccctc tctggaggag gggagaaggc ctggcagtca cccatcatca 1380 catcgcagca gcagcgtgtc cagctcccct gctcggactg agagctcttc tgacagaatc 1440 ccggtccatc agaatgggtt gtccatgaac cagatgctga tgggcttatc accaaatgta 1500 cttcctgggc ccaaagaggg agatttggcc ggtcatgaca tgggacatga gtcaaaaagg 1560 atgcatattg aaaaagatga gaccccgctt tctacaccaa ccgcaagaga cagccttgac 1620 aaactctctc taactgggca tggacaacca ctgcctccag gttttccatc tccttttctg 1680 tttcctgatg gactgtcttc catcgagact cttctgacta acatacaggg gctgttgaaa 1740 gttgccatag ataatgccag agctcaagag aaacaggtcc aactggaaaa aactgagctg 1800 aagatggatt ttttaaggga aagagaacta agggaaacac ttgagaagca gttggctatg 1860 gaacaaaaga atagagccat agttcaaaag aggctaaaga aggagaagaa ggcaaagaga 1920 aaattgcagg aagcacttga gtttgagacg aaacggcgtg aacaagcaga acagacgcta 1980 aaacaggcag cttcaacaga tagtctcagg gtcttaaatg actctctgac cccagagata 2040 gaggctgacc gcagtggcgg cagaacagat gctgaaagga caatacaaga tggaagactg 2100 tatttgaaaa ctactgtcat gtactga 2127 <210> 8 <211> 1470 <212> DNA <213> 人工序列 <220> <223> FOXG1基因 <400> 8 atgctggaca tgggagatag gaaagaggtg aaaatgatcc ccaagtcctc gttcagcatc 60 aacagcctgg tgcccgaggc ggtccagaac gacaaccacc acgcgagcca cggccaccac 120 aacagccacc acccccagca ccaccaccac caccaccacc atcaccacca cccgccgccg 180 cccgccccgc aaccgccgcc gccgccgcag cagcagcagc cgccgccgcc gccgcccccg 240 gcaccgcagc ccccccagac gcggggcgcc ccggccgccg acgacgacaa gggcccccag 300 cagctgctgc tcccgccgcc gccaccgcca ccaccggccg ccgccctgga cggggctaaa 360 gcggacgggc tgggcggcaa gggcgagccg ggcggcgggc cgggggagct ggcgcccgtc 420 gggccggacg agaaggagaa gggcgccggc gccggggggg aggagaagaa gggggcgggc 480 gagggcggca aggacgggga ggggggcaag gagggcgaga agaagaacgg caagtacgag 540 aagccgccgt tcagctacaa cgcgctcatc atgatggcca tccggcagag ccccgagaag 600 cggctcacgc tcaacggcat ctacgagttc atcatgaaga acttccctta ctaccgcgag 660 aacaagcagg gctggcagaa ctccatccgc cacaatctgt ccctcaacaa gtgcttcgtg 720 aaggtgccgc gccactacga cgacccgggc aagggcaact actggatgct ggacccgtcg 780 agcgacgacg tgttcatcgg cggcaccacg ggcaagctgc ggcgccgctc caccacctcg 840 cgggccaagc tggccttcaa gcgcggtgcg cgcctcacct ccaccggcct caccttcatg 900 gaccgcgccg gctccctcta ctggcccatg tcgcccttcc tgtccctgca ccacccccgc 960 gccagcagca ctttgagtta caacggcacc acgtcggcct accccagcca ccccatgccc 1020 tacagctccg tgttgactca gaactcgctg ggcaacaacc actccttctc caccgccaac 1080 ggcctgagcg tggaccggct ggtcaacggg gagatcccgt acgccacgca ccacctcacg 1140 gccgccgcgc tagccgcctc ggtgccctgc ggcctgtcgg tgccctgctc tgggacctac 1200 tccctcaacc cctgctccgt caacctgctc gcgggccaga ccagttactt tttcccccac 1260 gtcccgcacc cgtcaatgac ttcgcagagc agcacgtcca tgagcgccag ggccgcgtcc 1320 tcctccacgt cgccgcaggc cccctcgacc ctgccctgtg agtctttaag accctctttg 1380 ccaagtttta cgacgggact gtctggggga ctgtctgatt atttcacaca tcaaaatcag 1440 gggtcttctt ccaacccttt aatacattaa 1470 <210> 9 <211> 1395 <212> DNA <213> 人工序列 <220> <223> MYCN基因 <400> 9 atgccgagct gctccacgtc caccatgccg ggcatgatct gcaagaaccc agacctcgag 60 tttgactcgc tacagccctg cttctacccg gacgaagatg acttctactt cggcggcccc 120 gactcgaccc ccccggggga ggacatctgg aagaagtttg agctgctgcc cacgcccccg 180 ctgtcgccca gccgtggctt cgcggagcac agctccgagc ccccgagctg ggtcacggag 240 atgctgcttg agaacgagct gtggggcagc ccggccgagg aggacgcgtt cggcctgggg 300 ggactgggtg gcctcacccc caacccggtc atcctccagg actgcatgtg gagcggcttc 360 tccgcccgcg agaagctgga gcgcgccgtg agcgagaagc tgcagcacgg ccgcgggccg 420 ccaaccgccg gttccaccgc ccagtccccg ggagccggcg ccgccagccc tgcgggtcgc 480 gggcacggcg gggctgcggg agccggccgc gccggggccg ccctgcccgc cgagctcgcc 540 cacccggccg ccgagtgcgt ggatcccgcc gtggtcttcc cctttcccgt gaacaagcgc 600 gagccagcgc ccgtgcccgc agccccggcc agtgccccgg cggcgggccc tgcggtcgcc 660 tcgggggcgg gtattgccgc cccagccggg gccccggggg tcgcccctcc gcgcccaggc 720 ggccgccaga ccagcggcgg cgaccacaag gccctcagta cctccggaga ggacaccctg 780 agcgattcag atgatgaaga tgatgaagag gaagatgaag aggaagaaat cgacgtggtc 840 actgtggaga agcggcgttc ctcctccaac accaaggctg tcaccacatt caccatcact 900 gtgcgtccca agaacgcagc cctgggtccc gggagggctc agtccagcga gctgatcctc 960 aaacgatgcc ttcccatcca ccagcagcac aactatgccg ccccctctcc ctacgtggag 1020 agtgaggatg cacccccaca gaagaagata aagagcgagg cgtccccacg tccgctcaag 1080 agtgtcatcc ccccaaaggc taagagcttg agcccccgaa actctgactc ggaggacagt 1140 gagcgtcgca gaaaccacaa catcctggag cgccagcgcc gcaacgacct tcggtccagc 1200 tttctcacgc tcagggacca cgtgccggag ttggtaaaga atgagaaggc cgccaaggtg 1260 gtcattttga aaaaggccac tgagtatgtc cactccctcc aggccgagga gcaccagctt 1320 ttgctggaaa aggaaaaatt gcaggcaaga cagcagcagt tgctaaagaa aattgaacac 1380 gctcggactt gctag 1395 <210> 10 <211> 1245 <212> DNA <213> 人工序列 <220> <223> NR2F2基因 <400> 10 atggcaatgg tagtcagcac gtggcgcgac ccccaggacg aggtgcccgg ctcacagggc 60 agccaggcct cgcaggcgcc gcccgtgccc ggcccgccgc ccggcgcccc gcacacgcca 120 cagacgcccg gccaaggggg cccagccagc acgccagccc agacggcggc cggtggccag 180 ggcggccctg gcggcccggg tagcgacaag cagcagcagc agcaacacat cgagtgcgtg 240 gtgtgcggag acaagtcgag cggcaagcac tacggccagt tcacgtgcga gggctgcaag 300 agcttcttca agcgcagcgt gcggaggaac ctgagctaca cgtgccgcgc caaccggaac 360 tgtcccatcg accagcacca tcgcaaccag tgccagtact gccgcctcaa aaagtgcctc 420 aaagtgggca tgagacggga agcggtgcag aggggcagga tgccgccgac ccagccgacc 480 cacgggcagt tcgcgctgac caacggggat cccctcaact gccactcgta cctgtccgga 540 tatatttccc tgctgttgcg cgcggagccc tatcccacgt cgcgcttcgg cagccaatgc 600 atgcagccca acaacatcat gggtatcgag aacatttgcg aactggccgc gaggatgctc 660 ttcagcgccg tcgagtgggc ccggaacatc cccttcttcc ccgacctgca gatcacggac 720 caggtggccc tgcttcgcct cacctggagc gagctgtttg tgttgaatgc ggcgcagtgc 780 tccatgcccc tccacgtcgc cccgctcctg gccgccgccg gcctgcatgc ttcgcccatg 840 tccgccgacc gggtggtcgc ctttatggac cacatacgga tcttccaaga gcaagtggag 900 aagctcaagg cgctgcacgt tgactcagcc gagtacagct gcctcaaggc catagtcctg 960 ttcacctcag atgcctgtgg tctctctgat gtagcccatg tggaaagctt gcaggaaaag 1020 tctcagtgtg ctttggaaga atacgttagg agccagtacc ccaaccagcc gacgagattc 1080 ggaaagcttt tgcttcgcct cccttccctc cgcaccgtct cctcctcagt catagagcaa 1140 ttgtttttcg tccgtttggt aggtaaaacc cccatcgaaa ccctcatccg ggatatgtta 1200 ctgtccggca gcagttttaa ctggccgtat atggcaattc aataa 1245 <210> 11 <211> 1443 <212> DNA <213> 人工序列 <220> <223> NR6A1基因 <400> 11 atggagcggg acgaaccgcc gcctagcgga gggggaggcg gcgggggctc ggcggggttc 60 ctggagcctc ccgccgcgct ccctccgccg ccgcgcaacg gtttctgtca ggatgaattg 120 gcagagcttg acccaggcac tatttctgtt tcagatgatc gggctgaaca acgaacctgt 180 ctcatttgtg gggaccgcgc tacaggcttg cactatggga tcatctcctg tgagggctgc 240 aaagggtttt tcaagcggag catttgcaac aaacgggtat atcgatgcag tcgtgacaag 300 aactgtgtca tgtctcggaa gcagaggaac aggtgccagt actgccgcct gctcaaatgc 360 ctccagatgg ggatgaaccg gaaggctatc agagaagatg gcatgcctgg aggccggaat 420 aagagcattg ggccagtcca gatatcggaa gaagaaatcg aaaggatcat gtctgggcag 480 gagtttgagg aagaggccaa tcactggagc aaccatggtg atagtgacca cagttcccct 540 gggaacaggg cttcggagag caaccagccc tcaccaggct ccacactgtc ttccagtagg 600 tctgtggaac tgaatggatt catggccttc agggaacagt acatgggaat gtctgtgcct 660 ccacattacc aatatatacc gcaccttttt agctattctg gccactcacc acttctgccc 720 caacaagctc gcagcctgga tccccagtca tacagtctga ttcaccagct gttatcagcc 780 gaggacctgg aaccattggg cacgcccatg ttgattgaag atggatacgc tgtgacacag 840 gcagaactat ttgccctgct ttgccgcctg gccgacgagc tgctctttag gcagattgcc 900 tggatcaaga aactgccttt cttctgcgag ctctcaatca aggattacac gtgcctcttg 960 agctctacgt ggcaggagct aatcctgctg tcttccctca ccgtttacag caagcagatc 1020 tttggggaac tggctgatgt cactgccaag tactcgccct ccgatgaaga actacacaga 1080 tttagtgatg aagggatgga ggtgatcgag cggctcatct acctctatca caagttccat 1140 cagctaaagg tcagcaacga ggagtatgct tgcatgaaag caattaactt cctaaatcaa 1200 gatatcaggg gtctgaccag tgcctcacag ctggaacaat tgaataaacg atactggtac 1260 atttgccagg attttactga atataaatac acacatcagc cgaaccgctt tcctgatctc 1320 atgatgtgct tacctgagat tcgatatatt gcaggaaaga tggtgaatgt gcccctggag 1380 cagctgcccc tcctctttaa ggtggtgctg cattcctgca agaccagtgt gggcaaggaa 1440 tga 1443 <210> 12 <211> 954 <212> DNA <213> 人工序列 <220> <223> SOX2基因 <400> 12 atgtacaaca tgatggagac ggagctgaag ccgccgggcc cgcagcaaac ttcggggggc 60 ggcggcggca actccaccgc ggcggcggcc ggcggcaacc agaaaaacag cccggaccgc 120 gtcaagcggc ccatgaatgc cttcatggtg tggtcccgcg ggcagcggcg caagatggcc 180 caggagaacc ccaagatgca caactcggag atcagcaagc gcctgggcgc cgagtggaaa 240 cttttgtcgg agacggagaa gcggccgttc atcgacgagg ctaagcggct gcgagcgctg 300 cacatgaagg agcacccgga ttataaatac cggccccggc ggaaaaccaa gacgctcatg 360 aagaaggata agtacacgct gcccggcggg ctgctggccc ccggcggcaa tagcatggcg 420 agcggggtcg gggtgggcgc cggcctgggc gcgggcgtga accagcgcat ggacagttac 480 gcgcacatga acggctggag caacggcagc tacagcatga tgcaggacca gctgggctac 540 ccgcagcacc cgggcctcaa tgcgcacggc gcagcgcaga tgcagcccat gcaccgctac 600 gacgtgagcg ccctgcagta caactccatg accagctcgc agacctacat gaacggctcg 660 cccacctaca gcatgtccta ctcgcagcag ggcacccctg gcatggctct tggctccatg 720 ggttcggtgg tcaagtccga ggccagctcc agcccccctg tggttacctc ttcctcccac 780 tccagggcgc cctgccaggc cggggacctc cgggacatga tcagcatgta tctccccggc 840 gccgaggtgc cggaacccgc cgcccccagc agacttcaca tgtcccagca ctaccagagc 900 ggcccggtgc ccggcacggc cattaacggc acactgcccc tctcacacat gtga 954 <210> 13 <211> 1326 <212> DNA <213> 人工序列 <220> <223> SOX11基因 <400> 13 atggtgcagc aggcggagag cttggaagcg gagagcaacc tgccccggga ggcgctggac 60 acggaggagg gcgaattcat ggcttgcagc ccggtggccc tggacgagag cgacccagac 120 tggtgcaaga cggcgtcggg ccacatcaag cggccgatga acgcgttcat ggtatggtcc 180 aagatcgaac gcaggaagat catggagcag tctccggaca tgcacaacgc cgagatctcc 240 aagaggctgg gcaagcgctg gaaaatgctg aaggacagcg agaagatccc gttcatccgg 300 gaggcggagc ggctgcggct caagcacatg gccgactacc ccgactacaa gtaccggccc 360 cggaaaaagc ccaaaatgga cccctcggcc aagcccagcg ccagccagag cccagagaag 420 agcgcggccg gcggcggcgg cgggagcgcg ggcggaggcg cgggcggtgc caagacctcc 480 aagggctcca gcaagaaatg cggcaagctc aaggcccccg cggccgcggg cgccaaggcg 540 ggcgcgggca aggcggccca gtccggggac tacgggggcg cgggcgacga ctacgtgctg 600 ggcagcctgc gcgtgagcgg ctcgggcggc ggcggcgcgg gcaagacggt caagtgcgtg 660 tttctggatg aggacgacga cgacgacgac gacgacgacg agctgcagct gcagatcaaa 720 caggagccgg acgaggagga cgaggaacca ccgcaccagc agctcctgca gccgccgggg 780 cagcagccgt cgcagctgct gagacgctac aacgtcgcca aagtgcccgc cagccctacg 840 ctgagcagct cggcggagtc ccccgaggga gcgagcctct acgacgaggt gcgggccggc 900 gcgacctcgg gcgccggggg cggcagccgc ctctactaca gcttcaagaa catcaccaag 960 cagcacccgc cgccgctcgc gcagcccgcg ctgtcgcccg cgtcctcgcg ctcggtgtcc 1020 acctcctcgt ccagcagcag cggcagcagc agcggcagca gcggcgagga cgccgacgac 1080 ctgatgttcg acctgagctt gaatttctct caaagcgcgc acagcgccag cgagcagcag 1140 ctggggggcg gcgcggcggc cgggaacctg tccctgtcgc tggtggataa ggatttggat 1200 tcgttcagcg agggcagcct gggctcccac ttcgagttcc ccgactactg cacgccggag 1260 ctgagcgaga tgatcgcggg ggactggctg gaggcgaact tctccgacct ggtgttcaca 1320 tattga 1326 <210> 14 <211> 1599 <212> DNA <213> 人工序列 <220> <223> ZIC2基因 <400> 14 atgctcctgg acgcgggtcc gcagttcccg gccatcgggg tgggcagctt cgcgcgccac 60 catcaccact ccgccgcggc ggcggcggcg gctgccgccg agatgcagga ccgtgaactg 120 agcctggcgg cggcgcagaa cggcttcgtt gactccgccg ccgcgcacat gggagccttc 180 aagctcaacc cgggcgcgca cgagctgtcc ccgggccaga gctcggcgtt cacgtcgcag 240 ggccccggcg cctaccccgg ctccgctgcg gctgccgctg cggccgcagc gctcgggccc 300 cacgccgcgc acgttggctc ctactctggg ccgcccttca actccacccg ggacttcctg 360 ttccgcagcc gcggcttcgg ggactcggcg ccgggcggcg ggcagcacgg gctgttcggg 420 ccgggcgcgg gcggcctgca ccacgcgcac tcggacgcgc agggccacct cctcttcccg 480 ggcctgccag agcagcacgg gccgcacggc tcgcagaatg tgctcaacgg gcagatgcgc 540 ctcgggctgc ccggcgaggt gttcgggcgc tcggagcaat accgccaggt ggccagcccg 600 cggaccgacc cctactcggc ggcgcaactc cacaaccagt acggccccat gaatatgaac 660 atgggtatga acatggcagc agccgcggcc caccaccacc accaccacca ccaccacccc 720 ggtgcctttt tccgctatat gcggcagcag tgcatcaagc aggagctaat ctgcaagtgg 780 atcgaccccg agcaactgag caatcccaag aagagctgca acaaaacttt cagcaccatg 840 cacgagctgg tgacacacgt ctcggtggag cacgtcggcg gcccggagca gagcaaccac 900 gtctgcttct gggaggagtg tccgcgcgag ggcaagccct tcaaggccaa atacaaactg 960 gtcaaccaca tccgcgtgca cacaggcgag aaacccttcc cctgcccctt cccgggctgt 1020 ggcaaagtct tcgcgcgctc cgagaacctc aagatccaca aaaggaccca cacaggggag 1080 aagccgttcc agtgtgagtt tgagggctgc gaccggcgct tcgccaacag cagcgacagg 1140 aagaagcaca tgcacgtcca cacctccgat aagccctatc tctgcaagat gtgcgacaag 1200 tcctacacgc accccagctc gctgcggaag cacatgaagg tccatgagtc ctccccgcag 1260 ggctctgaat cctccccggc cgccagctcc ggctatgagt cgtccacgcc cccggggctg 1320 gtgtccccca gcgccgagcc ccagagcagc tccaacctgt ccccagcggc ggcggcagcg 1380 gcggcggcgg ctgcggcggc ggcggccgcg gtgtccgcgg tgcaccgggg cggaggctcg 1440 ggcagtggcg gcgcgggagg cggctcaggc ggcggcagcg gcagtggcgg gggcggcggc 1500 ggggcgggcg gcgggggcgg cggcagctct ggcgggggca gcgggacagc cgggggtcac 1560 agcggcctct cctccaactt caatgaatgg tacgtgtga 1599 <210> 15 <211> 1404 <212> DNA <213> 人工序列 <220> <223> ZIC3基因 <400> 15 atgacgatgc tcctggacgg aggcccgcag ttccctgggc tgggagtggg cagcttcggc 60 gcgccgcgcc accacgagat gcccaaccgt gagccggcag gcatggggct gaatcccttc 120 ggggactcaa cccacgccgc cgccgccgcc gccgccgccg ctgccttcaa gctgagccct 180 gccgcggcgc acgatctatc ttcaggccag agctcggctt tcacgccgca gggttcgggc 240 tacgccaacg ccctgggcca ccatcaccac caccatcacc atcatcacca caccagccag 300 gtgcccagct acggtggcgc tgcctctgcc gccttcaact caacgcgcga gtttctgttc 360 cgccagcgca gctccgggct cagtgaggcg gcctcgggtg gcgggcagca cgggctcttc 420 gccggctcgg cgagcagcct gcatgctcca gctggcatcc ccgagccccc tagctacttg 480 ctgtttcccg ggctgcatga