TWI648393B - Method for purifying unsaturated fatty acid and purifying linolenic acid - Google Patents

Method for purifying unsaturated fatty acid and purifying linolenic acid Download PDF

Info

Publication number
TWI648393B
TWI648393B TW106127658A TW106127658A TWI648393B TW I648393 B TWI648393 B TW I648393B TW 106127658 A TW106127658 A TW 106127658A TW 106127658 A TW106127658 A TW 106127658A TW I648393 B TWI648393 B TW I648393B
Authority
TW
Taiwan
Prior art keywords
moving bed
simulated moving
section
inlet
unsaturated fatty
Prior art date
Application number
TW106127658A
Other languages
Chinese (zh)
Other versions
TW201910500A (en
Inventor
梁茹茜
梁明在
Original Assignee
喬璞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 喬璞科技有限公司 filed Critical 喬璞科技有限公司
Priority to TW106127658A priority Critical patent/TWI648393B/en
Priority to CN201710897209.6A priority patent/CN109401850B/en
Application granted granted Critical
Publication of TWI648393B publication Critical patent/TWI648393B/en
Publication of TW201910500A publication Critical patent/TW201910500A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/02Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/007Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids using organic solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

一種純化不飽和脂肪酸以及純化亞麻酸的方法。純化不飽和脂肪酸的方法包括提供乙酯化亞麻籽油。以模擬移動床層析法將乙酯化亞麻籽油中的不飽和脂肪酸以及飽和脂肪酸分離開來,藉此得到高純度的包含亞油酸以及亞麻酸的不飽和脂肪酸。A method for purifying unsaturated fatty acids and linolenic acid. Methods of purifying unsaturated fatty acids include providing ethylated linseed oil. Unsaturated fatty acids and saturated fatty acids in ethylated linseed oil were separated by simulated moving bed chromatography to obtain high-purity unsaturated fatty acids containing linoleic acid and linolenic acid.

Description

純化不飽和脂肪酸以及純化亞麻酸的方法Method for purifying unsaturated fatty acids and linolenic acid

本發明是有關於一種純化方法,且特別是有關於一種純化不飽和脂肪酸以及亞麻酸的方法。The present invention relates to a purification method, and more particularly to a method for purifying unsaturated fatty acids and linolenic acid.

亞麻籽,又稱胡麻籽,屬亞麻屬,為一種重要的油料作物。亞麻籽油中富含多種不飽和脂肪酸,其中亞麻酸(linolenic acid,LNA)的含量可達40%~60%。亞麻酸屬人體必需脂肪酸,又被稱為維生素F,不僅能夠合成其他兩種不飽和脂肪酸(二十二碳六烯酸(docosahexaenoic acid,DHA)以及二十碳五烯酸(eicosapentaenoic acid,EPA)),同時是參與磷脂合成、代謝以及轉化的核心物質。如今亞麻油已經作為營養添加劑或功能性食品成分使用。Flaxseed, also known as flax seed, belongs to the genus Flax and is an important oil crop. Flaxseed oil is rich in a variety of unsaturated fatty acids, and the content of linolenic acid (LNA) can reach 40% to 60%. Linolenic acid is an essential fatty acid of the human body, also known as vitamin F. It can not only synthesize two other unsaturated fatty acids (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). ), Is also the core substance involved in phospholipid synthesis, metabolism and transformation. Linseed oil is now used as a nutritional additive or functional food ingredient.

現有亞麻籽油分離純化方法主要有:銀離子絡合法、超臨界二氧化碳精餾法、分子蒸餾法、柱層析法、吸附分離法、脂肪酶濃縮法、低溫結晶法和尿素包合法。在上述方法中,尿素包合法由於其分離設備簡單,操作方法簡單易行,且尿素可以循環利用,對環境污染較小,因此成為越來越多的企業首選的純化製程。但是單一的尿素包合法也存在不飽和脂肪酸成分分離不完全、收率低以及單一多不飽和脂肪酸純度低等缺點。而銀離子絡合法需要使用大量昂貴的硝酸銀,不僅生產成本相對較高,而且硝酸銀難以回收,會造成嚴重污染,且若操作控制不當,硝酸銀還有進入產品的風險。The existing separation and purification methods of linseed oil mainly include silver ion complexation method, supercritical carbon dioxide distillation method, molecular distillation method, column chromatography method, adsorption separation method, lipase concentration method, low-temperature crystallization method and urea encapsulation method. Among the above methods, the urea package method has become a preferred purification process for more and more enterprises because of its simple separation equipment, simple and easy operation method, and urea that can be recycled and has less environmental pollution. However, the single urea inclusion method also has disadvantages such as incomplete separation of unsaturated fatty acid components, low yield, and low purity of a single polyunsaturated fatty acid. Silver ion complexation requires the use of a large amount of expensive silver nitrate. Not only is the production cost relatively high, but also it is difficult to recover silver nitrate, which will cause serious pollution. If the operation is not properly controlled, silver nitrate may enter the product.

因此,如何找出一種可從亞麻籽油中純化出高純度亞麻酸的方法,是目前研究人員急欲解決的問題。Therefore, how to find a method to purify high-purity linolenic acid from linseed oil is a problem that researchers are anxious to solve at present.

本發明提供一種純化不飽和脂肪酸的方法,可有效地分離出高純度的包含亞油酸(linoleic acid,LA)以及亞麻酸(linolenic acid,LNA)的不飽和脂肪酸。The invention provides a method for purifying unsaturated fatty acids, which can effectively isolate high-purity unsaturated fatty acids including linoleic acid (LA) and linolenic acid (LNA).

本發明提供一種純化亞麻酸的方法,可有效地分離出高純度的亞麻酸。The invention provides a method for purifying linolenic acid, which can effectively isolate high-purity linolenic acid.

本發明的實施例提供一種純化不飽和脂肪酸的方法。所述方法包括以下步驟。首先,提供乙酯化亞麻籽油。接著,以模擬移動床層析法將所述乙酯化亞麻籽油中的不飽和脂肪酸分離開來,其中所分離的所述不飽和脂肪酸包括亞麻酸以及亞油酸,其中所述模擬移動床層析法包含:(i)提供模擬移動床,所述模擬移動床依序包括第一區段、第二區段以及第三區段,其中所述模擬移動床是由移動相及固定相所組成,所述固定相顆粒內部是具有孔隙,所述移動相對於所述模擬移動床中是朝同一方向從沖滌端入口流經所述第一區段、所述第二區段以及所述第三區段之間,所述固定相是相對於所述移動相朝反方向模擬移動,所述移動相為包含超臨界二氧化碳與純乙醇的沖滌劑;(ii)將所述乙酯化亞麻籽油從進料入口注入所述模擬移動床的所述第二區段與所述第三區段之間,並使所述不飽和脂肪酸隨所述固定相移動至所述第一區段與所述第二區段之間的萃出端並使所述乙酯化亞麻籽油中的其它混合物隨所述移動相移動至所述第三區段的萃餘端,以分離所述不飽和脂肪酸。An embodiment of the present invention provides a method for purifying unsaturated fatty acids. The method includes the following steps. First, an ethylated linseed oil is provided. Next, the unsaturated fatty acids in the ethylated linseed oil are separated by simulated moving bed chromatography, wherein the separated unsaturated fatty acids include linolenic acid and linoleic acid, wherein the simulated moving bed The chromatography method includes: (i) providing a simulated moving bed, which sequentially includes a first section, a second section, and a third section, wherein the simulated moving bed is composed of a mobile phase and a stationary phase; Composition, the stationary phase particles have pores inside, and the movement relative to the simulated moving bed flows in the same direction from the inlet of the washing end through the first section, the second section, and the Between the third section, the stationary phase is simulated to move in the opposite direction relative to the mobile phase, and the mobile phase is a solvent containing supercritical carbon dioxide and pure ethanol; (ii) the ethylation Linseed oil is injected from the feed inlet between the second section and the third section of the simulated moving bed, and the unsaturated fatty acid moves with the stationary phase to the first section And the extraction end between the second section and Other said mixture of ethyl linseed oil with the movement of said raffinate phase moves to the end of the third section to separate the unsaturated fatty acid.

在本發明的一實施例中,以沖滌劑的總量計,純乙醇的含量例如是1wt%~8wt%。In an embodiment of the present invention, based on the total amount of the detergent, the content of pure ethanol is, for example, 1 wt% to 8 wt%.

在本發明的一實施例中,上述的固定相例如是無規二氧化矽。In an embodiment of the present invention, the stationary phase is, for example, random silicon dioxide.

在本發明的一實施例中,上述的第一區段、第二區段以及第三區段各自包含2根管柱,且每根管柱內填充固定相。In an embodiment of the present invention, each of the first section, the second section, and the third section includes two columns, and each of the columns is filled with a stationary phase.

在本發明的一實施例中,上述的模擬移動床使用的分離條件為:二氧化碳流速在沖滌端入口為26.5 公斤/小時、在進料入口為1.5 公斤/小時、在萃出端為11.19 公斤/小時以及在萃餘端為16.81 公斤/小時,且純乙醇流速在所述沖滌端入口為29.39 毫升/分鐘、在進料入口為1.65 毫升/分鐘、在萃出端為12.44毫升/分鐘以及在萃餘端為18.60 毫升/分鐘,且模擬移動床的切換時間為3分鐘35秒至3分鐘48秒。In one embodiment of the present invention, the separation conditions used in the above-mentioned simulated moving bed are: the carbon dioxide flow rate is 26.5 kg / hour at the inlet of the scrubbing end, 1.5 kg / hour at the inlet of the feed, and 11.19 kg at the extraction end Per hour and 16.81 kg / hour at the extraction end, and the flow rate of pure ethanol at the inlet of the rinse end is 29.39 ml / min, at the feed inlet is 1.65 ml / min, at the extraction end is 12.44 ml / min, and It is 18.60 ml / min at the raffinate end, and the switching time of the simulated moving bed is 3 minutes 35 seconds to 3 minutes 48 seconds.

在本發明的一實施例中,上述的模擬移動床使用的分離條件為:二氧化碳流速在沖滌端入口為26.5 公斤/小時、在進料入口為1.5 公斤/小時、在萃出端為11.78 公斤/小時以及在萃餘端為16.22 公斤/小時,且純乙醇流速在所述沖滌端入口為29.39 毫升/分鐘、在進料入口為1.65 毫升/分鐘、在萃出端為13.10毫升/分鐘以及在萃餘端為17.94 毫升/分鐘,且模擬移動床的切換時間為3分鐘50秒至3分鐘53秒。In an embodiment of the present invention, the separation conditions used in the above-mentioned simulated moving bed are: the carbon dioxide flow rate is 26.5 kg / hour at the inlet of the scrubbing end, 1.5 kg / hour at the inlet of the feed, and 11.78 kg at the extraction end Per hour and 16.22 kg / hr at the extraction end, and the flow rate of pure ethanol at the inlet of the scrubbing end is 29.39 ml / min, at the feed inlet is 1.65 ml / min, at the extraction end is 13.10 ml / min, and It was 17.94 ml / min at the raffinate end, and the switching time of the simulated moving bed was 3 minutes and 50 seconds to 3 minutes and 53 seconds.

在本發明的一實施例中,上述的模擬移動床使用的分離條件為:二氧化碳流速在沖滌端入口為26.5 公斤/小時、在進料入口為0.75 公斤/小時、在萃出端為11.78 公斤/小時以及在萃餘端為15.47 公斤/小時,且純乙醇流速在所述沖滌端入口為29.39 毫升/分鐘、在進料入口為0.825 毫升/分鐘、在萃出端為13.10毫升/分鐘以及在萃餘端為17.12 毫升/分鐘,且模擬移動床的切換時間為4分鐘至4分鐘10秒。In an embodiment of the present invention, the separation conditions used in the above-mentioned simulated moving bed are: the carbon dioxide flow rate is 26.5 kg / hour at the inlet of the scrubbing end, 0.75 kg / hour at the inlet of the feed, and 11.78 kg at the extraction end Per hour and 15.47 kg / hour at the extract end, and the flow rate of pure ethanol at the inlet of the rinse end is 29.39 ml / min, at the feed inlet is 0.825 ml / min, at the extraction end is 13.10 ml / min, and 17.12 ml / min at the raffinate end, and the switching time of the simulated moving bed is 4 minutes to 4 minutes and 10 seconds.

本發明的實施例提供一種純化亞麻酸酸的方法。所述方法包括以下步驟。首先,提供乙酯化亞麻籽油。接著,進行第一模擬移動床層析製程,以將乙酯化亞麻籽油中的不飽和脂肪酸分離開來,其中所分離的不飽和脂肪酸包括亞麻酸以及亞油酸,第一模擬移動床層析製程包含:(i)提供第一模擬移動床,第一模擬移動床依序包括第一區段、第二區段以及第三區段,其中第一模擬移動床是由第一移動相及第一固定相所組成,第一固定相顆粒內部是具有孔隙,第一移動相對於模擬移動床中是朝同一方向從第一沖滌端入口流經第一區段、第二區段以及第三區段之間,第一固定相是相對於第一移動相朝反方向模擬移動,其中第一移動相為包含超臨界二氧化碳與純乙醇的沖滌劑;(ii)將乙酯化亞麻籽油從第一進料入口注入模擬移動床的第二區段與第三區段之間,並使不飽和脂肪酸隨第一固定相移動至第一區段與第二區段之間的第一萃出端並使乙酯化亞麻籽油中的其它混合物隨第一移動相移動至第三區段的第一萃餘端,以分離不飽和脂肪酸;以及進行第二模擬移動床層析製程,以將所分離的不飽和脂肪酸中的亞麻酸分離開來,其中第二模擬移動床層析製程包括:(iii)提供第二模擬移動床,第二模擬移動床依序包括第四區段、第五區段以及第六區段,其中第二模擬移動床是由第二移動相及第二固定相所組成,第二固定相顆粒內部是具有孔隙,第二移動相對於第二模擬移動床中是朝同一方向從第二沖滌端入口流經第四區段、第五區段以及第六區段之間,第二固定相是相對於第二移動相朝反方向模擬移動,其中第二固定相為反相填料;(iv)將不飽和脂肪酸從第二進料入口注入第二模擬移動床的第五區段與第六區段之間,並使不飽和脂肪酸中的亞麻酸隨第二移動相移動至第六區段的第二萃餘端,並使不飽和脂肪酸中的其他混合物隨第二固定相移動至第四區段與第五區段之間的第二萃出端,以分離亞麻酸以及亞油酸。An embodiment of the present invention provides a method for purifying linolenic acid. The method includes the following steps. First, an ethylated linseed oil is provided. Next, a first simulated moving bed chromatography process is performed to separate the unsaturated fatty acids in the ethylated linseed oil. The separated unsaturated fatty acids include linolenic acid and linoleic acid. The first simulated moving bed The analysis process includes: (i) providing a first simulated moving bed, the first simulated moving bed includes a first section, a second section, and a third section in sequence, wherein the first simulated moving bed is composed of the first mobile phase and It consists of a first stationary phase, and the first stationary phase particles have pores inside. The first movement is in the same direction as the simulated moving bed, and flows from the first washing end inlet through the first section, the second section, and the first section. Between the three sections, the first stationary phase is simulated in the opposite direction relative to the first mobile phase, where the first mobile phase is a detergent containing supercritical carbon dioxide and pure ethanol; (ii) ethylated flaxseed Oil is injected from the first feed inlet between the second section and the third section of the simulated moving bed, and the unsaturated fatty acid moves with the first stationary phase to the first section between the first section and the second section. Extraction and ethylation of linseed oil The other mixtures of the mobile phase are moved to the first raffinate end of the third section with the first mobile phase to separate the unsaturated fatty acids; and a second simulated moving bed chromatography process is performed to separate the linolenic acid in the separated unsaturated fatty acids The second simulated moving bed chromatography process includes: (iii) providing a second simulated moving bed, the second simulated moving bed includes a fourth section, a fifth section, and a sixth section in sequence, in which the first The two simulated moving beds are composed of a second mobile phase and a second stationary phase. The particles of the second stationary phase have pores inside, and the second movement is in the same direction as the second simulated moving bed from the entrance of the second scouring end. Flowing between the fourth, fifth, and sixth sections, the second stationary phase is simulated to move in the opposite direction relative to the second mobile phase, where the second stationary phase is a reversed-phase filler; (iv) The unsaturated fatty acid is injected from the second feed inlet between the fifth section and the sixth section of the second simulated moving bed, and the linolenic acid in the unsaturated fatty acid moves with the second mobile phase to the first section of the sixth section. Second extraction and desaturation The other mixture in the fatty acid moves with the second stationary phase to the second extraction end between the fourth section and the fifth section to separate linolenic acid and linoleic acid.

