TWI646781B - Power-on control circuit with state-recovery mechanism and operating circuit utilizing the same - Google Patents

Power-on control circuit with state-recovery mechanism and operating circuit utilizing the same Download PDF

Info

Publication number
TWI646781B
TWI646781B TW106125859A TW106125859A TWI646781B TW I646781 B TWI646781 B TW I646781B TW 106125859 A TW106125859 A TW 106125859A TW 106125859 A TW106125859 A TW 106125859A TW I646781 B TWI646781 B TW I646781B
Authority
TW
Taiwan
Prior art keywords
voltage
circuit
signal
voltage source
source
Prior art date
Application number
TW106125859A
Other languages
Chinese (zh)
Other versions
TW201911748A (en
Inventor
莊榮圳
黃紹璋
莊介堯
陳宏維
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW106125859A priority Critical patent/TWI646781B/en
Application granted granted Critical
Publication of TWI646781B publication Critical patent/TWI646781B/en
Publication of TW201911748A publication Critical patent/TW201911748A/en

Links

Abstract

一種上電控制電路,包括一第一偵測電路、一切換電路、一第一緩衝器、一第二偵測電路以及一第二緩衝器。第一偵測電路偵測一第一電壓源的電壓,用以產生一第一偵測信號予一第一節點。切換電路耦接第一電壓源以及一第二電壓源,並根據第一節點的位準,輸出第一或第二電壓源的電壓予一第二節點。第一緩衝器根據第二節點的位準,產生一回授信號以及一控制信號。第二偵測電路根據回授信號、控制信號、第二電壓源的電壓以及一回復信號,產生一第二偵測信號。第二緩衝器根據第二偵測信號產生回復信號。 A power-on control circuit includes a first detection circuit, a switching circuit, a first buffer, a second detection circuit, and a second buffer. The first detecting circuit detects a voltage of the first voltage source to generate a first detecting signal to a first node. The switching circuit is coupled to the first voltage source and the second voltage source, and outputs the voltage of the first or second voltage source to a second node according to the level of the first node. The first buffer generates a feedback signal and a control signal according to the level of the second node. The second detecting circuit generates a second detecting signal according to the feedback signal, the control signal, the voltage of the second voltage source, and a reply signal. The second buffer generates a reply signal according to the second detection signal.

Description

具狀態回復機制之上電控制電路及操作電路 Electrical control circuit and operating circuit with state recovery mechanism

本發明係有關於一種上電控制電路,特別是有關於一種根據一核心電壓而動作的上電控制電路。 The present invention relates to a power-on control circuit, and more particularly to a power-on control circuit that operates in accordance with a core voltage.

隨著科技的進步,電子裝置的種類及功能愈來愈多。一般而言,電子裝置內部具有許多積體電路。每一積體電路可能接收許多操作電壓。當某一操作電壓未達一目標值時,如果積體電路使用了該操作電壓,則積體電路很容易產生錯誤的信號。 With the advancement of technology, the types and functions of electronic devices are increasing. In general, there are many integrated circuits inside the electronic device. Each integrated circuit may receive many operating voltages. When an operating voltage does not reach a target value, if the integrated circuit uses the operating voltage, the integrated circuit can easily generate an erroneous signal.

本發明提供一種具狀態回復機制之上電控制電路,包括一第一偵測電路、一切換電路、一第一緩衝器、一第二偵測電路以及一第二緩衝器。第一偵測電路偵測一第一電壓源的電壓,用以產生一第一偵測信號予一第一節點。切換電路耦接第一電壓源以及一第二電壓源,並根據第一節點的位準,輸出第一或第二電壓源的電壓予一第二節點。第一緩衝器根據第二節點的位準,產生一回授信號以及一控制信號。第二偵測電路根據回授信號、控制信號、第二電壓源的電壓以及一回復信號,產生一第二偵測信號。第二緩衝器根據第二偵測信號產生回復信號。 The present invention provides an electrical control circuit with a state recovery mechanism, including a first detection circuit, a switching circuit, a first buffer, a second detection circuit, and a second buffer. The first detecting circuit detects a voltage of the first voltage source to generate a first detecting signal to a first node. The switching circuit is coupled to the first voltage source and the second voltage source, and outputs the voltage of the first or second voltage source to a second node according to the level of the first node. The first buffer generates a feedback signal and a control signal according to the level of the second node. The second detecting circuit generates a second detecting signal according to the feedback signal, the control signal, the voltage of the second voltage source, and a reply signal. The second buffer generates a reply signal according to the second detection signal.