gcagggcgct gggcacccgt cgcccacagg gcacgtggac 540 aacaaccagg tccacctggg gctgcgtggg gagctgttcg gccgtgctga cccataccgc 600 ccagtggcca gcccgcgcac ggacccctac gcggccggcg ctcagtttcc taactacagc 660 cccatgaaca tgaacatggg agtgaacgtg gcggcccacc acgggcccgg cgccttcttc 720 cgttatatgc ggcagcctat caagcaggag ctgtcgtgca agtggatcga cgaggctcag 780 ctgagccggc ccaagaagag ctgcgaccgg accttcagca ccatgcatga gctggtgaca 840 catgtcacca tggagcatgt ggggggcccg gagcagaaca accacgtctg ctactgggag 900 gagtgccccc gggagggcaa gtctttcaag gcgaagtaca aactggtcaa ccacatccga 960 gtgcacacgg gcgagaagcc cttcccatgc cccttcccgg gctgcgggaa gatctttgcc 1020 cgttctgaga acctcaagat ccacaagagg acccacacag gtgagaaacc tttcaaatgt 1080 gaatttgaag gctgtgacag acgctttgcc aacagcagcg accgtaagaa gcacatgcat 1140 gtgcatacct cggacaagcc ctatatctgc aaagtgtgcg acaagtccta cacgcacccg 1200 agctccctgc gcaaacacat gaaggttcat gaatctcaag ggtcagattc ctcccctgct 1260 gccagttcag gctatgaatc ttccactcca cccgctatag cttctgcaaa cagtaaagat 1320 accactaaaa ccccttctgc agttcaaact agcaccagcc acaaccctgg acttcctcct 1380 aattttaacg aatggtacgt ctga 1404 <210> 16 <211> 1335 <212> DNA <213> 人工序列 <220> <223> GATA3基因 <400> 16 atggaggtga cggcggacca gccgcgctgg gtgagccacc accaccccgc cgtgctcaac 60 gggcagcacc cggacacgca ccacccgggc ctcagccact cctacatgga cgcggcgcag 120 tacccgctgc cggaggaggt ggatgtgctt tttaacatcg acggtcaagg caaccacgtc 180 ccgccctact acggaaactc ggtcagggcc acggtgcaga ggtaccctcc gacccaccac 240 gggagccagg tgtgccgccc gcctctgctt catggatccc taccctggct ggacggcggc 300 aaagccctgg gcagccacca caccgcctcc ccctggaatc tcagcccctt ctccaagacg 360 tccatccacc acggctcccc ggggcccctc tccgtctacc ccccggcctc gtcctcctcc 420 ttgtcggggg gccacgccag cccgcacctc ttcaccttcc cgcccacccc gccgaaggac 480 gtctccccgg acccatcgct gtccacccca ggctcggccg gctcggcccg gcaggacgag 540 aaagagtgcc tcaagtacca ggtgcccctg cccgacagca tgaagctgga gtcgtcccac 600 tcccgtggca gcatgaccgc cctgggtgga gcctcctcgt cgacccacca ccccatcacc 660 acctacccgc cctacgtgcc cgagtacagc tccggactct tcccccccag cagcctgctg 720 ggcggctccc ccaccggctt cggatgcaag tccaggccca aggcccggtc cagcacagaa 780 ggcagggagt gtgtgaactg tggggcaacc tcgaccccac tgtggcggcg agatggcacg 840 ggacactacc tgtgcaacgc ctgcgggctc tatcacaaaa tgaacggaca gaaccggccc 900 ctcattaagc ccaagcgaag gctgtctgca gccaggagag cagggacgtc ctgtgcgaac 960 tgtcagacca ccacaaccac actctggagg aggaatgcca atggggaccc tgtctgcaat 1020 gcctgtgggc tctactacaa gcttcacaat attaacagac ccctgactat gaagaaggaa 1080 ggcatccaga ccagaaaccg aaaaatgtct agcaaatcca aaaagtgcaa aaaagtgcat 1140 gactcactgg aggacttccc caagaacagc tcgtttaacc cggccgccct ctccagacac 1200 atgtcctccc tgagccacat ctcgcccttc agccactcca gccacatgct gaccacgccc 1260 acgccgatgc acccgccatc cagcctgtcc tttggaccac accacccctc cagcatggtc 1320 accgccatgg gttag 1335 <210> 17 <211> 1269 <212> DNA <213> 人工序列 <220> <223> PAX6基因 <400> 17 atgcagaaca gtcacagcgg agtgaatcag ctcggtggtg tctttgtcaa cgggcggcca 60 ctgccggact ccacccggca gaagattgta gagctagctc acagcggggc ccggccgtgc 120 gacatttccc gaattctgca ggtgtccaac ggatgtgtga gtaaaattct gggcaggtat 180 tacgagactg gctccatcag acccagggca atcggtggta gtaaaccgag agtagcgact 240 ccagaagttg taagcaaaat agcccagtat aagcgggagt gcccgtccat ctttgcttgg 300 gaaatccgag acagattact gtccgagggg gtctgtacca acgataacat accaagcgtg 360 tcatcaataa acagagttct tcgcaacctg gctagcgaaa agcaacagat gggcgcagac 420 ggcatgtatg ataaactaag gatgttgaac gggcagaccg gaagctgggg cacccgccct 480 ggttggtatc cggggacttc ggtgccaggg caacctacgc aagatggctg ccagcaacag 540 gaaggagggg gagagaatac caactccatc agttccaacg gagaagattc agatgaggct 600 caaatgcgac ttcagctgaa gcggaagctg caaagaaata gaacatcctt tacccaagag 660 caaattgagg ccctggagaa agagtttgag agaacccatt atccagatgt gtttgcccga 720 gaaagactag cagccaaaat agatctacct gaagcaagaa tacaggtatg gttttctaat 780 cgaagggcca aatggagaag agaagaaaaa ctgaggaatc agagaagaca ggccagcaac 840 acacctagtc atattcctat cagcagtagt ttcagcacca gtgtctacca accaattcca 900 caacccacca caccggtttc ctccttcaca tctggctcca tgttgggccg aacagacaca 960 gccctcacaa acacctacag cgctctgccg cctatgccca gcttcaccat ggcaaataac 1020 ctgcctatgc aacccccagt ccccagccag acctcctcat actcctgcat gctgcccacc 1080 agcccttcgg tgaatgggcg gagttatgat acctacaccc ccccacatat gcagacacac 1140 atgaacagtc agccaatggg cacctcgggc accacttcaa caggactcat ttcccctggt 1200 gtgtcagttc cagttcaagt tcccggaagt gaacctgata tgtctcaata ctggccaaga 1260 ttacagtaa 1269 <210> 18 <211> 3024 <212> DNA <213> 人工序列 <220> <223> SALL2基因 <400> 18 atgtctcggc gaaagcagcg gaaaccccaa cagttaatct cggactgcga aggtcccagc 60 gcgtctgaga acggtgatgc tagcgaggag gatcaccccc aagtctgtgc caagtgctgc 120 gcacaattca ctgacccaac tgaattcctc gcccaccaga acgcatgttc tactgaccct 180 cctgtaatgg tgataattgg gggccaggag aaccccaaca actcttcggc ctcctctgaa 240 ccccggcctg agggtcacaa taatcctcag gtcatggaca cagagcatag caacccccca 300 gattctgggt cctccgtgcc cacggatccc acctggggcc cagagaggag aggagaggag 360 tctccagggc atttcctggt cgctgccaca ggtacagcgg ctgggggagg cgggggcctg 420 atcttggcca gtcccaagct gggagcaacc ccattacctc cagaatcgac ccctgcaccc 480 cctcctcctc caccaccccc tccgccccca ggggtaggca gtggccactt gaatatcccc 540 ctgatcttgg aagagctacg ggtgctgcag cagcggcaga tccatcagat gcagatgact 600 gagcaaatct gcaggcaggt gctgttgctt ggctccttag gccagacggt gggtgcccct 660 gccagtccct cagagctacc tgggacaggg actgcctctt ccaccaagcc cctactaccc 720 ctcttcagcc ccatcaagcc tgtccaaacc agcaagacac tggcatcttc ctcctcctcc 780 tcctcttcct cttcaggggc agaaacgccc aagcaggcct tcttccacct ttaccaccca 840 ctggggtcac agcatccttt ctctgctgga ggggttgggc gaagccacaa acccacccct 900 gccccttccc cagccttgcc aggcagcaca gatcagctga ttgcctcgcc tcatctggca 960 ttcccaagca ccacgggact actggcagca cagtgtcttg gggcagcccg aggccttgag 1020 gccactgcct ccccagggct cctgaagcca aagaatggaa gtggtgagct gagctacgga 1080 gaagtgatgg gtcccttgga gaagcctggt ggaaggcaca aatgccgctt ctgtgccaaa 1140 gtatttggca gtgacagtgc cctgcagatc caccttcgtt cccacacggg tgagaggccc 1200 tataagtgca atgtctgtgg aaaccgtttt accacccgtg gcaacctcaa agtgcatttc 1260 caccggcatc gtgagaagta cccacatgtg cagatgaacc cacacccagt accagagcac 1320 ctagactatg tcattaccag cagtggcttg ccttatggta tgtccgtgcc accagagaag 1380 gccgaggagg aggcagccac tccaggtgga ggggttgagc gcaagcctct ggtggcctcc 1440 acaacagcac tcagtgccac agagagcctg actctgctct ccaccagtgc aggcacagcc 1500 acggctccag gactccctgc tttcaataag tttgtgctca tgaaagcagt ggaacccaag 1560 aataaagctg atgaaaacac ccccccaggg agtgagggct cagccatcag tggagtggca 1620 gaaagtagca cggcaactcg catgcaacta agtaagttgg tgacttcact accaagctgg 1680 gcactgctta ccaaccactt caagtccact ggcagcttcc ccttccccta tgtgctagag 1740 cccttggggg cctcaccctc tgagacatca aagctgcagc aactggtaga aaagattgac 1800 cggcaaggag ctgtggcggt gacctcagct gcctcaggag cccccaccac ctctgcccct 1860 gcaccttcat cctcagcctc ttctggacct aaccagtgtg tcatctgtct ccgagtgctt 1920 agctgtcctc gggccctacg ccttcattat ggccaacatg gaggtgagag gcccttcaaa 1980 tgcaaagtgt gtggcagagc cttctccacc aggggtaatc tgcgtgcaca tttcgtgggc 2040 cacaaggcca gtccagctgc ccgggcacag aattcctgcc ccatctgcca gaagaagttc 2100 accaatgctg tcactctgca gcagcatgtc cggatgcacc tggggggcca gatccccaac 2160 ggtggtactg cactccctga aggtggagga gctgctcagg agaatggctc cgagcaatct 2220 acagtctccg gggcagggag tttcccccag cagcagtccc agcagccatc accggaagag 2280 gagttgtctg aggaggagga agaggaggat gaggaagaag aggaagatgt gactgatgaa 2340 gattccctgg cagggagagg ctcagagagt ggaggtgaga aggcaatatc agtgagaggt 2400 gattcagaag aggcatctgg ggcagaggag gaggtgggga cagtggcggc agcagccaca 2460 gctgggaagg agatggacag taatgagaaa actactcaac agtcttcttt gccaccacca 2520 ccaccacctg acagcctgga tcagcctcag ccaatggagc agggaagcag tggtgtttta 2580 ggaggcaagg aagagggggg caaaccggag agaagctcaa gtccggcatc agcactcacc 2640 ccagaagggg aagccaccag cgtgaccttg gtagaggagc tgagcctgca ggaggcaatg 2700 agaaaggagc caggagagag cagcagcaga aaggcctgcg aagtgtgtgg ccaggccttt 2760 ccctcccagg cagctctgga ggagcatcag aagacccacc ccaaggaggg gccgctcttc 2820 acttgtgttt tctgcaggca gggctttctt gagcgggcta ccctcaagaa gcatatgctc 2880 ctggcacacc accaggtaca gccctttgcc ccccatggcc ctcagaatat tgctgctctt 2940 tctctagtcc ctggctgttc gccttccatc acctccacag ggctctcccc ctttccccga 3000 aaagatgacc ccacgatccc atga 3024 <210> 19 <211> 1221 <212> DNA <213> 人工序列 <220> <223> LHX2基因 <400> 19 atgctgttcc acagtctgtc gggccccgag gtgcacgggg tcatcgacga gatggaccgc 60 agggccaaga gcgaggctcc cgccatcagc tccgccatcg accgcggcga caccgagacg 120 accatgccgt ccatcagcag tgaccgcgcc gcgctgtgcg ccggctgcgg gggcaagatc 180 tcggaccgct actacctgct ggcggtggac aagcagtggc acatgcgctg cctcaagtgc 240 tgcgagtgca agctcaacct ggagtcggag ctcacctgtt tcagcaagga cggtagcatc 300 tactgcaagg aagactacta caggcgcttc tctgtgcagc gctgcgcccg ctgccacctg 360 ggcatctcgg cctcggagat ggtgatgcgc gctcgggact tggtttatca cctcaactgc 420 ttcacgtgca ccacgtgtaa caagatgctg accacgggcg accacttcgg catgaaggac 480 agcctggtct actgccgctt gcacttcgag gcgctgctgc agggcgagta ccccgcacac 540 ttcaaccatg ccgacgtggc agcggcggcc gctgcagccg cggcggccaa gagcgcgggg 600 ctgggcgcag caggggccaa ccctctgggt cttccctact acaatggcgt gggcactgtg 660 cagaaggggc ggccgaggaa acgtaagagc ccgggccccg gtgcggatct ggcggcctac 720 aacgctgcgc taagctgcaa cgaaaacgac gcagagcacc tggaccgtga ccagccatac 780 ccgagcagcc agaagaccaa gcgcatgcgc acgtccttca agcaccacca gcttcggacc 840 atgaagtctt actttgccat taaccacaac cccgacgcca aggacttgaa gcagctcgcg 900 caaaagacgg gcctcaccaa gcgggtcctc caggtctggt tccagaacgc ccgagccaag 960 ttcaggcgca acctcttacg gcaggaaaac acgggcgtgg acaagtcgac agacgcggcg 1020 ctgcagacag ggacgccatc gggcccggcc tcggagctct ccaacgcctc gctcagcccc 1080 tccagcacgc ccaccaccct gacagacttg actagcccca ccctgccaac tgtgacgtcc 1140 gtcttaactt ctgtgcctgg caacctggag ggccatgagc ctcacagccc ctcacaaacg 1200 actcttacca accttttcta a 1221 <210> 20 <211> 1236 <212> DNA <213> 人工序列 <220> <223> MBD2基因 <400> 20 atgcgcgcgc acccgggggg aggccgctgc tgcccggagc aggaggaggg ggagagtgcg 60 gcgggcggca gcggcgctgg cggcgactcc gccatagagc aggggggcca gggcagcgcg 120 ctcgccccgt ccccggtgag cggcgtgcgc agggaaggcg ctcggggcgg cggccgtggc 180 cgggggcggt ggaagcaggc gggccggggc ggcggcgtct gtggccgtgg ccggggccgg 240 ggccgtggcc ggggacgggg acggggccgg ggccggggcc gcggccgtcc cccgagtggc 300 ggcagcggcc ttggcggcga cggcggcggc tgcggcggcg gcggcagcgg tggcggcggc 360 gccccccggc gggagccggt ccctttcccg tcggggagcg cggggccggg gcccagggga 420 ccccgggcca cggagagcgg gaagaggatg gattgcccgg ccctcccccc cggatggaag 480 aaggaggaag tgatccgaaa atctgggcta agtgctggca agagcgatgt ctactacttc 540 agtccaagtg gtaagaagtt cagaagcaag cctcagttgg caaggtacct gggaaatact 600 gttgatctca gcagttttga cttcagaact ggaaagatga tgcctagtaa attacagaag 660 aacaaacaga gactgcgaaa cgatcctctc aatcaaaata agggtaaacc agacttgaat 720 acaacattgc caattagaca aacagcatca attttcaaac aaccggtaac caaagtcaca 780 aatcatccta gtaataaagt gaaatcagac ccacaacgaa tgaatgaaca gccacgtcag 840 cttttctggg agaagaggct acaaggactt agtgcatcag atgtaacaga acaaattata 900 aaaaccatgg aactacccaa aggtcttcaa ggagttggtc caggtagcaa tgatgagacc 960 cttttatctg ctgttgccag tgctttgcac acaagctctg cgccaatcac agggcaagtc 1020 tccgctgctg tggaaaagaa ccctgctgtt tggcttaaca catctcaacc cctctgcaaa 1080 gcttttattg tcacagatga agacatcagg aaacaggaag agcgagtaca gcaagtacgc 1140 aagaaattgg aagaagcact gatggcagac atcttgtcgc gagctgctga tacagaagag 1200 atggatattg aaatggacag tggagatgaa gcctaa 1236 <210> 21 <211> 2436 <212> DNA <213> 人工序列 <220> <223> DEPDC1基因 <400> 21 atggagagtc agggtgtgcc tcccgggcct tatcgggcca ccaagctgtg gaatgaagtt 60 accacatctt ttcgagcagg aatgcctcta agaaaacaca gacaacactt taaaaaatat 120 ggcaattgtt tcacagcagg agaagcagtg gattggcttt atgacctatt aagaaataat 180 agcaattttg gtcctgaagt tacaaggcaa cagactatcc aactgttgag gaaatttctt 240 aagaatcatg taattgaaga tatcaaaggg aggtggggat cagaaaatgt tgatgataac 300 aaccagctct tcagatttcc tgcaacttcg ccacttaaaa ctctaccacg aaggtatcca 360 gaattgagaa aaaacaacat agagaacttt tccaaagata aagatagcat ttttaaatta 420 cgaaacttat ctcgtagaac tcctaaaagg catggattac atttatctca ggaaaatggc 480 gagaaaataa agcatgaaat aatcaatgaa gatcaagaaa atgcaattga taatagagaa 540 ctaagccagg aagatgttga agaagtttgg agatatgtta ttctgatcta cctgcaaacc 600 attttaggtg tgccatccct agaagaagtc ataaatccaa aacaagtaat tccccaatat 660 ataatgtaca acatggccaa tacaagtaaa cgtggagtag ttatactaca aaacaaatca 720 gatgacctcc ctcactgggt attatctgcc atgaagtgcc tagcaaattg gccaagaagc 780 aatgatatga ataatccaac ttatgttgga tttgaacgag atgtattcag aacaatcgca 840 gattattttc tagatctccc tgaacctcta cttacttttg aatattacga attatttgta 900 aacattttgg ttgtttgtgg ctacatcaca gtttcagata gatccagtgg gatacataaa 960 attcaagatg atccacagtc ttcaaaattc cttcacttaa acaatttgaa ttccttcaaa 1020 tcaactgagt gccttcttct cagtctgctt catagagaaa aaaacaaaga agaatcagat 1080 tctactgaga gactacagat aagcaatcca ggatttcaag aaagatgtgc taagaaaatg 1140 cagctagtta atttaagaaa cagaagagtg agtgctaatg acataatggg aggaagttgt 1200 cataatttaa tagggttaag taatatgcat gatctatcct ctaacagcaa accaaggtgc 1260 tgttctttgg aaggaattgt agatgtgcca gggaattcaa gtaaagaggc atccagtgtc 1320 tttcatcaat cttttccgaa catagaagga caaaataata aactgttttt agagtctaag 1380 cccaaacagg aattcctgtt gaatcttcat tcagaggaaa atattcaaaa gccattcagt 1440 gctggtttta agagaacctc tactttgact gttcaagacc aagaggagtt gtgtaatggg 1500 aaatgcaagt caaaacagct ttgtaggtct cagagtttgc ttttaagaag tagtacaaga 1560 aggaatagtt atatcaatac accagtggct gaaattatca tgaaaccaaa tgttggacaa 1620 ggcagcacaa gtgtgcaaac agctatggaa agtgaactcg gagagtctag tgccacaatc 1680 aataaaagac tctgcaaaag tacaatagaa ctttcagaaa attctttact tccagcttct 1740 tctatgttga ctggcacaca aagcttgctg caacctcatt tagagagggt tgccatcgat 1800 gctctacagt tatgttgttt gttacttccc