TWI648394B - Method for producing biodiesel and triacetin - Google Patents

Method for producing biodiesel and triacetin Download PDF

Info

Publication number
TWI648394B
TWI648394B TW106139101A TW106139101A TWI648394B TW I648394 B TWI648394 B TW I648394B TW 106139101 A TW106139101 A TW 106139101A TW 106139101 A TW106139101 A TW 106139101A TW I648394 B TWI648394 B TW I648394B
Authority
TW
Taiwan
Prior art keywords
oil
triacetin
preparing biodiesel
biodiesel
catalyst
Prior art date
Application number
TW106139101A
Other languages
Chinese (zh)
Other versions
TW201918547A (en
Inventor
張揚狀
康文成
莊浩宇
謝子賢
Original Assignee
台灣中油股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣中油股份有限公司 filed Critical 台灣中油股份有限公司
Priority to TW106139101A priority Critical patent/TWI648394B/en
Priority to CN201711385987.3A priority patent/CN108034502B/en
Application granted granted Critical
Publication of TWI648394B publication Critical patent/TWI648394B/en
Publication of TW201918547A publication Critical patent/TW201918547A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

將酸性金屬化合物、弱酸性金屬化合物及水依比例混合,經擠壓成型與高溫燒結後形成固體金屬氧化觸媒,其中將固體金屬氧化觸媒填充於管狀反應器中,進行轉酯化與交換酯化反應產生脂肪酸甲酯及三醋酸甘油酯,藉由固體金屬氧化觸媒的活性高、穩定性佳等特性,可一步驟的連續式生產脂肪酸甲酯及三醋酸甘油酯,並獲得較高的轉化效率。The acidic metal compound, the weakly acidic metal compound and the water are mixed in proportion, and are extruded and sintered at a high temperature to form a solid metal oxide catalyst, wherein the solid metal oxidation catalyst is filled in the tubular reactor for transesterification and exchange. The esterification reaction produces fatty acid methyl esters and triacetin. By virtue of the high activity and good stability of the solid metal oxidation catalyst, the fatty acid methyl ester and the triacetin can be continuously produced in one step and obtained higher. Conversion efficiency.

Description

製備生質柴油與三醋酸甘油酯之方法Method for preparing biodiesel and triacetin

本發明係有關於一種製備生質柴油之方法,尤其是指一種具有較高的轉化率並可連續式且一步驟生產生質柴油並產生高值化的三醋酸甘油酯之方法。The present invention relates to a process for preparing biodiesel, and more particularly to a process which has a high conversion rate and which can continuously produce a mass of diesel fuel in one step and produce a high value of triacetin.

石化燃料是目前世界上最普遍的動力來源,且其在工業發展、交通運輸以及農業發展都佔據著很重要的地位,進而提升人類的生活品質使得生活能夠更加便利。然而,隨著全世界快速增加的人口,石化燃料的使用量也開始大幅增加,但其產量有限是個長久以來的隱憂。再者,石化燃料長期存在的問題,如無法重複使用、空氣污染、開採不易、價格不穩等亦難以獲得解決。Petrochemical fuel is currently the most common source of power in the world, and it plays an important role in industrial development, transportation and agricultural development, and thus enhances the quality of human life and makes life more convenient. However, with the rapidly increasing population of the world, the use of fossil fuels has begun to increase substantially, but its limited production is a long-standing concern. Moreover, the long-standing problems of fossil fuels, such as the inability to reuse, air pollution, mining, and price instability, are difficult to solve.

相較之下,生質能中的生質柴油具有與化石柴油相近的性質,且這種燃料具有減少汙染物的排放及對健康的影響、生物可分解性、無毒、不含硫、燃燒後產生的氣體汙染性低以及儲存安全等優點,被視為是既經濟又具潛力的能源替代方案之一。In contrast, biodiesel in biomass has similar properties to fossil diesel, and this fuel has reduced pollutant emissions and health effects, biodegradability, non-toxic, sulfur-free, and post-combustion. The low gas pollution and safe storage are considered to be one of the economical and potential energy alternatives.

生質柴油的製造方式主要分為化學催化和生物催化,其中化學鹼催化因具有高轉酯率、反應時間短等優點,是目前使用較廣的技術。而用於化學鹼催化之觸媒包括液體類及固體類,當中固體鹼觸媒因具有易分離、可回收等特點,較受業界歡迎。目前常見用於製造生質柴油的固體鹼觸媒有氧化鈣、碳酸鋰等,然而氧化鈣的空氣穩定度差,易吸收空氣中的水份與二氧化碳而失效,且氧化鈣顆粒較大表面積較小,整體轉酯率偏低。而碳酸鋰之鹼性強度較弱,因此轉酯效果欠佳。The production methods of biodiesel are mainly divided into chemical catalysis and biocatalysis. Among them, chemical base catalysis is a widely used technology due to its high transesterification rate and short reaction time. The catalyst used for chemical base catalysis includes liquids and solids. Among them, solid base catalysts are popular in the industry because of their easy separation and recyclability. At present, solid base catalysts commonly used in the manufacture of biodiesel have calcium oxide, lithium carbonate, etc. However, calcium oxide has poor air stability, easily absorbs moisture in the air and carbon dioxide, and has a larger surface area of calcium oxide particles. Small, the overall transesterification rate is low. The basic strength of lithium carbonate is weak, so the transesterification effect is not good.

有鑑於此,如何開發一種新型觸媒,且觸媒的活性高、穩定性佳,且在適當的操作條件下,可一步驟連續式生產生質柴油及獲得高值化的三醋酸甘油酯,並可獲得較高的轉化率,已是現在刻不容緩急需解決的課題。In view of this, how to develop a new type of catalyst, and the catalyst has high activity and good stability, and under the proper operating conditions, the diesel fuel can be continuously produced in one step and the high-valued triacetin can be obtained. And the high conversion rate can be obtained, which is a problem that needs to be solved urgently.

有鑑於過去一般皆以鹼性觸媒進行轉酯化反應生產生質柴油,但伴隨產出之副產物多以低值化特性居多,緣此,本發明的目的在於提供一種新型固態酸性觸媒,觸媒的活性高、穩定性佳,在適當的操作條件下,可一步驟連續式的生產生質柴油及產出高值化之三醋酸甘油酯,並可獲得較高的轉化率。In view of the fact that in the past, the transesterification reaction of the basic catalyst was used to produce the quality diesel, but the by-products accompanying the production were mostly low-valued. Therefore, the object of the present invention is to provide a novel solid acid catalyst. The catalyst has high activity and good stability. Under appropriate operating conditions, the diesel fuel can be continuously produced in one step and the high-valued triacetin can be produced, and a higher conversion rate can be obtained.

為了達到上述目的,本發明提供了一種製備生質柴油與三醋酸甘油酯之方法,係將酸性金屬化合物、弱酸性金屬化合物及水依比例混合,經擠壓成型與高溫燒結後形成固體金屬氧化觸媒,其中將固體金屬氧化觸媒填充於管狀反應器中,進行轉酯化與交換酯化反應產生脂肪酸甲酯及三醋酸甘油酯。In order to achieve the above object, the present invention provides a method for preparing biodiesel and triacetin by mixing an acidic metal compound, a weakly acidic metal compound and water in a ratio, and forming a solid metal oxide by extrusion molding and high temperature sintering. A catalyst in which a solid metal oxidation catalyst is filled in a tubular reactor for transesterification and exchange esterification to produce fatty acid methyl esters and triacetin.