本發明更提供一種操作電路,包括一核心電路、一第一輸出開關、一第二輸出開關以及一上電控制電路。核心電路接收一第一電壓源的電壓以及一第二電壓源的電壓,並產生一第一控制信號以及一第二控制信號。第一輸出開關根據第一控制信號,傳送第一電壓源的電壓予一接合墊。第二輸出開關根據第二控制信號,傳送一接地電壓予接合墊。上電控制電路根據第一及第二電壓源的電壓,控制第一及第二輸出開關,並包括一第一偵測電路、一切換電路、一第一緩衝器、一第二偵測電路以及一第二緩衝器。第一偵測電路偵測第一電壓源的電壓,用以產生一第一偵測信號予一第一節點。切換電路耦接第一及第二電壓源,並根據第一節點的位準,輸出第一或第二電壓源的電壓予一第二節點。第一緩衝器根據第二節點的位準,產生一回授信號以及一控制信號。第二偵測電路根據回授信號、控制信號、第二電壓源的電壓以及一回復信號,產生一第二偵測信號。第二緩衝器根據第二偵測信號產生回復信號,並根據第二偵測信號控制第一及第二輸出開關。 The invention further provides an operating circuit comprising a core circuit, a first output switch, a second output switch and a power-on control circuit. The core circuit receives a voltage of a first voltage source and a voltage of a second voltage source, and generates a first control signal and a second control signal. The first output switch transmits the voltage of the first voltage source to a bonding pad according to the first control signal. The second output switch transmits a ground voltage to the bonding pad according to the second control signal. The power-on control circuit controls the first and second output switches according to the voltages of the first and second voltage sources, and includes a first detection circuit, a switching circuit, a first buffer, a second detection circuit, and A second buffer. The first detecting circuit detects the voltage of the first voltage source to generate a first detecting signal to a first node. The switching circuit is coupled to the first and second voltage sources, and outputs the voltage of the first or second voltage source to a second node according to the level of the first node. The first buffer generates a feedback signal and a control signal according to the level of the second node. The second detecting circuit generates a second detecting signal according to the feedback signal, the control signal, the voltage of the second voltage source, and a reply signal. The second buffer generates a reply signal according to the second detection signal, and controls the first and second output switches according to the second detection signal.

100‧‧‧操作系統 100‧‧‧ operating system

110‧‧‧操作電路 110‧‧‧Operating circuit

120‧‧‧接合墊 120‧‧‧Join pad

111‧‧‧核心電路 111‧‧‧ core circuit

112、200A、200B、200C、200D‧‧‧上電控制電路 112, 200A, 200B, 200C, 200D‧‧‧ power-on control circuit

113、114‧‧‧控制開關 113, 114‧‧‧ control switch

115、116‧‧‧輸出開關 115, 116‧‧‧ output switch

131、132‧‧‧電壓源 131, 132‧‧‧ voltage source

GND‧‧‧接地電壓 GND‧‧‧ Grounding voltage

SC1、SC2‧‧‧控制信號 S C1 , S C2 ‧‧‧ control signals

SD1、SD2‧‧‧驅動信號 S D1 , S D2 ‧‧‧ drive signal

P11、P12、Pdet、Psw、P21~P26、P28~P30、311~313、331、332、341、343‧‧‧P型電晶體 P11, P12, Pdet, Psw, P21~P26, P28~P30, 311~313, 331, 332, 341, 343‧‧‧P type transistor

N11、N12、Nsw、N21~N30、321~323、333、342‧‧‧N型電晶體 N11, N12, Nsw, N21~N30, 321~323, 333, 342‧‧‧N type transistors