ccaccaaatc gtagaaagct tcaactttta 1860 atgcgtatga tttcccgaat gagtcaaaat gttgatatgc ccaaacttca tgatgcaatg 1920 ggtacgaggt cactgatgat acataccttt tctcgatgtg tgttatgctg tgctgaagaa 1980 gtggatcttg atgagcttct tgctggaaga ttagtttctt tcttaatgga tcatcatcag 2040 gaaattcttc aagtaccctc ttacttacag actgcagtgg aaaaacatct tgactactta 2100 aaaaagggac atattgaaaa tcctggagat ggactatttg ctcctttgcc aacttactca 2160 tactgtaagc agattagtgc tcaggagttt gatgagcaaa aagtttctac ctctcaagct 2220 gcaattgcag aacttttaga aaatattatt aaaaacagga gtttacctct aaaggagaaa 2280 agaaaaaaac taaaacagtt tcagaaggaa tatcctttga tatatcagaa aagatttcca 2340 accacggaga gtgaagcagc actttttggt gacaaaccta caatcaagca accaatgctg 2400 attttaagaa aaccaaagtt ccgtagtcta agataa 2436 <210> 22 <211> 1803 <212> DNA <213> 人工序列 <220> <223> MYEF2基因 <400> 22 atggcggacg ccaacaaggc cgaggtgccc ggggccactg gtggcgacag cccgcacctg 60 cagcccgcag agccgccggg cgagccgcgg cgagagccgc accccgcgga ggcggagaag 120 cagcagccgc agcacagcag cagctccaat ggcgttaaaa tggagaatga tgaatcagca 180 aaagaagaga aatctgactt aaaggaaaaa tctacaggaa gtaagaaggc caatagattt 240 catccttatt caaaagacaa gaattcgggc gctggagaaa agaagggtcc aaatcgtaac 300 agagttttca ttagcaacat cccatatgac atgaaatggc aagctattaa agatctaatg 360 agagagaaag ttggtgaggt tacatacgtg gagctcttta aggatgcgga aggaaaatca 420 aggggttgtg gtgtggttga attcaaagat gaagaatttg taaagaaagc cctagaaact 480 atgaacaaat atgatcttag tggaagaccc cttaatatta aagaggatcc tgatggagaa 540 aatgctcgta gggcattgca gcgaacagga ggatcatttc caggaggaca cgtccctgat 600 atgggatcag ggttgatgaa tttaccacct tccatactca ataatccaaa cattcctcct 660 gaagtcatca gtaatttgca ggccggtaga cttggttcca caatttttgt tgccaatctt 720 gacttcaaag ttggttggaa gaagctaaag gaagtgttca gcatagctgg aactgtgaag 780 cgggcagata ttaaagaaga caaagatggc aagagcagag gaatgggcac tgtcactttt 840 gagcaagcaa ttgaagcagt tcaagcaatt tctatgttca atgggcagtt tttatttgat 900 agacctatgc atgtgaaaat ggatgacaag tctgttcctc atgaagagta ccgttcacat 960 gatggtaaaa caccacaatt accacgtggt cttggaggca ttgggatggg acttggtccg 1020 ggtggacagc ctattagtgc cagccagttg aacataggtg gagtaatggg aaatttaggt 1080 ccaggtggta tgggaatgga tggtccaggt tttggaggaa tgaatagaat tggaggagga 1140 atagggtttg gtggtctgga agcaatgaat agcatgggag gatttggagg agttggccga 1200 atgggagagc tgtaccgtgg tgcgatgact agtagcatgg agcgagattt tggacgtggt 1260 gatattggaa taaatcaagg ctttggagat tcctttggta gacttggcag tgcaatgatt 1320 ggagggtttg caggaagaat aggatcttct aacatgggtc cagtaggatc tggaataagt 1380 ggtggaatgg gtagcatgaa cagtgtgact ggaggaatgg ggatgggact ggaccggatg 1440 agttccagct ttgatagaat gggaccaggt ataggagcta tactggaaag gagcatcgat 1500 atggatcgag gatttttatc gggtccaatg ggaagcggaa tgagagagag aataggctcc 1560 aaaggcaacc agatatttgt cagaaatcta ccttttgact tgacttggca gaaactaaaa 1620 gagaaattca gtcagtgtgg tcatgtaatg tttgcagaaa taaaaatgga gaatggaaag 1680 tcaaaaggct gtggaacagt cagatttgac tccccagaat cagctgaaaa agcctgcaga 1740 ataatgaatg gcataaaaat cagtggcaga gaaattgatg ttcgcttgga tcgtaatgca 1800 taa 1803 <210> 23 <211> 870 <212> DNA <213> 人工序列 <220> <223> OTX2a基因 <400> 23 atgatgtctt atcttaagca accgccttac gcagtcaatg ggctgagtct gaccacttcg 60 ggtatggact tgctgcaccc ctccgtgggc tacccggcca ccccccggaa acagcgccgg 120 gagaggacga cgttcactcg ggcgcagcta gatgtgctgg aagcactgtt tgccaagacc 180 cggtacccag acatcttcat gcgagaggag gtggcactga aaatcaactt gcccgagtcg 240 agggtgcagg tatggtttaa gaatcgaaga gctaagtgcc gccaacaaca gcaacaacag 300 cagaatggag gtcaaaacaa agtgagacct gccaaaaaga agacatctcc agctcgggaa 360 gtgagttcag agagtggaac aagtggccaa ttcactcccc cctctagcac ctcagtcccg 420 accattgcca gcagcagtgc tcctgtgtct atctggagcc cagcttccat ctccccactg 480 tcagatccct tgtccacctc ctcttcctgc atgcagaggt cctatcccat gacctatact 540 caggcttcag gttatagtca aggatatgct ggctcaactt cctactttgg gggcatggac 600 tgtggatcat atttgacccc tatgcatcac cagcttcccg gaccaggggc cacactcagt 660 cccatgggta ccaatgcagt caccagccat ctcaatcagt ccccagcttc tctttccacc 720 cagggatatg gagcttcaag cttgggtttt aactcaacca ctgattgctt ggattataag 780 gaccaaactg cctcctggaa gcttaacttc aatgctgact gcttggatta taaagatcag 840 acatcctcgt ggaaattcca ggttttgtga 870 <210> 24 <211> 999 <212> DNA <213> 人工序列 <220> <223> SIX3基因 <400> 24 atggtattcc gctcccccct agacctctat tcctcccact tcttgttgcc aaacttcgcc 60 gattctcacc accgctccat acttctggcg agtagcggcg gcgggaacgg tgcgggaggc 120 ggcggcggcg cgggaggcgg cagcggcggc gggaacggtg cgggaggcgg cggtgctggc 180 ggagcaggcg gcggcggcgg cggcggctcc agggcccccc cggaagagtt gtccatgttc 240 cagctgccca ccctcaactt ctcgccggag caggtggcca gcgtctgtga gacgctggag 300 gagacgggcg acatcgagcg gctgggccgc ttcctctggt cgctgcccgt ggcccccggg 360 gcgtgcgagg ccatcaacaa acacgagtcg atcctgcgcg cgcgcgccgt ggtcgccttc 420 cacacgggca acttccgcga cctctaccac atccttgaga accacaagtt caccaaggag 480 tctcacggca agctgcaggc catgtggctc gaggcgcact accaggaggc cgagaagctg 540 cgcggccgcc cactcggccc ggtggacaag taccgcgtgc gcaagaagtt cccgctgcca 600 cgcaccatct gggacggcga gcagaagacg cattgcttca aggagcggac tcggagcctg 660 ttgcgggagt ggtacctaca ggacccctac cccaacccca gcaagaaacg cgaactggcg 720 caggccaccg gcctcactcc cacacaagta ggcaactggt ttaagaaccg gcggcagcgc 780 gaccgcgccg cggcggccaa gaacaggctc cagcaccagg ccattggacc gagcggcatg 840 cgctcgctgg ccgagcccgg ctgccccacg cacggctcgg cagagtcgcc gtccacggcg 900 gccagcccga ccaccagcgt gtccagcctg acggagcgcg cagacaccgg cacctccatc 960 ctctcggtaa cctccagcga ctcggaatgt gatgtatga 999 <210> 25 <211> 1176 <212> DNA <213> 人工序列 <220> <223> SOX1基因 <400> 25 atgtacagca tgatgatgga gaccgacctg cactcgcccg gcggcgccca ggcccccacg 60 aacctctcgg gccccgccgg ggcgggcggc ggcgggggcg gaggcggggg cggcggcggc 120 ggcgggggcg ccaaggccaa ccaggaccgg gtcaaacggc ccatgaacgc cttcatggtg 180 tggtcccgcg ggcagcggcg caagatggcc caggagaacc ccaagatgca caactcggag 240 atcagcaagc gcctgggggc cgagtggaag gtcatgtccg aggccgagaa gcggccgttc 300 atcgacgagg ccaagcggct gcgcgcgctg cacatgaagg agcacccgga ttacaagtac 360 cggccgcgcc gcaagaccaa gacgctgctc aagaaggaca agtactcgct ggccggcggg 420 ctcctggcgg ccggcgcggg tggcggcggc gcggctgtgg ccatgggcgt gggcgtgggc 480 gtgggcgcgg cggccgtggg ccagcgcctg gagagcccag gcggcgcggc gggcggcggc 540 tacgcgcacg tcaacggctg ggccaacggc gcctaccccg gctcggtggc ggcggcggcg 600 gcggccgcgg ccatgatgca ggaggcgcag ctggcctacg ggcagcaccc gggcgcgggc 660 ggcgcgcacc cgcacgcgca ccccgcgcac ccgcacccgc accacccgca cgcgcacccg 720 cacaacccgc agcccatgca ccgctacgac atgggcgcgc tgcagtacag ccccatctcc 780 aactcgcagg gctacatgag cgcgtcgccc tcgggctacg gcggcctccc ctacggcgcc 840 gcggccgccg ccgccgccgc tgcgggcggc gcgcaccaga actcggccgt ggcggcggcg 900 gcggcggcgg cggccgcgtc gtcgggcgcc ctgggcgcgc tgggctctct ggtgaagtcg 960 gagcccagcg gcagcccgcc cgccccagcg cactcgcggg cgccgtgccc cggggacctg 1020 cgcgagatga tcagcatgta cttgcccgcc ggcgaggggg gcgacccggc ggcggcagca 1080 gcggccgcgg cgcagagccg gctgcactcg ctgccgcagc actaccaggg cgcgggcgcg 1140 ggcgtgaacg gcacggtgcc cctgacgcac atctag 1176 <210> 26 <211> 2004 <212> DNA <213> 人工序列 <220> <223> PAX6:EGFP基因 <400> 26 tgaggtgtgt cctaatcgtg cggcattcaa caaatggact tctggtgtgt ggtcagaaga 60 gaaaagccat ttacttactt tcctccccgg ttttctggca acagctgaag gggagctgcc 120 tccgtggact gagcagaccc aggagaggga gtcgtggtgc ggagacacac gcaccacaca 180 cagatgaccg gtggcacaca cgacacacgc tgacataccg acatcgccag tgggacacac 240 acacacacac acacacacac acacacacac acagagagag agagaatccc tcccagcatt 300 ggtcatccgc ccccccaccc aggcttccac tccccctccc ctcttatctc ccctggcttc 360 ccctcctctc gggcgctgcg aaaagcagcc gcacttagtc aacaaatggc acgtgggaga 420 agttggtgag tgtttggtga ggactcttca gggcttttca caagaaccct ctgtacacaa 480 agtaagtggc gtgtttactc gggcctctcc agccagagct gtgcctctgc tccgctgcgc 540 accgcggctt ccgaaaggag aaaggagaga agaaagggcg gggagagcgg ggtggaggat 600 ttggacaggc cctggaggct tgggctgggg aggcctctgg cctcgtttag ttctcggccc 660 ggcaacctcc tctcggccta ggcttcgccg cggcctccgc agctggaatg gagctgccag 720 gacccagtga cgctcccgcc cctttcctct tcttccaagg ggccaggtgg gctggggtgc 780 ggccgccgct gtgctctgtg tcttggggcc ccggctggga tggggtgggg gcgggcgggg 840 gcggggcggc aggccacgct gtcctggagt tggcaagaaa ggacagcaca gaaacttgca 900 ccctccgagg actgggagtc ccgagtccag cttaggggga gtgggggcgc gacccccaac 960 ccagaaacct tcacttgacc gctcaagttc gcggcagcag ggcgggccgc gccgaatctc 1020 ggcgtgcgcg gagcggggag atgcaggcga gcgccagagc ccgggctcgg gggccctgcg 1080 ccggggagag gagccgggac ccaccggcgg agccgaaaac aagtgtattc atattcaaac 1140 aaacggacca attgcaccag gcggggagag ggagcatcca atcggctggc gcgaggcccc 1200 ggcgctgctt tgcataaagc aatattttgt gtgagagcga gcggtgcatt tgaagcttag 1260 atctggatcc cctctagagt cgagatggtg agcaagggcg aggagctgtt caccggggtg 1320 gtgcccatcc tggtcgagct ggacggcgac gtaaacggcc acaagttcag cgtgtccggc 1380 gagggcgagg gcgatgccac ctacggcaag ctgaccctga agttcatctg caccaccggc 1440 aagctgcccg tgccctggcc caccctcgtg accaccctga cctacggcgt gcagtgcttc 1500 agccgctacc ccgaccacat gaagcagcac gacttcttca agtccgccat gcccgaaggc 1560 tacgtccagg agcgcaccat cttcttcaag gacgacggca actacaagac ccgcgccgag 1620 gtgaagttcg agggcgacac cctggtgaac cgcatcgagc tgaagggcat cgacttcaag 1680 gaggacggca acatcctggg gcacaagctg gagtacaact acaacagcca caacgtctat 1740 atcatggccg acaagcagaa gaacggcatc aaggtgaact tcaagatccg ccacaacatc 1800 gaggacggca gcgtgcagct cgccgaccac taccagcaga acacccccat cggcgacggc 1860 cccgtgctgc tgcccgacaa ccactacctg agcacccagt ccgccctgag caaagacccc 1920 aacgagaagc gcgatcacat ggtcctgctg gagttcgtga ccgccgccgg gatcactctc 1980 ggcatggacg agctgtacaa gtaa 2004 <210> 27 <211> 1810 <212> DNA <213> 人工序列 <220> <223> SOX1:EGFP基因 <400> 27 caacccaatc gttaatcatt cggaacgcgc gggcggggag cggcgaggag ggcgagctcg 60 gggttcgccg ccgccgccgc cgccgcgcgc gcgcgctcag gaagcggtgt ggctgtcacc 120 ccctcccggg cctcctcccc cctccttcct gctttgctcc ccctccttcc tcccctcctc 180 cccgctccgc cgcccgcgcc cagtgtatct actccctccc cacgtcactc gccagcgcgc 240 catgcaaatc accgccgccg ccggctccca ttggccgcgg cgcgctcatt taatggcagc 300 ccgggcccgg cgtatggctg ctgggccccg cgcgccgccg gccccgcgtg cgcctccgct 360 ccgagcgcac ggccccgggc aggcagcggg cagcccatcc cgggctcggc ggccccggct 420 ctccggccct ctccgcgagc ccgcgctcct cccgctgtcc ccgggcccct ccctggctgc 480 accgtaatcg ccccctgcag gcccccctgc gcctcccccc ccccgccact ggcgcctggc 540 ttcccccggg cacctgggac cagcacatgc ccagcgcacg cggcgcgccg ccctgctaga 600 agttgcagcc tccgagttgg aggccgctga ggaccgagcg caggaggaag gagacagcgc 660 gcagcggcgg ccggcgagga gacagcacac cccgggccgg gcccagcgca ccgctcccgg 720 ccccaaaagc ggagctgcaa cttggccacg actgcacctg tttgcaccgc tccgccgagg 780 gcgcctgggc tgcggtggcg gcgaagacgg cgaccccgac cgtcggcctc tttggcaagt 840 ggtttgtgca tcaggagaaa ctttccacct gcgagccgaa ccggcgccga gtgcgtgtgt 900 ttctgccttt ttttgttgtc gttgcctcca cccctcccca ttcttctctc cgctaggacc 960 cccccgcccc cgtctcactc cgtctgaatt cctctccgtc tccctcccac cccggccgtc 1020 tatgctccag gccctctcct cgcggtgccg gtgaacccgc cagccgcccc gggatccacc 1080 ggtcgccacc atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt 1140 cgagctggac ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga 1200 tgccacctac ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc 1260 ctggcccacc ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga 1320 ccacatgaag cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg 1380 caccatcttc ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg 1440 cgacaccctg gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat 1500 cctggggcac aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa 1560 gcagaagaac ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt 1620 gcagctcgcc gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc 1680 cgacaaccac tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga 1740 tcacatggtc ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct 1800 gtacaagtaa 1810<110> Academia Sinica <120> Sets for screening neurological drugs and their uses <130> P2998-TW <160> 27 <170> BiSSAP 1. 