所述之製備生質柴油與三醋酸甘油酯之方法,其中,轉酯化與交換酯化反應之反應物包含羧酸酯類及油脂類。The method for preparing biodiesel and triacetin, wherein the reactant of the transesterification and the exchange esterification reaction comprises a carboxylic acid ester and a fat or oil.

所述之製備生質柴油與三醋酸甘油酯之方法,其中,羧酸酯類為乙酸酯類。The method for preparing biodiesel and triacetin, wherein the carboxylic acid esters are acetates.

所述之製備生質柴油與三醋酸甘油酯之方法,其中,該油脂類係為大豆油、痲瘋樹籽油、蓖麻油、桐油、棕櫚油、椰子油、油酸(oleic acid)、豬油、牛油、藻油、廢食用油或廢酸油中任一種或一種以上之混合物。The method for preparing biodiesel and triacetin, wherein the oil is soybean oil, jatropha seed oil, castor oil, tung oil, palm oil, coconut oil, oleic acid, pig Any one or a mixture of oil, butter, algae oil, waste cooking oil or spent acid oil.

所述之製備生質柴油與三醋酸甘油酯之方法,其中,羧酸酯類為乙酸甲酯。The method for preparing biodiesel and triacetin, wherein the carboxylic acid ester is methyl acetate.

所述之製備生質柴油與三醋酸甘油酯之方法,其中,羧酸酯類與油脂類分別經由高壓幫浦系統以由下往上(up-flow)方式進入管狀反應器中進行反應。The method for preparing biodiesel and triacetin, wherein the carboxylic acid esters and the oils and fats are respectively reacted into the tubular reactor in an up-flow manner via a high pressure pump system.

所述之製備生質柴油與三醋酸甘油酯之方法,其中,反應溫度介於攝氏170℃~300℃之間。The method for preparing biodiesel and triacetin, wherein the reaction temperature is between 170 ° C and 300 ° C.

所述之製備生質柴油與三醋酸甘油酯之方法,其中,反應壓力介於40 bar ~80 bar之間。The method for preparing biodiesel and triacetin, wherein the reaction pressure is between 40 bar and 80 bar.

所述之製備生質柴油與三醋酸甘油酯之方法,其中,羧酸酯類與油脂類之體積比比值介於1~3之間。The method for preparing biodiesel and triacetin, wherein the ratio of the ratio of the carboxylate to the oil is between 1 and 3.

所述之製備生質柴油與三醋酸甘油酯之方法,其中,空間流速WHSV(Weight Hourly Space Velocity)介於0.1~1.0 (hr-1)之間,並可推算出反應滯留時間介於6分鐘~60 分鐘之間。The method for preparing biodiesel and triacetin, wherein the space velocity WHSV (Weight Hourly Space Velocity) is between 0.1 and 1.0 (hr-1), and the reaction residence time is estimated to be 6 minutes. ~60 minutes between.

本發明提供一種製備生質柴油與三醋酸甘油酯之方法,係將酸性金屬化合物、弱酸性金屬化合物及水依比例混合,經擠壓成型與高溫燒結後形成固體金屬氧化觸媒,其中將固體金屬氧化觸媒填充於管狀反應器中,進行轉酯化與交換酯化反應產生脂肪酸甲酯及三醋酸甘油酯,藉由固體金屬氧化觸媒的活性高、穩定性佳等特性,可一步驟的連續式生產脂肪酸甲酯及產出高值化之三醋酸甘油酯,並獲得較高的轉化效率。The invention provides a method for preparing biodiesel and triacetin, which comprises mixing an acidic metal compound, a weakly acidic metal compound and water in proportion, and extruding and sintering at a high temperature to form a solid metal oxide catalyst, wherein the solid is solid. The metal oxide catalyst is filled in a tubular reactor, and is subjected to transesterification and exchange esterification to produce fatty acid methyl ester and triacetin. The solid metal oxidation catalyst has high activity and good stability, and can be one step. Continuous production of fatty acid methyl esters and production of high value triacetin and high conversion efficiency.

下面將結合圖式對本發明的具體實施方式進行更詳細的敘述。根據下列敘述和申請專利範圍,本發明的優點和特徵將更清楚。需說明的是,圖式均採用非常簡化的形式且均使用非精準的比例,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,僅用以方便、明晰地輔助說明本發明實施例的目的,合先敘明。Specific embodiments of the present invention will now be described in more detail in conjunction with the drawings. The advantages and features of the present invention will become more apparent from the following description and claims. It should be noted that the drawings are in a very simplified form and all use non-precise proportions. Therefore, the proportions and configuration relationships of the attached drawings should not be interpreted or limited, and the scope of the invention is actually applied. The purpose of the embodiments of the present invention will be described in a convenient and clear manner.

請參閱第1圖,第1圖係顯示本發明之置備生質柴油設備示意圖,將羧酸酯類1及油脂類2由下而上經由高壓幫浦3控制流量,進入管狀反應器5,此管狀反應器5設有多個溫度控制器6並配合電熱偶7,將反應保持於高溫高壓下進行,系統壓力由背壓閥8控制,若壓力超過系統安全設定值,會由安全閥4進行洩壓排出動作,最後經熱交換器9冷卻即可收集液態產物於產品收集槽10,包含生質柴油及三醋酸甘油酯。Please refer to FIG. 1 , which is a schematic view showing the preparation of the raw diesel fuel device of the present invention. The carboxylic acid esters 1 and the oil and fats 2 are controlled to flow through the high pressure pump 3 from bottom to top, and enter the tubular reactor 5 . The tubular reactor 5 is provided with a plurality of temperature controllers 6 and is coupled with a thermocouple 7, and the reaction is maintained under high temperature and high pressure. The system pressure is controlled by the back pressure valve 8. If the pressure exceeds the system safety setting value, the safety valve 4 is performed. The pressure relief discharge operation, finally cooling the heat exchanger 9 to collect the liquid product in the product collection tank 10, comprising biodiesel and triacetin.