在本發明的一實施例中,以沖滌劑的總量計,純乙醇的含量例如是1wt%~8wt%。In an embodiment of the present invention, based on the total amount of the detergent, the content of pure ethanol is, for example, 1 wt% to 8 wt%.

在本發明的一實施例中,上述的固定相例如是無規二氧化矽。In an embodiment of the present invention, the stationary phase is, for example, random silicon dioxide.

在本發明的一實施例中,上述的第一區段、第二區段以及第三區段各自包含2根管柱,且每根管柱內填充固定相。In an embodiment of the present invention, each of the first section, the second section, and the third section includes two columns, and each of the columns is filled with a stationary phase.

在本發明的一實施例中,上述的模擬移動床使用的分離條件為:二氧化碳流速在沖滌端入口為26.5 公斤/小時、在進料入口為1.5 公斤/小時、在萃出端為11.19 公斤/小時以及在萃餘端為16.81 公斤/小時,且純乙醇流速在所述沖滌端入口為29.39 毫升/分鐘、在進料入口為1.65 毫升/分鐘、在萃出端為12.44毫升/分鐘以及在萃餘端為18.60 毫升/分鐘,且模擬移動床的切換時間為3分鐘35秒至3分鐘48秒。In one embodiment of the present invention, the separation conditions used in the above-mentioned simulated moving bed are: the carbon dioxide flow rate is 26.5 kg / hour at the inlet of the scrubbing end, 1.5 kg / hour at the inlet of the feed, and 11.19 kg at the extraction end Per hour and 16.81 kg / hour at the extraction end, and the flow rate of pure ethanol at the inlet of the rinse end is 29.39 ml / min, at the feed inlet is 1.65 ml / min, at the extraction end is 12.44 ml / min, and It is 18.60 ml / min at the raffinate end, and the switching time of the simulated moving bed is 3 minutes 35 seconds to 3 minutes 48 seconds.

在本發明的一實施例中,上述的模擬移動床使用的分離條件為:二氧化碳流速在沖滌端入口為26.5 公斤/小時、在進料入口為1.5 公斤/小時、在萃出端為11.78 公斤/小時以及在萃餘端為16.22 公斤/小時,且純乙醇流速在所述沖滌端入口為29.39 毫升/分鐘、在進料入口為1.65 毫升/分鐘、在萃出端為13.10毫升/分鐘以及在萃餘端為17.94 毫升/分鐘,且模擬移動床的切換時間為3分鐘50秒至3分鐘53秒。In an embodiment of the present invention, the separation conditions used in the above-mentioned simulated moving bed are: the carbon dioxide flow rate is 26.5 kg / hour at the inlet of the scrubbing end, 1.5 kg / hour at the inlet of the feed, and 11.78 kg at the extraction end Per hour and 16.22 kg / hr at the extraction end, and the flow rate of pure ethanol at the inlet of the scrubbing end is 29.39 ml / min, at the feed inlet is 1.65 ml / min, at the extraction end is 13.10 ml / min, and It was 17.94 ml / min at the raffinate end, and the switching time of the simulated moving bed was 3 minutes and 50 seconds to 3 minutes and 53 seconds.

在本發明的一實施例中,上述的模擬移動床使用的分離條件為:二氧化碳流速在沖滌端入口為26.5 公斤/小時、在進料入口為0.75 公斤/小時、在萃出端為11.78 公斤/小時以及在萃餘端為15.47 公斤/小時,且純乙醇流速在所述沖滌端入口為29.39 毫升/分鐘、在進料入口為0.825 毫升/分鐘、在萃出端為13.10毫升/分鐘以及在萃餘端為17.12 毫升/分鐘,且模擬移動床的切換時間為4分鐘至4分鐘10秒。In an embodiment of the present invention, the separation conditions used in the above-mentioned simulated moving bed are: the carbon dioxide flow rate is 26.5 kg / hour at the inlet of the scrubbing end, 0.75 kg / hour at the inlet of the feed, and 11.78 kg at the extraction end Per hour and 15.47 kg / hour at the extract end, and the flow rate of pure ethanol at the inlet of the rinse end is 29.39 ml / min, at the feed inlet is 0.825 ml / min, at the extraction end is 13.10 ml / min, and 17.12 ml / min at the raffinate end, and the switching time of the simulated moving bed is 4 minutes to 4 minutes and 10 seconds.

在本發明的一實施例中,上述的反相填料例如是ODS改質的二氧化矽。In one embodiment of the present invention, the inverse filler is, for example, ODS modified silicon dioxide.

在本發明的一實施例中,上述的第二移動相例如是純乙醇或95%乙醇溶液。In an embodiment of the present invention, the second mobile phase is, for example, pure ethanol or a 95% ethanol solution.

在本發明的一實施例中,上述的第四區段、第五區段以及第六區段各自包含2根管柱,且每根管柱內填充第二固定相。In an embodiment of the present invention, each of the fourth section, the fifth section, and the sixth section includes two tubular columns, and each of the tubular columns is filled with a second stationary phase.

在本發明的一實施例中,上述的第二模擬移動床使用的分離條件為:第二移動相為95%乙醇溶液,且95%乙醇溶液流速在第二沖滌端入口為0.96 毫升/分鐘、在第二進料入口為0.01 毫升/分鐘、在第二萃出端為0.36毫升/分鐘以及在第二萃餘端為0.61 毫升/分鐘,且第二模擬移動床的切換時間為6分鐘至6分鐘30秒。In an embodiment of the present invention, the separation conditions used in the second simulated moving bed are as follows: the second mobile phase is a 95% ethanol solution, and the flow rate of the 95% ethanol solution is 0.96 ml / min at the inlet of the second washing end. , 0.01 ml / min at the second feed inlet, 0.36 ml / min at the second extraction end, and 0.61 ml / min at the second extraction end, and the switching time of the second simulated moving bed is 6 minutes to 6 minutes and 30 seconds.

在本發明的一實施例中,上述的第二模擬移動床使用的分離條件為:第二移動相為純乙醇,且純乙醇流速在第二沖滌端入口為0.96 毫升/分鐘、在第二進料入口為0.016 毫升/分鐘、在第二萃出端為0.36毫升/分鐘以及在第二萃餘端為0.616 毫升/分鐘,且第二模擬移動床的切換時間為4分鐘20秒至4分鐘30秒。In an embodiment of the present invention, the separation conditions used in the second simulated moving bed are as follows: the second mobile phase is pure ethanol, and the flow rate of pure ethanol is 0.96 ml / min at the inlet of the second washing end; The feed inlet is 0.016 ml / min, 0.36 ml / min at the second extraction end and 0.616 ml / min at the second extraction end, and the switching time of the second simulated moving bed is 4 minutes 20 seconds to 4 minutes 30 seconds.

基於上述,本發明的不飽和脂肪酸的純化方法透過應用模擬移動床層析法來從亞麻籽油中分離包含亞麻酸以及亞油酸的不飽和脂肪酸,不僅可有效提升分離效率,更可獲得高純度的包含亞麻酸以及亞油酸的不飽和脂肪酸。此外,本發明的亞麻酸的純化方法可藉由進行二次模擬移動床層析製程而進一步從亞麻籽油中純化出亞麻酸,同樣地,不僅可有效提升分離效率,更可獲得高純度的亞麻酸。Based on the above, the method for purifying unsaturated fatty acids of the present invention uses simulated moving bed chromatography to separate unsaturated fatty acids containing linolenic acid and linoleic acid from linseed oil, which can not only effectively improve the separation efficiency, but also can obtain high Unsaturated fatty acids containing linolenic acid and linoleic acid in purity. In addition, the linolenic acid purification method of the present invention can further purify linolenic acid from linseed oil by performing a second simulated moving bed chromatography process. Similarly, not only can the separation efficiency be effectively improved, but high purity Linolenic acid.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

本發明實施例的純化亞麻酸的方法,是可用以將亞麻酸以及其它混合物從亞麻籽油中分離純化出來的方法。藉此,能夠得到高純度的亞麻酸。The method for purifying linolenic acid according to the embodiment of the present invention is a method that can be used to separate and purify linolenic acid and other mixtures from linseed oil. Thereby, high-purity linolenic acid can be obtained.

以下列舉實施例以說明本發明純化方法之細節或條件,並且下述實施例主要分成兩大部分。第一部分是關於亞麻籽油中不飽和脂肪酸的純化,更具體來說,是關於亞麻籽油中包含亞麻酸以及亞油酸的不飽和脂肪酸的純化。純化不飽和脂肪酸的方法包括:提供乙酯化亞麻籽油;以及以模擬移動床層析法將乙酯化亞麻籽油中的不飽和脂肪酸分離開來,其中所分離的不飽和脂肪酸包括亞麻酸以及亞油酸。The following examples are listed to illustrate the details or conditions of the purification method of the present invention, and the following examples are mainly divided into two parts. The first part is the purification of unsaturated fatty acids in linseed oil, and more specifically, the purification of unsaturated fatty acids containing linolenic acid and linoleic acid in linseed oil. Methods for purifying unsaturated fatty acids include: providing ethylated linseed oil; and separating unsaturated fatty acids in ethylated linseed oil by simulated moving bed chromatography, wherein the separated unsaturated fatty acids include linolenic acid As well as linoleic acid.

第二部分是關於亞麻籽油中亞麻酸的純化,更具體來說,是先將包含亞麻酸以及亞油酸的不飽脂肪酸從亞麻籽油中分離,再將亞麻酸從不飽脂肪酸中分離。純化亞麻酸的方法包括:提供乙酯化亞麻籽油;進行第一模擬移動床層析製程,以將乙酯化亞麻籽油中的不飽和脂肪酸分離開來,其中所分離的不飽和脂肪酸包括亞麻酸以及亞油酸;以及進行第二模擬移動床層析製程,以將所分離的不飽和脂肪酸中的亞麻酸以及亞油酸分離開來。The second part is the purification of linolenic acid from linseed oil. More specifically, the unsaturated fatty acids containing linolenic acid and linoleic acid are separated from linseed oil, and then the linolenic acid is separated from unsaturated fatty acids. . A method for purifying linolenic acid includes: providing an ethylated linseed oil; performing a first simulated moving bed chromatography process to separate unsaturated fatty acids in the ethylated linseed oil, wherein the separated unsaturated fatty acids include Linolenic acid and linoleic acid; and a second simulated moving bed chromatography process is performed to separate linolenic acid and linoleic acid from the separated unsaturated fatty acids.

以下的實施例非用以限制本發明保護範圍。所繪圖式係為示意圖僅為說明方便而繪製,並非代表限制其實際之方法、條件或裝置等。 實施例1 [ 不飽和脂肪酸的純化 ] The following examples are not intended to limit the protection scope of the present invention. The drawing formulas are schematic diagrams and are for convenience of illustration only, and do not represent methods, conditions, or devices that limit their actuality. Example 1 [ Purification of unsaturated fatty acids ]

在本實施例中,可使用如圖1所示的超臨界流體模擬移動床(Supercritical Fluid-Simulated Moving Bed,SF-SMB)設備來進行模擬移動床層析法,以將亞麻籽油中的不飽和脂肪酸進行純化。圖1是依照本發明實施例的一種超臨界流體模擬移動床設備的管線流程圖。請參照圖1,模擬移動床100包括第一區段、第二區段與第三區段。在本實施例中,第一區段包含2根管柱C1與C2,第二區段包含3根管柱C3、C4與C5,且第三區段包含3根管柱C6、C7與C8,上述8根管柱串聯,但本發明不限於此。在另一實施例中,第一區段包含2根管柱,第二區段包含2根管柱,且第三區段包含2根管柱,上述6根管柱串聯。In this embodiment, a Supercritical Fluid-Simulated Moving Bed (SF-SMB) device as shown in FIG. 1 may be used to perform a simulated moving bed chromatography method to separate the Saturated fatty acids are purified. FIG. 1 is a pipeline flowchart of a supercritical fluid simulated moving bed device according to an embodiment of the present invention. Referring to FIG. 1, the simulated moving bed 100 includes a first section, a second section, and a third section. In this embodiment, the first section includes two columns C1 and C2, the second section includes three columns C3, C4, and C5, and the third section includes three columns C6, C7, and C8. The above eight pipe strings are connected in series, but the present invention is not limited thereto. In another embodiment, the first section includes two pipe strings, the second section includes two pipe strings, and the third section includes two pipe strings, and the six pipe strings are connected in series.

模擬移動床100是由移動相(未繪示)及固定相(未繪示)所組成。移動相是相對於模擬移動床100中是朝同一方向從沖滌端入口D1流經第一區段、第二區段以及第三區段之間,而固定相是相對於移動相朝反方向模擬移動。The simulated moving bed 100 is composed of a mobile phase (not shown) and a stationary phase (not shown). The mobile phase is relative to the simulated mobile bed 100 flowing in the same direction from the inlet D1 of the washing end through the first section, the second section and the third section, and the stationary phase is opposite to the mobile phase. Simulate movement.