3   <210>   1   <211>   1599   <212>   DNA   <213>   Artificial sequence   <220>   <223>   CBX2 gene   <400>   1   Atggaggagc   Tgagcagcgt   Gggcgagcag   Gtcttcgccg   Ccgagtgcat   Cctgagcaag   60   Cggctccgca   Agggcaagct   Ggagtacctg   Gtcaagtggc   Gcggctggtc   Ctccaaacat   120   Aacagctggg   Agccggagga   Gaacatcctg   Gacccgaggc   Tgctcctggc   Cttccagaag   180   Aaggaacatg   Agaaggaggt   Gcagaaccgg   Aagagaggca   Agaggccgag   Aggccggcca   240   Aggaagctca   Ctgccatgtc   Ctcctgcagc   Cggcgctcca   Agctcaagga   Acccgatgct   300   Ccctccaaat   Ccaagtccag   Cagttcctcc   Tcttcctcca   Cgtcatcctc   Ctcttcctca   360   Gatgaagagg   Atgacagtga   Cttagatgct   Aagaggggtc   Cccggggccg   Cgagacccac   420   Ccagtgccgc   Agaagalgc   Ccagatcctg   Gtggccaaac   Ccgagctgaa   Gtagcccatc   480   Cggaagaagc   Ggggacgaaa   Gcccctgccc   Cgagagcaaa   Aggcaacccg   Aagacccgtg   540   Agcctggcca   Aggtgctgaa   Gaccgcccgg   Aaggatctgg   Gggccccggc   Cagcaagctg   600   Ccccctccac   Tcagcgcccc   Cgttgcaggc   Ctggcagctc   Tgaaggccca   Cgccaaggag   660   Gcctgtggcg   Gccccagtgc   Catggccacc   Cgagagaacc   Tggccagcct   Aatgaagggc   720   Atggccagta   Gccccggccg   Gggtggcatc   Agctggcaga   Gctccatcgt   Gcactacatg   780   Aaccggatga   Cccagagcca   Ggcccaggct   Gccagcaggt   Tggcgctgaa   Ggcccaggcc   840   Accaacaagt   Gcggcctcgg   Gctggacctg   Aaggtgagga   Cgcagaaagg   Ggagctggga   900   Atgagccctc   Caggaagcaa   Aatcccgaag   Gcccccagcg   Gtggggctgt   Ggagcagaaa   960   Gtggggaaca   Cagggggccc   Cccgcacacc   Catggtgcca   Gcagggtgcc   Tgctgggtgc   1020   Ccaggccccc   Agccagcacc   Cacccaggag   Ctgagcctcc   Aggtcttgga   Cttgcagagt   1080   Gtcaagaatg   Gcatgcccgg   Ggtgggtctc   Cttgcccgcc   Acgccaccgc   Caccaagggt   1140   Gtcccggcca   Ccaacccagc   Ccctgggaag   Ggcactggga   Gtggcctcat   Tggggccagc   1200   Ggggccacca   Tgcccaccga   Cacaagcaaa   Agtgagaagc   Tggcttccag   Agcagtggcg   1260   Ccaccccacc   Ctgccagcaa   Gagggactgt   Gtcaagggca   Gtgctacccc   Cagtgggcag   1320   Gagagccgca   Cagcccccgg   Agaagcccgc   Aaggcggcca   Cactgccaga   Gatgagcgca   1380   Ggtgaggaga   Gtagcagctc   Ggactccgac   Cccgactccg   Cctcgccgcc   Cagcactgga   1440   Cagaacccat   Cagtgtccgt   Tcagaccagc   Caggactgga   Agcccacccc   Cagcctcatc   1500   Gagcacgtat   Ttgtcaccga   Cgtcactgcc   Aacctcatca   Ccgtcacagt   Gaaggagtct   1560   Cccaccagcg   Tgggcttctt   Caacctgagg   Cattactga   1599   <210>   2   <211>   843   <212>   DNA   <213>   Artificial sequence   <220>   <223>   HES1 gene   <400>   2   Atgccagctg   Atataatgga   Gaaaaattcc   Tcgtccccgg   Tggctgctac   Cccagccagt   60   Gtcaacacga   Caccggataa   Accaaagaca   Gcatctgagc   Acagaaagtc   Atcaaagcct   120   Atttaggaga   Aaagacgaag   Agcaagaata   Aatgaaagtc   Tgagccagct   Gaaaacactg   180   Attttggatg   Ctctgaagaa   Atagagctcg   Cggcattcca   Agctggagaa   Ggcggacatt   240   Ctggaaatga   Cagtgaagca   Cctccggaac   Ctgcagcggg   Cgcagatgac   Ggctgcgctg   300   Agcacagacc   Caagtgtgct   Ggggaagtac   Cgagccggct   Tcagcgagtg   Catgaacgag   360   Gtgacccgct   Tcctgtccac   Gtgcgagggc   Gttaataccg   Aggtgcgcac   Tcggctgctc   420   Ggccacctgg   Ccaactgcat   Gacccagatc   Aatgccatga   Cccacccccg   Gcagccgcac   480   Cccgccttgc   Aggcgccgcc   Accgccccca   Ccgggacccg   Gcggccccca   Gcacgcgccg   540   Ttcgcgccgc   Cgccgccact   Cgtgcccatc   Cccgggggcg   Cggcgccccc   Tcccggcggc   600   Gccccctgca   Agctgggcag   Ccaggctgga   Gaggcggcta   Aggtgtttgg   Aggcttccag   660   Gtggtaccgg   Ctcccgatgg   Ccagtttgct   Ttcctcattc   Ccaacggggc   Cttcgcgcac   720   Agcggccctg   Tcatccccgt   Ctacaccagc   Aacagcggca   Cctccgtggg   Ccccaacgca   780   Gtgtcacctt   Ccaggggccc   Ctcgcttacg   Gcggactcca   Tgtggaggcc   Gtggcggaac   840   Tga   843   <210>   3   <211>   468   <212>   DNA   <213>   Artificial sequence   <220>   <223>   ID1 gene   <400>   3   Atgaaagtcg   Ccagtggcag   Caccgccacc   Gccgccgcgg   Gccccagctg   Cgcgctgaag   60   Gccggcaaga   Cagcgagcgg   Tgcgggcgag   Gtggtgcgct   Gtctgtctga   Gcagagcgtg   120   Gccatctcgc   Gctgcgccgg   Gggcgccggg   Gcgcgcctgc   Ctgccctgct   Ggacgagcag   180   Caggtaaacg   Tgctgctcta   Cgacatgaac   Ggctgttact   Cacgcctcaa   Ggagctggtg   240   Cccaccctgc   Cccagaaccg   Caaggtgagc   Aaggtggaga   Ttctccagca   Cgtcatcgac   300   Tacatcaggg   Accttcagtt   Ggagctgaac   Tcggaatccg   Aagttggaac   Ccccgggggc   360   Cgagggctgc   Cggtccgggc   Tccgctcagc   Accctcaacg   Gcgagatcag   Cgccctgacg   420   Gccgaggcgg   Catgcgttcc   Tgcggacgat   Cgcatcttgt   Gtcgctga   468   <210>   4   <211>   1296   <212>   DNA   <213>   Artificial sequence   <220>   <223>   TFAP2A gene   <400>   4   Atgttagttc   Acaggttttc   Agccatggac   Cgtcacgacg   Gcaccagcaa   Cgggacggca   60   Cggttgcccc   Agctgggcac   Tgtaggtcaa   Tctccctaca   Cgagcgcccc   Gccgctgtcc   120   Cacaccccca   Atgccgactt   Ccagccccca   Tacttccccc   Caccctacca   Gcctatctac   180   Ccccagtcgc   Aagatcctta   Ctcccacgtc   Aacgacccct   Acagcctgaa   Ccccctgcac   240   Gcccagccgc   Agccgcagca   Cccaggctgg   Cccggccaga   Ggcagagcca   Ggagtctggg   300   Ctcctgcaca   Cgcaccgggg   Gctgcctcac   Cagctgtcgg   Gcctggatcc   Tcgcagggac   360   Tacaggcggc   Acgaggacct   Cctgcacggc   Ccacaccgcc   Tcagctcagg   Actcggagac   420   Ctctcgatcc   Actccttacc   Tcacgccatc   Gaggaggtcc   Cgcatgtaga   Agacccgggt   480   Attacatcc   Cagatcaaac   Tgtaattaag   Aaaggccccg   Tgtccctgtc   Caagtccaac   540   Agcaatgccg   Tctccgccat   Ccctattaac   Aaggacaacc   Tcttcggcgg   Cgtggtgaac   600   Cccaacgaag   Tcttctgttc   Agttccgggt   Cgcctctcgc   Tcctcagctc   Cacctcgaag   660   Tacaaggtca   Cggtggcgga   Agtgcagcgg   Cggctctcac   Cacccgagtg   Tctcaacgcg   720   Tcgctgctgg   Gcggagtgct   Ccggagggcg   Aagtctaaaa   Atggaggaag   Atctttaaga   780   Gaaaaactgg   Acaaaatagg   Attaatctg   Cctgcaggga   Gacgtaaagc   Tgccaacgtt   840   Accctgctca   Catcactagt   Agagggagaa   Gctgtccacc   Tagccaggga   Ctttgggtac   900   Gtgtgcgaaa   Ccgaatttcc   Tgccaaagca   Gtagctgaat   Ttctcaaccg   Acaacattcc   960   Gatcccaatg   Agcaagtgac   Aagaaaaaac   Atgctcctgg   Ctacaaaaca   Gatatgcaaa   1020   Gagttcaccg   Acctgctggc   Tcaggaccga   Tctcccctgg   Ggaactcacg   Gcccaacccc   1080   Atcctggagc   Ccggcatcca   Gagctgcttg   Acccacttca   Acctcatctc   Ccacggcttc   1140   Ggcagccccg   Cggtgtgtgc   Cgcggtcacg   Gccctgcaga   Actatctcac   Cgaggccctc   1200   Aaggccatgg   Acaaaatgta   Cctcagcaac   Aaccccaata   Gccacacgga   Caacaacgcc   1260   Aaaagcagtg   Acaaagagga   Gaagcacaga   Aagtga   1296   <210>   5   <211>   933   <212>   DNA   <213>   Artificial sequence   <220>   <223>   ZFP42 gene   <400>   5   Atgagccagc   Aactgaagaa   Acgggcaaag   Acaagacacc   Agaaaggcct   Gggtggaaga   60   Gcccccagtg   Gggctaagcc   Caggcaaggc   Aagtcaagcc   Aagacctgca   Ggcggaaata   120   Gaacctgtca   Gcgcggtgtg   Ggccttatgt   Gatggctatg   Tgtgctatga   Gcctggccct   180   Caggctctcg   Gaggggatga   Tttctcagac   Tgttacatag   Aatgcgtcat   Aaggggtgag   240   Ttttctcaac   Ccatcctgga   Agaggactca   Ctttttgagt   Cctgtgaata   Cctaaagaaa   300   Ggatcagaac   Aacagctttc   Tcaaaaggtt   Ttcgaagcaa   Gctcccttga   Atgttctttg   360   Gaatacatga   Aaaaaggggt   Aaagaaagag   Cttccacaaa   Agatagtgtg   Agagaattcg   420   Cttgagtatt   Ctgagtacat   Gacaggcaag   Aagcttccgc   Ctggaggaat   Acctggcatt   480   Gacctatcag   Atcctaaaca   Gctcgcagaa   Tttgctagaa   Agaagccccc   Cataataataa   540   Gaatatgaca   Gtctgagcgc   Aatcgcttgt   Cctcagagtg   Gatgcactag   Gaagttgagg   600   Aatagagctg   Ccctgagaaa   Gcatctcctc   Attcatggtc   Cccgagacca   Cgtctgtgcg   660   Gaatgtggga   Aagcgttcgt   Tgagagctca   Aaactaaaga   Gacatttcct   Ggttcatact   720   Ggagagaagc   Cgtttcggtg   Cacttttgaa   Gggtgcggaa   Agcgcttctc   Tctggacttt   780   Aatttgcgta   Cgcacgtgcg   Catccacacg   Ggggagaaac   Gtttcgtgtg   Tccctttcaa   840   Ggctgcaaca   Ggaggtttat   Tcagtcaaat   Aacctgaaag   Cccacatcct   Aacgcatgca   900   Aatacgaaca   Agaatgaaca   Agagggaaag   Tag   933   <210>   6   <211>   3855   <212>   DNA   <213>   Artificial sequence   <220>   <223>   ZNF423 gene   <400>   6   Atgcataaga   Agagggttga   Agagggggag   Gcctcagact   Tctcgctggc   Ctgggattcc   60   Tccgtgacag   Cagcaggagg   Cctagaagga   Gagccagagt   Gcgatcagaa   Aaccagccgt   120   Gcgctggaag   Acaggaacag   Cgtgacaagt   Caagaggaga   Gaaatgagga   Tgatgaagac   180   Atggaggatg   Aatcaattta   Cacctgcgat   Cactgtcagc   Aggacttcga   Gtctctggca   240   Gacctgacgg   Accaccgggc   Ccaccgctgt   Cctggagatg   Gtgatgacga   Cccacaactc   300   Tcctgggtgg   Cctcgtctcc   Ctccagcaag   Gatgttgcgt   Cacccacgca   Gatgatcgga   360   Gatggttgtg   Acctcggcct   Cggcgaggag   Gaagggggca   Cgggcctgcc   Atacccttgc   420   Cagttctgcg   Acaagtcctt   Catccgcttg   Agctacttga   Agaggcacga   Gcagatccac   480   Agcgacaagc   Tgccgttcaa   Gtgcacctac   Tgcagccgcc   Tcttcaagca   Caagaggagc   540   Cgtgaccggc   Acatcaagct   Gcatacgggc   Gacaagaagt   Atcactgcca   Cgagtgcgag   600   Gcagccttct   Cccgcagcga   Ccacctcaag   Atccacctga   Agaccacag   Ctccagcaag   660   Cccttcaagt   Gcactgtgtg   Caagcgcggc   Ttctcctcca   Ccagctcgct   Gcagagccac   720   Atgcaggccc   Acaaaaagaa   Caaggagcat   Ctggccaagt   Cggagaagga   Agccaagaag   780   Gacgacttca   Tgtgcgacta   Ctgcgaggac   Accttcagcc   Agacggagga   Gctggagaag   840   Cacgtgctca   Cccgccaccc   Gcagctgtcc   Gagaaggcgg   Acctgcagtg   Cattcactgc   900   Cctgaggtct   Tcgtcgacga   Gaacacactg   Ctcgcccata   Tccaccaagc   Ccacgccaac   960   Cagaaacaca   Agtgccccat   Gtgccctgag   Cagttctcct   Cagtggaagg   Tgtctactgc   1020   Cacctggaca   Gccaccggca   Gcccgactcc   Agcaaccaca   Gtgtcagtcc   Cgaccctgta   1080   Ctgggcagcg   Tggcctccat   Gagcagcgcc   Acacccgact   Ccaggccctc   Tgtggagcgt   1140   Ggctccaccc   Cggactccac   Cttgaagccg   Ctgcgggggc   Agaagaagat   Gcgggatgac   1200   Gggcagggct   Ggaccaaggt   Ggtctatagc   Tgcccctatt   Gttccaagcg   Ggactttaac   1260   Agcctggccg   Tgctggagat   Ccacctgaag   Accatccacg   Cggacaagcc   Ccaggagagc   1320   Cacacatgtc   Agatctgcct   Ggactccatg   Cccaccctct   Acaacctcaa   Cgagcacgtt   1380   Cgcaagctgc   Acaagaacca   Tgcctaccct   Gtgatgcagt   Ttggcaacat   Ctctgccttc   1440   Cactgcaact   Actgccccga   Gatgttcgcc   Gacatcaata   Gcctgcagga   Gcacatccgc   1500   Gtctcccact   Gcggccccaa   Cgccaacccc   Tctgacggta   Ataatgcttt   Cttctgcaac   1560   Cagtgctcca   Tgggtttcct   Tactgagtcc   Tccctcaccg   Agcacatcca   Gcaggcccac   1620   Tgcagtgtgg   Gcagtgccaa   Actagagtct   Ccggtggtgc   Agcccacgca   Gtccttcatg   1680   Gaggtctatt   Cctgccccta   Ctgcaccaac   Tcccccatct   Ttggctccat   Cctgaaactc   1740   Accaagcaca   Tcaaggagaa   Ccacaagaac   Attccactgg   Cccacagcaa   Gaagtccaag   1800   Gccgagcaga   Gcccagtctc   Gtccgatgtg   Gaggtgtctt   Ccccgaagcg   Gcagcggctc   1860   Tcagcaagcg   Ccaactccat   Ctccaatggg   Gagtatcctt   Gcaatcaatg   Cgacctcaag   1920   Ttctccaact   Ttgagagctt   Ccagacccac   Ctgaagctgc   Acctggagct   Gctgctgcgg   1980   Aagcaagcgt   Gcccccagtg   Caaagaggac   Tttgactccc   Aggagtccct   Cctgcagcac   2040   Ctgacagtgc   Attacatgac   Cacgtcgacc   Cactatgtgt   Gcgagagctg   Cgacaagcaa   2100   Ttttcctcgg   Tggatgacct   Gcagaagcac   Ctgctggaca   Tgcacacctt   Tgtgttgtac   2160   Cactgcaccc   Tgtgtcagga   Ggtcttcgac   Tccaaggtgt   Ccatccaggt   Gcacctggcg   2220   Gtgaagcaca   Gcaatgagaa   Gaagatgtac   Cgctgcacgg   Cctgcaactg   Ggacttccgc   2280   Aaggaggctg   Acctgcaggt   Gcacgtcaaa   Cacagccacc   Tgggcaaccc   Ggccaaggct   2340   Cacaagtgca   Tcttctgtgg   Ggagaccttc   Agcaccgagg   Tggagctgca   Gtgccacatc   2400   Accacacaca   Gcaagaagta   Taactgtaag   Ttctgcagca   Aggccttcca   Cgccatcatc   2460   Ctgctggaga   Agcacctgcg   Ggagaagcac   Tgtgtgtttg   Atgctgcgac   Cgagaacggc   2520   Acggccaatg   Gggtaccccc   Aatggccacc   Aagaaagctg   Agcctgctga   Cctgcagggc   2580   Atgctgctta   Agaaccctga   Ggcacctaac   Agccatgagg   Ccagggagga   Tgacgtggac   2640   Gcgtcggagc   Ccatgtacgg   Ctgtgacatc   Tgtggggcgg   Cctacaccat   Ggaggtgctg   2700   Ctgcagaatc   Accggctgcg   Ggaccacaat   Atccggccgg   Gcgaggatga   Tggctcacgc   2760   Aagaaggctg   Agttattaca   Gggcagtcac   Aagtgcaacg   Tttgttcacg   Gactttcttc   2820   Tcggagaacg   Ggctacggga   Gcacctgcag   Acgcaccggg   Gccctgccaa   Gcactacatg   2880   Tgtcccatct   Gtggtgagcg   Cttcccttcg   Ctgctgacgc   Tcaccgaaca   Caaggtgacc   2940   Cacagcaaga   Gcctggacac   Gggcacctgt   Cgcatctgca   Agatgcccct   Gcagagcgag   3000   Gaggagttta   Ttgagcactg   Ccagatgcac   Cctgacctgc   Gcaactcact   Cacgggcttc   3060   Cgctgtgtgg   Tctgcatgca   Gacagtcact   Tccacgcttg   Agctcaagat   Ccatggcacc   3120   Ttccacatgc   Agaagctggc   Gggcagctca   Gcggcgtcct   Ccccacatagg   Ccaggggctg   3180   Cagaagctct   Acaagtgcgc   Cctgtgcctc   Aaggagttcc   Gcagcaagca   Ggacctggtg   3240   Aagcttgacg   Tcaatgggct   Gccctacggc   Ctctgcgccg   Gctgcatggc   Ccgcagcgcc   3300   Aacggacagg   Tgggtggcct   Ggccccgccc   Gagcccgccg   Accggccctg   Tgccggcctc   3360   Cgttgccccg   Agtgcagtgt   Caagtttgag   Agtgccgaag   Acctggagag   Ccacatgcag   3420   Gtggaccacc   Gtgacctcac   Gccggagacc   Agtgggcccc   Ggaaaggcac   Ccagacatcg   3480   Ccagtgcccc   Ggaaaaagac   Ataccagtgc   Atcaagtgcc   Agatgacctt   Cgagaacgag   3540   Agagagatcc   Aaatccacgt   Tgccaaccac   Atgattgagg   Aaggcatcaa   Ccacgagtgt   3600   Aagctgtgca   Accagatgtt   Cgactccccg   Gccaagctcc   Tctgtcacct   Cattgagcac   3660   Agcttcgagg   Gcatgggcgg   Caccttcaaa   Tgccccgtgt   Gtttcacagt   Cttcgtccag   3720   Gccaacaagt   Tgcagcagca   Catctttgcc   Gtgcacgggc   Aggaggacaca   Gatctacgac   3780   Tgctcacagt   Gccctcagaa   Gttcttcttc   Cagaccgagc   Tgcagaacca   Cacgatgagc   3840   Cagcacgcac   Agtga   3855   <210>   7   <211>   2127   <212>   DNA   <213>   Artificial sequence   <220>   <223>   DACH1 gene   <400>   7   Atggcagtgc   Cggcggcttt   Gatccctccg   Acccagctgg   Tcccccctca   Acccccaatc   60   Tccacgtctg   Cttcctcctc   Tggcaccacc   Acctccacct   Cttcggcgac   Ttcgtctccg   120   Gctccttcca   Tcggaccccc   Ggcgtcctct   Gggccaactc   Tgttccgccc   Ggagcccatc   180   Gcttcggcgg   Cggcggcggc   Ggccacagtc   Acctctaccg   Gcggcggcgg   Cggcggcggc   240   Ggcggcggca   Gcggaggcgg   Cggcggcagc   Agcggcaacg   Gaggcggcgg   Tggcggcggc   300   Ggcggtggca   Gcaactgcaa   Ccccaacctg   Gcggccgcga   Gcaacggcag   Cggcggcggc   360   Ggcggcggca   Tcagcgctgg   Cggcggcgtc   Gcttccagca   Cccccatcaa   Cgccagcacc   420   Ggcagcagca   Gcagcagcag   Tagcagcagc   Agcagcagca   Gcagtagtag   Cagcagcagc   480   Agtagcagca   Gcagctgcgg   Ccccctcccc   Gggaaacccg   Tgtactcaac   Cccgtcccca   540   Gtggaaaaca   Cccctcagaa   Taatgagtgc   Aaaatggtgg   Atctgagggg   Ggccaaagtg   600   Gcttccttca   Cggtggaggg   Ctgcgagctg   Atctgcctgc   Cccaggcttt   Cgacctgttc   660   Ctgaagcact   Tggtgggggg   Cttgcatacg   Gtctacacca   Agctgaagcg   Gctggagatc   720   Acgccggtgg   Tgtgcaatgt   Ggaacaagtt   Cgcatcctga   Ggggactggg   Cgccatccag   780   Ccaggagtga   Accgctgcaa   Actcatctcc   Aggaaggact   Tcgagaccct   Ctacaatgac   840   Tgcaccaacg   Caagttctag   Acctggaagg   Cctcctaaga   Ggactcaaag   Tgtcacctcc   900   Ccagagaact   Ctcacatcat   Gccgcattct   Gtccctggtc   Tcatgtctcc   Tgggataatt   960   Ccacacaacag   Gtctgacagc   