更詳細的說明本發明之製備生質柴油與三醋酸甘油酯之方法,其中在轉酯化與交換酯化反應中,將一固體金屬氧化觸媒填充於管狀反應器5中段,而管狀反應器5上段及下段則以玻璃珠填充,玻璃珠的直徑以1mm為佳,但並不以此做為限制,而固體金屬氧化觸媒則是由酸性金屬化合物、弱酸性金屬化合物或鹼性金屬化合物及水依一定比例混合,經擠壓成型與高溫燒結後形成固體金屬氧化觸媒,在此所指之酸性金屬化合物可以是偏鎢酸銨,而弱酸性金屬化合物可以是氫氧化鋯、水合氧化鋁,而鹼性金屬化合物可以是二氧化錳。其後,羧酸酯類1與油脂類2分別經由高壓幫浦3以由下往上(up-flow)的方式進入管狀反應器5與固體金屬氧化觸媒進行反應,反應後之產品經熱交換器9冷卻後收集至產品收集槽10中。The method for preparing biodiesel and triacetin according to the present invention is described in more detail, wherein in the transesterification and exchange esterification reaction, a solid metal oxidation catalyst is filled in the middle of the tubular reactor 5, and the tubular reactor 5 The upper and lower sections are filled with glass beads. The diameter of the glass beads is preferably 1 mm, but this is not limited. The solid metal oxide catalyst is composed of an acidic metal compound, a weakly acidic metal compound or a basic metal compound. And water is mixed according to a certain ratio, and formed into a solid metal oxidation catalyst after extrusion molding and high temperature sintering, wherein the acidic metal compound may be ammonium metatungstate, and the weakly acidic metal compound may be zirconium hydroxide, hydrated oxidation. Aluminum, and the basic metal compound may be manganese dioxide. Thereafter, the carboxylic acid esters 1 and the fats and oils 2 are respectively reacted into the tubular reactor 5 via the high pressure pump 3 in an up-flow manner to react with the solid metal oxidation catalyst, and the reacted product is subjected to heat. The exchanger 9 is cooled and collected into the product collection tank 10.

更詳細的說明本發明之製備生質柴油與三醋酸甘油酯之方法,其中在轉酯化與交換酯化反應中,其反應物包含羧酸酯類與油脂類。且羧酸酯類可以是乙酸酯類,包含了乙酸甲酯、乙酸乙酯及乙酸丁酯,較佳可為乙酸甲酯,但並不以此做為限制;而油脂類則可以是大豆油、痲瘋樹籽油、蓖麻油、桐油、棕櫚油、椰子油、油酸(oleic acid)、豬油、牛油、藻油、廢食用油或廢酸油中其中一種或一種以上之混合物,但並不以此做為限制。The method for preparing biodiesel and triacetin according to the present invention will be described in more detail, wherein in the transesterification and exchange esterification reaction, the reactants comprise carboxylate esters and fats and oils. And the carboxylic acid esters may be acetates, including methyl acetate, ethyl acetate and butyl acetate, preferably methyl acetate, but not limited thereto; and the oils and fats may be soybean oil. a mixture of one or more of jatropha seed oil, castor oil, tung oil, palm oil, coconut oil, oleic acid, lard, tallow, algae oil, waste cooking oil or spent acid oil, But it is not a limitation.

更詳細的說明本發明之製備生質柴油與三醋酸甘油酯之方法,其中在管狀反應器5中進行反應時,其反應溫度介於攝氏170℃~300℃之間,較佳之溫度範圍為攝氏200℃~300℃之間,但並不以此做為實際反應溫度的限制。The method for preparing biodiesel and triacetin according to the present invention will be described in more detail. When the reaction is carried out in the tubular reactor 5, the reaction temperature is between 170 ° C and 300 ° C. The preferred temperature range is Celsius. Between 200 ° C ~ 300 ° C, but not as a limit on the actual reaction temperature.

更詳細的說明本發明之製備生質柴油與三醋酸甘油酯之方法,其中在管狀反應器5中進行反應時,其反應壓力介於40 bar ~80 bar之間,較佳之反應壓力介於50 bar ~70 bar之間,更佳之反應壓力為68 bar,但並不以此做為實際反應壓力的限制。The method for preparing biodiesel and triacetin according to the present invention will be described in more detail. When the reaction is carried out in the tubular reactor 5, the reaction pressure is between 40 bar and 80 bar, and the reaction pressure is preferably 50. Between bar ~ 70 bar, the better reaction pressure is 68 bar, but this is not the limit of the actual reaction pressure.

更詳細的說明本發明之製備生質柴油與三醋酸甘油酯之方法,其中在管狀反應器5中進行反應時,其羧酸酯類與油脂類之體積比比值介於1~3之間,但並不以此做為限制。The method for preparing biodiesel and triacetin according to the present invention is described in more detail. When the reaction is carried out in the tubular reactor 5, the ratio of the ratio of the carboxylate to the oil is between 1 and 3. But it is not a limitation.

更詳細的說明本發明之製備生質柴油與三醋酸甘油酯之方法,其中在管狀反應器5中進行反應時,其空間流速WHSV(Weight Hourly Space Velocity)介於0.1~1.0 (hr-1)之間,並可推算出其反應滯留時間介於6分鐘~60 分鐘之間,但並不以此做為限制。The method for preparing biodiesel and triacetin according to the present invention is described in more detail, wherein the space flow velocity WHSV (Weight Hourly Space Velocity) is between 0.1 and 1.0 (hr-1) when the reaction is carried out in the tubular reactor 5. Between, and can be derived from the reaction retention time between 6 minutes and 60 minutes, but not as a limit.

以下列舉幾個實施例,說明不同固體金屬氧化觸媒的製備與比較不同固體金屬氧化觸媒進行轉酯化與交換酯化反應生產生質柴油之測試。Several examples are given below to illustrate the preparation of different solid metal oxidation catalysts and the comparison of different solid metal oxidation catalysts for transesterification and exchange esterification to produce quality diesel.

實施例一至實施例四說明不同觸媒A~D之製備,實施例五至實施例八說明不同觸媒A~D在管狀反應器中之反應。The first to fourth embodiments illustrate the preparation of different catalysts A to D, and the fifth to eighth embodiments illustrate the reaction of different catalysts A to D in a tubular reactor.

實施例一,觸媒A製備:將9.6g偏鎢酸銨 [(NH4)6H2W12O40·xH2O]與21g的水合氧化鋁(pseudo-boehmite)均勻混和,添加適量的水混和攪拌,以擠壓成型機(extruder)製成圓柱狀,經室溫乾燥24小時後,再以高溫爐鍛燒,溫度攝氏800℃、恆溫4小時,再降到室溫。最後可獲得直徑1~2mm,長度3~5mm之觸媒A。Example 1 Preparation of Catalyst A: 9.6 g of ammonium metatungstate [(NH4)6H2W12O40·xH2O] was uniformly mixed with 21 g of hydrated alumina (pseudo-boehmite), and an appropriate amount of water was added to mix and stir to form an extrusion molding machine. (extruder) was made into a cylindrical shape, dried at room temperature for 24 hours, and then calcined in a high temperature furnace at a temperature of 800 ° C, a constant temperature of 4 hours, and then lowered to room temperature. Finally, a catalyst A having a diameter of 1 to 2 mm and a length of 3 to 5 mm can be obtained.

實施例二,觸媒B製備:將9.6g偏鎢酸銨[(NH4)6H2W12O40·xH2O]與27.1g的氫氧化鋯均勻混和,添加適量的水混和攪拌,以擠壓成型機(extruder)製成圓盤狀,經室溫乾燥24小時後,再以高溫爐鍛燒,溫度攝氏800℃、恆溫4小時,再降到室溫。經粉碎、過篩後獲得3~5mm不規則顆粒狀觸媒B。Example 2 Preparation of Catalyst B: 9.6 g of ammonium metatungstate [(NH4)6H2W12O40·xH2O] was uniformly mixed with 27.1 g of zirconium hydroxide, and an appropriate amount of water was added and mixed with stirring to prepare an extruder. It was made into a disk shape, dried at room temperature for 24 hours, and then calcined in a high temperature furnace at a temperature of 800 ° C for 4 hours and then lowered to room temperature. After pulverization and sieving, 3~5mm irregular granular catalyst B is obtained.