210、240‧‧‧偵測電路 210, 240‧‧‧Detection circuit

220‧‧‧切換電路 220‧‧‧Switching circuit

230、250‧‧‧緩衝器 230, 250‧‧‧ buffer

ND1、ND2‧‧‧節點 ND1, ND2‧‧‧ nodes

260‧‧‧設定單元 260‧‧‧Setting unit

C‧‧‧電容 C‧‧‧ capacitor

sw_fb‧‧‧回授信號 Sw_fb‧‧‧Return signal

sw18‧‧‧控制信號 Sw18‧‧‧ control signal

rcv_on‧‧‧回復信號 Rcv_on‧‧‧Response signal

SDT‧‧‧偵測信號 S DT ‧‧‧Detection signal

241、242‧‧‧邏輯電路 241, 242‧‧‧ logic circuits

243‧‧‧傳輸閘 243‧‧‧Transmission gate

260、300A、300B‧‧‧電壓供給電路 260, 300A, 300B‧‧‧ voltage supply circuit

270‧‧‧位準轉換電路 270‧‧ ‧ level conversion circuit

271‧‧‧反相器 271‧‧‧Inverter

SOT‧‧‧輸出信號 S OT ‧‧‧ output signal

VR‧‧‧衰減電壓 V R ‧‧‧Attenuation voltage

第1圖為本發明之操作系統的示意圖。 Figure 1 is a schematic diagram of the operating system of the present invention.

第2A~2D圖為本發明之具狀態回復機制之上電控制電路的可能實施例。 2A~2D are possible embodiments of the electrical control circuit with state recovery mechanism of the present invention.

第3A~3D圖為本發明之電壓供給電路的可能實施例。 3A-3D are possible embodiments of the voltage supply circuit of the present invention.

第4A圖為本發明之上電控制電路操作於一電源開啟模式的示意圖。 FIG. 4A is a schematic diagram of the power-on control circuit of the present invention operating in a power-on mode.

第4B圖為本發明之上電控制電路操作於一正常模式的示意圖。 Figure 4B is a schematic diagram of the power control circuit of the present invention operating in a normal mode.

第4C圖為本發明之上電控制電路操作於一電源關閉模式的示意圖。 4C is a schematic diagram of the power-on control circuit of the present invention operating in a power-off mode.

為讓本發明之目的、特徵和優點能更明顯易懂,下文特舉出實施例,並配合所附圖式,做詳細之說明。本發明說明書提供不同的實施例來說明本發明不同實施方式的技術特徵。其中,實施例中的各元件之配置係為說明之用,並非用以限制本發明。另外,實施例中圖式標號之部分重覆,係為了簡化說明,並非意指不同實施例之間的關聯性。 In order to make the objects, features and advantages of the present invention more comprehensible, the embodiments of the invention are described in detail below. The present specification provides various embodiments to illustrate the technical features of various embodiments of the present invention. The arrangement of the various elements in the embodiments is for illustrative purposes and is not intended to limit the invention. In addition, the overlapping portions of the drawings in the embodiments are for the purpose of simplifying the description, and do not mean the relationship between the different embodiments.

第1圖為本發明之操作系統的示意圖。操作系統100包括一操作電路110以及一接合墊(pad)120。在本實施例中,操作電路110用以控制接合墊120的位準。如圖所示,操作電路110包括一核心電路111、一上電控制電路112、控制開關113、114及輸出開關115及116。核心電路111耦接電壓源131及132。在一可能實施例中,電壓源131係用以產生一輸入輸出電壓(I/O power),而電壓源132係用以產生一核心電壓(core power)。在本實施例中,輸入輸出電壓與核心電壓均作為核心電路111的操作電壓。在另一可能實施例中,輸入輸出電壓大於核心電壓。舉例而言,輸入輸出電壓約為3.3V,而核心電壓約為1.8V。另外,核心電路111亦接收一接地電壓GND。 Figure 1 is a schematic diagram of the operating system of the present invention. The operating system 100 includes an operating circuit 110 and a pad 120. In the present embodiment, the operating circuit 110 is used to control the level of the bonding pad 120. As shown, the operational circuit 110 includes a core circuit 111, a power up control circuit 112, control switches 113, 114, and output switches 115 and 116. The core circuit 111 is coupled to the voltage sources 131 and 132. In one possible embodiment, voltage source 131 is used to generate an input/output voltage (I/O power) and voltage source 132 is used to generate a core power. In the present embodiment, both the input and output voltages and the core voltage are used as the operating voltage of the core circuit 111. In another possible embodiment, the input and output voltages are greater than the core voltage. For example, the input and output voltage is about 3.3V, and the core voltage is about 1.8V. In addition, the core circuit 111 also receives a ground voltage GND.