Agccgctgca   Gcagctgctg   Ctgctaccaa   Tgcagctatt   1020   Gctgaagcaa   Tgaaggtgaa   Aaaaatcaaa   Ttagaagcca   Tgagcaacta   Tcatgccagt   1080   Aataaccaac   Atggagcaga   Ctctgaaaac   Ggggacatga   Attcaagtgt   Cggactggaa   1140   Cttcctttta   Tgatgatgcc   Ccaccctcta   Attcctgtca   Gcctacctcc   Agcatctgtc   1200   Accatggcaa   Tgagccagat   Gaaccaccctc   Agcaccattg   Caaatatggc   Agcagcagca   1260   Caagttcaga   Gtcccccatc   Cagagttgag   Acatcagtta   Ttaaggagcg   Tgttcctgat   1320   Agcccctcac   Ctgccccctc   Tctggaggag   Gggagaaggc   Ctggcagtca   Cccatcatca   1380   Catcgcagca   Gcagcgtgtc   Cagctcccct   Gctcggactg   Agagctcttc   Tgacagaatc   1440   Ccggtccatc   Agaatgggtt   Gtccatgaac   Cagatgctga   Tgggcttatc   Accaaatgta   1500   Cttcctgggc   Ccaaagaggg   Agatttggcc   Ggtcatgaca   Tgggacatga   Gtcaaaaagg   1560   Atgcatattg   Aaaaagatga   Gaccccgctt   Tctacaccaa   Ccgcaagaga   Cagccttgac   1620   Aaactctctc   Taactgggca   Tggacaacca   Ctgcctccag   Gttttccatc   Tccttttctg   1680   Tttcctgatg   Gactgtcttc   Catcgagact   Cttctgacta   Acatacaggg   Gctgttgaaa   1740   Gttgccatag   Ataatgccag   Agctcaagag   Aaacaggtcc   Aactggaaaa   Aactgagctg   1800   Aagatggatt   Ttttaaggga   Aagagaacta   Agggaaacac   Ttgagaagca   Gttggctatg   1860   Gaacaaaaga   Atagagccat   Agttcaaaag   Aggctaaaga   Aggagaagaa   Ggcaaagaga   1920   Aaattgcagg   Aagcacttga   Gtttgagacg   Aaacggcgtg   Aacaagcaga   Acagacgcta   1980   Aaacaggcag   Cttcaacaga   Ttagctcagg   Gtcttaaatg   Actctctgac   Cccagagata   2040   Gaggctgacc   Gcagtggcgg   Cagaacagat   Gctgaaagga   Caatacaaga   Tggaagactg   2100   Tatttgaaaa   Ctactgtcat   Gtactga   2127   <210>   8   <211>   1470   <212>   DNA   <213>   Artificial sequence   <220>   <223>   FOXG1 gene   <400>   8   Atgctggaca   Tgggagatag   Gaaagaggtg   Aaaatgatcc   Ccaagtcctc   Gttcagcatc   60   Aacagcctgg   Tgcccgaggc   Ggtccagaac   Gacaaccacc   Acgcgagcca   Cggccaccac   120   Aacagccacc   Acccccagca   Ccaccacccac   Caccaccacc   Atcaccacca   Cccgccgccg   180   Cccgccccgc   Aaccgccgcc   Gccgccgcag   Cagcagcagc   Cgccgccgcc   Gccgcccccg   240   Gcaccgcagc   Ccccccagac   Gcggggcgcc   Ccggccgccg   Acgacgacaa   Gggcccccag   300   Cagctgctgc   Tcccgccgcc   Gccaccgcca   Ccaccggccg   Ccgccctgga   Cggggctaaa   360   Gcggacgggc   Tgggcggcaa   Gggcgagccg   Ggcggcgggc   Cgggggagct   Ggcgcccgtc   420   Gggccggacg   Gaagaggagaa   Gggcgccggc   Gccggggggg   Aggagaagaa   Gggggcgggc   480   Gagggcggca   Aggaggggga   Ggggggcaag   Gagggcgaga   Agaagaacgg   Caagtacgag   540   Aagccgccgt   Tcagctacaa   Cgcgctcatc   Atgatggcca   Tccggcagag   Ccccgagaag   600   Cggctcacgc   Tcaacggcat   Ctacgagttc   Atcatgaaga   Acttccctta   Ctaccgcgag   660   Aacaagcagg   Gctggcagaa   Ctccatccgc   Cacaatctgt   Ccctcaacaa   Gtgcttcgtg   720   Aaggtgccgc   Gccactacga   Cgacccgggc   Aagggcaact   Actggatgct   Ggacccgtcg   780   Agcgacgacg   Tgttcatcgg   Cggcaccacg   Ggcaagctgc   Ggcgccgctc   Caccacctcg   840   Cgggccaagc   Tggccttcaa   Gcgcggtgcg   Cgcctcacct   Ccaccggcct   Caccttcatg   900   Gaccgcgccg   Gctccctcta   Ctggcccatg   Tcgcccttcc   Tgtccctgca   Ccaccccccg   960   Gccagcagca   Ctttgagtta   Caacggcacc   Acgtcggcct   Accccagcca   Ccccatgccc   1020   Tacagctccg   Tgttgactca   Gaactcgctg   Ggcaacaacc   Actccttctc   Caccgccaac   1080   Ggcctgagcg   Tggaccggct   Ggtcaacggg   Gagatcccgt   Acgccacgca   Ccacctcacg   1140   Gccgccgcgc   Tagccgcctc   Ggtgccctgc   Ggcctgtcgg   Tgccctgctc   Tgggacctac   1200   Tccctcaacc   Cctgctccgt   Caacctgctc   Gcgggccaga   Ccagttactt   Tttcccccac   1260   Gtcccgcacc   Cgtcaatgac   Ttcgcagagc   Agcacgtcca   Tgagcgccag   Ggccgcgtcc   1320   Tcctccacgt   Cgccgcaggc   Cccctcgacc   Ctgccctgtg   Agtctttaag   Accctctttg   1380   Ccaagtttta   Cgacgggact   Gtctggggga   Ctgtctgatt   Atttcacaca   Tcaaaatcag   1440   Gggtcttctt   Ccaacccttt   Aatacattaa   1470   <210>   9   <211>   1395   <212>   DNA   <213>   Artificial sequence   <220>   <223>   MYCN gene   <400>   9   Atgccgagct   Gctccacgtc   Caccatgccg   Ggcatgatct   Gcaagaaccc   Agacctcgag   60   Tttgactcgc   Tacagccctg   Cttctacccg   Gacgaagatg   Acttctactt   Cggcggcccc   120   Gactcgaccc   Cccgggggga   Ggacatctgg   Aagaagtttg   Agctgctgcc   Cacgcccccg   180   Ctgtcgccca   Gccgtggctt   Cgcggagcac   Agctccgagc   Ccccgagctg   Ggtcacggag   240   Atgctgcttg   Agaacgagct   Gtggggcagc   Ccggccgagg   Aggaggcgtt   Cggcctgggg   300   Ggactgggtg   Gcctcacccc   Caacccggtc   Atcctccagg   Actgcatgtg   Gaggggcttc   360   Tccgcccgcg   Agaagctgga   Gcgcgccgtg   Agcgagaagc   Tgcagcacgg   Ccgcgggccg   420   Ccaaccgccg   Gttccaccgc   Ccagtccccg   Ggagccggcg   Ccgccagccc   Tgcgggtcgc   480   Gggcacggcg   Gggctgcggg   Agccggccgc   Gccggggccg   Ccctgcccgc   Cgagctcgcc   540   Cacccggccg   Ccgagtgcgt   Ggatcccgcc   Gtggtcttcc   Cctttcccgt   Gaacaagcgc   600   Gagccagcgc   Ccgtgcccgc   Agccccggcc   Agtgccccgg   Cggcgggccc   Tgcggtcgcc   660   Tcgggggcgg   Gtattgccgc   Cccagccggg   Gccccggggg   Tcgcccctcc   Gcgcccaggc   720   Ggccgccaga   Ccagggggggg   Cgaccacaag   Gccctcagta   Cctccggaga   Ggacaccctg   780   Agcgattcag   Atgatgaaga   Tgatgaagag   Gaagatgaag   Aggaagaaat   Cgacgtggtc   840   Actgtggaga   Agcggcgttc   Ctcctccaac   Accaaggctg   Tcaccacatt   Caccatcact   900   Gtgcgtccca   Agaacgagc   Cctgggtccc   Gggagggctc   Agtccagcga   Gctgatcctc   960   Aaacgatgcc   Ttcccatcca   Ccagcagcac   Aactatgccg   Ccccctctcc   Ctacgtggag   1020   Agtgaggatg   Cacccccaca   Gaagaagata   Aagagcgagg   Cgtccccacg   Tccgctcaag   1080   Agtgtcatcc   Ccccaaaggc   Taagagcttg   Agcccccgaa   Actctgactc   Ggaggacagt   1140   Gagcgtcgca   Gaaaccacaa   Catcctggag   Cgccagcgcc   Gcaacgacct   Tcggtccagc   1200   Tttctcacgc   Tcagggacca   Cgtgccggag   Ttggtaaaga   Atgagaaggc   Cgccaaggtg   1260   Gtcattttga   Aaaaggccac   Tgagtatgtc   Cactccctcc   Aggccgagga   Gcaccagctt   1320   Ttgctggaaa   Aggaaaaatt   Gcaggcaaga   Cagcagcagt   Tgctaaagaa   Aattgaacac   1380   Gctcggactt   Gctag   1395   <210>   10   <211>   1245   <212>   DNA   <213>   Artificial sequence   <220>   <223>   NR2F2 gene   <400>   10   Atggcaatgg   Ttagcagcac   Gtggcgcgac   Ccccaggacg   Aggtgcccgg   Ctcacagggc   60   Agccaggcct   Cgcaggcgcc   Gcccgtgccc   Ggcccgccgc   Ccggcgcccc   Gcacacgcca   120   Cagacgcccg   Gccaaggggg   Cccagccagc   Acgccagccc   Agacggcggc   Cggtggccag   180   Ggcggccctg   Gcggcccggg   Tagcgacaag   Cagcagcagc   Agcaacacat   Cgagtgcgtg   240   Gtgtgcggag   Acaagtcgag   Cggcaagcac   Tacggccagt   Tcacgtgcga   Gggctgcaag   300   Agcttcttca   Agcgcagcgt   Gcggaggaac   Ctgagctaca   Cgtgccgcgc   Caaccggaac   360   Tgtcccatcg   Accagcacca   Tcgcaaccag   Tgccagtact   Gccgcctcaa   Aaagtgcctc   420   Aaagtgggca   Tgagacggga   Agcggtgcag   Aggggcagga   Tgccgccgac   Ccagccgacc   480   Cacgggcagt   Tcgcgctgac   Caacggggat   Cccctcaact   Gccactcgta   Cctgtccgga   540   Tatatttccc   Tgctgttgcg   Cgcggagccc   Tatcccacgt   Cgcgcttcgg   Cagccaatgc   600   Atgcagccca   Acaacatcat   Gggtatcgag   Aacatttgcg   Aactggccgc   Gaggatgctc   660   Ttcagcgccg   Tcgagtgggc   Ccggaacatc   Cccttcttcc   Ccgacctgca   Gatcacggac   720   Caggtggccc   Tgcttcgcct   Cacctggagc   Gagctgtttg   Tgttgaatgc   Ggcgcagtgc   780   Tccatgcccc   Tccacgtcgc   Cccgctcctg   Gccgccgccg   Gcctgcatgc   Ttcgcccatg   840   Tccgccgacc   Gggtggtcgc   Ctttatggac   Cacatacgga   Tcttccaaga   Gcaagtggag   900   Aagctcaagg   Cgctgcacgt   Tgactcagcc   Gagtacagct   Gcctcaaggc   Cataggtctg   960   Ttcacctcag   Atgcctgtgg   Tctctctgat   Gtagcccatg   Tggaaagctt   Gcaggaaaag   1020   Tctcagtgtg   Ctttggaaga   Atacgttagg   Agccagtacc   Ccaaccagcc   Gacgagattc   1080   Ggaaagcttt   Tgcttcgcct   Cccttccctc   Cgcaccgtct   Cctcctcagt   Catagagcaa   1140   Ttgtttttcg   Tccgtttggt   Aggtaaaacc   Cccatcgaaa   Ccctcatccg   Ggatatgtta   1200   Ctgtccggca   Gcagttttaa   Ctggccgtat   Atggcaattc   Aataa   1245   <210>   11   <211>   1443   <212>   DNA   <213>   Artificial sequence   <220>   <223>   NR6A1 gene   <400>   11   Atggagcggg   Acgaaccgcc   Gcctagcgga   Gggggaggcg   Gcgggggctc   Ggcggggttc   60   Ctggagccctc   Ccgccgcgct   Ccctccgccg   Ccgcgcaacg   Gtttctgtca   Ggatgaattg   120   Gcagagcttg   Acccaggcac   Tatttctgtt   Tcagatgatc   Gggctgaaca   Acgaacctgt   180   Ctcatttgtg   Gggaccgcgc   Tacaggcttg   Cactatggga   Tcatctcctg   Tgagggctgc   240   Aaagggtttt   Tcaagcggag   Catttgcaac   Aaacgggtat   Atcgatgcag   Tcgtgacaag   300   Aactgtgtca   Tgtctcggaa   Gcagaggaac   Aggtgccagt   Actgccgcct   Gctcaaatgc   360   Ctccagatgg   Ggatgaaccg   Gaaggctatc   Agagaagatg   Gcatgcctgg   Aggccggaat   420   Aagagcattg   Ggccagtcca   Gatatcggaa   Gaagaaatcg   Aaaggatcat   Gtctgggcag   480   Gagtttgagg   Aagaggccaa   Tcactggagc   Aaccatggtg   Atagtgacca   Cagttcccct   540   Gggaacaggg   Cttcggagag   Caaccagccc   Tcaccaggct   Ccacactgtc   Ttccagtagg   600   Tctgtggaac   Tgaatggatt   Catggccttc   Agggaacagt   Acatgggaat   Gtctgtgcct   660   Ccacattacc   Aatatatacc   Gcaccttttt   Agctattctg   Gccactcacc   Acttctgccc   720   Caacaagctc   Gcagcctgga   Tccccagtca   Tacagtctga   Ttcaccagct   Gttatcagcc   780   Gaggacctgg   Aaccattggg   Cacgcccatg   Ttgattgaag   Atggatacgc   Tgtgacacag   840   Gcagaactat   Ttgccctgct   Ttgccgcctg   Gccgacgagc   Tgctctttag   Gcagattgcc   900   Tggatcaaga   Aactgccttt   Cttctgcgag   Ctctcaatca   Aggattacac   Gtgcctcttg   960   Agctctacgt   Ggcaggagct   Aatcctgctg   Tcttccctca   Ccgtttacag   Caagcagatc   1020   Tttggggaac   Tggctgatgt   Cactgccaag   Tactcgccct   Cggatgaaga   Actacacaga   1080   Tttagtgatg   Aagggatgga   Ggtgatcgag   Cggctcatct   Acctctatca   Caagttccat   1140   Cagctaaagg   Tcagcaacga   Ggagtatgct   Tgcatgaaag   Caattaactt   Cctaaatcaa   1200   Gatatcaggg   Gtctgaccag   Tgcctcacag   Ctggaacaat   Tgaataaacg   Atactggtac   1260   Atttgccagg   Attttactga   Atataaatac   Acacatcagc   Cgaaccgctt   Tcctgatctc   1320   Atgatgtgct   Tacctgagat   Tcgatatatt   Gcaggaaaga   Tggtgaatgt   Gcccctggag   1380   Cagctgcccc   Tcctctttaa   Ggtggtgctg   Cattcctgca   Agaccagtgt   Gggcaaggaa   1440   Tga   1443   <210>   12   <211>   954   <212>   DNA   <213>   Artificial sequence   <220>   <223>   SOX2 gene   <400>   12   Atgtacaaca   Tgatggagac   Ggagctgaag   Ccgccgggcc   Cgcagcaaac   Ttcggggggc   60   Ggcggcggca   Actccaccgc   Ggcggcggcc   Ggcggcaacc   Agaaaaacag   Cccggaccgc   120   Gtcaagcggc   Ccatgaatgc   Cttcatggtg   Tggtcccgcg   Ggcagcggcg   Caagatggcc   180   Caggagaacc   Ccaagatgca   Caactcggag   Atcagcaagc   Gcctgggcgc   Cgagtggaaa   240   Cttttgtcgg   Agacggagaa   Gcggccgttc   Atcgacgagg   Ctaagcggct   Gcgagcgctg   300   Cacatgaagg   Agcacccgga   Ttataaatac   Cggccccggc   Ggaaaaccaa   Gacgctcatg   360   Aagaaggata   Agtacacgct   Gcccggcggg   Ctgctggccc   Ccggcggcaa   Tagcatggcg   420   Agcggggtcg   Gggtgggcgc   Cggcctgggc   Gcgggcgtga   Accagcgcat   Ggacagttac   480   Gcgcacatga   Acggctggag   Caacggcagc   Tacagcatga   Tgcaggacca   Gctgggctac   540   Ccgcagcacc   Cgggcctcaa   Tgcgcacggc   Gcagcgcaga   Tgcagcccat   Gcaccgctac   600   Gacgtgagcg   Ccctgcagta   Caactccatg   Accagctcgc   Agactacat   Gaacggctcg   660   Cccacctaca   Gcatgtccta   Ctcgcagcag   Ggcacccctg   Gcatggctct   Tggctccatg   720   Ggttcggtgg   Tcaagtccga   Ggccagctcc   Agccccccg   Tggttacctc   Ttcctcccac   780   Tccagggcgc   Cctgccaggc   Cggggacctc   Cgggacatga   Tcagcatgta   Tctccccggc   840   Gccgaggtgc   Cggaacccgc   Cgcccccagc   Agacttcaca   Tgtcccagca   Ctaccagagc   900   Ggcccggtgc   Ccggcacggc   Cattaacggc   Acactgcccc   Tctcacacat   Gtga   954   <210>   13   <211>   1326   <212>   DNA   <213>   Artificial sequence   <220>   <223>   SOX11 gene   <400>   13   Atggtgcagc   Aggcggagag   Cttggaagcg   Gagagcaacc   Tgccccggga   Ggcgctggac   60   Acggaggagg   Gcgaattcat   Ggcttgcagc   Ccggtggccc   Tggacgagag   Cgacccagac   120   Tggtgcaaga   Cggcgtcggg   Ccacatcaag   Cggccgatga   Acgcgttcat   Ggtatggtcc   180   Aagatcgaac   Gcaggaagat   Catggagcag   Tctccggaca   Tgcacaacgc   Cgagatctcc   240   Aagaggctgg   Gcaagcgctg   Gaaaatgctg   Aaggacagcg   Agaagatccc   Gttcatccgg   300   Gaggcggagc   Ggctgcggct   Caagcacatg   Gccgactacc   Ccgactacaa   Gtaccggccc   360   Cggaaaaagc   Ccaaaatgga   Cccctcggcc   Aagcccagcg   Ccagccagag   Cccagagaag   420   Agcgcggccg   Gcggcggcgg   Cgggagcgcg   Ggcggaggcg   Cgggcggtgc   Caagacctcc   480   Aagggctcca   Gcaagaaatg   Cggcaagctc   Aaggcccccg   Cggccgcggg   Cgccaaggcg   540   Ggcgcgggca   Aggcggccca   Gtccggggac   Tacgggggcg   Cgggcgacga   Ctacgtgctg   600   Ggcagcctgc   Gcgtgagcgg   Ctcgggcggc   Ggcggcgcgg   Gcaagacggt   Caagtgcgtg   660   Tttctggatg   Aggaggagga   Cgacgacgac   Gacgacgacg   Agctgcagct   Gcagatcaaa   720   Caggagccgg   Acgaggagga   Cgaggaacca   Ccgcaccagc   Agctcctgca   Gccgccgggg   780   Cagcagccgt   Cgcagctgct   Gagacgctac   Aacgtcgcca   Aagtgcccgc   Cagccctacg   840   Ctgagcagct   Cggcggagtc   Ccccgaggga   Gcgagcctct   Acgacgaggt   Gcgggccggc   900   Gcgacctcgg   Gcgccggggg   Cggcagccgc   Ctctactaca   Gcttcaagaa   Catcaccaag   960   Cagcacccgc   Cgccgctcgc   Gcagcccgcg   Ctgtcgcccg   Cgtcctcgcg   Ctcggtgtcc   1020   Acctcctcgt   Ccagcagcag   Cggcagcagc   Agcggcagca   Gcggcgagga   Cgccgacgac   1080   Ctgatgttcg   Acctgagctt   Gaatttctct   Caaagcgcgc   Acagcgccag   Cgagcagcag   1140   Ctggggggcg   Gcgcggcggc   Cgggaacctg   Tccctgtcgc   Tggtggataa   Ggatttggat   