實施例三,觸媒C製備:將3g二氧化錳與27g的水合氧化鋁均勻混和,添加適量的水混和攪拌,以擠壓成型機(extruder)製成圓柱狀,經室溫乾燥24小時後,再以高溫爐鍛燒,溫度攝氏550℃、恆溫4小時,再降到室溫。最後可獲得直徑1~2mm,長度3~5mm之觸媒C。Example 3, Preparation of Catalyst C: 3 g of manganese dioxide and 27 g of hydrated alumina were uniformly mixed, mixed with an appropriate amount of water, stirred, and extruded into an extruder by an extruder, and dried at room temperature for 24 hours. Then, it is calcined in a high temperature furnace at a temperature of 550 ° C, a constant temperature of 4 hours, and then lowered to room temperature. Finally, a catalyst C having a diameter of 1 to 2 mm and a length of 3 to 5 mm can be obtained.

實施例四,觸媒D製備:將9.6g偏鎢酸銨、3g二氧化錳與21g的水合氧化鋁均勻混和,添加適量的水混和攪拌,以擠壓成型機(extruder)製成圓柱狀,經室溫乾燥24小時後,再以高溫爐鍛燒,溫度攝氏550℃、恆溫4小時,再降到室溫。最後可獲得直徑1~2mm,長度3~5mm之觸媒D。Example 4, Preparation of Catalyst D: 9.6 g of ammonium metatungstate, 3 g of manganese dioxide and 21 g of hydrated alumina were uniformly mixed, mixed with an appropriate amount of water, and stirred to form a cylindrical shape by an extruder. After drying at room temperature for 24 hours, it was calcined in a high temperature furnace at a temperature of 550 ° C for 4 hours and then lowered to room temperature. Finally, a catalyst D having a diameter of 1 to 2 mm and a length of 3 to 5 mm can be obtained.

實施例五,以觸媒A填入管狀反應器5中進行反應:將16.8g的觸媒A填充於管狀反應器5中段,管狀反應器5上、下段以直徑1mm的玻璃珠填充。乙酸甲酯與大豆油分別經由高壓幫浦3以由下往上(up-flow)的方式進入管狀反應器5,操作條件溫度為攝氏240℃、壓力為68 bar、乙酸甲酯與大豆油的體積比為2、空間流速WHSV(Weight Hourly Space Velocity)為0.33 (hr-1)。產品經熱交換器9冷卻後收集,並以GC-FID(氣相層析-火焰離子化偵檢器)分析,可得轉化率為99.6%,產物(脂肪酸甲酯+三醋酸甘油酯)收率為92.2%。In the fifth embodiment, the reaction was carried out by charging the catalyst A into the tubular reactor 5: 16.8 g of the catalyst A was filled in the middle of the tubular reactor 5, and the upper and lower sections of the tubular reactor 5 were filled with glass beads having a diameter of 1 mm. Methyl acetate and soybean oil enter the tubular reactor 5 via a high pressure pump 3 in an up-flow manner, operating at a temperature of 240 ° C, a pressure of 68 bar, methyl acetate and soybean oil. The volume ratio is 2. The space velocity WHSV (Weight Hourly Space Velocity) is 0.33 (hr-1). After the product was cooled by the heat exchanger 9, it was collected and analyzed by GC-FID (gas chromatography-flame ionization detector), and the conversion rate was 99.6%, and the product (fatty acid methyl ester + triacetin) was collected. The rate was 92.2%.

實施例六,以觸媒B填入管狀反應器5中進行反應:將16.8g的觸媒B填充於管狀反應器5中段,操作條件為溫度攝氏240℃、壓力68 bar、乙酸甲酯與大豆油的體積比為2、空間流速WHSV(Weight Hourly Space Velocity)為0.33 (hr-1)。產品分析可得轉化率為66.7%,產物(脂肪酸甲酯+三醋酸甘油酯)收率為53.2%。In the sixth embodiment, the catalyst B is filled into the tubular reactor 5 for reaction: 16.8 g of the catalyst B is filled in the middle of the tubular reactor 5 under the conditions of a temperature of 240 ° C, a pressure of 68 bar, a methyl acetate and a large The volume ratio of soybean oil is 2. The space velocity WHSV (Weight Hourly Space Velocity) is 0.33 (hr-1). The product analysis showed a conversion of 66.7% and a yield of the product (fatty acid methyl ester + triacetin) of 53.2%.

實施例七,以觸媒C填入管狀反應器5中進行反應:將16.8g的觸媒C填充於管狀反應器5中段,操作條件為溫度攝氏286℃、壓力68 bar、乙酸甲酯與大豆油的體積比為2、空間流速WHSV(Weight Hourly Space Velocity)為0.33 (hr-1)。產品分析可得轉化率為79.4%,產物(脂肪酸甲酯+三醋酸甘油酯)收率為55.1%。In the seventh embodiment, the reaction is carried out by charging the catalyst C into the tubular reactor 5: 16.8 g of the catalyst C is filled in the middle of the tubular reactor 5 under the conditions of a temperature of 286 ° C, a pressure of 68 bar, methyl acetate and large The volume ratio of soybean oil is 2. The space velocity WHSV (Weight Hourly Space Velocity) is 0.33 (hr-1). The product analysis showed a conversion of 79.4% and a yield of the product (fatty acid methyl ester + triacetin) of 55.1%.

實施例八,以觸媒D填入管狀反應器5中進行反應:將16.8g的觸媒D填充於管狀反應器5中段,操作條件為溫度攝氏254℃、壓力68 bar、乙酸甲酯與大豆油的體積比為2、空間流速WHSV(Weight Hourly Space Velocity)為0.33 (hr-1)。產品分析可得轉化率為97.8%,產物(脂肪酸甲酯+三醋酸甘油酯)收率為83.7%。In the eighth embodiment, the reaction is carried out by charging the catalyst D into the tubular reactor 5: 16.8 g of the catalyst D is filled in the middle of the tubular reactor 5 under the conditions of a temperature of 254 ° C, a pressure of 68 bar, a methyl acetate and a large The volume ratio of soybean oil is 2. The space velocity WHSV (Weight Hourly Space Velocity) is 0.33 (hr-1). The product analysis showed a conversion of 97.8% and a yield of product (fatty acid methyl ester + triacetin) of 83.7%.