每根管柱內填充有顆粒內部具有孔隙的固定相。在本實施例中,固定相例如是無規二氧化矽(irregular silica)。但本發明不限於此,固定相可以為習知常用的固定相材料。在本實施例中,移動相(或沖滌劑)例如是包含超臨界二氧化碳與輔助溶劑的沖滌劑。在本實施例中,輔助溶劑為純乙醇(無水乙醇)。包含超臨界二氧化碳與輔助溶劑的沖滌劑可藉由二氧化碳液泵產生高壓二氧化碳並與輔助溶劑混合後而形成。Each column is filled with a stationary phase with pores inside the particles. In this embodiment, the stationary phase is, for example, irregular silica. However, the present invention is not limited thereto, and the stationary phase may be a conventional stationary phase material. In this embodiment, the mobile phase (or washing agent) is, for example, a washing agent containing supercritical carbon dioxide and an auxiliary solvent. In this embodiment, the auxiliary solvent is pure ethanol (anhydrous ethanol). A detergent containing supercritical carbon dioxide and an auxiliary solvent can be formed by generating high-pressure carbon dioxide with a carbon dioxide liquid pump and mixing with the auxiliary solvent.

再次參照圖1,模擬移動床100包括兩個入料口,分別為樣品進料入口F1(即管柱C6入口位置)與沖滌端入口D1(即管柱C1入口位置),且包括兩個出料口,分別為萃出端E1(即管柱C2出口位置)與萃餘端R1(即管柱C8出口位置)。如果讓所有入料口以及出料口的位置在經過一段時間後,同時轉換至下一支管柱,則可模擬固定相移動(即向圖1的下方移動)。舉例來說,進料入口由原來在管柱C6入口位置切換至管柱C7入口位置,其餘的入料口以及出料口亦同時往下一支管柱變換,在此同時,沖滌劑與進料則仍然一直連續不斷地往萃餘端流動。如果不斷地連續切換進料口以及出料口的位置,則會形成讓固體連續向下流動並一再循環,因此可達成固體與超臨界流體連續逆向流動接觸的過程。Referring again to FIG. 1, the simulated moving bed 100 includes two feeding inlets, namely the sample feeding inlet F1 (that is, the inlet position of the column C6) and the flushing end inlet D1 (that is, the inlet position of the column C1), and includes two The outlets are respectively the extraction end E1 (the exit position of the column C2) and the extraction end R1 (the exit position of the column C8). If the positions of all the inlets and outlets are switched to the next column at the same time after a period of time, the stationary phase movement can be simulated (that is, move to the bottom of Figure 1). For example, the feed inlet is switched from the original position at the inlet of pipe column C6 to the inlet position of pipe column C7, and the other inlets and outlets are also changed to the next pipe column at the same time. The material still flows continuously to the extractive end. If the positions of the inlet and outlet are continuously switched continuously, a continuous downward flow of solids and a recirculation will be formed, so a process of continuous reverse flow contact between solids and supercritical fluid can be achieved.

由於本發明實施例是使用超臨界二氧化碳作為沖滌劑(移動相),因此需要設置一個高壓的二氧化碳供應源110。模擬移動床100是利用二氧化碳液泵115從二氧化碳供應源110產生高壓二氧化碳,並暫存於高壓緩衝槽120之中。接著,再以前端壓力調壓閥122或後端壓力調壓閥123、質量流量計並搭配控制閥(未繪示)來控制進料的二氧化碳流速。Since the embodiment of the present invention uses supercritical carbon dioxide as a cleaning agent (mobile phase), a high-pressure carbon dioxide supply source 110 needs to be provided. The simulated moving bed 100 uses a carbon dioxide liquid pump 115 to generate high-pressure carbon dioxide from a carbon dioxide supply source 110 and temporarily stores the carbon dioxide in a high-pressure buffer tank 120. Next, the front-end pressure regulating valve 122 or the rear-end pressure regulating valve 123, a mass flow meter, and a control valve (not shown) are used to control the carbon dioxide flow rate of the feed.

除了二氧化碳質量流量的控制以外,輔助溶劑的輸入則從輸入口D2藉由高效能液相層析液泵125a加以控制,而樣品的輸入則從輸入口F2藉由高效能液相層析液泵125b加以控制。詳細來說,待樣品的進料溶解於輔助溶劑中後,其是利用高效能液相層析液泵125b從輸入口F2輸入與二氧化碳混合後再進入模擬移動床100中。相同地,做為移動相,包含超臨界二氧化碳以及輔助溶劑的沖滌液是藉由二氧化碳液泵115產生的高壓二氧化碳與從輸入口D2輸入的輔助溶劑混合後而形成。此外,上述的高壓二氧化碳與輔助溶劑混合的步驟可藉由混合器130來達成。In addition to the control of the mass flow of carbon dioxide, the input of auxiliary solvent is controlled from the input port D2 by the high-performance liquid chromatography pump 125a, and the input of the sample is input from the input port F2 by the high-performance liquid chromatography pump. 125b to control. In detail, after the sample feed is dissolved in the auxiliary solvent, it is input into the simulated moving bed 100 by mixing with carbon dioxide from the input port F2 using the high-performance liquid chromatography pump 125b. Similarly, as a mobile phase, a washing liquid containing supercritical carbon dioxide and an auxiliary solvent is formed by mixing high-pressure carbon dioxide generated by a carbon dioxide liquid pump 115 with an auxiliary solvent input from an input port D2. In addition, the above-mentioned step of mixing the high-pressure carbon dioxide with the auxiliary solvent can be achieved by the mixer 130.

超臨界流體在連續切換進料口以及出料口位置的同時,雖然超臨界流體不斷向上流動(即向圖1的上方移動),但是並沒有直接循環回到管柱C1位置。傳統以液體為流動相的模擬移動床裝置,經常會增設第四區段,用以再生流動相進而直接循環回流使用。在本實施例中,使用降壓分離方式而輕易達成超臨界流體的再生,因此從萃餘端R1以及萃出端E1流出的超臨界流體,經過分離槽145a、145b的簡單降壓後將二氧化碳汽化,便可將二氧化碳氣體經過二次冷卻沉澱出殘留的輔助溶劑與溶質後達成二氧化碳再生之目的。如此便可以減少第四區段的管柱使用、降低設備的成本以及填料需求的成本。While the supercritical fluid continuously switched the positions of the inlet and the outlet, although the supercritical fluid continued to flow upward (that is, move upwards in FIG. 1), it did not directly circulate back to the position of the column C1. The traditional simulated moving bed device using liquid as the mobile phase often adds a fourth section to regenerate the mobile phase and then directly circulate it back to use. In this embodiment, the regeneration of the supercritical fluid is easily achieved by using a pressure reduction separation method. Therefore, the supercritical fluid flowing from the raffinate end R1 and the extraction end E1 is subjected to a simple pressure reduction of the carbon dioxide after the separation tanks 145a and 145b After vaporization, the carbon dioxide gas can be re-cooled to precipitate the residual auxiliary solvent and solute, and then the purpose of carbon dioxide regeneration can be achieved. This can reduce the use of string in the fourth section, reduce the cost of equipment and the cost of packing requirements.

由分離槽155回收的二氧化碳氣體經過冷凝回收以後,暫存於工作儲槽160,再經預冷後以二氧化碳液泵115加壓暫存於高壓緩衝槽120中,並以後端壓力調壓閥123控制其壓力。高壓緩衝槽120內的二氧化碳經過適度的調壓與計量後,分別由管柱C1與管柱C6位置注入到系統之中,注入之前並與定量輸入的輔助溶劑或是進料溶液混合。經過模擬移動床的分離作用之後,兩個出料則由萃出端E1與萃餘端R1流出系統外。萃餘端R1流出的超臨界流體先經過後端壓力調壓閥123後在分離槽145b中分離出輔助溶劑與溶質,然後回收二氧化碳氣體。在萃餘端R1出口的後端壓力調壓閥123也負責控制著整個SF-SMB的操作壓力。萃出端E1流出的超臨界流體則藉由一個質量流量控制閥控制其流出的流速,然後進入分離槽145a分離出輔助溶劑與溶質。從萃出端E1與萃餘端R1分離槽流出的二氧化碳氣體合併後再一起循環回收。The carbon dioxide gas recovered from the separation tank 155 is temporarily stored in the working storage tank 160 after being condensed and recovered, and then pre-cooled and pressurized by the carbon dioxide liquid pump 115 and temporarily stored in the high-pressure buffer tank 120, and the rear pressure regulating valve 123 is used. Control its pressure. After moderate pressure adjustment and measurement, the carbon dioxide in the high-pressure buffer tank 120 is injected into the system from the positions of the pipe column C1 and the pipe column C6, respectively, and mixed with a quantitative input auxiliary solvent or a feed solution before injection. After the separation of the simulated moving bed, the two materials exit the system from the extraction end E1 and the extraction residue R1. The supercritical fluid flowing out of the raffinate end R1 first passes through the rear-end pressure regulating valve 123, separates the auxiliary solvent and the solute in the separation tank 145b, and then recovers the carbon dioxide gas. The rear pressure regulator 123 at the R1 outlet of the raffinate end is also responsible for controlling the operating pressure of the entire SF-SMB. The supercritical fluid flowing out of the extraction end E1 is controlled by a mass flow control valve to flow out, and then enters the separation tank 145a to separate the auxiliary solvent and the solute. The carbon dioxide gas flowing out of the extraction tank E1 and the extraction tank R1 separation tank is combined and recycled together.

接著,以下將對利用模擬移動床層析法將不飽和脂肪酸從亞麻籽油中分離開來的方式進行說明。在提供如圖1所示的模擬移動床100之後,是將乙酯化亞麻籽油從進料入口F1注入模擬移動床100的第二區段以及第三區段之間,並且使不飽和脂肪酸隨固定相移動至第一區段與第二區段之間的萃出端E1並使乙酯化亞麻籽油中的其它混合物(如飽和脂肪酸)隨移動相移動至第三區段的萃餘端R1。為了達到上述的分離結果,移動相選擇包含超臨界二氧化碳與純乙醇的沖滌劑。在本實施例中,以沖滌劑的總量計,純乙醇的含量為1wt%~8wt%。在一實施例中,以沖滌劑的總量計,純乙醇的含量為5%。 [ 分析方法建立 ] Next, a method for separating unsaturated fatty acids from linseed oil by using simulated moving bed chromatography will be described below. After providing the simulated moving bed 100 as shown in FIG. 1, the ethylated linseed oil is injected from the feed inlet F1 between the second section and the third section of the simulated moving bed 100 and unsaturated fatty acids are made. Move with the stationary phase to the extraction end E1 between the first section and the second section and make other mixtures (such as saturated fatty acids) in the ethylated linseed oil move with the mobile phase to the third section.端 R1. In order to achieve the above-mentioned separation results, the mobile phase selects a detergent containing supercritical carbon dioxide and pure ethanol. In this embodiment, based on the total amount of the detergent, the content of pure ethanol is 1 wt% to 8 wt%. In one embodiment, the content of pure ethanol is 5% based on the total amount of detergent. [ Analysis method establishment ]

分析方法中是使用安捷倫氣相層析質譜儀(GC/MS)(型號7890A/59770B)進行乙酯化亞麻籽油樣品(河北欣奇典公司)的成分分析,所使用的分析毛細管柱為DB-5MS (30 m L× 250 μm ID),並選用1.0毫升/分鐘氦氣作為挾帶氣體。氣相層析質譜儀的升溫條件設定如下:起始120℃並以10℃/分鐘升溫至210℃後持溫10分鐘,再以10℃/分鐘升溫至270℃持溫12分鐘,再以5℃/分鐘升溫至270℃持溫6分鐘,進樣量為1μL,採用分流30:1。 In the analysis method, an Agilent gas chromatography mass spectrometer (GC / MS) (model 7890A / 59770B) was used to analyze the composition of the ethylated linseed oil sample (Hebei Xinqidian Company). The analytical capillary column used was DB -5MS (30 m L × 250 μm ID ), and use 1.0 ml / min helium as the band gas. The temperature rising conditions of the gas chromatography mass spectrometer were set as follows: the initial temperature was 120 ° C, and the temperature was increased to 10 ° C / min to 210 ° C, and then the temperature was maintained for 10 minutes, and then the temperature was increased to 10 ° C / min to 270 ° C for 12 minutes. The temperature was raised from ℃ / min to 270 ℃ for 6 minutes, the injection volume was 1 μL, and the split was 30: 1.

圖2為乙酯化亞麻籽油樣品的氣相色譜質譜分析圖。在圖2中,內標準品IS採用500毫克/升的十五烷,其餘的脂肪酸則依據MS資料庫數據比對而得,並標示於圖2中。從GC/MS圖譜可以清楚判讀出乙酯化亞麻酸、乙酯化亞油酸、乙酯化棕櫚酸、乙酯化油酸以及乙酯化硬脂酸的波鋒位置,藉由此結果做為分析標準。Figure 2 is a gas chromatographic mass spectrometric analysis of an ethylated linseed oil sample. In FIG. 2, the internal standard IS uses pentadecane at 500 mg / L, and the remaining fatty acids are compared based on the data in the MS database and are shown in FIG. 2. From the GC / MS spectrum, the wave front positions of ethylated linolenic acid, ethylated linoleic acid, ethylated palmitic acid, ethylated oleic acid, and ethylated stearic acid can be clearly read. Based on the results, Is the analysis standard.