1200   Tcgttcagcg   Agggcagcct   Gggctcccac   Ttcgagttcc   Ccgactactg   Cacgccggag   1260   Ctgagcgaga   Tgatcgcggg   Ggactggctg   Gaggcgaact   Tctccgacct   Ggtgttcaca   1320   Tattga   1326   <210>   14   <211>   1599   <212>   DNA   <213>   Artificial sequence   <220>   <223>   ZIC2 gene   <400>   14   Atgctcctgg   Acgcgggtcc   Gcagttcccg   Gccatcgggg   Tgggcagctt   Cgcgcgccac   60   Catcaccact   Ccgccgcggc   Ggcggcggcg   Gctgccgccg   Agatgcagga   Ccgtgaactg   120   Agcctggcgg   Cggcgcagaa   Cggcttcgtt   Gactccgccg   Ccgcgcacat   Gggagccttc   180   Aagctcaacc   Cgggcgcgca   Cgagctgtcc   Ccgggccaga   Gctcggcgtt   Cacgtcgcag   240   Ggccccggcg   Cccacccccg   Ctccgctgcg   Gctgccgctg   Cggccgcagc   Gctcgggccc   300   Cacgccgcgc   Acgttggctc   Ctactctggg   Ccgcccttca   Actccacccg   Ggacttcctg   360   Ttccgcagcc   Gcggcttcgg   Ggactcggcg   Ccgggcggcg   Ggcagcacgg   Gctgttcggg   420   Ccgggcgcgg   Gcggcctgca   Ccacgcgcac   Tcggacgcgc   Agggccacct   Cctcttcccg   480   Ggcctgccag   Agcagcacgg   Gccgcacggc   Tcgcagaatg   Tgctcaacgg   Gcagatgcgc   540   Ctcgggctgc   Ccggcgaggt   Gttcgggcgc   Tcggagcaat   Accgccaggt   Ggccagcccg   600   Cggaccgacc   Cctactcggc   Ggcgcaactc   Cacaaccagt   Acggccccat   Gaatatgaac   660   Atgggtatga   Acatggcagc   Agccgcggcc   Caccaccacc   Accaccacca   Ccaccacccc   720   Ggtgcctttt   Tccgctatat   Gcggcagcag   Tgcatcaagc   Aggaggtaat   Ctgcaagtgg   780   Atcgaccccg   Agcaactgag   Caatcccaag   Aagagctgca   Acaaaacttt   Cagcaccatg   840   Cacgagctgg   Tgacacacgt   Ctcggtggag   Cacgtcggcg   Gcccggagca   Gagcaaccac   900   Gtctgcttct   Gggaggagtg   Tccgcgcgag   Ggcaagccct   Tcaaggccaa   Atacaaactg   960   Gtcaaccaca   Tccgcgtgca   Cacaggcgag   Aaacccttcc   Cctgcccctt   Cccgggctgt   1020   Ggcaaagtct   Tcgcgcgctc   Cgagaacctc   Aagatccaca   Aaaggaccca   Cacaggggag   1080   Aagccgttcc   Agtgtgagtt   Tgagggctgc   Gaccggcgct   Tcgccaacag   Cagcgacagg   1140   Aagaagcaca   Tgcacgtcca   Cacctccgat   Aagccctatc   Tctgcaagat   Gtgcgacaag   1200   Tcctacacgc   Accccagctc   Gctgcggaag   Cacatgaagg   Tccatgagtc   Ctccccgcag   1260   Ggctctgaat   Cctccccggc   Cgccagctcc   Ggctatgagt   Cgtccacgcc   Cccggggctg   1320   Gtgtccccca   Gcgccgagcc   Cgagagcagc   Tccaacctgt   Ccccagggggg   Ggcggcagcg   1380   Gcggcggcgg   Ctgcggcggc   Ggcggccgcg   Gtgtccgcgg   Tgcaccgggg   Cggaggctcg   1440   Ggcagtggcg   Gcgcgggagg   Cggctcaggc   Ggcggcagcg   Gcagtggcgg   Gggcggcggc   1500   Ggggcgggcg   Gcgggggcgg   Cggcagctct   Ggcgggggca   Gcgggacagc   Cgggggtcac   1560   Agcggcctct   Cctccaactt   Caatgaatgg   Tacgtgtga   1599   <210>   15   <211>   1404   <212>   DNA   <213>   Artificial sequence   <220>   <223>   ZIC3 gene   <400>   15   Atgacgatgc   Tcctggacgg   Aggcccgcag   Ttccctgggc   Tgggagtggg   Cagcttcggc   60   Gcgccgcgcc   Accacgagat   Gcccaaccgt   Gaggcggcag   Gcatggggct   Gaatcccttc   120   Ggggactcaa   Cccacgccgc   Cgccgccgcc   Gccgccgccg   Ctgccttcaa   Gctgagccct   180   Gccgcggcgc   Acgatctatc   Ttcaggccag   Agctcggctt   Tcacgccgca   Gggttcgggc   240   Tacgccaacg   Ccctgggcca   Ccatcaccac   Caccatcacc   Atcatcacca   Caccagccag   300   Gtgcccagct   Acggtggcgc   Tgcctctgcc   Gccttcaact   Caacgcgcga   Gtttctgttc   360   Cgccagcgca   Gctccgggct   Cagtgaggcg   Gcctcgggtg   Gcgggcagca   Cgggctcttc   420   Gccggctcgg   Cgagcagcct   Gcatgctcca   Gctggcatcc   Ccgagccccc   Tagctacttg   480   Ctgtttcccg   Ggctgcatga   Gcagggcgct   Gggcacccgt   Cgcccacagg   Gcacgtggac   540   Aacaaccagg   Tccacctggg   Gctgcgtggg   Gagctgttcg   Gccgtgctga   Cccataccgc   600   Ccagtggcca   Gcccgcgcac   Ggacccctac   Gcggccggcg   Ctcagtttcc   Taactacagc   660   Cccatgaaca   Tgaacatggg   Agtgaacgtg   Gcggcccacc   Acgggcccgg   Cgccttcttc   720   Cgttatatgc   Ggcagcctat   Caagcaggag   Ctgtcgtgca   Aggtgadcga   Cgaggctcag   780   Ctgagccggc   Ccaagaagag   Ctgcgaccgg   Accttcagca   Ccatgcatga   Gctggtgaca   840   Catgtcacca   Tggagcatgt   Ggggggcccg   Gagcagaaca   Accacgtctg   Ctactgggag   900   Gagtgccccc   Gggagggcaa   Gtctttcaag   Gcgaagtaca   Aactggtcaa   Ccacatccga   960   Gtgcacacgg   Gcgagaagcc   Cttcccatgc   Cccttcccgg   Gctgcgggaa   Gatctttgcc   1020   Cgttctgaga   Acctcaagat   Ccacaagagg   Acccacacag   Gtgagaaacc   Tttcaaatgt   1080   Gaatttgaag   Gctgtgacag   Acgctttgcc   Aacagcagcg   Accgtaagaa   Gcacatgcat   1140   Gtgcatacct   Cggacaagcc   Ctatatctgc   Aaagtgtgcg   Acaagtccta   Cacgcacccg   1200   Agctccctgc   Gcaaacacat   Gaaggttcat   Gaatctcaag   Ggtcagattc   Ctccccgct   1260   Gccagttcag   Gctatgaatc   Ttccactcca   Cccgctatag   Cttctgcaaa   Cagtaaagat   1320   Accactaaaa   Ccccttctgc   Agttcaaact   Agcaccagcc   Acaaccctgg   Acttcctcct   1380   Aattttaacg   Aatggtacgt   Ctga   1404   <210>   16   <211>   1335   <212>   DNA   <213>   Artificial sequence   <220>   <223>   GATA3 gene   <400>   16   Atggaggtga   Cggcggacca   Gccgcgctgg   Gtgagccacc   Accaccccgc   Cgtgctcaac   60   Gggcagcacc   Cggacacgca   Ccaccccggc   Ctcagccact   Cctacagga   Cgcggcgcag   120   Tacccgctgc   Cggaggaggt   Ggatgtgctt   Tttaacatcg   Acggtcaagg   Caaccacgtc   180   Ccgccctact   Acggaaactc   Ggtcagggcc   Acggtgcaga   Ggtaccctcc   Gacccaccac   240   Gggagccagg   Tgtgccgccc   Gcctctgctt   Catggatccc   Taccctggct   Ggacggcggc   300   Aaagccctgg   Gcagccacca   Caccgcctcc   Ccctggaatc   Tcagcccctt   Ctccaagacg   360   Tccatccacc   Acggctcccc   Ggggcccctc   Tccgtctacc   Cccggccctc   Gtcctcctcc   420   Ttgtcggggg   Gccacgccag   Cccgcacctc   Ttcaccttcc   Cgcccacccc   Gccgaaggac   480   Gtctccccgg   Acccatcgct   Gtccacccca   Ggctcggccg   Gctcggcccg   Gcaggacgag   540   Aaagagtgcc   Tcaagtacca   Ggtgcccctg   Cccgacagca   Tgaagctgga   Gtcgtcccac   600   Tcccgtggca   Gcatgaccgc   Cctgggtgga   Gcctcctcgt   Cgacccacca   Ccccatcacc   660   Acctacccgc   Cctacgtgcc   Cgagtacagc   Tccggactct   Tcccccccag   Cagcctgctg   720   Ggcggctccc   Ccaccggctt   Cggatgcaag   Tccaggccca   Aggcccggtc   Cagcacagaa   780   Ggcagggagt   Gtgtgaactg   Tggggcaacc   Tcgaccccac   Tgtggcggcg   Agatggcacg   840   Ggacactacc   Tgtgcaacgc   Ctgcgggctc   Tatcacaaaa   Tgaacggaca   Gaaccggccc   900   Ctcattaagc   Ccaagcgaag   Gctgtctgca   Gccaggagag   Cagggacgtc   Ctgtgcgaac   960   Tgtcagacca   Ccacaaccac   Actctggagg   Aggaatgcca   Atggggaccc   Tgtctgcaat   1020   Gcctgtgggc   Tctactacaa   Gcttcacaat   Attacagac   Ccctgactat   Gaagaaggaa   1080   Ggcatccaga   Ccagaaacg   Aaaaatgtct   Agcaaatcca   Aaaagtgcaa   Aaaagtgcat   1140   Gactcactgg   Aggacttccc   Caagaacagc   Tcgtttaacc   Cggccgccct   Ctccagacac   1200   Atgtcctccc   Tgagccacat   Ctcgcccttc   Agccactcca   Gccacatgct   Gaccacgccc   1260   Acgccgatgc   Acccgccatc   Cagcctgtcc   Tttggaccac   Accacccctc   Cagcatggtc   1320   Accgccatgg   Gttag   1335   <210>   17   <211>   1269   <212>   DNA   <213>   Artificial sequence   <220>   <223>   PAX6 gene   <400>   17   Atgcagaaca   Gtcacagcgg   Agtgaatcag   Ctcggtggtg   Tctttgtcaa   Cgggcggcca   60   Ctgccggact   Ccaccccgca   Gaagattgta   Gagctagctc   Acagcggggc   Ccggccgtgc   120   Gacatttccc   Gaattctgca   Ggtgtccaac   Ggatgtgtga   Gtaaaattct   Gggcaggtat   180   Tacgagactg   Gctccatcag   Acccagggca   Atcggtggta   Gtaaaccgag   Agtagcgact   240   Ccagaagttg   Taagcaaaat   Agcccagtat   Aagcgggagt   Gcccgtccat   Ctttgcttgg   300   Gaaatccgag   Acagattact   Gtccgagggg   Gtctgtacca   Acgataacat   Accaagcgtg   360   Tcatcaataa   Acagagttct   Tcgcaacctg   Gctagcgaaa   Agcaacagat   Gggcgcagac   420   Ggcatgtatg   Ataaactaag   Gatgttgaac   Gggcagaccg   Gaagctgggg   Cacccgccct   480   Ggttggtatc   Cggggacttc   Ggtgccaggg   Caacctacgc   Aagatggctg   Ccagcaacag   540   Gaaggagggg   Gagagaatac   Caactccatc   Agttccaacg   Gagaagattc   Agatgaggct   600   Caaatgcgac   Ttcagctgaa   Gcggaagctg   Caaagaaata   Gaacatcctt   Tacccaagag   660   Caaattgagg   Ccctggagaa   Agaggttgag   Agaacccatt   Atccagatgt   Gtttgcccga   720   Gaaagactag   Cagccaaaat   Agatctacct   Gaagcaagaa   Tacaggtatg   Gttttctaat   780   Cgaagggcca   Aatggagaag   Agaagaaaaa   Ctgaggaatc   Agagaagaca   Ggccagcaac   840   Acacctagtc   Atattcctat   Cagcagtagt   Ttcagcacca   Gtgtctacca   Accaattcca   900   Caacccacca   Caccggtttc   Ctccttcaca   Tctggctcca   Tgttgggccg   Aacagacaca   960   Gccctcacaa   Acacctacag   Cgctctgccg   Cctatgccca   Gcttcaccat   Ggcaaataac   1020   Ctgcctatgc   Aacccccagt   Ccccacccamg   Acctcctcat   Actcctgcat   Gctgcccacc   1080   Agcccttcgg   Tgaatgggcg   Gagttatgat   Acctacaccc   Ccccacatat   Gcagacacac   1140   Atgaacagtc   Agccaatggg   Cacctcgggc   Accacttcaa   Caggactcat   Ttccccggt   1200   Gtgtcagttc   Cagttcaagt   Tcccggaagt   Gaacctgata   Tgtctcaata   Ctggccaaga   1260   Ttacagtaa   1269   <210>   18   <211>   3024   <212>   DNA   <213>   Artificial sequence   <220>   <223>   SALL2 gene   <400>   18   Atgtctcggc   Gaaagcagcg   Gaaaccccaa   Cagttaatct   Cggactgcga   Aggtcccagc   60   Gcgtctgaga   Acggtgatgc   Tagcgaggag   Gatcaccccc   Aagtctgtgc   Caagtgctgc   120   Gcacaattca   Ctgacccaac   Tgaattcctc   Gcccaccaga   Acgcatgttc   Tactgaccct   180   Cctgtaatgg   Tgataattgg   Gggccaggag   Aaccccaaca   Actcttcggc   Ctcctctgaa   240   Cccggccctg   Agggtcacaa   Taatcctcag   Gtcatggaca   Cagagcatag   Caacccccca   300   Gattctgggt   Cctccgtgcc   Cacggatccc   Acctggggcc   Cagagaggag   Aggagaggag   360   Tctccagggc   Atttcctggt   Cgctgccaca   Ggtacagcgg   Ctgggggagg   Cgggggcctg   420   Atcttggcca   Gtcccaagct   Gggagcaacc   Ccattacctc   Cagaatcgac   Ccctgcaccc   480   Cctcctcctc   Caccaccccc   Tccgccccca   Ggggtaggca   Gtggccactt   Gaatatcccc   540   Ctgatcttgg   Aagagctacg   Ggtgctgcag   Cagcggcaga   Tccatcagat   Gcagatgact   600   Gagcaaatct   Gcaggcaggt   Gctgttgctt   Ggctccttag   Gccagacggt   Gggtgcccct   660   Gccagtccct   Cagagctacc   Tgggacaggg   Actgcctctt   Ccacacaagcc   Cctactaccc   720   Ctcttcagcc   Ccatcaagcc   Tgtccaaacc   Agcaagacac   Tggcatcttc   Ctcctcctcc   780   Tcctcttcct   Cttcaggggc   Agaaacgccc   Aagcaggcct   Tcttccacct   Ttaccaccca   840   Ctggggtcac   Agcatccttt   Ctctgctgga   Ggggttgggc   Gaagccacaca   Acccacccct   900   Gccccttccc   Cagccttgcc   Aggcagcaca   Gatcagctga   Ttgcctcgcc   Tcatctggca   960   Ttcccaagca   Ccaggggact   Actggcagca   Cagtgtcttg   Gggcagcccg   Aggccttgag   1020   Gccactgcct   Ccccagggct   Cctgaagcca   Aagaatggaa   Gtggtgagct   Gagctacgga   1080   Gaagtgatgg   Gtcccttgga   Gaagcctggt   Ggaaggcaca   Aatgccgctt   Ctgtgccaaa   1140   Gttattggca   Gtgacagtgc   Cctgcagatc   Caccttcgtt   Cccacacggg   Tgagaggccc   1200   Tataagtgca   Atgtctgtgg   Aaaccgtttt   Accacccgtg   Gcaacctcaa   Agtgcatttc   1260   Caccggcatc   Gtgagaagta   Cccacatgtg   Cagatgaacc   Cacacccagt   Accagagcac   1320   Ctagactatg   Tcattaccag   Cagtggcttg   Ccttatggta   Tgtccgtgcc   Accagagaag   1380   Gccgaggagg   Aggcagccac   Tccaggtgga   Ggggttgagc   Gcaagcctct   Ggtggcctcc   1440   Acaacagcac   Tcagtgccac   Agagagcctg   Actctgctct   Ccaccagtgc   Aggcacagcc   1500   Acggctccag   Gactccctgc   Tttcaataag   Tttgtgctca   Tgaaagcagt   Ggaacccaag   1560   Aataaagctg   Atgaaaacac   Ccccccaggg   Agtgagggct   Cagccatcag   Tggagtggca   1620   Gaaagtagca   Cggcaactcg   Catgcaacta   Agtaagttgg   Tgacttcact   Accaagctgg   1680   Gcactgctta   Ccaaccactt   Caagtccact   Ggcagcttcc   Ccttccccta   Tgtgctagag   1740   Cccttggggg   Cctcaccctc   Tgagacatca   Aagctgcagc   Aactggtaga   Aaagattgac   1800   Cggcaaggag   Ctgtggcggt   Gacctcagct   Gcctcaggag   Cccccaccac   Ctctgcccct   1860   Gcaccttcat   Cctcagcctc   Ttctggacct   Aaccagtgtg   Tcatctgtct   Ccgagtgctt   1920   Agctgtcctc   Gggccctacg   Ccttcattat   Ggccaacatg   Gaggtgagag   Gcccttcaaa   1980   Tgcaaagtgt   Gtggcagagc   Cttctccacc   Aggggtaatc   Tgcgtgcaca   Tttcgtgggc   2040   Cacaaggcca   Gtccagctgc   Ccgggcacag   Aattcctgcc   Ccatctgcca   Gaagaagttc   2100   Accaatgctg   Tcactctgca   Gcagcatgtc   Cggatgcacc   Tggggggcca   Gatccccaac   2160   Ggtggtactg   Cactccctga   Aggtggagga   Gctgctcagg   Agaatggctc   Cgagcaatct   2220   Acagtctccg   Gggcagggag   Tttcccccag   Cagcagtccc   Agcagccatc   Accggaagag   2280   Gagttgtctg   Aggaggagga   Agaggaggat   Gaggaagaag   Aggaagatgt   Gactgatgaa   2340   Gattccctgg   Cagggagagg   Ctcagagagt   Ggaggtgaga   Aggcaatatc   Agtgagaggt   2400   Gattcagaag   Aggcatctgg   Ggcagaggag   Gaggtgggga   Cagtggcggc   Agcagccaca   2460   Gctgggaagg   Agatggacag   Taatgagaaa   Actactcaac   Agtcttcttt   Gccaccacca   2520   Ccaccacctg   Acagcctgga   Tcagcctcag   Ccaatggagc   Agggaagcag   Tggtgtttta   2580   Ggaggcaagg   Aagagggggg   Caaaccggag   Agaagctcaa   Gtccggcatc   Agcactcacc   2640   Ccagaagggg   Aagccaccag   Cgtgaccttg   Gtagagagag   Tgagcctgca   Ggaggcaatg   2700   Agaaaggagc   Caggagagag   Cagcagcaga   Aaggcctgcg   Aagtgtgtgg   Ccaggccttt   2760   Ccctcccagg   Cagctctgga   Ggagcatcag   Aagacccacc   Ccaaggaggg   Gccgctcttc   2820   Acttgtgttt   Tctgcaggca   Gggctttctt   Gagcgggcta   Ccctcaagaa   Gcatatgctc   2880   Ctggcacacc   Accaggtaca   Gccctttgcc   Ccccatggcc   Ctcagaatat   Tgctgctctt   2940   Tctctagtcc   Ctggctgttc   Gccttccatc   Acctccacag   Ggctctcccc   Ctttccccga   3000   Aaagatgacc   Ccaccatccc   Atga   3024   <210>   19   <211>   1221   <212>   DNA   <213>   Artificial sequence   <220>   <223>   LHX2 gene   <400>   19   Atgctgttcc   Acagtctgtc   Gggccccgag   Gtgcacgggg   Tcatcgacga   Gatggaccgc   60   