核心電路111根據電壓源131及132所提供的電壓以及接地電壓GND而動作,並產生控制信號SC1及SC2,用以控 制輸出開關115及116。在本實施例中,控制信號SC1用以導通或不導通輸出開關115。當輸出開關115被導通時,輸出開關115提供電壓源131的電壓予接合墊120。因此,接合墊120為高位準。另外,控制信號SC2用以導通或不導通輸出開關116。當輸出開關116被導通時,輸出開關116提供接地電壓GND予接合墊120。因此,接合墊120為低位準。 The core circuit 111 operates in accordance with the voltages provided by the voltage sources 131 and 132 and the ground voltage GND, and generates control signals S C1 and S C2 for controlling the output switches 115 and 116. In this embodiment, the control signal S C1 is used to turn on or off the output switch 115. When the output switch 115 is turned on, the output switch 115 supplies the voltage of the voltage source 131 to the bond pad 120. Therefore, the bonding pad 120 is at a high level. In addition, the control signal S C2 is used to turn on or off the output switch 116. When the output switch 116 is turned on, the output switch 116 supplies the ground voltage GND to the bond pad 120. Therefore, the bonding pad 120 is at a low level.

然而,當電壓源131與132開始輸出電壓時,電壓源131及132的電壓可能係從0V逐漸上升。當電壓源131的電壓達一第一預設值(如0.7V)並且電壓源132的電壓未達一第二預設值(如0.9V)時,核心電路111可能產生錯誤的控制信號SC1與SC2。當控制信號SC1與SC2分別導通輸出開關115及116時,一漏電流將流過輸出開關115及116。為解決此問題,在電壓源132的電壓未達第二預設值時,上電控制電路112不導通輸出開關115及116。 However, when voltage sources 131 and 132 begin to output voltage, the voltages of voltage sources 131 and 132 may gradually rise from 0V. When the voltage of the voltage source 131 reaches a first preset value (such as 0.7V) and the voltage of the voltage source 132 does not reach a second preset value (such as 0.9V), the core circuit 111 may generate an erroneous control signal S C1 . With S C2 . When control signals S C1 and S C2 turn on output switches 115 and 116, respectively, a leakage current will flow through output switches 115 and 116. To solve this problem, the power-on control circuit 112 does not turn on the output switches 115 and 116 when the voltage of the voltage source 132 does not reach the second predetermined value.

舉例而言,當電壓源131的電壓達第一預設值並且電壓源132的電壓未達第二預設值時,上電控制電路112進入於一電源開啟(power-on)模式。在電源開啟模式中,上電控制電路112不導通輸出開關115及116。當電壓源131的電壓已達第一預設值並且電壓源132的電壓已達第二預設值時,上電控制電路112進入一正常(normal)模式。在此模式中,上電控制電路112不再控制輸出開關115及116。此時,輸出開關115及116係由核心電路111所控制。當電壓源132的電壓減少並低於第二預設值時,上電控制電路112進入一電源關閉(power-off)模式。在電源關閉模式,上電控制電路112再次控制輸出開關115及116, 並且不導通輸出開關115及116。 For example, when the voltage of the voltage source 131 reaches the first preset value and the voltage of the voltage source 132 does not reach the second preset value, the power-on control circuit 112 enters a power-on mode. In the power on mode, the power up control circuit 112 does not turn on the output switches 115 and 116. When the voltage of the voltage source 131 has reached the first predetermined value and the voltage of the voltage source 132 has reached the second predetermined value, the power-on control circuit 112 enters a normal mode. In this mode, power up control circuit 112 no longer controls output switches 115 and 116. At this time, the output switches 115 and 116 are controlled by the core circuit 111. When the voltage of the voltage source 132 decreases and is lower than the second predetermined value, the power-on control circuit 112 enters a power-off mode. In the power off mode, the power up control circuit 112 again controls the output switches 115 and 116, And the output switches 115 and 116 are not turned on.