在本實施例中,製作了乙酯化亞麻酸以及乙酯化亞油酸的檢量線,所得到的響應因子分別為0.894及0.734,上述檢量線搭配十五碳直鏈烷作為內標準品的響應因子( m),定義如以下式1所示: (式1) 在式1中, AA is 分別為樣品及內標準品在分析圖譜中的面積, CC is 為樣品以及內標準品的濃度, VV is 為注射料液中樣品與內標準品的體積。據此,可以發現在乙酯化亞麻籽油樣品中亞油酸與亞麻酸的比例為7.90:1。根據圖2的圖譜可以看出,亞油酸與亞麻酸的分離最不容易。為了方便了解後續亞麻酸與亞油酸的分離成效,本發明將亞麻酸在亞油酸與亞麻酸兩者總和中的重量份定義為純度,而在上述亞麻籽油樣品中亞麻酸的純度為0.888。 [ 萃出端與萃餘端 的純度以及回收率計算 ] In this embodiment, calibration curves for ethylated linolenic acid and ethylated linoleic acid are prepared, and the response factors obtained are 0.894 and 0.734, respectively. The above calibration curves are combined with fifteen carbon linear alkanes as the internal standard The response factor ( m ) of the product is defined as shown in the following formula 1: (Formula 1) In Formula 1, A and A is are area of the sample and the standards in the analysis pattern of, C, and C is a concentration of the sample and the standards, V, and V is an injection feed liquid sample With the volume of the internal standard. Based on this, it was found that the ratio of linoleic acid to linolenic acid in the ethylated linseed oil sample was 7.90: 1. It can be seen from the graph of FIG. 2 that the separation of linoleic acid from linolenic acid is the easiest. In order to facilitate understanding of the subsequent separation effect of linolenic acid and linoleic acid, the present invention defines the weight part of linolenic acid in the sum of linoleic acid and linolenic acid as purity, and the purity of linolenic acid in the above-mentioned linseed oil sample is 0.888. [ Purity and Recovery of Extraction and Extraction Ends ]

在本實施例中,萃出端與萃餘端的純度以及回收率的定義分別如以下式2與式3所示。 (式2) (式3) 在式2與式3中,P代表純度,Y代表回收率,C為GC/MS圖譜回歸計算所得到的濃度,Q為乙醇流速,上標E與上標R分別代表萃出端與萃餘端,而下標18:3與下標18:2分別代表亞麻酸與亞油酸。 實驗例 1 [SF-SMB 的操作條件 ] In this embodiment, the definitions of the purity and recovery of the extraction end and the raffinate end are as shown in the following formulas 2 and 3, respectively. (Eq. 2) (Equation 3) In equations 2 and 3, P represents purity, Y represents recovery, C is concentration obtained by regression calculation of GC / MS spectrum, Q is ethanol flow rate, and superscript E and superscript R respectively represent extraction. The ends and the raffinate ends, and the subscripts 18: 3 and 18: 2 respectively represent linolenic acid and linoleic acid. Experimental Example 1 [ Operating Conditions of SF-SMB ]

在實驗例1中,乙酯化亞麻籽油原料(河北欣奇典公司)先配製成10.0克/升的乙醇溶液。接著,使用圖1所示的超臨界流體模擬移動床設備來進行模擬移動床層析法。填充管柱為80 mm的DAC管柱,所採用的填料(固定相)為無規二氧化矽(Zeoprep60,40 μm~60 μm,Zeochem),填充高度為230 mm。而移動相為包含超臨界二氧化碳與5wt%純乙醇的沖滌劑。分離的條件為:溫度固定為50℃,萃餘端出口壓力為121 bar,而沖滌劑入口壓力130 bar。各入口與出口端的二氧化碳流速設定如下:沖滌端入口為26.5 公斤/小時;進料入口為1.5 公斤/小時;萃出端為11.19 公斤/小時(利用質量守恆所推算的數值);萃餘端為16.81 公斤/小時(利用質量守恆所推算的數值)。入料口的純乙醇流速設定如下:沖滌端入口為29.39 毫升/分鐘;進料入口為1.65 毫升/分鐘;萃出端為12.44毫升/分鐘(利用質量守恆所推算的數值);萃餘端的乙醇流速為18.60 毫升/分鐘(利用質量守恆所推算的數值)。此外,在實驗例1中,在固定各出入口的流速條件下,改變SF-SMB設備上閥門的切換時間(3分鐘35秒、3分鐘38秒與3分鐘48秒)間距,然後觀察二個出料口所收集樣品的組成變化。In Experimental Example 1, an ethylated linseed oil raw material (Hebei Xinqidian Company) was first prepared into a 10.0 g / L ethanol solution. Next, a simulated moving bed tomography method was performed using the supercritical fluid simulated moving bed apparatus shown in FIG. 1. The packed column is an 80 mm DAC column. The packing (stationary phase) used is random silica (Zeoprep60, 40 μm ~ 60 μm, Zeochem), and the packing height is 230 mm. The mobile phase is a detergent containing supercritical carbon dioxide and 5 wt% pure ethanol. The separation conditions are: the temperature is fixed at 50 ° C, the pressure at the outlet of the raffinate end is 121 bar, and the pressure at the inlet of the rinse agent is 130 bar. The flow rate of carbon dioxide at each inlet and outlet is set as follows: the inlet of the scrubbing end is 26.5 kg / hr; the inlet of the feed is 1.5 kg / hr; the extraction end is 11.19 kg / hr (the value calculated using the conservation of mass); the residual end It is 16.81 kg / hour (value inferred from conservation of mass). The flow rate of pure ethanol at the inlet is set as follows: the inlet of the scrubbing end is 29.39 ml / min; the inlet of the feed is 1.65 ml / min; the extraction end is 12.44 ml / min (the value calculated by using mass conservation); The ethanol flow rate was 18.60 ml / min (values extrapolated using mass conservation). In addition, in Experimental Example 1, the valve switching time (3 minutes 35 seconds, 3 minutes 38 seconds, and 3 minutes 48 seconds) on the SF-SMB device was changed at a fixed flow rate at each inlet and outlet, and then the two outlets were observed. Changes in the composition of the sample collected at the sprue.

圖3為本發明實驗例利用模擬移動床層析法從亞麻籽油中分離純化出不飽和脂肪酸的結果分析圖。由圖3的結果可以看出,亞麻油與亞油酸(即不飽和脂肪酸)為強滯留性成分,棕櫚酸與硬脂酸(即飽和脂肪酸)為弱滯留性成分。在切換時間為3分鐘35秒以及3分鐘38秒時,可以有效地將不飽和脂肪酸與飽和脂肪酸分離,而且回收率接近100%。FIG. 3 is an analysis diagram of the results of separating and purifying unsaturated fatty acids from linseed oil by using simulated moving bed chromatography in an experimental example of the present invention. It can be seen from the results in FIG. 3 that linseed oil and linoleic acid (that is, unsaturated fatty acids) are strongly retentive components, and palmitic acid and stearic acid (that is, saturated fatty acids) are weakly retentive components. When the switching time is 3 minutes 35 seconds and 3 minutes 38 seconds, the unsaturated fatty acids can be effectively separated from the saturated fatty acids, and the recovery rate is close to 100%.

由上述可知,本實施例的模擬移動床使用包含超臨界二氧化碳與純乙醇的沖滌劑作為移動相,因此可將亞麻籽油中包含亞麻酸以及亞油酸的不飽和脂肪酸純化分離出來。 實驗例 2 From the above, it can be known that the simulated moving bed in this embodiment uses a washing agent containing supercritical carbon dioxide and pure ethanol as a mobile phase, so the unsaturated fatty acids containing linolenic acid and linoleic acid in the linseed oil can be purified and separated. Experimental example 2

在實驗例2中,乙酯化亞麻籽油原料(河北欣奇典公司)先配製成9.823克/升的乙醇溶液。接著,使用圖1所示的超臨界流體模擬移動床設備來進行模擬移動床層析法。填充管柱為80 mm的DAC管柱,所採用的填料(固定相)為無規二氧化矽(Zeoprep60,40 μm~60 μm,Zeochem),填充高度為230 mm。而移動相為包含超臨界二氧化碳與5wt%純乙醇的沖滌劑。分離的條件為:溫度固定為50℃,萃餘端出口壓力為121 bar,而沖滌劑入口壓力130 bar。各入口與出口端的二氧化碳流速設定如下:沖滌端入口為26.5 公斤/小時;進料入口為1.5 公斤/小時;萃出端為11.78 公斤/小時(利用質量守恆所推算的數值);萃餘端為16.22 公斤/小時(利用質量守恆所推算的數值)。入料口的純乙醇流速設定如下:沖滌端入口為29.39 毫升/分鐘;進料入口為1.65 毫升/分鐘;萃出端為13.10毫升/分鐘(利用質量守恆所推算的數值);萃餘端的乙醇流速為17.94 毫升/分鐘(利用質量守恆所推算的數值)。此外,在實驗例2中,在固定各出入口的流速條件下,改變SF-SMB設備上閥門的切換時間(3分鐘50秒與3分鐘53秒)間距,然後觀察二個出料口所收集樣品的組成變化。採用上述條件進行模擬移動床層析法所得到的結果分析如圖4所示。且由式2與式3所計算含量(定義為純度)與回收率的結果如表1所示。In Experimental Example 2, an ethylated linseed oil raw material (Hebei Xinqidian Company) was first formulated into a 9.823 g / L ethanol solution. Next, a simulated moving bed tomography method was performed using the supercritical fluid simulated moving bed apparatus shown in FIG. 1. The packed column is an 80 mm DAC column. The packing (stationary phase) used is random silica (Zeoprep60, 40 μm ~ 60 μm, Zeochem), and the packing height is 230 mm. The mobile phase is a detergent containing supercritical carbon dioxide and 5 wt% pure ethanol. The separation conditions are: the temperature is fixed at 50 ° C, the pressure at the outlet of the raffinate end is 121 bar, and the pressure at the inlet of the rinse agent is 130 bar. The carbon dioxide flow rate at each inlet and outlet is set as follows: the inlet of the scrubbing end is 26.5 kg / hr; the inlet of the feed is 1.5 kg / hr; the extraction end is 11.78 kg / hr (the value calculated using the conservation of mass); the residual end 16.22 kg / hour (value inferred from conservation of mass). The flow rate of pure ethanol at the feed inlet is set as follows: the inlet of the scrubbing end is 29.39 ml / min; the inlet of the feed is 1.65 ml / min; the extraction end is 13.10 ml / min (the value calculated by using mass conservation); The ethanol flow rate was 17.94 ml / min (values extrapolated from conservation of mass). In addition, in Experimental Example 2, under the condition that the flow rates of the inlets and outlets are fixed, the interval of the valve switching time (3 minutes, 50 seconds and 3 minutes, 53 seconds) on the SF-SMB equipment is changed, and then the samples collected at the two discharge ports The composition changes. The analysis of the results obtained by the simulated moving bed chromatography using the above conditions is shown in FIG. 4. Table 1 shows the results of the content (defined as purity) and recovery calculated from Equation 2 and Equation 3.

表1 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 切換時間 </td><td> 濃度(毫克/升) </td><td> 純度 </td><td> 回收率 </td></tr><tr><td> 萃出液 </td><td> 萃餘液 </td><td> P<sub>E</sub></td><td> P<sub>R</sub></td><td> Y<sub>E</sub></td><td> Y<sub>R</sub></td></tr><tr><td> 亞麻酸 </td><td> 亞油酸 </td><td> 亞麻酸 </td><td> 亞油酸 </td></tr><tr><td> 3分鐘53秒 </td><td> 723.7 </td><td> 67.2 </td><td> 756.7 </td><td> 133.17 </td><td> 0.915 </td><td> 0.150 </td><td> 0.410 </td><td> 0.732 </td></tr><tr><td> 3分鐘50秒 </td><td> 833.0 </td><td> 79.9 </td><td> 579.5 </td><td> 103.0 </td><td> 0.912 </td><td> 0.151 </td><td> 0.511 </td><td> 0.64 </td></tr></TBODY></TABLE>Table 1         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Switching time </ td> <td> Concentration (mg / l) </ td> <td > Purity </ td> <td> Recovery rate </ td> </ tr> <tr> <td> Extraction solution </ td> <td> Extraction solution </ td> <td> P <sub> E </ sub> </ td> <td> P <sub> R </ sub> </ td> <td> Y <sub> E </ sub> </ td> <td> Y <sub> R </ sub> </ td> </ tr> <tr> <td> Linolenic acid </ td> <td> Linoleic acid </ td> <td> Linolenic acid </ td> <td> Linoleic acid </ td > </ tr> <tr> <td> 3 minutes 53 seconds </ td> <td> 723.7 </ td> <td> 67.2 </ td> <td> 756.7 </ td> <td> 133.17 </ td > <td> 0.915 </ td> <td> 0.150 </ td> <td> 0.410 </ td> <td> 0.732 </ td> </ tr> <tr> <td> 3 minutes 50 seconds </ td > <td> 833.0 </ td> <td> 79.9 </ td> <td> 579.5 </ td> <td> 103.0 </ td> <td> 0.912 </ td> <td> 0.151 </ td> < td> 0.511 </ td> <td> 0.64 </ td> </ tr> </ TBODY> </ TABLE>

圖4為本發明實驗例利用模擬移動床層析法從亞麻籽油中分離純化出不飽和脂肪酸的結果分析圖。請參照圖4以及表1,若以上述實驗例2的條件進行模擬移動床層析法,並在3分鐘50秒至3分鐘53秒的切換時間下操作,萃出端的不飽和脂肪酸中的亞麻酸純度可由原本亞麻籽油中的0.888提高至約0.915。 實驗例 3 FIG. 4 is an analysis diagram of a result of separating and purifying unsaturated fatty acids from linseed oil by using simulated moving bed chromatography in an experimental example of the present invention. Please refer to FIG. 4 and Table 1. If the simulated moving bed chromatography is performed under the conditions of the above Experimental Example 2 and operated at a switching time of 3 minutes, 50 seconds to 3 minutes, 53 seconds, the flax in the unsaturated fatty acid at the end is extracted. The acid purity can be increased from 0.888 in the original flaxseed oil to about 0.915. Experimental example 3

在實驗例3中,乙酯化亞麻籽油原料(河北欣奇典公司)先配製成9.823克/升的乙醇溶液。接著,使用圖1所示的超臨界流體模擬移動床設備來進行模擬移動床層析法。填充管柱為80 mm的DAC管柱,所採用的填料(固定相)為無規二氧化矽(Zeoprep60,40 μm~60 μm,Zeochem),填充高度為230 mm。而移動相為包含超臨界二氧化碳與5wt%純乙醇的沖滌劑。分離的條件為:溫度固定為50℃,萃餘端出口壓力為121 bar,而沖滌劑入口壓力130 bar。各入口與出口端的二氧化碳流速設定如下:沖滌端入口為26.5 公斤/小時;進料入口為0.75 公斤/小時;萃出端為11.78 公斤/小時(利用質量守恆所推算的數值);萃餘端為15.47 公斤/小時(利用質量守恆所推算的數值)。入料口的純乙醇流速設定如下:沖滌端入口為29.39 毫升/分鐘;進料入口為0.825 毫升/分鐘;萃出端為13.10毫升/分鐘(利用質量守恆所推算的數值);萃餘端的乙醇流速為17.12 毫升/分鐘(利用質量守恆所推算的數值)。此外,在實驗例3中,在固定各出入口的流速條件下,改變SF-SMB設備上閥門的切換時間(4分鐘、4分鐘05秒與4分鐘10秒)間距,然後觀察二個出料口所收集樣品的組成變化。採用上述條件進行模擬移動床層析法所得到的結果分析如圖5所示。且由式2與式3所計算含量(定義為純度)與回收率的結果如表2所示。In Experimental Example 3, the ethylated linseed oil raw material (Hebei Xinqidian Company) was first formulated into a 9.823 g / L ethanol solution. Next, a simulated moving bed tomography method was performed using the supercritical fluid simulated moving bed apparatus shown in FIG. 1. The packed column is an 80 mm DAC column. The packing (stationary phase) used is random silica (Zeoprep60, 40 μm ~ 60 μm, Zeochem), and the packing height is 230 mm. The mobile phase is a detergent containing supercritical carbon dioxide and 5 wt% pure ethanol. The separation conditions are: the temperature is fixed at 50 ° C, the pressure at the outlet of the raffinate end is 121 bar, and the pressure at the inlet of the rinse agent is 130 bar. The carbon dioxide flow rate at each inlet and outlet is set as follows: the inlet of the scrubbing end is 26.5 kg / hr; the inlet of the feed is 0.75 kg / hr; the extraction end is 11.78 kg / hr (the value calculated using the conservation of mass); the residual end 15.47 kg / hour (value inferred from conservation of mass). The flow rate of pure ethanol at the inlet is set as follows: the inlet of the scrubbing end is 29.39 ml / min; the inlet of the feed is 0.825 ml / min; the extraction end is 13.10 ml / min (the value calculated by using mass conservation); The ethanol flow rate was 17.12 ml / min (values extrapolated using mass conservation). In addition, in Experimental Example 3, the valve switching time (4 minutes, 4 minutes, 05 seconds, and 4 minutes and 10 seconds) on the SF-SMB equipment was changed at a fixed flow rate at each inlet and outlet, and then the two discharge ports were observed. The composition of the collected samples changed. The analysis of the results obtained by the simulated moving bed chromatography using the above conditions is shown in FIG. 5. Table 2 shows the results of the content (defined as purity) and recovery calculated from Equation 2 and Equation 3.