表一列出使用不同觸媒下(觸媒A~D)之產品分析數據。顯示出觸媒A之轉化率及產品收率為較佳。 表一 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 觸媒 </td><td> 油脂料源 </td><td> 操作時間 hr </td><td> 壓力 bar </td><td> 溫度 ℃ </td><td> WHSV hr-1 </td><td> 轉化率 (%) </td><td> 產物收率 (%) </td><td> 金屬溶出 (ppm) </td></tr><tr><td> A </td><td> 大豆油 </td><td> 36 </td><td> 68 </td><td> 240 </td><td> 0.33 </td><td> 99.6 </td><td> 92.2 </td><td> W: N.D Al: 1.3 </td></tr><tr><td> B </td><td> 大豆油 </td><td> 36 </td><td> 68 </td><td> 240 </td><td> 0.33 </td><td> 66.7 </td><td> 53.2 </td><td> W: N.D Zr: N.D </td></tr><tr><td> C </td><td> 大豆油 </td><td> 36 </td><td> 68 </td><td> 286 </td><td> 0.33 </td><td> 79.4 </td><td> 55.1 </td><td> Mn: 4.8 Al: 1.4 </td></tr><tr><td> D </td><td> 大豆油 </td><td> 36 </td><td> 68 </td><td> 254 </td><td> 0.33 </td><td> 97.8 </td><td> 83.7 </td><td> W: 35 Mn: 0.3 Al: 2.9 </td></tr></TBODY></TABLE>Table 1 lists product analysis data using different catalysts (catalyst A~D). It is preferred to show the conversion ratio of the catalyst A and the product yield. Table I  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Catalyst</td><td> Grease Source</td><td> Operating Time Hr </td><td> pressure bar </td><td> temperature °C </td><td> WHSV hr-1 </td><td> conversion rate (%) </td><td> product Yield (%) </td><td> Metal dissolution (ppm) </td></tr><tr><td> A </td><td> soybean oil</td><td> 36 < /td><td> 68 </td><td> 240 </td><td> 0.33 </td><td> 99.6 </td><td> 92.2 </td><td> W: ND Al : 1.3 </td></tr><tr><td> B </td><td> Soybean Oil</td><td> 36 </td><td> 68 </td><td> 240 </td><td> 0.33 </td><td> 66.7 </td><td> 53.2 </td><td> W: ND Zr: ND </td></tr><tr><td > C </td><td> Soybean Oil</td><td> 36 </td><td> 68 </td><td> 286 </td><td> 0.33 </td><td> 79.4 </td><td> 55.1 </td><td> Mn: 4.8 Al: 1.4 </td></tr><tr><td> D </td><td> Soybean Oil</td> <td> 36 </td><td> 68 </td><td> 254 </td><td> 0.33 </td><td> 97.8 </td><td> 83.7 </td><td > W: 35 Mn: 0.3 Al: 2.9 </td></tr></TBODY></TABLE>

表二列出使用不同觸媒與不同操作時間下之產品分析數據。顯示出觸媒A之轉化率及產品收率為較佳。 表二 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 觸媒 </td><td> 油脂料源 </td><td> 操作時間 Hr </td><td> 壓力 bar </td><td> 溫度 ℃ </td><td> WHSV hr<sup>-1</sup></td><td> 轉化率 (%) </td><td> 產物收率 (%) </td><td> 金屬溶出 (ppm) </td></tr><tr><td> A </td><td> 大豆油 </td><td> 24 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 88.9 </td><td> 67.5 </td><td> W: 1.0 Al: 3.4 </td></tr><tr><td> </td><td> </td><td> 132 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 83.2 </td><td> 61.0 </td><td> W: 1.4 Al: 1.7 </td></tr><tr><td> C </td><td> 大豆油 </td><td> 36 </td><td> 68 </td><td> 284 </td><td> 0.33 </td><td> 79.4 </td><td> 55.1 </td><td> Mn: 4.8 Al: 1.4 </td></tr><tr><td> </td><td> </td><td> 156 </td><td> 68 </td><td> 284 </td><td> 0.33 </td><td> 63.3 </td><td> 40.7 </td><td> Mn: N.D Al: 1.4 </td></tr><tr><td> D </td><td> 大豆油 </td><td> 24 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 82.8 </td><td> 64.7 </td><td> W: 113 Mn: N.D Al: 2.9 </td></tr><tr><td> </td><td> </td><td> 120 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 48.4 </td><td> 29.3 </td><td> W: 1.2 Mn: N.D Al: 3.5 </td></tr></TBODY></TABLE>Table 2 lists product analysis data using different catalysts and different operating times. It is preferred to show the conversion ratio of the catalyst A and the product yield. Table II  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Catalyst</td><td> Grease Source</td><td> Operating Time Hr </td><td> Pressure bar </td><td> Temperature °C </td><td> WHSV hr<sup>-1</sup></td><td> Conversion rate (%) < /td><td> Product yield (%) </td><td> Metal dissolution (ppm) </td></tr><tr><td> A </td><td> soybean oil</ Td><td> 24 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 88.9 </td><td> 67.5 </td> <td> W: 1.0 Al: 3.4 </td></tr><tr><td> </td><td> </td><td> 132 </td><td> 68 </td> <td> 220 </td><td> 0.33 </td><td> 83.2 </td><td> 61.0 </td><td> W: 1.4 Al: 1.7 </td></tr>< Tr><td> C </td><td> soybean oil</td><td> 36 </td><td> 68 </td><td> 284 </td><td> 0.33 </td ><td> 79.4 </td><td> 55.1 </td><td> Mn: 4.8 Al: 1.4 </td></tr><tr><td> </td><td> </td ><td> 156 </td><td> 68 </td><td> 284 </td><td> 0.33 </td><td> 63.3 </td><td> 40.7 </td>< Td> Mn: ND Al: 1.4 </td></tr><tr><td> D </td><td> soybean oil</td><td> 24 </td><td> 68 </ Td><td> 220 </td><td> 0.33 </td><td> 82.8 </td><td> 64.7 </td>< Td> W: 113 Mn: ND Al: 2.9 </td></tr><tr><td> </td><td> </td><td> 120 </td><td> 68 </ Td><td> 220 </td><td> 0.33 </td><td> 48.4 </td><td> 29.3 </td><td> W: 1.2 Mn: ND Al: 3.5 </td> </tr></TBODY></TABLE>