Agggccaaga   Gcgaggctcc   Cgccatcagc   Tccgccatcg   Accgcggcga   Caccgagacg   120   Accatgccgt   Ccatcagcag   Tgaccgcgcc   Gcgctgtgcg   Ccggctgcgg   Gggcaagatc   180   Tcggaccgct   Actacctgct   Ggcggtggac   Aagcagtggc   Acatgcgctg   Cctcaagtgc   240   Tgcgagtgca   Agctcaacct   Ggagtcggag   Ctcacctgtt   Tcagcaagga   Cggtagcatc   300   Tactgcaagg   Aagactacta   Caggcgcttc   Tctgtgcagc   Gctgcgcccg   Ctgccacctg   360   Ggcatctcgg   Cctcggagat   Ggtgatgcgc   Gctcgggact   Tggtttatca   Cctcaactgc   420   Ttcacgtgca   Ccacgtgtaa   Caagatgctg   Accacgggcg   Accacttcgg   Catgaaggac   480   Agcctggtct   Actgccgctt   Gcacttcgag   Gcgctgctgc   Agggcgagta   Ccccgcacac   540   Ttcaaccatg   Ccgacgtggc   Agcggcggcc   Gctgcagccg   Cggcggccaa   Gaggcggggg   600   Ctgggcgcag   Caggggccaa   Ccctctgggt   Cttccctact   Acaatggcgt   Gggcactgtg   660   Cagaaggggc   Ggccgaggaa   Acgtaagagc   Ccgggccccg   Gtgcggatct   Ggcggcctac   720   Aacgctgcgc   Taagctgcaa   Cgaaaacgac   Gcagagcacc   Tggaccgtga   Ccaggcatac   780   Ccgagcagcc   Agaagaccaa   Gcgcatgcgc   Acgtccttca   Agcaccacca   Gcttcggacc   840   Atgaagtctt   Actttgccat   Taaccacaac   Cccgacgcca   Aggacttgaa   Gcagctcgcg   900   Caaaagacgg   Gcctcaccaa   Gcgggtcctc   Caggtctggt   Tccagaacgc   Ccgagccaag   960   Ttcaggcgca   Acctcttacg   Gcaggaaaac   Acgggcgtgg   Acaagtcgac   Agacgcggcg   1020   Ctgcagacag   Ggacgccatc   Gggcccggcc   Tcggagctct   Ccaacgcctc   Gctcagcccc   1080   Tccagcacgc   Ccaccaccct   Gacagacttg   Actagcccca   Ccctgccaac   Tgtgacgtcc   1140   Gtcttaactt   Ctgtgcctgg   Caacctggag   Ggccatgagc   Ctcacagccc   Ctcacaaacg   1200   Actcttacca   Accttttcta   a   1221   <210>   20   <211>   1236   <212>   DNA   <213>   Artificial sequence   <220>   <223>   MBD2 gene   <400>   20   Atgcgcgcgc   Acccgggggg   Aggccgctgc   Tgcccggagc   Aggaggaggg   Ggagagtgcg   60   Gcgggcggca   Gcggcgctgg   Cggcgactcc   Gccatagagc   Aggggggcca   Gggcagcgcg   120   Ctcgccccgt   Ccccggtgag   Cggcgtgcgc   Agggaaggcg   Ctcggggcgg   Cggccgtggc   180   Cgggggcggt   Ggaagcaggc   Gggccggggc   Ggcggcgtct   Gtggccgtgg   Ccggggccgg   240   Ggccgtggcc   Ggggacgggg   Acggggccgg   Ggccggggcc   Gcggccgtcc   Cccgagtggc   300   Ggcagcggcc   Ttggcggcga   Cggcggcggc   Tgcggcggcg   Gcggcagcgg   Tggcggcggc   360   Gccccccggc   Gggagccggt   Ccctttcccg   Tcggggagcg   Cggggccggg   Gcccagggga   420   Ccccgggcca   Cggagagcgg   Gaagaggatg   Gattgcccgg   Ccctcccccc   Cggatggaag   480   Aaggaggaag   Tgatccgaaa   Atctgggcta   Agtgctggca   Agagcgatgt   Ctactacttc   540   Agtccaagtg   Gtaagaagtt   Cagaagcaag   Cctcagttgg   Caaggtacct   Gggaaatact   600   Gttgatctca   Gcagttttga   Cttcagaact   Ggaaagatga   Tgcctagtaa   Attacagaag   660   Aacaaacaga   Gactgcgaaa   Cgatcctctc   Aatcaaaata   Agggtaaacc   Agacttgaat   720   Acaacattgc   Caattagaca   Aacagcatca   Attttcaaac   Aaccggtaac   Caaagtcaca   780   Aatcatccta   Gtaataaagt   Gaaatcagac   Ccacaacgaa   Tgaatgaaca   Gccacgtcag   840   Cttttctggg   Agaagaggct   Acaaggactt   Agtgcatcag   Atgtaacaga   Acaaattata   900   Aaaaccatgg   Aactacccaa   Aggtcttcaa   Ggagttggtc   Caggtagcaa   Tgatgagacc   960   Cttttatctg   Ctgttgccag   Tgctttgcac   Acaagctctg   Cgccaatcac   Agggcaagtc   1020   Tccgctgctg   Tggaaaagaa   Ccctgctgtt   Tggcttaaca   Catctcaacc   Cctctgcaaa   1080   Gcttttattg   Tcacagatga   Agacatcagg   Aaacaggaag   Agcgagtaca   Gcaagtacgc   1140   Aagaaattgg   Aagaagcact   Gatggcagac   Atcttgtcgc   Gagctgctga   Tacagaagag   1200   Atggatattg   Aaatggacag   Tggagatgaa   Gcctaa   1236   <210>   twenty one   <211>   2436   <212>   DNA   <213>   Artificial sequence   <220>   <223>   DEPDC1 gene   <400>   twenty one   Atggagagtc   Agggtgtgcc   Tcccgggcct   Tatcgggcca   Ccaagctgtg   Gaatgaagtt   60   Accacatctt   Ttcgagcagg   Aatgcctcta   Agaaaacaca   Gacaacactt   Taaaaaatat   120   Ggcaattgtt   Tcacagcagg   Agaagcagtg   Gattggcttt   Atgacctatt   Aagaaataat   180   Agcaattttg   Gtcctgaagt   Tacaaggcaa   Cagactatcc   Aactgttgag   Gaaatttctt   240   Aagaatcatg   Taattgaaga   Tatcaaaggg   Aggtggggat   Cagaaaatgt   Tgatgataac   300   Aaccagctct   Tcagatttcc   Tgcaacttcg   Cacttataaa   Ctctaccacg   Aaggtatcca   360   Gaattgagaa   Aaaacaacat   Agagaacttt   Tccaaagata   Aagatagcat   Ttttaaatta   420   Cgaaacttat   Ctcgtagaac   Tcctaaaagg   Catggattac   Atttatctca   Ggaaaatggc   480   Gagaaaataa   Agcatgaaat   Aatcaatgaa   Gatcaagaaa   Atgcaattga   Taatagagaa   540   Ctaagccagg   Aagatgttga   Gaagagtttgg   Agatatgtta   Ttctgatcta   Cctgcaaacc   600   Attttaggtg   Tgccatccct   Agaagagtc   Ataaatccaa   Aacaagtaat   Tccccaatat   660   Ataatgtaca   Acatggccaa   Tacaagtaaa   Cgtggagtag   Tttaactaca   Aaacaaatca   720   Gatgacctcc   Ctcactgggt   Attatctgcc   Atgaagtgcc   Tagcaaattg   Gccaagaagc   780   Aatgatatga   Ataatccaac   Tttagttgga   Tttgaacgag   Atgtattcag   Aacaatcgca   840   Gattattttc   Tagatctccc   Tgaacctcta   Cttacttttg   Aatattacga   Attatttgta   900   Aacattttgg   Ttgtttgtgg   Ctacatcaca   Gtttcagata   Gatccagtgg   Gatacataaa   960   Attcaagatg   Atccacagtc   Ttcaaaattc   Cttcacttaa   Acaatttgaa   Ttccttcaaa   1020   Tcaactgagt   Gccttcttct   Cagtctgctt   Catagagaaa   Aaaacaaaga   Agaatcagat   1080   Tctactgaga   Gactacagat   Aagcaatcca   Ggatttcaag   Aaagatgtgc   Taagaaaatg   1140   Cagctagtta   Atttaagaaa   Cagaagagtg   Agtgctaatg   Acataatggg   Aggaagttgt   1200   Cataatttaa   Tagggttaag   Taatatgcat   Gatctatcct   Ctaacagcaa   Accaaggtgc   1260   Tgttctttgg   Aaggaattgt   Agatgtgcca   Gggaattcaa   Gtaaagaggc   Atccagtgtc   1320   Tttcatcaat   Cttttccgaa   Catagaagga   Caaaataata   Aactgttttt   Agagcttaag   1380   Cccaaacagg   Aattcctgtt   Gaatcttcat   Tcagaggaaa   Atattcaaaa   Gccattcagt   1440   Gctggtttta   Agagaacctc   Tactttgact   Gttcaagacc   Aagaggagtt   Gtgtaatggg   1500   Aaatgcaagt   Caaaacagct   Ttgtaggtct   Cagagtttgc   Ttttaagaag   Tagtacaaga   1560   Aggaatagtt   Atatcaatac   Accagtggct   Gaaattatca   Tgaaaccaaa   Tgttggacaa   1620   Ggcagcacaa   Gtgtgcaaac   Agctatggaa   Agtgaactcg   Gagagtctag   Tgccacaatc   1680   Aataaaagac   Tctgcaaaag   Tacaatagaa   Ctttcagaaa   Attctttact   Tccagcttct   1740   Tctatgttga   Ctggcacaca   Aagcttgctg   Caacctcatt   Tagagagggt   Tgccatcgat   1800   Gctctacagt   Tatgttgttt   Gttacttccc   Ccacacaacat   Gtagaaagct   Tcaactttta   1860   Atgcgtatga   Tttcccgaat   Gagtcaaaat   Gttgatatgc   Ccaaacttca   Tgatgcaatg   1920   Ggtacgaggt   Cactgatgat   Acataccttt   Tctcgatgtg   Tgttatgctg   Tgctgaagaa   1980   Gtggatcttg   Atgagcttct   Tgctggaaga   Ttagtttctt   Tcttaatgga   Tcatcatcag   2040   Gaaattcttc   Aagtaccctc   Ttacttacag   Actgcagtgg   Aaaaacatct   Tgactactta   2100   Aaaaagggac   Atattgaaaa   Tcctggagat   Ggactatttg   Ctcctttgcc   Aacttactca   2160   Tactgtaagc   Agattagtgc   Tcaggagttt   Gatgagcaaa   Aagtttctac   Ctctcaagct   2220   Gcaattgcag   Aacttttaga   Aaatattatt   Aaaaacagga   Gtttacctct   Aaaggagaaa   2280   Gaagaaaaac   Taaaacagtt   Tcagaaggaa   Tatcctttga   Tatatcagaa   Aagatttcca   2340   Accacggaga   Gtgaagcagc   Actttttggt   Gacaaaccta   Caatcaagca   Accaatgctg   2400   Attttaagaa   Aaccaaagtt   Ccgtagtcta   Agataa   2436   <210>   twenty two   <211>   1803   <212>   DNA   <213>   Artificial sequence   <220>   <223>   MYEF2 gene   <400>   twenty two   Atggcggacg   Ccaacaaggc   Cgaggtgccc   Ggggccactg   Gtggcgacag   Cccgcacctg   60   Cagcccgcag   Agccgccggg   Cgagccgcgg   Cgagagccgc   Accccgcgga   Ggcggagaag   120   Cagcagccgc   Agcacagcag   Cagctccaat   Ggcgttaaaa   Tggagaatga   Tgaatcagca   180   Aaagaagaga   Aatctgactt   Aaaggaaaaa   Tctacaggaa   Gtaagaaggc   Caatagattt   240   Catccttatt   Caaaagacaa   Gaattcgggc   Gctggagaaa   Gaagagggtcc   Aaatcgtaac   300   Agagttttca   Ttagcaacat   Cccatatgac   Atgaaatggc   Aagctattaa   Agatctaatg   360   Agagagaaag   Ttggtgaggt   Tacatacgtg   Gagctcttta   Agtaggcgga   Aggaaaatca   420   Aggggttgtg   Gtgtggttga   Attcaaagat   Gaagaatttg   Taaagaaagc   Cctagaaact   480   Atgaacaaat   Atgatcttag   Tggaagaccc   Cttaatatta   Aagaggatcc   Tgatggagaa   540   Aatgctcgta   Gggcattgca   Gcgaacagga   Ggatcatttc   Caggaggaca   Cgtccctgat   600   Atgggatcag   Ggttgatgaa   Tttaccacct   Tccatactca   Ataatccaaa   Cattcctcct   660   Gaagtcatca   Gtaatttgca   Ggccggtaga   Cttggttcca   Caatttttgt   Tgccaatctt   720   Gacttcaaag   Ttggttggaa   Gaagctaaag   Gaagtgttca   Gcatagctgg   Aactgtgaag   780   Cgggcagata   Ttaaagaaga   Caaagatggc   Aagagcagag   Gaatgggcac   Tgtcactttt   840   Gagcaagcaa   Ttgaagcagt   Tcaagcaatt   Tctatgttca   Atgggcagtt   Tttatttgat   900   Agactatgc   Atgtgaaaat   Ggatgacaag   Tctgttcctc   Atgaagagta   Ccgttcacat   960   Gatggtaaaa   Caccacaatt   Accacgtggt   Cttggaggca   Ttgggatggg   Acttggtccg   1020   Ggtggacagc   Ctattagtgc   Cagccagttg   Aacataggtg   Gagtaatggg   Aaatttaggt   1080   Ccaggtggta   Tgggaatgga   Tggtccaggt   Tttggaggaa   Tgaatagaat   Tggaggagga   1140   Atagggtttg   Gtggtctgga   Agcaatgaat   Agcatgggag   Gatttggagg   Agttggccga   1200   Atgggagagc   Tgtaccgtgg   Tgcgatgact   Agtagcatgg   Agcgagattt   Tggacgtggt   1260   Gatattggaa   Taaatcaagg   Ctttggagat   Tcctttggta   Gacttggcag   Tgcaatgatt   1320   Ggagggtttg   Caggaagaat   Agtagcttct   Aacatgggtc   Cagtaggatc   Tggaataagt   1380   Ggtggaatgg   Gtagcatgaa   Cagtgtgact   Ggaggaatgg   Gtaggggact   Ggaccggatg   1440   Agttccagct   Ttgatagaat   Gggaccaggt   Ataggagcta   Tactggaaag   Gagcatcgat   1500   Atggatcgag   Gatttttatc   Gggtccaatg   Ggaagcggaa   Tgagagagag   Aataggctcc   1560   Aaaggcaacc   Agatatttgt   Cagaaatcta   Cctttgact   Tgacttggca   Gaaactaaaa   1620   Gagaaattca   Gtcagtgtgg   Tcatgtaatg   Tttgcagaaa   Taaaaatgga   Gaatggaaag   1680   Tcaaaaggct   Gtggaacagt   Cagatttgac   Tccccagaat   Cagctgaaaa   Agcctgcaga   1740   Ataatgaatg   Gcataaaaat   Cagtggcaga   Gaaattgatg   Ttcgcttgga   Tcgtaatgca   1800   Taa   1803   <210>   twenty three   <211>   870   <212>   DNA   <213>   Artificial sequence   <220>   <223>   OTX2a gene   <400>   twenty three   Atgatgtctt   Atcttaagca   Accgccttac   Gcagtcaatg   Ggctgagtct   Gaccacttcg   60   Ggtatggact   Tgctgcaccc   Ctccgtgggc   Tacccggcca   Cccccggaga   Acagcgccgg   120   Gagaggacga   Cgttcactcg   Ggcgcagcta   Gatgtgctgg   Aagcactgtt   Tgccaagacc   180   Cggtacccag   Acatcttcat   Gcgagaggag   Gtggcactga   Aaatcaactt   Gcccgagtcg   240   Agggtgcagg   Tatggtttaa   Gaatcgaaga   Gctaagtgcc   Gccaacaaca   Gcaacaacag   300   Cagaatggag   Gtcaaaacaa   Agtgagacct   Gccaaaaaga   Agacatctcc   Agctcgggaa   360   Gtgagttcag   Agagggaac   Aagtggccaa   Ttcactcccc   Cctctagcac   Ctcagtcccg   420   Accattgcca   Gcagcagtgc   Tcctgtgtct   Atctggagcc   Cagcttccat   Ctccccactg   480   Tcagatccct   Tgtccacctc   Ctcttcctgc   Atgcagaggt   Cctatcccat   Gacctatact   540   Caggcttcag   Gttatagtca   Agtagatgct   Ggctcaactt   Cctactttgg   Gggcatggac   600   Tgtggatcat   Atttgacccc   Tatgcatcac   Cagcttcccg   Gaccaggggc   Cacactcagt   660   Cccatgggta   Ccaatgcagt   Caccagccat   Ctcaatcagt   Ccccagcttc   Tctttccacc   720   Cagggatatg   Gagcttcaag   Cttgggtttt   Aactcaacca   Ctgattgctt   Ggattataag   780   Gaccaaactg   Cctcctggaa   Gcttaacttc   Aatgctgact   Gcttggatta   Taaagatcag   840   Acatcctcgt   Ggaaattcca   Ggttttgtga   870   <210>   twenty four   <211>   999   <212>   DNA   <213>   Artificial sequence   <220>   <223>   SIX3 gene   <400>   twenty four   Atggtattcc   Gctcccccct   Agacctctat   Tcctcccact   Tcttgttgcc   Aaacttcgcc   60   Gattctcacc   Accgctccat   Acttctggcg   Agtagcggcg   Gcgggaacgg   Tgcgggaggc   120   Ggcggcggcg   Cgggaggcgg   Cagcggcggc   Gggaacggtg   Cgggaggcgg   Cggtgctggc   180   Ggagcaggcg   Gcggcggcgg   Cggcggctcc   Agggcccccc   Cggaagagtt   Gtccatgttc   240   Cagctgccca   Ccctcaactt   Ctcgccggag   Caggtggcca   Gcgtctgtga   Gacgctggag   300   Gagacgggcg   Acatcgagcg   Gctgggccgc   Ttcctctggt   Cgctgcccgt   Ggcccccggg   360   Gcgtgcgagg   Ccatcaacaa   Acacgagtcg   Atcctgcgcg   Cgcgcgccgt   Ggtcgccttc   420   Cacacgggca   Acttccgcga   Cctctaccac   Atccttgaga   Accacaagtt   Caccaaggag   480   Tctcacggca   Agctgcaggc   Catgtggctc   Gaggcgcact   Accaggaggc   Cgagaagctg   540   Cgcggccgcc   Cactcggccc   Ggtggacaag   Taccgcgtgc   Gcaagaagtt   Cccgctgcca   600   Cgcaccatct   Gggacggcga   Gcagaagacg   Cattgcttca   Aggaggggac   Tcggagcctg   660   Ttgcgggagt   Ggtacctaca   Ggacccctac   Cccaacccca   Gcaagaaacg   Cgaactggcg   720   Caggccaccg   Gcctcactcc   Cacacaagta   Ggcaactggt   Ttaagaaccg   Gcggcagcgc   780   Gaccgcgccg   Cggcggccaa   Gaacaggctc   Cagcaccagg   Ccattggacc   Gaggggcatg   840   Cgctcgctgg   Ccgagcccgg   Ctgccccacg   Cacggctcgg   Cagagtcgcc   Gtccacggcg   900   Gccagcccga   Ccaccagcgt   Gtccagcctg   Acggagcgcg   Cagacaccgg   Cacctccatc   960   Ctctcggtaa   Cctccagcga   Ctcggaatgt   Gatgtatga   999   <210>   25   <211>   1176   <212>   DNA   <213>   Artificial sequence   <220>   <223>   SOX1 gene   <400>   25   Atgtacagca   Tgatgatgga   Gaccgacctg   Cactcgcccg   Gcggcgccca   Ggcccccacg   60   Aacctctcgg   Gccccgccgg   Ggcgggcggc   Ggcgggggcg   Gaggcggggg   Cggcggcggc   120   Ggcgggggcg   Ccaaggccaa   Ccaggaccgg   Gtcaaacggc   Ccatgaacgc   Cttcatggtg   180   Tggtcccgcg   Ggcagcggcg   Caagatggcc   Caggagaacc   Ccaagatgca   Caactcggag   240   Atcagcaagc   Gcctgggggc   Cgagtggaag   Gtcatgtccg   Aggccgagaa   Gcggccgttc   