表2 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 切換時間 </td><td> 濃度(毫克/升) </td><td> 純度 </td><td> 回收率 </td></tr><tr><td> 萃出液 </td><td> 萃餘液 </td><td> P<sub>E</sub></td><td> P<sub>R</sub></td><td> Y<sub>E</sub></td><td> Y<sub>R</sub></td></tr><tr><td> 亞麻酸 </td><td> 亞油酸 </td><td> 亞麻酸 </td><td> 亞油酸 </td></tr><tr><td> 4分鐘10秒 </td><td> 84.3 </td><td> 6.3 </td><td> 558.9 </td><td> 63.9 </td><td> 0.930 </td><td> 0.103 </td><td> 0.103 </td><td> 0.930 </td></tr><tr><td> 4分鐘05秒 </td><td> 138.0 </td><td> 10.8 </td><td> 490.3 </td><td> 73.8 </td><td> 0.928 </td><td> 0.131 </td><td> 0.177 </td><td> 0.900 </td></tr><tr><td> 4分鐘 </td><td> 174.6 </td><td> 14.7 </td><td> 270.1 </td><td> 47.5 </td><td> 0.922 </td><td> 0.149 </td><td> 0.330 </td><td> 0.810 </td></tr></TBODY></TABLE>Table 2         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Switching time </ td> <td> Concentration (mg / l) </ td> <td > Purity </ td> <td> Recovery rate </ td> </ tr> <tr> <td> Extraction solution </ td> <td> Extraction solution </ td> <td> P <sub> E </ sub> </ td> <td> P <sub> R </ sub> </ td> <td> Y <sub> E </ sub> </ td> <td> Y <sub> R </ sub> </ td> </ tr> <tr> <td> Linolenic acid </ td> <td> Linoleic acid </ td> <td> Linolenic acid </ td> <td> Linoleic acid </ td > </ tr> <tr> <td> 4 minutes and 10 seconds </ td> <td> 84.3 </ td> <td> 6.3 </ td> <td> 558.9 </ td> <td> 63.9 </ td > <td> 0.930 </ td> <td> 0.103 </ td> <td> 0.103 </ td> <td> 0.930 </ td> </ tr> <tr> <td> 4 minutes 05 seconds </ td > <td> 138.0 </ td> <td> 10.8 </ td> <td> 490.3 </ td> <td> 73.8 </ td> <td> 0.928 </ td> <td> 0.131 </ td> < td> 0.177 </ td> <td> 0.900 </ td> </ tr> <tr> <td> 4 minutes </ td> <td> 174.6 </ td> <td> 14.7 </ td> <td> 270.1 </ td> <td> 47.5 </ td> <td> 0.922 </ td> <td> 0.149 </ td> <td> 0.330 </ td> <td> 0.810 </ td> </ tr> < / TBODY> </ TABLE>

圖5為本發明實驗例利用模擬移動床層析法從亞麻籽油中分離純化出不飽和脂肪酸的結果分析圖。請參照圖5以及表2,當進料端的流速由實施例2的條件調降一半以後,並在4分鐘至4分鐘10秒的切換時間下操作,萃出端的不飽和脂肪酸中的亞麻酸純度由原來的0.915增加到約0.930。 實驗例 4 FIG. 5 is an analysis diagram of the result of separating and purifying unsaturated fatty acids from linseed oil by using simulated moving bed chromatography in an experimental example of the present invention. Please refer to FIG. 5 and Table 2. When the flow rate at the feed end is reduced by half from the conditions of Example 2 and operated at a switching time of 4 minutes to 4 minutes and 10 seconds, the purity of linolenic acid in the unsaturated fatty acid at the extraction end Increased from 0.915 to about 0.930. Experimental Example 4

在實驗例4中,乙酯化亞麻籽油原料(河北欣奇典公司)先配製成不同濃度的乙醇溶液(50克/升、100克/升、250克/升)。接著,使用圖1所示的超臨界流體模擬移動床設備來進行模擬移動床層析法。填充管柱為80 mm的DAC管柱,所採用的填料(固定相)為無規二氧化矽(Zeoprep60,40 μm~60 μm,Zeochem),填充高度為230 mm。而移動相為包含超臨界二氧化碳與5wt%純乙醇的沖滌劑。分離的條件為:溫度固定為50℃,萃餘端出口壓力為121 bar,而沖滌劑入口壓力130 bar。各入口與出口端的二氧化碳流速設定如下:沖滌端入口為26.5 公斤/小時;進料入口為0.75 公斤/小時;萃出端為11.78 公斤/小時(利用質量守恆所推算的數值);萃餘端為15.47 公斤/小時(利用質量守恆所推算的數值)。入料口的純乙醇流速設定如下:沖滌端入口為29.39 毫升/分鐘;進料入口為0.825 毫升/分鐘;萃出端為13.10毫升/分鐘(利用質量守恆所推算的數值);萃餘端的乙醇流速為17.12 毫升/分鐘(利用質量守恆所推算的數值)。此外,在實驗例4中,在固定各出入口的流速條件下,隨著進料濃度增加而相對應縮短SF-SMB設備上閥門的切換時間(3分鐘55秒與4分鐘)間距,然後觀察二個出料口所收集樣品的組成變化。具體來說,進料濃度為50克/升時,切換時間為4分鐘;進料濃度為100克/升時,切換時間為4分鐘;進料濃度為250克/升時,切換時間為3分鐘55秒。採用上述條件進行模擬移動床層析法所得到的結果分析如圖6所示。且由式2與式3所計算含量(定義為純度)與回收率的結果如表3所示。In Experimental Example 4, the ethylated linseed oil raw material (Hebei Xinqidian Company) was first formulated into ethanol solutions of different concentrations (50 g / l, 100 g / l, 250 g / l). Next, a simulated moving bed tomography method was performed using the supercritical fluid simulated moving bed apparatus shown in FIG. 1. The packed column is an 80 mm DAC column. The packing (stationary phase) used is random silica (Zeoprep60, 40 μm ~ 60 μm, Zeochem), and the packing height is 230 mm. The mobile phase is a detergent containing supercritical carbon dioxide and 5 wt% pure ethanol. The separation conditions are: the temperature is fixed at 50 ° C, the pressure at the outlet of the raffinate end is 121 bar, and the pressure at the inlet of the rinse agent is 130 bar. The carbon dioxide flow rate at each inlet and outlet is set as follows: the inlet of the scrubbing end is 26.5 kg / hr; the inlet of the feed is 0.75 kg / hr; the extraction end is 11.78 kg / hr (the value calculated using the conservation of mass); the residual end 15.47 kg / hour (value inferred from conservation of mass). The flow rate of pure ethanol at the inlet is set as follows: the inlet of the scrubbing end is 29.39 ml / min; the inlet of the feed is 0.825 ml / min; the extraction end is 13.10 ml / min (the value calculated by using mass conservation); The ethanol flow rate was 17.12 ml / min (values extrapolated using mass conservation). In addition, in Experimental Example 4, under the condition that the flow rates of the inlets and outlets are fixed, the valve switching time (3 minutes, 55 seconds, and 4 minutes) on the SF-SMB equipment is shortened correspondingly as the feed concentration increases. The composition of the sample collected at each outlet was changed. Specifically, when the feed concentration is 50 g / L, the switching time is 4 minutes; when the feed concentration is 100 g / L, the switching time is 4 minutes; when the feed concentration is 250 g / L, the switching time is 3 Minutes 55 seconds. The analysis of the results obtained by the simulated moving bed chromatography using the above conditions is shown in FIG. 6. Table 3 shows the results of the content (defined as purity) and recovery calculated from Equation 2 and Equation 3.

表3 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 進料濃度 (克/升) </td><td> 萃出液 (毫克/升) </td><td> 萃餘液 (毫克/升) </td><td> 純度 </td><td> 回收率 </td><td> 切換時間 </td></tr><tr><td> 亞麻酸 </td><td> 亞油酸 </td><td> 亞麻酸 </td><td> 亞油酸 </td><td> P<sub>E</sub></td><td> P<sub>R</sub></td><td> Y<sub>E</sub></td><td> Y<sub>R</sub></td></tr><tr><td> 50 </td><td> 148.8 </td><td> 17.5 </td><td> 171.3 </td><td> 24.9 </td><td> 0.895 </td><td> 0.127 </td><td> 0.398 </td><td> 0.652 </td><td> 4分鐘 </td></tr><tr><td> 100 </td><td> 705.4 </td><td> 69.0 </td><td> 665.1 </td><td> 94.9 </td><td> 0.911 </td><td> 0.125 </td><td> 0.447 </td><td> 0.643 </td><td> 4分鐘 </td></tr><tr><td> 250 </td><td> 2834 </td><td> 230.4 </td><td> 2733 </td><td> 348.0 </td><td> 0.925 </td><td> 0.113 </td><td> 0.441 </td><td> 0.665 </td><td> 3分鐘55秒 </td></tr></TBODY></TABLE>table 3         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Feed concentration (g / l) </ td> <td> Extraction (mg / Liters) </ td> <td> Raffinate (mg / liter) </ td> <td> Purity </ td> <td> Recovery rate </ td> <td> Switching time </ td> </ tr > <tr> <td> Linolenic acid </ td> <td> Linoleic acid </ td> <td> Linolenic acid </ td> <td> Linoleic acid </ td> <td> P <sub> E </ sub> </ td> <td> P <sub> R </ sub> </ td> <td> Y <sub> E </ sub> </ td> <td> Y <sub> R </ sub> </ td> </ tr> <tr> <td> 50 </ td> <td> 148.8 </ td> <td> 17.5 </ td> <td> 171.3 </ td> <td> 24.9 < / td> <td> 0.895 </ td> <td> 0.127 </ td> <td> 0.398 </ td> <td> 0.652 </ td> <td> 4 minutes </ td> </ tr> <tr > <td> 100 </ td> <td> 705.4 </ td> <td> 69.0 </ td> <td> 665.1 </ td> <td> 94.9 </ td> <td> 0.911 </ td> < td> 0.125 </ td> <td> 0.447 </ td> <td> 0.643 </ td> <td> 4 minutes </ td> </ tr> <tr> <td> 250 </ td> <td> 2834 </ td> <td> 230.4 </ td> <td> 2733 </ td> <td> 348.0 </ td> <td> 0.925 </ td> <td> 0.113 </ td> <td> 0.441 < / td> <td> 0.665 </ td> <td> 3 minutes 55 seconds </ td> </ tr> </ TBODY> </ TABLE>

圖6為本發明實驗例利用模擬移動床層析法從亞麻籽油中分離純化出不飽和脂肪酸的結果分析圖。請參照圖6以及表3,當進料濃度提高至250克/升下,萃出端的不飽和脂肪酸中的亞麻酸純度仍高於0.925,且回收率為0.441。由上述的內容可知,使用高的進料濃度進行模擬移動床層析法仍能純化出具有高純度亞麻酸的不飽和脂肪酸,因此推測若將乙酯化亞麻籽油原料取代包含乙酯化亞麻籽油的乙醇溶液作為進料,應也能得到具有高純度亞麻酸的不飽和脂肪酸。 實施例2:亞麻酸 的純化 FIG. 6 is an analysis diagram of the result of separating and purifying unsaturated fatty acids from linseed oil by using simulated moving bed chromatography in an experimental example of the present invention. Please refer to FIG. 6 and Table 3. When the feed concentration is increased to 250 g / L, the purity of linolenic acid in the unsaturated fatty acid at the extraction end is still higher than 0.925, and the recovery rate is 0.441. From the above, it can be seen that the simulated moving bed chromatography using a high feed concentration can still purify unsaturated fatty acids with high purity linolenic acid. Therefore, it is speculated that if the ethylated linseed oil raw material is replaced with ethylated linseed A feed solution of seed oil in ethanol should also give unsaturated fatty acids with high purity linolenic acid. Example 2: Purification of linolenic acid

在本實施例中,亞麻酸的純化可以分為兩次的分離步驟(第一模擬移動床層析製程與第二模擬移動床層析製程)。在第一模擬移動床層析製程中,使用超臨界流體模擬移動床(Supercritical Fluid-Simulated Moving Bed,SF-SMB)系統來進行模擬移動床層析法。在第二模擬移動床層析製程中,使用反相模擬移動床(Reverse-Phase Moving Bed,RP-SMB)系統來進行模擬移動床層析法。In this embodiment, the purification of linolenic acid can be divided into two separation steps (a first simulated moving bed chromatography process and a second simulated moving bed chromatography process). In the first simulated moving bed chromatography process, a Supercritical Fluid-Simulated Moving Bed (SF-SMB) system is used to perform the simulated moving bed chromatography. In the second simulated moving bed chromatography process, a reversed-phase moving bed (RP-SMB) system is used to perform the simulated moving bed chromatography.

在本實施例中,超臨界流體模擬移動床系統使用與實施例1(即圖1)相同的超臨界流體模擬移動床設備。因此,相同元件以相同標號表示,且不予贅述。In this embodiment, the supercritical fluid simulated moving bed system uses the same supercritical fluid simulated moving bed equipment as in Embodiment 1 (ie, FIG. 1). Therefore, the same elements are denoted by the same reference numerals, and will not be described repeatedly.

在本實施例中,反相模擬移動床系統具有例如是圖7所示的模擬移動床200。圖7為本發明實施例的模擬移動床的組態設計圖。參考圖7,模擬移動床200包括第四區段、第五區段與第六區段。在本實施例中,第四區段包含2根管柱C1與C2,第五區段包含2根管柱C3與C4,且第六區段包含2根管柱C5與C6,上述6根管柱串聯。In the present embodiment, the reverse-phase simulated moving bed system includes, for example, the simulated moving bed 200 shown in FIG. 7. FIG. 7 is a configuration design diagram of a simulated moving bed according to an embodiment of the present invention. Referring to FIG. 7, the simulated moving bed 200 includes a fourth section, a fifth section, and a sixth section. In this embodiment, the fourth section includes two pipe columns C1 and C2, the fifth section includes two pipe columns C3 and C4, and the sixth section includes two pipe columns C5 and C6. The above six pipes The columns are connected in series.