實施例九,以觸媒A填入管狀反應器5中進行反應:同實施例五,將24.9g的觸媒A填充於管狀反應器5中段,管狀反應器5上、下段以直徑1mm的玻璃珠填充。乙酸甲酯與大豆油分別經由高壓幫浦3以由下往上(up-flow)方式進入管狀反應器5,操作條件為溫度攝氏260℃、壓力68 bar、乙酸甲酯與大豆油的體積比為1、空間流速WHSV(Weight Hourly Space Velocity)為0.67 (hr-1)。產品經熱交換器9冷卻後收集,並以GC-FID(氣相層析-火焰離子化偵檢器)分析,可得轉化率為99.6%,產物(脂肪酸甲酯+三醋酸甘油酯)收率為97.3%。將收集之產品以短徑蒸發器移除過量的乙酸甲酯,可獲得脂肪酸甲酯、未反應之三酸甘油酯、二酸甘油酯、單酸甘油酯,以及三醋酸甘油酯及其衍生物(二醋酸甘油酯、單醋酸甘油酯…等)之回收產物。兩段反應器操作即是以回收產物取代油脂料源,再與過量的乙酸甲酯進行反應。產品經熱交換器冷卻後收集,並以GC-FID(氣相層析-火焰離子化偵檢器)分析,可得轉化率為93-95%,產物(脂肪酸甲酯+三醋酸甘油酯)收率為80-86%。表三列出長時間操作時間下與兩段反應器操作下之產品分析數據。 表三 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 觸媒 </td><td> 油脂料源 </td><td> 操作時間 Hr </td><td> 壓力 bar </td><td> 溫度 ℃ </td><td> WHSV hr-1 </td><td> 轉化率 (%) </td><td> 產物收率 (%) </td><td> 金屬溶出 (ppm) </td></tr><tr><td> A </td><td> 大豆油 </td><td> 24 </td><td> 68 </td><td> 260 </td><td> 0.67 </td><td> 99.6 </td><td> 97.3 </td><td> W: 0.1 Al: 1.6 </td></tr><tr><td> </td><td> </td><td> 96 </td><td> 68 </td><td> 260 </td><td> 0.67 </td><td> 83.3 </td><td> 72.9 </td><td> W: 0.7 Al: 4.0 </td></tr><tr><td> </td><td> </td><td> 156 </td><td> 68 </td><td> 260 </td><td> 0.67 </td><td> 93.4 </td><td> 79.5 </td><td> W: N.D Al: 6.1 </td></tr><tr><td> </td><td> </td><td> 192 </td><td> 68 </td><td> 260 </td><td> 0.67 </td><td> 91.4 </td><td> 75.7 </td><td> W: 1.9 Al: 2.5 </td></tr><tr><td> </td><td> 24-108 hr 回收產物 </td><td> 216 </td><td> 68 </td><td> 260 </td><td> 0.67 </td><td> 93.5 </td><td> 80.4 </td><td> W: N.D Al: 5.1 </td></tr><tr><td> </td><td> </td><td> 288 </td><td> 68 </td><td> 260 </td><td> 0.67 </td><td> 93.0 </td><td> 80.2 </td><td> W: N.D Al: 5.7 </td></tr><tr><td> </td><td> 108-192 hr 回收產物 </td><td> 300 </td><td> 68 </td><td> 260 </td><td> 0.67 </td><td> 96.4 </td><td> 86.6 </td><td> W: N.D Al: 6.0 </td></tr><tr><td> </td><td> </td><td> 360 </td><td> 68 </td><td> 260 </td><td> 0.67 </td><td> 94.8 </td><td> 86.2 </td><td> W: N.D Al: 1.6 </td></tr></TBODY></TABLE>In the ninth embodiment, the reaction is carried out by filling the tubular reactor 5 with the catalyst A. In the same manner as in the fifth embodiment, 24.9 g of the catalyst A is filled in the middle of the tubular reactor 5, and the upper and lower sections of the tubular reactor 5 are made of glass having a diameter of 1 mm. Bead filling. Methyl acetate and soybean oil enter the tubular reactor 5 through the high pressure pump 3 in an up-flow manner, respectively, under the operating conditions of a temperature of 260 ° C, a pressure of 68 bar, a volume ratio of methyl acetate to soybean oil. 1. The space velocity WHSV (Weight Hourly Space Velocity) is 0.67 (hr-1). After the product was cooled by the heat exchanger 9, it was collected and analyzed by GC-FID (gas chromatography-flame ionization detector), and the conversion rate was 99.6%, and the product (fatty acid methyl ester + triacetin) was collected. The rate is 97.3%. The collected product is subjected to removal of excess methyl acetate by a short-path evaporator to obtain fatty acid methyl ester, unreacted triglyceride, diglyceride, monoglyceride, and triacetin and its derivatives. (Reduced product of diacetin, monoacetin, etc.). The two-stage reactor operation replaces the oil source with the recovered product and reacts with excess methyl acetate. The product was collected by heat exchanger cooling and analyzed by GC-FID (gas chromatography-flame ionization detector) to obtain a conversion rate of 93-95%. The product (fatty acid methyl ester + triacetin) The yield was 80-86%. Table 3 lists product analysis data under long-term operating time and two-stage reactor operation. Table 3  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Catalyst</td><td> Grease Source</td><td> Operating Time Hr </td><td> pressure bar </td><td> temperature °C </td><td> WHSV hr-1 </td><td> conversion rate (%) </td><td> product Yield (%) </td><td> Metal dissolution (ppm) </td></tr><tr><td> A </td><td> soybean oil</td><td> 24 < /td><td> 68 </td><td> 260 </td><td> 0.67 </td><td> 99.6 </td><td> 97.3 </td><td> W: 0.1 Al : 1.6 </td></tr><tr><td> </td><td> </td><td> 96 </td><td> 68 </td><td> 260 </td ><td> 0.67 </td><td> 83.3 </td><td> 72.9 </td><td> W: 0.7 Al: 4.0 </td></tr><tr><td> </ Td><td> </td><td> 156 </td><td> 68 </td><td> 260 </td><td> 0.67 </td><td> 93.4 </td>< Td> 79.5 </td><td> W: ND Al: 6.1 </td></tr><tr><td> </td><td> </td><td> 192 </td>< Td> 68 </td><td> 260 </td><td> 0.67 </td><td> 91.4 </td><td> 75.7 </td><td> W: 1.9 Al: 2.5 </ Td></tr><tr><td> </td><td> 24-108 hr Recovered product</td><td> 216 </td><td> 68 </td><td> 260 < /td><td> 0.67 </td><td> 93.5 </td><td> 80.4 </td><td> W: ND Al: 5.1 </td></tr><tr><td> </td><td> </td><td> 288 </td><td> 68 </td><td> 260 < /td><td> 0.67 </td><td> 93.0 </td><td> 80.2 </td><td> W: ND Al: 5.7 </td></tr><tr><td> </td><td> 108-192 hr recovered product</td><td> 300 </td><td> 68 </td><td> 260 </td><td> 0.67 </td>< Td> 96.4 </td><td> 86.6 </td><td> W: ND Al: 6.0 </td></tr><tr><td> </td><td> </td>< Td> 360 </td><td> 68 </td><td> 260 </td><td> 0.67 </td><td> 94.8 </td><td> 86.2 </td><td> W: ND Al: 1.6 </td></tr></TBODY></TABLE>