300   Atcgacgagg   Ccaagcggct   Gcgcgcgctg   Cacatgaagg   Agcacccgga   Ttacaagtac   360   Cggccgcgcc   Gcaagaccaa   Gacgctgctc   Aagaaggaca   Agtactcgct   Ggccggcggg   420   Ctcctggcgg   Ccggcgcggg   Tggcggcggc   Gcggctgtgg   Ccatgggcgt   Gggcgtgggc   480   Gtgggcgcgg   Cggccgtggg   Ccaggccctg   Gagagcccag   Gcggcgcggc   Gggcggcggc   540   Tacgcgcacg   Tcaacggctg   Ggccaacggc   Gcctaccccg   Gctcggtggc   Ggcggcggcg   600   Gcggccgcgg   Ccatgatgca   Ggaggcgcag   Ctggcctacg   Ggcagcaccc   Gggcgcgggc   660   Ggcgcgcacc   Cgcacgcgca   Ccccgcgcac   Ccgcacccgc   Accacccgca   Cgcgcacccg   720   Cacaacccgc   Agcccatgca   Ccgctacgac   Atgggcgcgc   Tgcagtacag   Ccccatctcc   780   Aactcgcagg   Gctacatgag   Cgcgtcgccc   Tcgggctacg   Gcggcctccc   Ctacggcgcc   840   Gcggccgccg   Ccgccgccgc   Tgcgggcggc   Gcgcaccaga   Actcggccgt   Ggcggcggcg   900   Gcggcggcgg   Cggccgcgtc   Gtcgggcgcc   Ctgggcgcgc   Tgggctctct   Ggtgaagtcg   960   Gagcccagcg   Gcagcccgcc   Cgccccagcg   Cactcgcggg   Cgccgtgccc   Cggggacctg   1020   Cgcgagatga   Tcagcatgta   Cttgcccgcc   Ggcgaggggg   Gcgacccggc   Ggcggcagca   1080   Gcggccgcgg   Cgcagagccg   Gctgcactcg   Ctgccgcagc   Actaccaggg   Cgcgggcgcg   1140   Ggcgtgaacg   Gcacggtgcc   Cctgacgcac   Atctag   1176   <210>   26   <211>   2004   <212>   DNA   <213>   Artificial sequence   <220>   <223>   PAX6: EGFP gene <400> 26 tgaggtgtgt cctaatcgtg cggcattcaa caaatggact tctggtgtgt ggtcagaaga 60 gaaaagccat ttacttactt tcctccccgg ttttctggca acagctgaag gggagctgcc 120 tccgtggact gagcagaccc aggagaggga gtcgtggtgc ggagacacac gcaccacaca 180 cagatgaccg gtggcacaca cgacacacgc tgacataccg acatcgccag tgggacacac 240 acacacacac acacacacac acacacacac acagagagag agagaatccc tcccagcatt 300 ggtcatccgc ccccccaccc aggcttccac tccccctccc ctcttatctc ccctggcttc 360 ccctcctctc gggcgctgcg aaaagcagcc gcacttagtc aacaaatggc acgtgggaga 420 agttggtgag tgtttggtga ggactcttca gggcttttca caagaaccct ctgtacacaa 480 agtaagtggc gtgtttactc gggcctctcc agccagagct gtgcctctgc tccgctgcgc 540 accgcggctt ccgaaaggag aaaggagaga agaaagggcg gggagagcgg ggtggaggat 600 ttggacaggc cctggaggct tgggctgggg aggcctctgg cctcgtttag ttctcggccc 660 ggcaacctcc tctcggccta ggcttcgccg cggcctccgc agctggaatg gagctgccag 720 gacccagtga cgctcccgcc cctttcctct tcttccaagg ggccaggtgg gctggggtgc 780 ggccgccgct gtgctctgtg tcttggggcc Ccggctggga tggggtgggg gcgggcgggg 8 40 gcggggcggc aggccacgct gtcctggagt tggcaagaaa ggacagcaca gaaacttgca 900 ccctccgagg actgggagtc ccgagtccag cttaggggga gtgggggcgc gacccccaac 960 ccagaaacct tcacttgacc gctcaagttc gcggcagcag ggcgggccgc gccgaatctc 1020 ggcgtgcgcg gagcggggag atgcaggcga gcgccagagc ccgggctcgg gggccctgcg 1080 ccggggagag gagccgggac ccaccggcgg agccgaaaac aagtgtattc atattcaaac 1140 aaacggacca attgcaccag gcggggagag ggagcatcca atcggctggc gcgaggcccc 1200 ggcgctgctt tgcataaagc aatattttgt gtgagagcga gcggtgcatt tgaagcttag 1260 atctggatcc cctctagagt cgagatggtg agcaagggcg aggagctgtt caccggggtg 1320 gtgcccatcc tggtcgagct ggacggcgac gtaaacggcc acaagttcag cgtgtccggc 1380 gagggcgagg gcgatgccac ctacggcaag ctgaccctga agttcatctg caccaccggc 1440 aagctgcccg tgccctggcc caccctcgtg accaccctga cctacggcgt gcagtgcttc 1500 agccgctacc ccgaccacat gaagcagcac gacttcttca agtccgccat gcccgaaggc 1560 tacgtccagg agcgcaccat cttcttcaag gacgacggca actacaagac ccgcgccgag 1620 gtgaagttcg agggcgacac cctggtgaac cgcatcgagc tgaagggcat cgacttcaag 1680 gagga cggca acatcctggg gcacaagctg gagtacaact acaacagcca caacgtctat 1740 atcatggccg acaagcagaa gaacggcatc aaggtgaact tcaagatccg ccacaacatc 1800 gaggacggca gcgtgcagct cgccgaccac taccagcaga acacccccat cggcgacggc 1860 cccgtgctgc tgcccgacaa ccactacctg agcacccagt ccgccctgag caaagacccc 1920 aacgagaagc gcgatcacat ggtcctgctg gagttcgtga ccgccgccgg gatcactctc 1980 ggcatggacg agctgtacaa gtaa 2004 <210> 27 <211> 1810 <212> DNA <213> Artificial Sequence <220> <223> SOX1: EGFP gene <400> 27 caacccaatc gttaatcatt cggaacgcgc gggcggggag cggcgaggag ggcgagctcg 60 gggttcgccg ccgccgccgc cgccgcgcgc gcgcgctcag gaagcggtgt ggctgtcacc 120 ccctcccggg cctcctcccc cctccttcct gctttgctcc ccctccttcc tcccctcctc 180 cccgctccgc cgcccgcgcc cagtgtatct actccctccc cacgtcactc gccagcgcgc 240 catgcaaatc accgccgccg ccggctccca ttggccgcgg cgcgctcatt taatggcagc 300 ccgggcccgg cgtatggctg ctgggccccg cgcgccgccg gccccgcgtg cgcctccgct 360 ccgagcgcac ggccccgggc aggcagcggg cagcccatcc cgggctcggc ggccccggct 420 ctccggccct ctccgcgagc ccgcgctcct cccgctgtcc ccgggcccct ccctggctgc 480 accgtaatcg ccccctgcag gcccccctgc gcctcccccc ccccgccact ggcgcctggc 540 ttcccccggg cacctgggac cagcacatgc ccagcgcacg cggcgcgccg ccctgctaga 600 agttgcagcc tccgagttgg aggccgctga ggaccgagcg caggaggaag gagacagcgc 660 gcagcggcgg ccggcgagga gacagcacac cccgggccgg gcccagcgca ccgctcccgg 720 ccccaaaagc ggagctgcaa cttggccacg actgcacctg tttgcaccgc tccgccgagg 780 gcgcctgggc tgcggtggcg gcgaagacgg Cgaccccgac cgtcggcctc tttggcaagt 8 40 ggtttgtgca tcaggagaaa ctttccacct gcgagccgaa ccggcgccga gtgcgtgtgt 900 ttctgccttt ttttgttgtc gttgcctcca cccctcccca ttcttctctc cgctaggacc 960 cccccgcccc cgtctcactc cgtctgaatt cctctccgtc tccctcccac cccggccgtc 1020 tatgctccag gccctctcct cgcggtgccg gtgaacccgc cagccgcccc gggatccacc 1080 ggtcgccacc atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt 1140 cgagctggac ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga 1200 tgccacctac ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc 1260 ctggcccacc ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga 1320 ccacatgaag cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg 1380 caccatcttc ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg 1440 cgacaccctg gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat 1500 cctggggcac aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa 1560 gcagaagaac ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt 1620 gcagctcgcc gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc 1680 cgaca Accac tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga 1740 tcacatggtc ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct 1800 gtacaagtaa 1810

Claims (15)

一種用以篩選一可治療一神經性疾病之候選藥物的套組,包含一第一到一第六多核苷酸,其係分別包含CBX2(序列編號:1)、HES1(序列編號:2)、ID1(序列編號:3)、TFAP2A(序列編號:4)、ZFP42(序列編號:5)及ZNF423(序列編號:6)的基因。 A kit for screening a drug candidate for treating a neurological disease, comprising a first to a sixth polynucleotide comprising CBX2 (SEQ ID NO: 1) and HES1 (SEQ ID NO: 2), respectively. , ID1 (SEQ ID NO: 3), TFAP2A (SEQ ID NO: 4), ZFP42 (SEQ ID NO: 5), and ZNF423 (SEQ ID NO: 6). 如請求項1所述之套組,更包含一第七到一第十五多核苷酸,其係分別包含DACH1(序列編號:7)、FOXG1(序列編號:8)、MYCN(序列編號:9)、NR2F2(序列編號:10)、NR6A1(序列編號:11)、SOX2(序列編號:12)、SOX11(序列編號:13)、ZIC2(序列編號:14)及ZIC3(序列編號:15)的基因。 The kit according to claim 1, further comprising a seventh to a fifteenth polynucleotide comprising DACH1 (SEQ ID NO: 7), FOXG1 (SEQ ID NO: 8), and MYCN (SEQ ID NO: 9), NR2F2 (sequence number: 10), NR6A1 (sequence number: 11), SOX2 (sequence number: 12), SOX11 (sequence number: 13), ZIC2 (sequence number: 14), and ZIC3 (sequence number: 15) Gene. 如請求項2所述之套組,更包含一第十六到一第二十五多核苷酸,其係分別包含GATA3(序列編號:16)、PAX6(序列編號:17)、SALL2(序列編號:18)、LHX2(序列編號:19)、MBD2(序列編號:20)、DEPDC1(序列編號:21)、MYEF2(序列編號:22)、OTX2a(序列編號:23)、SIX3(序列編號:24)及SOX1(序列編號:25)的基因。 The kit of claim 2, further comprising a sixteenth to a twenty-fifth polynucleotide comprising GATA3 (SEQ ID NO: 16), PAX6 (SEQ ID NO: 17), SALL2 (sequence) No.: 18), LHX2 (sequence number: 19), MBD2 (sequence number: 20), DEPDC1 (sequence number: 21), MYEF2 (sequence number: 22), OTX2a (sequence number: 23), SIX3 (sequence number: 24) and the gene of SOX1 (sequence number: 25). 如請求項1所述之套組,更包含一報導多核苷酸,其係包含序列編號:26的序列。 The kit of claim 1 further comprising a reporter polynucleotide comprising the sequence of SEQ ID NO: 26. 如請求項1所述之套組,更包含一增強子,其係選自由RepSox、PP242、DZNep、維生素C及其組合所組成之群組。 The kit of claim 1 further comprising an enhancer selected from the group consisting of RepSox, PP242, DZNep, vitamin C, and combinations thereof. 一種用以篩選一可治療一神經性疾病之候選藥物的方法,包含:(a)將請求項1所述之該第一到第六多核苷酸轉入一纖維母細胞中,藉以誘發該纖維母細胞轉化為一誘發性胚胎神經先驅細胞;(b)將步驟(a)之該誘發性胚胎神經先驅細胞培養於一分化培養液中,藉以誘發該誘發性胚胎神經先驅細胞轉化為一星狀細胞、一寡樹突細胞或一神經元;(c)使步驟(b)之該星狀細胞、該寡樹突細胞或該神經元與一或多待測藥物接觸;以及(d)由該一或多待測藥物中篩選該候選藥物,其中該候選藥物會改變該星狀細胞、該寡樹突細胞或該神經元的表型或基因表現。 A method for screening a drug candidate for treating a neurological disease, comprising: (a) transferring the first to sixth polynucleotides described in claim 1 into a fibroblast, thereby inducing the The fibroblast is transformed into an induced embryonic neural precursor cell; (b) the induced embryonic neural precursor cell of step (a) is cultured in a differentiation culture medium, thereby inducing transformation of the induced embryonic neural precursor cell into a star a cell, an oligodendrocyte or a neuron; (c) contacting the stellate cell of step (b), the oligodendrocyte or the neuron with one or more drugs to be tested; and (d) The candidate drug is screened in the one or more test drugs, wherein the candidate drug changes the phenotype, gene expression of the stellate cell, the oligodendrocyte or the neuron. 如請求項6所述之方法,其中該纖維母細胞是源自一罹患神經性疾病之個體。 The method of claim 6, wherein the fibroblast is derived from an individual suffering from a neurological disease. 如請求項7所述之方法,其中該神經性疾病是一神經退化性疾病。 The method of claim 7, wherein the neurological disease is a neurodegenerative disease. 如請求項6所述之方法,其中在步驟(a)中,是使該第一到第六多核苷酸與一報導多核苷酸共轉入至該纖維母細胞中,其中該報導多核苷酸包含序列編號:26的序列。 The method of claim 6, wherein in the step (a), the first to sixth polynucleotides are co-transferred into the fibroblast with a reporter polynucleotide, wherein the polynucleoside is reported The acid comprises the sequence of SEQ ID NO: 26. 一種如請求項1所述之該第一到第六多核苷酸的用途,其係用以製備一藥物以治療一罹患或疑似罹患一神經性疾病的個體。 A use of the first to sixth polynucleotides according to claim 1, which is for preparing a medicament for treating an individual suffering from or suspected of suffering from a neurological disease. 如請求項10所述之用途,其中該神經性疾病是一神經退化性疾病。 The use of claim 10, wherein the neurological disease is a neurodegenerative disease. 一種利用如請求項1所述之套組所製備之誘發性胚胎神經先驅細胞,其可分化為一星狀細胞、一寡樹突細胞或一神經元。 An induced embryonic neural precursor cell prepared by using the kit of claim 1, which can differentiate into a stellate cell, an oligodendrocyte or a neuron. 一種利用如請求項1所述之套組所製備之星狀細胞。 A stellate cell prepared using the kit of claim 1. 一種利用如請求項1所述之套組所製備之寡樹突細胞。 An oligodendrocyte cell prepared using the kit of claim 1. 一種利用如請求項1所述之套組所製備之神經元。A neuron prepared using the kit of claim 1.
TW106112165A 2017-04-12 2017-04-12 Kit for selecting neurological drug and uses thereof TWI649467B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106112165A TWI649467B (en) 2017-04-12 2017-04-12 Kit for selecting neurological drug and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106112165A TWI649467B (en) 2017-04-12 2017-04-12 Kit for selecting neurological drug and uses thereof

Publications (2)

Publication Number Publication Date
TW201837251A TW201837251A (en) 2018-10-16
TWI649467B true TWI649467B (en) 2019-02-01

Family

ID=64797358

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106112165A TWI649467B (en) 2017-04-12 2017-04-12 Kit for selecting neurological drug and uses thereof

Country Status (1)

Country Link
TW (1) TWI649467B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103269A1 (en) * 2014-12-23 2016-06-30 Ramot At Tel-Aviv University Ltd. Populations of neural progenitor cells and methods of producing and using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103269A1 (en) * 2014-12-23 2016-06-30 Ramot At Tel-Aviv University Ltd. Populations of neural progenitor cells and methods of producing and using same

Also Published As

Publication number Publication date
TW201837251A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
AU2021204485B2 (en) Methods, systems and compositions relating to cell conversion via protein induced in-vivo cell reprogramming
US10613079B2 (en) Diagnostic methods for neural disorders
US11654161B2 (en) Compositions and methods for neuralgenesis
KR101788903B1 (en) Conversion of somatic cells to induced reprogrammed neural stem cells (irnscs)
US9005966B2 (en) Generation of pluripotent cells from fibroblasts
EP1022331A2 (en) Transdifferentiation of transfected epidermal basal cells into neural progenitor cells, neuronal cells and/or glial cells
US11981931B2 (en) Reprogramming progenitor compositions and methods of use thereof
US20140315234A1 (en) Method to generate dopaminergic neurons from mouse and human cells
TWI649467B (en) Kit for selecting neurological drug and uses thereof
US7510871B2 (en) Alzheimer model for drug screening
KR20220003770A (en) A Method for Inhibiting Cancer Metastasis by Modulating Anchorage-Dependency of Cancer Cells
US11339405B2 (en) Kit and method for producing induced embryonic neural progenitors
US7041507B1 (en) Transdiffentiation of transfected epidermal basal cells into neural progenitor cells, neuronal cells and/or glial cells
KR102443932B1 (en) A Composition for Modulating Anchorage-Dependency of a Cell
Kwan Investigating molecular signatures of GABAergic neuron populations in the developing cerebellum
EP1846578A2 (en) Methods of identifying genes which modulate myelination
Aaker The role of Zfp191 in oligodendrocyte maturation and myelination
Thomas The regulatory role of FoxD3 in melanoblast specification