模擬移動床200包括兩個入料口,分別為樣品進料入口F3(即管柱C5入口位置)與沖滌端入口D3(即管柱C1入口位置),且包括兩個出料口,分別為萃出端E3(即管柱C2出口位置)與萃餘端R3(即管柱C6出口位置)。The simulated moving bed 200 includes two inlets, which are the sample inlet F3 (that is, the inlet position of the column C5) and the inlet D3 (that is, the inlet position of the column C1), and includes two outlets, respectively It is the extraction end E3 (that is, the column C2 exit position) and the extraction excess end R3 (that is, the column C6 exit position).

在本實施例中,模擬移動床200具有6根管柱,但本發明不限於此。在另一實施例中,模擬移動床200具有8根管柱,其中第一區段包含2根管柱C1與C2,第二區段包含3根管柱C3、C4與C5,且第三區段包含3根管柱C6、C7與C8,上述8根管柱串聯。在本實施例中,模擬移動床200的管柱數目與模擬移動床100的管柱數目不同,但本發明不限於此。在另一實施例中,模擬移動床200的管柱數目與模擬移動床100的管柱數目相同。In this embodiment, the simulated moving bed 200 has six pipe columns, but the present invention is not limited thereto. In another embodiment, the simulated moving bed 200 has eight columns, wherein the first section includes two columns C1 and C2, the second section includes three columns C3, C4, and C5, and the third section The segment contains 3 columns C6, C7 and C8, and the above 8 columns are connected in series. In this embodiment, the number of pipe columns of the simulated moving bed 200 is different from that of the simulated moving bed 100, but the present invention is not limited thereto. In another embodiment, the number of columns of the simulated moving bed 200 is the same as the number of columns of the simulated moving bed 100.

接著,以下將對利用模擬移動床層析法將不飽和脂肪酸從亞麻籽油中分離開來的方式進行說明。在本實施例的第一模擬移動床層析製程中,是將乙酯化亞麻籽油從進料入口F1注入模擬移動床100的第二區段以及第三區段之間,並且使包含亞麻酸以及亞油酸的不飽脂肪酸隨固定相移動至第一區段與第二區段之間的萃出端E1並使乙酯化亞麻籽油中的其它混合物(如飽和脂肪酸)隨移動相移動至第三區段的萃餘端R1。為了達到上述的分離結果,移動相選擇包含超臨界二氧化碳與純乙醇的沖滌劑。在本實施例中,以沖滌劑的總量計,純乙醇的含量為1wt%~8wt%。在一實施例中,以沖滌劑的總量計,純乙醇的含量為5 wt%。Next, a method for separating unsaturated fatty acids from linseed oil by using simulated moving bed chromatography will be described below. In the first simulated moving bed chromatography process of this embodiment, the ethylated linseed oil is injected from the feed inlet F1 between the second section and the third section of the simulated moving bed 100, and the linen The unsaturated fatty acids of linoleic acid and linoleic acid move with the stationary phase to the extraction end E1 between the first section and the second section, and other mixtures (such as saturated fatty acids) in the ethylated linseed oil follow the mobile phase. Move to the raffinate end R1 of the third section. In order to achieve the above-mentioned separation results, the mobile phase selects a detergent containing supercritical carbon dioxide and pure ethanol. In this embodiment, based on the total amount of the detergent, the content of pure ethanol is 1 wt% to 8 wt%. In one embodiment, the content of pure ethanol is 5 wt% based on the total amount of detergent.

為了進一步將亞麻酸從包含亞麻酸以及亞油酸的不飽脂肪酸中分離,將上述從萃出端E1所收集的不飽脂肪酸(含亞麻酸以及亞油酸)進行第二模擬移動床層析製程。在本實施例的第二模擬移動床層析製程中,是將第一模擬移動床層析製程中在萃出端E1所收集到的不飽和脂肪酸(含亞麻酸以及亞油酸)注入模擬移動床200的第五區段與第六區段之間,並且使不飽和脂肪酸中的亞麻酸隨移動相移動至第六區段的萃餘端R3,並使不飽和脂肪酸的其他混合物隨固定相移動至第四區段與第五區段之間的萃出端E3。為了達到上述的分離結果,固定相選擇反相填料。反相填料例如是ODS改質的二氧化矽。舉例來說,ODS(Octa Decyl Silane)改質的二氧化矽例如是伊納斯爾(InertSil)ODS-3。在本實施例中,移動相例如是純乙醇或95%乙醇溶液。 實驗例 5 [RP-SMB 的操作條件 ] In order to further separate linolenic acid from unsaturated fatty acids containing linolenic acid and linoleic acid, the unsaturated fatty acids (containing linolenic acid and linoleic acid) collected from the extraction end E1 described above were subjected to a second simulated moving bed chromatography Process. In the second simulated moving bed chromatography process of this embodiment, the unsaturated fatty acids (including linolenic acid and linoleic acid) collected at the extraction end E1 in the first simulated moving bed chromatography process are injected into the simulated mobile Between the fifth section and the sixth section of the bed 200, and the linolenic acid in the unsaturated fatty acid moves with the mobile phase to the raffinate end R3 of the sixth section, and other mixtures of the unsaturated fatty acid follow the stationary phase Move to the extraction end E3 between the fourth section and the fifth section. In order to achieve the above separation results, the reversed phase packing was selected for the stationary phase. The reverse-phase filler is, for example, ODS-modified silica. For example, ODS (Octa Decyl Silane) modified silicon dioxide is, for example, InertSil ODS-3. In this embodiment, the mobile phase is, for example, pure ethanol or a 95% ethanol solution. Experimental example 5 [ Operating conditions of RP-SMB ]

在實驗例5中,將實驗例4中進料濃度為250 克/升的分離後不飽和脂肪酸作為進行第二模擬移動床層析製程的進料,且將上述進料調整為10克/升的乙醇溶液。此外,在實驗例5中,使用圖7所示的模擬移動床層。填充管柱尺寸為4.6 mm× 100 mm),所採用的填料(固定相)為InertSil ODS-3(5 μm)。而移動相為95%乙醇溶液。各入口與出口端的95%乙醇流速設定如下:沖滌端入口為0.96 毫升/分鐘;進料入口為0.01 毫升/分鐘;萃出端為0.36毫升/分鐘;萃餘端的乙醇流速為0.61 毫升/分鐘。此外,在實驗例5中,在固定各出入口的流速條件下,改變SF-SMB設備上閥門的切換時間(6分鐘與6分鐘30秒),然後觀察二個出料口所收集樣品的組成隨切換時間的變化。採用上述條件進行模擬移動床層析法所得到的結果分析如圖8所示,且依據式2以及式3所計算純度與回收率的結果如表4所示。In Experimental Example 5, the separated unsaturated fatty acid having a feed concentration of 250 g / L in Experimental Example 4 was used as the feed for the second simulated moving bed chromatography process, and the above feed was adjusted to 10 g / L. Ethanol solution. In addition, in Experimental Example 5, a simulated moving bed shown in FIG. 7 was used. The packed column size is 4.6 mm × 100 mm), and the packing (stationary phase) used is InertSil ODS-3 (5 μm). The mobile phase was a 95% ethanol solution. The 95% ethanol flow rate of each inlet and outlet is set as follows: the inlet of the scrubbing end is 0.96 ml / min; the inlet of the feed is 0.01 ml / min; the extraction end is 0.36 ml / min; the flow rate of ethanol at the extract end is 0.61 ml / min . In addition, in Experimental Example 5, the valve switching time (6 minutes and 6 minutes and 30 seconds) on the SF-SMB device was changed under the condition of fixed flow rates at each inlet and outlet, and then the composition of the samples collected at the two outlets was observed. Change of switching time. The analysis of the results obtained by the simulated moving bed chromatography using the above conditions is shown in FIG. 8, and the results of the purity and recovery calculated according to Equation 2 and Equation 3 are shown in Table 4.

表4 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 切換時間 </td><td> 濃度(毫克/升) </td><td> 純度 </td><td> 回收率 </td></tr><tr><td> 萃出液 </td><td> 萃餘液 </td><td> P<sub>E</sub></td><td> P<sub>R</sub></td><td> Y<sub>E</sub></td><td> Y<sub>R</sub></td></tr><tr><td> 亞麻酸 </td><td> 亞油酸 </td><td> 亞麻酸 </td><td> 亞油酸 </td></tr><tr><td> 6分鐘30秒 </td><td> 17.51 </td><td> 2.71 </td><td> 4.00 </td><td> 0.00 </td><td> 0.134 </td><td> 1.000 </td><td> 1.00 </td><td> 0.279 </td></tr><tr><td> 6分鐘 </td><td> 36.62 </td><td> 4.08 </td><td> 2.96 </td><td> 0.00 </td><td> 0.100 </td><td> 1.000 </td><td> 1.00 </td><td> 0.120 </td></tr></TBODY></TABLE>Table 4         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Switching time </ td> <td> Concentration (mg / l) </ td> <td > Purity </ td> <td> Recovery rate </ td> </ tr> <tr> <td> Extraction solution </ td> <td> Extraction solution </ td> <td> P <sub> E </ sub> </ td> <td> P <sub> R </ sub> </ td> <td> Y <sub> E </ sub> </ td> <td> Y <sub> R </ sub> </ td> </ tr> <tr> <td> Linolenic acid </ td> <td> Linoleic acid </ td> <td> Linolenic acid </ td> <td> Linoleic acid </ td > </ tr> <tr> <td> 6 minutes and 30 seconds </ td> <td> 17.51 </ td> <td> 2.71 </ td> <td> 4.00 </ td> <td> 0.00 </ td > <td> 0.134 </ td> <td> 1.000 </ td> <td> 1.00 </ td> <td> 0.279 </ td> </ tr> <tr> <td> 6 minutes </ td> < td> 36.62 </ td> <td> 4.08 </ td> <td> 2.96 </ td> <td> 0.00 </ td> <td> 0.100 </ td> <td> 1.000 </ td> <td> 1.00 </ td> <td> 0.120 </ td> </ tr> </ TBODY> </ TABLE>

圖8為本發明實驗例利用模擬移動床層析法從亞麻籽油中分離純化出亞麻酸的結果分析圖。請參照圖8以及表4,由於採用RP-SMB系統進行純化,因此亞麻油成為弱滯留性成分,所以亞麻酸在萃餘端被收集得到。此外,在本實施例中,採用95%乙醇作為移動相以及採用反相填料作為固定相,因此所純化的亞麻酸純度高達100%。 實驗例 6 [RP-SMB 的操作條件 ] FIG. 8 is an analysis diagram of the results of separating and purifying linolenic acid from linseed oil by simulated moving bed chromatography in an experimental example of the present invention. Please refer to FIG. 8 and Table 4. Since RP-SMB system is used for purification, linseed oil becomes a weak retention component, so linolenic acid is collected at the raffinate end. In addition, in this embodiment, 95% ethanol is used as a mobile phase and a reversed-phase filler is used as a stationary phase, so the purity of the purified linolenic acid is as high as 100%. Experimental Example 6 [ Operating Conditions of RP-SMB ]

在實驗例6中,將實驗例4中進料濃度為250 克/升的分離後不飽和脂肪酸作為進行第二模擬移動床層析製程的進料,且將上述進料調整為10克/升的乙醇溶液。此外,在實驗例6中,使用圖7所示的模擬移動床層。填充管柱尺寸為4.6 mm × 100 mm),所採用的填料(固定相)為InertSil ODS-3(5 μm)。而移動相為純乙醇溶液。各入口與出口端的純乙醇流速設定如下:沖滌端入口為0.96 毫升/分鐘;進料入口為0.016 毫升/分鐘;萃出端為0.36毫升/分鐘;萃餘端的乙醇流速為0.616 毫升/分鐘。此外,在實驗例6中,在固定各出入口的流速條件下,改變SF-SMB設備上閥門的切換時間(4分鐘20秒、4分鐘25秒與4分鐘30秒),然後觀察二個出料口所收集樣品的組成隨切換時間的變化。採用上述條件進行模擬移動床層析法所得到的結果分析如圖9所示,且依據式2以及式3所計算純度與回收率的結果如表5所示。In Experimental Example 6, the separated unsaturated fatty acid with a feed concentration of 250 g / L in Experimental Example 4 was used as the feed for the second simulated moving bed chromatography process, and the above feed was adjusted to 10 g / L. Ethanol solution. In addition, in Experimental Example 6, a simulated moving bed shown in FIG. 7 was used. The packed column size is 4.6 mm × 100 mm), and the packing (stationary phase) used is InertSil ODS-3 (5 μm). The mobile phase was a pure ethanol solution. The flow rate of pure ethanol at each inlet and outlet is set as follows: the inlet of the scrubbing end is 0.96 ml / min; the inlet of the feed is 0.016 ml / min; the extraction end is 0.36 ml / min; the flow rate of ethanol at the extract end is 0.616 ml / min. In addition, in Experimental Example 6, the valve switching time (4 minutes 20 seconds, 4 minutes 25 seconds, and 4 minutes 30 seconds) on the SF-SMB equipment was changed under the conditions of fixed flow rates of the inlets and outlets, and then two discharges were observed. The composition of the sample collected in the mouth varies with the switching time. The analysis of the results obtained by the simulated moving bed chromatography using the above conditions is shown in FIG. 9, and the results of the purity and recovery calculated according to Equation 2 and Equation 3 are shown in Table 5.