實施例十,一步驟連續式生產生質柴油與三醋酸甘油酯之實驗如實施例五所示。使用觸媒A並先操作200小時後,再改變不同油脂料源進行實驗,操作條件為溫度攝氏220℃、壓力68 bar、乙酸甲酯與油脂的體積比為2、空間流速WHSV(Weight Hourly Space Velocity)為0.33 (hr-1),產品分析數據列在表四中。 表四 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 油脂料源 </td><td> 壓力 bar </td><td> 溫度 ℃ </td><td> WHSV hr-1 </td><td> 轉化率 (%) </td><td> 產物收率 (%) </td><td> 金屬溶出 (ppm) </td></tr><tr><td> 大豆油 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 80.0 </td><td> 55.9 </td><td> W: 0.5 Al: 3.4 </td></tr><tr><td> 蓖麻油 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 99.6 </td><td> 84.1 </td><td> W: 0.2 Al: 3.0 </td></tr><tr><td> 棕櫚油 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 72.6 </td><td> 49.8 </td><td> W: 0.1 Al: 1.0 </td></tr><tr><td> 椰子油 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 97.8 </td><td> 36.1 </td><td> W: 0.1 Al: 1.1 </td></tr><tr><td> 桐油 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 95.6 </td><td> 59.3 </td><td> W: 0.7 Al: 3.9 </td></tr><tr><td> 痲瘋樹油 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 74.2 </td><td> 51.5 </td><td> W: 0.6 Al: 1.5 </td></tr><tr><td> 廢食用油 </td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 73.5 </td><td> 50.1 </td><td> W: 0.9 Al: 1.2 </td></tr></TBODY></TABLE>註:痲瘋樹油中游離脂肪酸含量約8.5wt%,廢食用油中游離脂肪酸含量約4.3wt% Example 10, a step of continuous production of quality diesel oil and triacetin was carried out as shown in Example 5. After using Catalyst A and operating for 200 hours, the experiment was carried out by changing different oil sources. The operating conditions were 220 ° C, 68 bar, the volume ratio of methyl acetate to grease 2. Space velocity WHSV (Weight Hourly Space) Velocity) is 0.33 (hr-1), and product analysis data is listed in Table 4. Table 4  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Grease source </td><td> Pressure bar </td><td> Temperature °C </td><td> WHSV hr-1 </td><td> Conversion rate (%) </td><td> Product yield (%) </td><td> Metal dissolution (ppm) </ Td></tr><tr><td> soybean oil</td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 80.0 </td> <td> 55.9 </td><td> W: 0.5 Al: 3.4 </td></tr><tr><td> Castor oil</td><td> 68 </td><td> 220 < /td><td> 0.33 </td><td> 99.6 </td><td> 84.1 </td><td> W: 0.2 Al: 3.0 </td></tr><tr><td> Palm oil</td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 72.6 </td><td> 49.8 </td><td> W : 0.1 Al: 1.0 </td></tr><tr><td> Coconut Oil</td><td> 68 </td><td> 220 </td><td> 0.33 </td>< Td> 97.8 </td><td> 36.1 </td><td> W: 0.1 Al: 1.1 </td></tr><tr><td> Tung oil</td><td> 68 </td ><td> 220 </td><td> 0.33 </td><td> 95.6 </td><td> 59.3 </td><td> W: 0.7 Al: 3.9 </td></tr> <tr><td> Jatropha curcas oil</td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 74.2 </td><td> 51.5 </td><td> W: 0.6 Al: 1.5 </td></tr><tr><td> Edible oil</td><td> 68 </td><td> 220 </td><td> 0.33 </td><td> 73.5 </td><td> 50.1 </td><td> W : 0.9 Al: 1.2 </td></tr></TBODY></TABLE> Note: The free fatty acid content in Jatropha curcas oil is about 8.5 wt%, and the free fatty acid content in waste cooking oil is about 4.3 wt%.  

綜上所述,本發明係提供一種製備生質柴油與三醋酸甘油酯之方法,其中並研發一種新型固態酸性觸媒,觸媒的活性高、穩定性佳,在適當的操作條件下,可一步驟連續式生產生質柴油及產出高值化的三醋酸甘油酯,並可獲得較高的轉化率與產品收率,相較於目前一步驟連續式固態觸媒生產生質柴油與三醋酸甘油酯的製程技術,須以超臨界技術(高溫攝氏350度及高壓200bar)以批次小量操作才得以完成,且不適用以含有不飽和的油脂作為料源,大多數生物油脂皆無法作為反應原料,故實行於產業界中仍存在極高的難度;此外,三醋酸甘油酯為較高單價之原料,可作為塑化劑、溶劑、添加劑等產品應用,極具經濟價值。In summary, the present invention provides a method for preparing biodiesel and triacetin, and a novel solid acid catalyst is developed, which has high activity and good stability, and under appropriate operating conditions, One-step continuous production of quality diesel oil and high-valued triacetin production, and can obtain higher conversion rate and product yield, compared with the current one-step continuous solid-state catalyst to produce quality diesel and three The process technology of glycerol acetate must be completed in a small batch operation with supercritical technology (350 degrees Celsius and 200 bar high pressure), and it is not suitable for containing unsaturated oil as a source. Most bio-fat cannot be used. As a raw material for the reaction, it is still extremely difficult to implement in the industry. In addition, triacetin is a high-priced raw material, which can be used as a plasticizer, solvent, additive, etc., and has great economic value.

上述僅為本發明較佳之實施例而已,並不對本發明進行任何限制。任何所屬技術領域的技術人員,在不脫離本發明的技術手段的範圍內,對本發明揭露的技術手段和技術內容做任何形式的等同替換或修改等變動,均屬未脫離本發明的技術手段的內容,仍屬於本發明的保護範圍之內。The above is only a preferred embodiment of the invention and is not intended to limit the invention. Any changes in the technical means and technical contents disclosed in the present invention may be made by those skilled in the art without departing from the technical means of the present invention. The content is still within the scope of protection of the present invention.

1‧‧‧羧酸酯類1‧‧‧Carboxylic esters

2‧‧‧油脂類2‧‧‧ Grease

3‧‧‧高壓幫浦3‧‧‧High pressure pump

4‧‧‧安全閥4‧‧‧Safety valve

5‧‧‧管狀反應器5‧‧‧Tubular reactor

6‧‧‧溫度控制器6‧‧‧ Temperature Controller

7‧‧‧電熱偶7‧‧‧Electrical couple

8‧‧‧背壓閥8‧‧‧Back pressure valve

9‧‧‧熱交換器9‧‧‧ heat exchanger

10‧‧‧產品收集槽10‧‧‧Product collection tank

第1圖係顯示本發明之製備生質柴油與三醋酸甘油酯設備示意圖。Figure 1 is a schematic view showing the apparatus for preparing biodiesel and triacetin of the present invention.

no

Claims (10)