表5 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 切換時間 </td><td> 濃度(毫克/升) </td><td> 純度 </td><td> 回收率 </td></tr><tr><td> 萃出液 </td><td> 萃餘液 </td><td> P<sub>E</sub></td><td> P<sub>R</sub></td><td> Y<sub>E</sub></td><td> Y<sub>R</sub></td></tr><tr><td> 亞麻酸 </td><td> 亞油酸 </td><td> 亞麻酸 </td><td> 亞油酸 </td></tr><tr><td> 4分鐘30秒 </td><td> 697.3 </td><td> 55.7 </td><td> 365.2 </td><td> 19.5 </td><td> 0.074 </td><td> 0.949 </td><td> 0.873 </td><td> 0.150 </td></tr><tr><td> 4分鐘25秒 </td><td> 6543.0 </td><td> 433.4 </td><td> 431.4 </td><td> 27.3 </td><td> 0.062 </td><td> 0.941 </td><td> 0.903 </td><td> 0.104 </td></tr><tr><td> 4分鐘20秒 </td><td> 14170 </td><td> 854.8 </td><td> 243.9 </td><td> 11.4 </td><td> 0.057 </td><td> 0.955 </td><td> 0.978 </td><td> 0.028 </td></tr></TBODY></TABLE>table 5         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Switching time </ td> <td> Concentration (mg / l) </ td> <td > Purity </ td> <td> Recovery rate </ td> </ tr> <tr> <td> Extraction solution </ td> <td> Extraction solution </ td> <td> P <sub> E </ sub> </ td> <td> P <sub> R </ sub> </ td> <td> Y <sub> E </ sub> </ td> <td> Y <sub> R </ sub> </ td> </ tr> <tr> <td> Linolenic acid </ td> <td> Linoleic acid </ td> <td> Linolenic acid </ td> <td> Linoleic acid </ td > </ tr> <tr> <td> 4 minutes 30 seconds </ td> <td> 697.3 </ td> <td> 55.7 </ td> <td> 365.2 </ td> <td> 19.5 </ td > <td> 0.074 </ td> <td> 0.949 </ td> <td> 0.873 </ td> <td> 0.150 </ td> </ tr> <tr> <td> 4 minutes 25 seconds </ td > <td> 6543.0 </ td> <td> 433.4 </ td> <td> 431.4 </ td> <td> 27.3 </ td> <td> 0.062 </ td> <td> 0.941 </ td> < td> 0.903 </ td> <td> 0.104 </ td> </ tr> <tr> <td> 4 minutes and 20 seconds </ td> <td> 14170 </ td> <td> 854.8 </ td> < td> 243.9 </ td> <td> 11.4 </ td> <td> 0.057 </ td> <td> 0.955 </ td> <td> 0.978 </ td> <td> 0.028 </ td> </ tr > </ TBODY> </ TABLE>

圖9為本發明實驗例利用模擬移動床層析法從亞麻籽油中分離純化出亞麻酸的結果分析圖。請參照圖9以及表5,採用純乙醇作為移動相以及採用反相填料作為固定相,所純化的亞麻酸純度高達94.15%~95.5%。FIG. 9 is an analysis diagram of the result of separating and purifying linolenic acid from linseed oil by simulated moving bed chromatography in an experimental example of the present invention. Please refer to FIG. 9 and Table 5. Using pure ethanol as the mobile phase and reversed-phase packing as the stationary phase, the purity of the purified linolenic acid is as high as 94.15% to 95.5%.

綜上所述,本發明的不飽和脂肪酸的純化方法透過應用模擬移動床層析法來從亞麻籽油中分離包含亞麻酸以及亞油酸的不飽和脂肪酸,不僅可有效提升分離效率,更可獲得高純度的包含亞麻酸以及亞油酸的不飽和脂肪酸。此外,本發明的亞麻酸的純化方法可藉由進行二次模擬移動床層析製程而進一步從亞麻籽油中純化出亞麻酸,同樣地,不僅可有效提升分離效率,更可獲得高純度的亞麻酸。In summary, the method for purifying unsaturated fatty acids of the present invention can separate the unsaturated fatty acids containing linolenic acid and linoleic acid from linseed oil by applying simulated moving bed chromatography, which can not only effectively improve the separation efficiency, but also High purity unsaturated fatty acids containing linolenic acid and linoleic acid are obtained. In addition, the linolenic acid purification method of the present invention can further purify linolenic acid from linseed oil by performing a second simulated moving bed chromatography process. Similarly, not only can the separation efficiency be effectively improved, but high purity Linolenic acid.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

100、200‧‧‧模擬移動床100, 200‧‧‧ Simulated Moving Bed

110‧‧‧二氧化碳供應源110‧‧‧CO2 supply source

115‧‧‧二氧化碳液泵115‧‧‧CO2 liquid pump

120‧‧‧高壓緩衝槽120‧‧‧High-pressure buffer tank

122‧‧‧前端壓力調壓閥122‧‧‧Front end pressure regulator

123‧‧‧後端壓力調壓閥123‧‧‧ rear pressure regulator

125a、125b‧‧‧高效能液相層析液泵125a, 125b‧‧‧‧High-performance liquid chromatography pump

130‧‧‧混合器130‧‧‧ mixer

145a、145b、155‧‧‧分離槽145a, 145b, 155‧‧‧ separation tank

160‧‧‧工作儲槽160‧‧‧Working tank

C1、C2、C3、C4、C5、C6、C7、C8‧‧‧管柱 C1, C2, C3, C4, C5, C6, C7, C8‧‧‧

D1、D3‧‧‧沖滌端入口 D1, D3‧‧‧‧Polishing end entrance

D2、F2‧‧‧輸入口 D2, F2‧‧‧ input port

E1、E3‧‧‧萃出端 E1, E3‧‧‧Extract

F1;F3‧‧‧進料入口 F1; F3‧‧‧feed inlet

IS‧‧‧內標準品 IS‧‧‧ Internal Standard

R1、R3‧‧‧萃餘端 R1, R3‧‧‧‧Excess

圖1是依照本發明實施例的一種超臨界流體模擬移動床設備的管線流程圖。 圖2為乙酯化亞麻籽油樣品的氣相色譜質譜分析圖。 圖3為本發明實驗例利用模擬移動床層析法從亞麻籽油中分離純化出不飽和脂肪酸的結果分析圖。 圖4至圖6為本發明實驗例利用模擬移動床層析法從亞麻籽油中分離純化出不飽和脂肪酸的結果分析圖。 圖7為本發明實施例的模擬移動床之組態設計圖。 圖8與圖9為本發明實驗例利用模擬移動床層析法從亞麻籽油中分離純化出亞麻酸的結果分析圖。FIG. 1 is a pipeline flowchart of a supercritical fluid simulated moving bed device according to an embodiment of the present invention. Figure 2 is a gas chromatographic mass spectrometric analysis of an ethylated linseed oil sample. FIG. 3 is an analysis diagram of the results of separating and purifying unsaturated fatty acids from linseed oil by using simulated moving bed chromatography in an experimental example of the present invention. FIG. 4 to FIG. 6 are analysis results of experimental examples of the present invention using simulated moving bed chromatography to separate and purify unsaturated fatty acids from linseed oil. FIG. 7 is a configuration design diagram of a simulated moving bed according to an embodiment of the present invention. FIG. 8 and FIG. 9 are analysis results of the separation and purification of linolenic acid from linseed oil by simulated moving bed chromatography in an experimental example of the present invention.

Claims (16)