一種製備生質柴油與三醋酸甘油酯之方法,其中係將至少一酸性金屬化合物及水依比例混合,經擠壓成型與高溫燒結後形成一固體金屬氧化觸媒,其中將該固體金屬氧化觸媒填充於一管狀反應器中,進行一轉酯化與交換酯化反應產生一脂肪酸甲酯及一三醋酸甘油酯。 A method for preparing biodiesel and triacetin, wherein at least one acidic metal compound and water are mixed in proportion, and after extrusion and high temperature sintering, a solid metal oxide catalyst is formed, wherein the solid metal is oxidized The medium is packed in a tubular reactor for one transesterification and exchange esterification to produce a fatty acid methyl ester and triacetin. 如申請專利範圍第1項所述之製備生質柴油與三醋酸甘油酯之方法,其中,該轉酯化與交換酯化反應之反應物包含一羧酸酯類及一油脂類。 The method for preparing biodiesel and triacetin according to claim 1, wherein the reactant of the transesterification and the exchange esterification reaction comprises a monocarboxylic acid ester and a fat or oil. 如申請專利範圍第2項所述之製備生質柴油與三醋酸甘油酯之方法,其中,該羧酸酯類為乙酸酯類。 The method for producing biodiesel and triacetin according to claim 2, wherein the carboxylic acid ester is an acetate. 如申請專利範圍第2項所述之製備生質柴油與三醋酸甘油酯之方法,其中,該油脂類係為大豆油、痲瘋樹籽油、蓖麻油、桐油、棕櫚油、椰子油、油酸(oleic acid)、豬油、牛油、藻油、廢食用油或廢酸油中任一種或一種以上之混合物。 The method for preparing biodiesel and triacetin according to claim 2, wherein the oil is soybean oil, jatropha seed oil, castor oil, tung oil, palm oil, coconut oil, oil. a mixture of any one or more of oleic acid, lard, tallow, algae oil, waste cooking oil or spent acid oil. 如申請專利範圍第3項所述之製備生質柴油與三醋酸甘油酯之方法,其中,該羧酸酯類為乙酸甲酯。 The method for producing biodiesel and triacetin according to claim 3, wherein the carboxylic acid ester is methyl acetate. 如申請專利範圍第1項所述之製備生質柴油與三醋酸甘油酯之方法,其中,該羧酸酯類與該油脂類分別經由一高壓幫浦系統以由下往上(up-flow)方式進入該管狀反應器中進行反應。 The method for preparing biodiesel and triacetin according to claim 1, wherein the carboxylic acid ester and the oil and fat are respectively up-flowed via a high-pressure pump system. The reaction is carried out in the tubular reactor. 如申請專利範圍第6項所述之製備生質柴油與三醋酸甘油酯之方法,其中,該反應溫度介於攝氏170℃~300℃之間。 The method for preparing biodiesel and triacetin according to claim 6, wherein the reaction temperature is between 170 ° C and 300 ° C. 如申請專利範圍第6項所述之製備生質柴油與三醋酸甘油酯之方法,其中,該反應壓力介於40bar~80bar之間。 The method for preparing biodiesel and triacetin according to claim 6, wherein the reaction pressure is between 40 bar and 80 bar. 如申請專利範圍第6項所述之製備生質柴油與三醋酸甘油酯之方法,其中,該羧酸酯類與該油脂類之體積比比值介於1~3之間。 The method for preparing biodiesel and triacetin according to claim 6, wherein the ratio of the volume ratio of the carboxylic acid ester to the oil or fat is between 1 and 3. 如申請專利範圍第6項所述之製備生質柴油與三醋酸甘油酯之方法,其中,空間流速WHSV(Weight Hourly Space Velocity)介於0.1~1.0(hr-1)之間。 The method for preparing biodiesel and triacetin according to claim 6, wherein the space velocity WHSV (Weight Hourly Space Velocity) is between 0.1 and 1.0 (hr-1).
TW106139101A 2017-11-13 2017-11-13 Method for producing biodiesel and triacetin TWI648394B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106139101A TWI648394B (en) 2017-11-13 2017-11-13 Method for producing biodiesel and triacetin
CN201711385987.3A CN108034502B (en) 2017-11-13 2017-12-20 Method for preparing biodiesel and glycerol triacetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106139101A TWI648394B (en) 2017-11-13 2017-11-13 Method for producing biodiesel and triacetin

Publications (2)

Publication Number Publication Date
TWI648394B true TWI648394B (en) 2019-01-21
TW201918547A TW201918547A (en) 2019-05-16

Family

ID=62100184

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106139101A TWI648394B (en) 2017-11-13 2017-11-13 Method for producing biodiesel and triacetin

Country Status (2)

Country Link
CN (1) CN108034502B (en)
TW (1) TWI648394B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11091712B1 (en) * 2020-03-15 2021-08-17 Chin-Chang Chen Method for producing biodiesel and triacetin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338215A (en) * 2008-08-25 2009-01-07 清华大学 Method for preparing biodiesel by catalyzing oil or fatty acid with solid
CN105647655A (en) * 2014-11-26 2016-06-08 中国石油化工股份有限公司 Method for preparing biodiesel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101343551A (en) * 2007-07-11 2009-01-14 黎洁 Method for preparing biological diesel oil with methyl acetate act acyl acceptor
CN102994173A (en) * 2012-12-08 2013-03-27 青岛科技大学 Method for preparing biodiesel and co-producing triacetin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338215A (en) * 2008-08-25 2009-01-07 清华大学 Method for preparing biodiesel by catalyzing oil or fatty acid with solid
CN105647655A (en) * 2014-11-26 2016-06-08 中国石油化工股份有限公司 Method for preparing biodiesel

Also Published As

Publication number Publication date
CN108034502B (en) 2021-07-06
TW201918547A (en) 2019-05-16
CN108034502A (en) 2018-05-15

Similar Documents

Publication Publication Date Title
Banković–Ilić et al. Application of nano CaO–based catalysts in biodiesel synthesis
Nizah et al. Production of biodiesel from non-edible Jatropha curcas oil via transesterification using Bi2O3–La2O3 catalyst
Olutoye et al. Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst
Meher et al. Transesterification of karanja (Pongamia pinnata) oil by solid basic catalysts
Teo et al. Biodiesel production from Jatropha curcas L. oil with Ca and La mixed oxide catalyst in near supercritical methanol conditions
Furuta et al. Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor
JP4976016B2 (en) Process for producing ester by transesterification
JP2007153943A (en) Method for producing ester by transesterification reaction
Zieba et al. Transesterification of triglycerides with methanol catalyzed by heterogeneous zinc hydroxy nitrate catalyst. Evaluation of variables affecting the activity and stability of catalyst.
Chaveanghong et al. Simultaneous transesterification and esterification of acidic oil feedstocks catalyzed by heterogeneous tungsten loaded bovine bone under mild conditions
WO2010077633A2 (en) Heterogeneous catalysts for mono-alkyl ester production, method of making, and method of using same
Oyekunle et al. Heterogeneous catalytic transesterification for biodiesel production: Feedstock properties, catalysts and process parameters
Xie et al. Biodiesel preparation from soybean oil by using a heterogeneous Ca x Mg 2− x O 2 catalyst
Čapek et al. Aspects of potassium leaching in the heterogeneously catalyzed transesterification of rapeseed oil
TWI648394B (en) Method for producing biodiesel and triacetin
JP2005126346A (en) Method for producing fatty acid lower alkyl ester from fats and oils
CN102049249B (en) Preparation and application of Ca/Al composite oxide solid alkali catalyst for synthesizing biodiesel
US20110237828A1 (en) Acrolein production method and acrylic acid production method
JP5427591B2 (en) Process for preparing alcohol esters from triglycerides and alcohols using at least one ZnxAl2O3 + x type solid solution and a heterogeneous catalyst for binding ZnO
BRPI1003931A2 (en) heterogeneous zinc superstoichiometric zinc spinumin aluminate catalyst and its use in a preparation process for the preparation of alcoholic esters from triglycerides and alcohols
CN102049250B (en) Preparation method and application of load type NaAlO2/MgO solid base catalyst for synthesizing biodiesel
TWI590868B (en) Solid metal oxide catalyst application on the transesterification and interesterification reactions
Borges et al. Improvement of biodiesel production through microstructural engineering of a heterogeneous catalyst
US10072231B2 (en) Process for the conversion of free fatty acids to glycerol esters and production of novel catalyst systems
WO2016119140A1 (en) Preparation method for solid metal oxide catalyst and application thereof in transesterification and interesterification