一種純化不飽和脂肪酸的方法,包括:提供乙酯化亞麻籽油;以及以模擬移動床層析法將所述乙酯化亞麻籽油中的不飽和脂肪酸分離開來,其中所分離的所述不飽和脂肪酸包括亞麻酸以及亞油酸,其中所述模擬移動床層析法包含:提供模擬移動床,所述模擬移動床依序包括第一區段、第二區段以及第三區段,其中所述模擬移動床是由移動相及固定相所組成,所述固定相顆粒內部是具有孔隙,所述移動相對於所述模擬移動床中是朝同一方向從沖滌端入口流經所述第一區段、所述第二區段以及所述第三區段之間,所述固定相是相對於所述移動相朝反方向模擬移動,所述移動相為包含超臨界二氧化碳與純乙醇的沖滌劑,其中所述第一區段、所述第二區段以及所述第三區段各自包含2根管柱、3根管柱與3根管柱,且每根管柱內填充所述固定相;將所述乙酯化亞麻籽油從進料入口注入所述模擬移動床的所述第二區段與所述第三區段之間,並使所述不飽和脂肪酸隨所述固定相移動至所述第一區段與所述第二區段之間的萃出端並使所述乙酯化亞麻籽油中的其它混合物隨所述移動相移動至所述第三區段的萃餘端,以分離所述不飽和脂肪酸。A method for purifying unsaturated fatty acids, comprising: providing ethylated linseed oil; and separating the unsaturated fatty acids in the ethylated linseed oil by simulated moving bed chromatography, wherein the separated said Unsaturated fatty acids include linolenic acid and linoleic acid, wherein the simulated moving bed chromatography method includes: providing a simulated moving bed, the simulated moving bed sequentially including a first section, a second section, and a third section, Wherein the simulated moving bed is composed of a mobile phase and a stationary phase, the stationary phase particles have pores inside, and the movement flows through the inlet of the washing end in the same direction relative to the simulated moving bed. Between the first section, the second section, and the third section, the stationary phase is simulated to move in a reverse direction relative to the mobile phase, and the mobile phase includes supercritical carbon dioxide and pure ethanol Cleaning agent, wherein each of the first section, the second section, and the third section includes 2 columns, 3 columns, and 3 columns, and each column is filled with Said stationary phase; said ethylating Hemp seed oil is injected from the feed inlet between the second section and the third section of the simulated moving bed, and the unsaturated fatty acid moves with the stationary phase to the first section The extraction end between the second section and the other mixture in the ethylated linseed oil moves with the mobile phase to the extraction end of the third section to separate the saturated fatty acid. 如申請專利範圍第1項所述的純化不飽和脂肪酸的方法,其中以所述沖滌劑的總量計,所述純乙醇的含量為1wt%~8wt%。The method for purifying unsaturated fatty acids according to item 1 of the scope of the patent application, wherein the content of the pure ethanol is 1 wt% to 8 wt% based on the total amount of the detergent. 如申請專利範圍第1項所述的純化不飽和脂肪酸的方法,其中所述固定相為無規二氧化矽。The method for purifying unsaturated fatty acids according to item 1 of the scope of patent application, wherein the stationary phase is random silica. 如申請專利範圍第1項所述的純化不飽和脂肪酸的方法,其中所述模擬移動床使用的分離條件為:二氧化碳流速在所述沖滌端入口為26.5公斤/小時、在所述進料入口為1.5公斤/小時、在所述萃出端為11.19公斤/小時以及在所述萃餘端為16.81公斤/小時,且所述純乙醇流速在所述沖滌端入口為29.39毫升/分鐘、在所述進料入口為1.65毫升/分鐘、在所述萃出端為12.44毫升/分鐘以及在所述萃餘端為18.60毫升/分鐘,且所述模擬移動床的切換時間為3分鐘35秒至3分鐘48秒。The method for purifying unsaturated fatty acids according to item 1 of the scope of patent application, wherein the separation conditions used in the simulated moving bed are: the flow rate of carbon dioxide at the inlet of the scrubbing end is 26.5 kg / hour, at the inlet of the feed 1.5 kg / h, 11.19 kg / h at the extraction end and 16.81 kg / h at the extraction end, and the flow rate of pure ethanol at the inlet of the scrubbing end was 29.39 ml / min, at The feed inlet is 1.65 ml / min, 12.44 ml / min at the extraction end and 18.60 ml / min at the extract end, and the switching time of the simulated moving bed is 3 minutes 35 seconds to 3 minutes and 48 seconds. 如申請專利範圍第1項所述的純化不飽和脂肪酸的方法,其中所述模擬移動床使用的分離條件為:二氧化碳流速在所述沖滌端入口為26.5公斤/小時、在所述進料入口為1.5公斤/小時、在所述萃出端為11.78公斤/小時以及在所述萃餘端為16.22公斤/小時,且所述純乙醇流速在所述沖滌端入口為29.39毫升/分鐘、在所述進料入口為1.65毫升/分鐘、在所述萃出端為13.10毫升/分鐘以及在所述萃餘端為17.94毫升/分鐘,且所述模擬移動床的切換時間為3分鐘50秒至3分鐘53秒。The method for purifying unsaturated fatty acids according to item 1 of the scope of patent application, wherein the separation conditions used in the simulated moving bed are: the flow rate of carbon dioxide at the inlet of the scrubbing end is 26.5 kg / hour, at the inlet of the feed 1.5 kg / hour, 11.78 kg / hour at the extraction end and 16.22 kg / hour at the extraction end, and the flow rate of pure ethanol at the inlet of the scrubbing end was 29.39 ml / minute, at The feed inlet is 1.65 ml / min, 13.10 ml / min at the extraction end and 17.94 ml / min at the rest end, and the switching time of the simulated moving bed is 3 minutes and 50 seconds to 3 minutes and 53 seconds. 如申請專利範圍第1項所述的純化不飽和脂肪酸的方法,其中所述模擬移動床使用的分離條件為:二氧化碳流速在所述沖滌端入口為26.5公斤/小時、在所述進料入口為0.75公斤/小時、在所述萃出端為11.78公斤/小時以及在所述萃餘端為15.47公斤/小時,且所述純乙醇流速在所述沖滌端入口為29.39毫升/分鐘、在所述進料入口為0.825毫升/分鐘、在所述萃出端為13.10毫升/分鐘以及在所述萃餘端為17.12毫升/分鐘,且所述模擬移動床的切換時間為4分鐘至4分鐘10秒。The method for purifying unsaturated fatty acids according to item 1 of the scope of patent application, wherein the separation conditions used in the simulated moving bed are: the flow rate of carbon dioxide at the inlet of the scrubbing end is 26.5 kg / hour, at the inlet of the feed 0.75 kg / hour at the extraction end, 11.78 kg / hour at the extraction end, and 15.47 kg / hour at the extraction end, and the flow rate of pure ethanol was 29.39 ml / min at the inlet of the scrubbing end, at The feed inlet is 0.825 ml / min, 13.10 ml / min at the extraction end and 17.12 ml / min at the rest end, and the switching time of the simulated moving bed is 4 minutes to 4 minutes 10 seconds. 一種純化亞麻酸的方法,包括:提供乙酯化亞麻籽油;進行第一模擬移動床層析製程,以將所述乙酯化亞麻籽油中的不飽和脂肪酸分離開來,其中所分離的所述不飽和脂肪酸包括亞麻酸以及亞油酸,所述第一模擬移動床層析製程包含:提供第一模擬移動床,所述第一模擬移動床依序包括第一區段、第二區段以及第三區段,其中所述第一模擬移動床是由第一移動相及第一固定相所組成,所述第一固定相顆粒內部是具有孔隙,所述第一移動相對於所述模擬移動床中是朝同一方向從第一沖滌端入口流經所述第一區段、所述第二區段以及所述第三區段之間,所述第一固定相是相對於所述第一移動相朝反方向模擬移動,其中所述第一移動相為包含超臨界二氧化碳與純乙醇的沖滌劑,其中所述第一區段、所述第二區段以及所述第三區段各自包含2根管柱、3根管柱與3根管柱,且每根管柱內填充所述第一固定相;將所述乙酯化亞麻籽油從第一進料入口注入所述模擬移動床的所述第二區段與所述第三區段之間,並使所述不飽和脂肪酸隨所述第一固定相移動至所述第一區段與所述第二區段之間的第一萃出端並使所述乙酯化亞麻籽油中的其它混合物隨所述第一移動相移動至所述第三區段的第一萃餘端,以分離所述不飽和脂肪酸;以及進行第二模擬移動床層析製程,以將所分離的所述不飽和脂肪酸中的亞麻酸分離開來,其中所述第二模擬移動床層析製程包括:提供第二模擬移動床,所述第二模擬移動床依序包括第四區段、第五區段以及第六區段,其中所述第二模擬移動床是由第二移動相及第二固定相所組成,所述第二固定相顆粒內部是具有孔隙,所述第二移動相對於所述第二模擬移動床中是朝同一方向從第二沖滌端入口流經所述第四區段、所述第五區段以及所述第六區段之間,所述第二固定相是相對於所述第二移動相朝反方向模擬移動,其中所述第二固定相為反相填料,其中所述第四區段、所述第五區段以及所述第六區段各自包含2根管柱,且每根管柱內填充所述第二固定相;將所述不飽和脂肪酸從第二進料入口注入所述第二模擬移動床的所述第五區段與所述第六區段之間,並使所述不飽和脂肪酸中的亞麻酸隨所述第二移動相移動至所述第六區段的所述第二萃餘端,並使所述不飽和脂肪酸中的其他混合物隨所述第二固定相移動至所述第四區段與所述第五區段之間的所述第二萃出端,以分離亞麻酸以及亞油酸。A method for purifying linolenic acid includes: providing ethylated linseed oil; performing a first simulated moving bed chromatography process to separate unsaturated fatty acids in the ethylated linseed oil, wherein the separated The unsaturated fatty acid includes linolenic acid and linoleic acid. The first simulated moving bed chromatography process includes: providing a first simulated moving bed, and the first simulated moving bed includes a first section and a second section in sequence. Segment and third segment, wherein the first simulated moving bed is composed of a first mobile phase and a first stationary phase, the first stationary phase particles have pores inside, and the first movement is relative to the In the simulated moving bed, the first stationary phase flows through the first section, the second section, and the third section from the inlet of the first washing end in the same direction. The first mobile phase simulates a movement in the opposite direction, wherein the first mobile phase is a detergent containing supercritical carbon dioxide and pure ethanol, wherein the first section, the second section, and the third section Sections each contain 2 columns and 3 tubes And three tube columns, each of which is filled with the first stationary phase; the ethylated linseed oil is injected into the second section of the simulated moving bed and the Between the third segment, and moving the unsaturated fatty acid with the first stationary phase to a first extraction end between the first segment and the second segment and causing the B The other mixture in the esterified linseed oil moves with the first mobile phase to the first raffinate end of the third section to separate the unsaturated fatty acids; and performs a second simulated moving bed chromatography process, To separate the linolenic acid in the separated unsaturated fatty acids, the second simulated moving bed chromatography process includes: providing a second simulated moving bed, and the second simulated moving bed sequentially includes a fourth Section, the fifth section, and the sixth section, wherein the second simulated moving bed is composed of a second mobile phase and a second stationary phase, and the second stationary phase particles have pores inside, and the first The two moves relative to the second simulated moving bed are flushed from the second direction in the same direction. The inlet flows between the fourth section, the fifth section, and the sixth section, and the second stationary phase is simulated to move in a reverse direction relative to the second mobile phase, wherein the The second stationary phase is a reversed-phase packing, wherein each of the fourth section, the fifth section, and the sixth section includes two columns, and each of the columns is filled with the second stationary phase. ; Injecting the unsaturated fatty acid from the second feed inlet between the fifth section and the sixth section of the second simulated moving bed, and allowing linolenic acid in the unsaturated fatty acid to follow The second mobile phase moves to the second raffinate end of the sixth section, and causes the other mixture in the unsaturated fatty acid to move with the second stationary phase to the fourth section and The second extraction end between the fifth sections to separate linolenic acid from linoleic acid. 如申請專利範圍第7項所述的純化亞麻酸的方法,其中以所述沖滌劑的總量計,所述沖滌劑中的所述純乙醇的含量為1wt%~8wt%。The method for purifying linolenic acid according to item 7 in the scope of the patent application, wherein the content of the pure ethanol in the rinse agent is 1 wt% to 8 wt% based on the total amount of the rinse agent. 如申請專利範圍第7項所述的純化亞麻酸的方法,其中所述第一固定相為無規二氧化矽。The method for purifying linolenic acid according to item 7 of the scope of patent application, wherein the first stationary phase is random silica. 如申請專利範圍第7項所述的純化亞麻酸的方法,其中所述第一模擬移動床使用的分離條件為:二氧化碳流速在所述第一沖滌端入口為26.5公斤/小時、在所述第一進料入口為1.5公斤/小時、在所述第一萃出端為11.19公斤/小時以及在所述第一萃餘端為16.81公斤/小時,且所述純乙醇流速在所述第一沖滌端入口為29.39毫升/分鐘、在所述第一進料入口為1.65毫升/分鐘、在所述第一萃出端為12.44毫升/分鐘以及在所述第一萃餘端為18.60毫升/分鐘,且所述第一模擬移動床的切換時間為3分鐘35秒至3分鐘48秒。The method for purifying linolenic acid according to item 7 of the scope of the patent application, wherein the separation conditions used in the first simulated moving bed are: the flow rate of carbon dioxide at the inlet of the first scouring end is 26.5 kg / hour, The first feed inlet is 1.5 kg / hr, 11.19 kg / hr at the first extraction end and 16.81 kg / hr at the first extraction end, and the flow rate of the pure ethanol is at the first The inlet of the rinse end is 29.39 ml / min, 1.65 ml / min at the first feed inlet, 12.44 ml / min at the first extraction end, and 18.60 ml / min at the first raffinate end Minutes, and the switching time of the first simulated moving bed is 3 minutes 35 seconds to 3 minutes 48 seconds. 如申請專利範圍第7項所述的純化亞麻酸的方法,其中所述模擬移動床使用的分離條件為:二氧化碳流速在所述第一沖滌端入口為26.5公斤/小時、在所述第一進料入口為1.5公斤/小時、在所述第一萃出端為11.78公斤/小時以及在所述第一萃餘端為16.22公斤/小時,且所述純乙醇流速在所述第一沖滌端入口為29.39毫升/分鐘、在所述第一進料入口為1.65毫升/分鐘、在所述第一萃出端為13.10毫升/分鐘以及在所述第一萃餘端為17.94毫升/分鐘,且所述第一模擬移動床的切換時間為3分鐘50秒至3分鐘53秒。The method for purifying linolenic acid according to item 7 in the scope of the patent application, wherein the separation conditions used in the simulated moving bed are: the flow rate of carbon dioxide at the inlet of the first scrubbing end is 26.5 kg / hour, The feed inlet is 1.5 kg / hr, 11.78 kg / hr at the first extraction end and 16.22 kg / hr at the first extraction end, and the flow rate of the pure ethanol is at the first rinse The end inlet is 29.39 ml / min, the first feed inlet is 1.65 ml / min, the first extraction end is 13.10 ml / min, and the first raffinate end is 17.94 ml / min, And the switching time of the first simulated moving bed is 3 minutes and 50 seconds to 3 minutes and 53 seconds. 如申請專利範圍第7項所述的純化亞麻酸的方法,其中所述第一模擬移動床使用的分離條件為:二氧化碳流速在所述第一沖滌端入口為26.5公斤/小時、在所述第一進料入口為0.75公斤/小時、在所述第一萃出端為11.78公斤/小時以及在所述第一萃餘端為15.47公斤/小時,且所述純乙醇流速在所述第一沖滌端入口為29.39毫升/分鐘、在所述第一進料入口為0.825毫升/分鐘、在所述第一萃出端為13.10毫升/分鐘以及在所述第一萃餘端為17.12毫升/分鐘,且所述第一模擬移動床的切換時間為4分鐘至4分鐘10秒。The method for purifying linolenic acid according to item 7 of the scope of the patent application, wherein the separation conditions used in the first simulated moving bed are: the flow rate of carbon dioxide at the inlet of the first scrubbing end is 26.5 kg / hour, The first feed inlet is 0.75 kg / hr, 11.78 kg / hr at the first extraction end and 15.47 kg / hr at the first extraction end, and the flow rate of the pure ethanol is at the first The inlet of the rinse end is 29.39 ml / min, 0.825 ml / min at the first feed inlet, 13.10 ml / min at the first extraction end, and 17.12 ml / min at the first raffinate end Minutes, and the switching time of the first simulated moving bed is 4 minutes to 4 minutes and 10 seconds. 如申請專利範圍第7項所述的純化亞麻酸的方法,其中所述反相填料包括ODS改質的二氧化矽。The method for purifying linolenic acid according to item 7 of the scope of patent application, wherein the reversed-phase filler comprises ODS-modified silica. 如申請專利範圍第7項所述的純化亞麻酸的方法,其中所述第二移動相包括純乙醇或95%乙醇溶液。The method for purifying linolenic acid according to item 7 of the patent application scope, wherein the second mobile phase comprises pure ethanol or a 95% ethanol solution. 如申請專利範圍第7項所述的純化亞麻酸的方法,其中所述第二模擬移動床使用的分離條件為:所述第二移動相為95%乙醇溶液,且所述95%乙醇溶液流速在所述第二沖滌端入口為0.96毫升/分鐘、在所述第二進料入口為0.01毫升/分鐘、在所述第二萃出端為0.36毫升/分鐘以及在所述第二萃餘端為0.61毫升/分鐘,且所述第二模擬移動床的切換時間為6分鐘至6分鐘30秒。The method for purifying linolenic acid according to item 7 of the scope of the patent application, wherein the separation conditions used in the second simulated moving bed are: the second mobile phase is a 95% ethanol solution, and the flow rate of the 95% ethanol solution 0.96 ml / min at the second inlet, 0.01 ml / min at the second inlet, 0.36 ml / min at the second extraction end, and at the second raffinate The end is 0.61 ml / min, and the switching time of the second simulated moving bed is 6 minutes to 6 minutes and 30 seconds. 如申請專利範圍第7項所述的純化亞麻酸的方法,其中所述第二模擬移動床使用的分離條件為:所述第二移動相為所述純乙醇,且所述純乙醇流速在所述第二沖滌端入口為0.96毫升/分鐘、在所述第二進料入口為0.016毫升/分鐘、在所述第二萃出端為0.36毫升/分鐘以及在所述第二萃餘端為0.616毫升/分鐘,且所述第二模擬移動床的切換時間為4分鐘20秒至4分鐘30秒。The method for purifying linolenic acid according to item 7 in the scope of the patent application, wherein the separation conditions used in the second simulated moving bed are: the second mobile phase is the pure ethanol, and the flow rate of the pure ethanol is The inlet of the second washing end is 0.96 ml / min, 0.016 ml / min at the second feed inlet, 0.36 ml / min at the second extraction end, and 0.616 ml / min, and the switching time of the second simulated moving bed is 4 minutes and 20 seconds to 4 minutes and 30 seconds.
TW106127658A 2017-08-15 2017-08-15 Method for purifying unsaturated fatty acid and purifying linolenic acid TWI648393B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106127658A TWI648393B (en) 2017-08-15 2017-08-15 Method for purifying unsaturated fatty acid and purifying linolenic acid
CN201710897209.6A CN109401850B (en) 2017-08-15 2017-09-28 Method for purifying unsaturated fatty acid and linolenic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106127658A TWI648393B (en) 2017-08-15 2017-08-15 Method for purifying unsaturated fatty acid and purifying linolenic acid

Publications (2)

Publication Number Publication Date
TWI648393B true TWI648393B (en) 2019-01-21
TW201910500A TW201910500A (en) 2019-03-16

Family

ID=65462944

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106127658A TWI648393B (en) 2017-08-15 2017-08-15 Method for purifying unsaturated fatty acid and purifying linolenic acid

Country Status (2)

Country Link
CN (1) CN109401850B (en)
TW (1) TWI648393B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716829B (en) * 2019-03-12 2021-01-21 喬璞科技有限公司 Method of purifying 6-gingerol
CN110256250B (en) * 2019-06-14 2022-03-04 自然资源部第一海洋研究所 Method for preparing high-purity conjugated linoleate by using simulated moving bed
CN111233659B (en) * 2020-02-19 2022-05-13 自然资源部第一海洋研究所 Method for preparing conjugated linoleic acid isomer monomer by utilizing four-region simulated moving bed system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719302A (en) * 1993-04-29 1998-02-17 Pronova A.S Processes for chromatographic fractionation of fatty acids and their derivatives
CN102811781A (en) * 2009-12-30 2012-12-05 巴斯夫制药(卡兰尼什)公司 Simulated Moving Bed Chromatographic Separation Process For Recovering Polyunsaturated Fatty Acid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063500A2 (en) * 2007-09-19 2009-05-22 V.B.Medicare Pvt. Ltd. Novel methods of isolation of poly unsaturated fatty acids
CN101402558A (en) * 2008-05-13 2009-04-08 山西中大科技有限公司右玉分公司 Method for separating and purifying alpha-linolenic acid from cold pressed flax seed oil
GB201111601D0 (en) * 2011-07-06 2011-08-24 Equateq Ltd New process
US9546125B2 (en) * 2015-02-11 2017-01-17 Orochem Technologies, Inc. Continuous process for extraction of unsaturated triglycerides from fish oil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719302A (en) * 1993-04-29 1998-02-17 Pronova A.S Processes for chromatographic fractionation of fatty acids and their derivatives
CN102811781A (en) * 2009-12-30 2012-12-05 巴斯夫制药(卡兰尼什)公司 Simulated Moving Bed Chromatographic Separation Process For Recovering Polyunsaturated Fatty Acid

Also Published As

Publication number Publication date
CN109401850A (en) 2019-03-01
CN109401850B (en) 2022-05-31
TW201910500A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
TWI648393B (en) Method for purifying unsaturated fatty acid and purifying linolenic acid
JP6894162B2 (en) Multiple step separation method
BR112014000162B1 (en) chromatographic separation process
CN103826715B (en) The chromatography separating method of heating
US4529551A (en) Process for separating oleic acid from linoleic acid
BR112014000152B1 (en) chromatographic separation process
EP1979062A2 (en) Method of preparing a composition using argentation chromatography
CA1156260A (en) Two-stage process for separating mixed fatty-acid esters
EP3029021A1 (en) Method for separating fat-soluble material by simulated moving bed chromatography, and device for same
CN111362790A (en) Chromatographic method for separating EPA and DHA
TWI648258B (en) Mothod of purifying polyunsaturated fatty acid and eicosapentaenoic acid
TWI578985B (en) Extraction and purification of conjugated triene linoleic acid (CLN)
JP2018141168A (en) Chromatographic process for production of highly purified polyunsaturated fatty acids
CN115010596A (en) Method for enriching eicosapentaenoic acid in fish oil raw material
CN108250066A (en) A kind of isolation and purification method of high-purity unrighted acid
JPH0692595B2 (en) Separation method of fatty acid and triglyceride
CN108250273A (en) Knob not Kangding high efficiency separation and purification method
CN114349638A (en) Method for purifying omega-3-acid ethyl ester in ethyl ester type fish oil
Liang et al. Effect of Temperature Variation on the Separation of Sesamin and Sesamolin by Simulated Moving Bed (pp. 479-486)
TWI826944B (en) Mothod of removing plasticizer from ethyl esterified fish oil
CN115073292A (en) Preparation method of eicosapentaenoic acid ethyl ester
CN114874851B (en) Method for separating nervonic acid from acer truncatum seed oil
TWI635075B (en) Method of purifying conjugated linolenic acid
TWI716829B (en) Method of purifying 6-gingerol
TWI697671B (en) Method of purifying tanshinone-based compound