本發明並不限定上電控制電路112如何控制輸出開關115及116。在一可能實施例中,上電控制電路112根據電壓源131及132的電壓,產生驅動信號SD1及SD2,並透過驅動信號SD1及SD2間接地控制輸出開關115及116。舉例而言,當驅動信號SD1導通控制開關113時,控制開關113提供電壓源131的電壓予輸出開關115,用以不導通輸出開關115。當驅動信號SD2導通控制開關114時,控制開關114提供接地電壓GND予輸出開關116,用以不導通輸出開關116。在其它實施例中,控制開關113及114可省略。在此例中,上電控制電路112直接連接輸出開關115及116,並透過驅動信號SD1與SD2控制輸出開關115及116。 The present invention does not limit how the power up control circuit 112 controls the output switches 115 and 116. In a possible embodiment, the power-on control circuit 112 generates the driving signals S D1 and S D2 according to the voltages of the voltage sources 131 and 132, and indirectly controls the output switches 115 and 116 through the driving signals S D1 and S D2 . For example, when the driving signal S D1 turns on the control switch 113, the control switch 113 supplies the voltage of the voltage source 131 to the output switch 115 for not turning on the output switch 115. When the driving signal S D2 turns on the control switch 114, the control switch 114 provides a ground voltage GND to the output switch 116 for not turning on the output switch 116. In other embodiments, control switches 113 and 114 may be omitted. In this example, power-up control circuit 112 is coupled directly to output switches 115 and 116 and controls output switches 115 and 116 via drive signals S D1 and S D2 .

本發明並不限定控制開關113及114的內部架構。在一可能實施例中,控制開關113係為一P型電晶體P12,並且控制開關114係為一N型電晶體N12。如圖所示,P型電晶體P12的閘極耦接上電控制電路112,用以接收驅動信號SD1。P型電晶體P12的源極耦接電壓源131。P型電晶體P12的汲極耦接輸出開關115。當驅動信號SD1為低位準時,P型電晶體P12被導通,用以傳送電壓源131的電壓予輸出開關115。另外,N型電晶體N12的閘極耦接上電控制電路112,用以接收驅動信號SD2。N型電晶體N12的汲極耦接輸出開關116。N型電晶體N12的源極接收接地電壓GND。當驅動信號SD2為高位準時,N型電晶體N12被導通,用以傳送接地電壓GND予輸出開關116。在其它實施例中,控制開關113係為一N型電晶體,並且控制開關114係為 一P型電晶體。在一些實施例中,控制開關113及114均為N型電晶體或是均為P型電晶體。 The present invention is not limited to the internal architecture of the control switches 113 and 114. In a possible embodiment, the control switch 113 is a P-type transistor P12, and the control switch 114 is an N-type transistor N12. As shown, the gate of the P-type transistor P12 is coupled to the power-on control circuit 112 for receiving the driving signal S D1 . The source of the P-type transistor P12 is coupled to the voltage source 131. The drain of the P-type transistor P12 is coupled to the output switch 115. When the driving signal S D1 is at a low level, the P-type transistor P12 is turned on to transfer the voltage of the voltage source 131 to the output switch 115. In addition, the gate of the N-type transistor N12 is coupled to the power-on control circuit 112 for receiving the driving signal S D2 . The drain of the N-type transistor N12 is coupled to the output switch 116. The source of the N-type transistor N12 receives the ground voltage GND. When the driving signal S D2 is at a high level, the N-type transistor N12 is turned on to transmit the ground voltage GND to the output switch 116. In other embodiments, the control switch 113 is an N-type transistor and the control switch 114 is a P-type transistor. In some embodiments, control switches 113 and 114 are both N-type transistors or both P-type transistors.

本發明並不限定輸出開關115及116的內部電路架構。在本實施例中,輸出開關115係為一P型電晶體P11,並且輸出開關116係為一N型電晶體N11。P型電晶體P11的閘極耦接核心電路111以及控制開關113。P型電晶體P11的源極耦接電壓源131。P型電晶體P11的汲極耦接接合墊120。當P型電晶體P11被導通時,P型電晶體P11傳送電壓源131的電壓至接合墊120。另外,N型電晶體N11的閘極耦接核心電路111以及控制開關114。N型電晶體N11的汲極耦接接合墊120。N型電晶體N11的源極接收接地電壓GND。當N型電晶體N11被導通時,N型電晶體N11傳送接地電壓GND至接合墊120。在其它實施例中,輸出開關115係為一N型電晶體,並且輸出開關116係為一P型電晶體。在一些實施例中,輸出開關115及116均為N型電晶體或是均為P型電晶體。 The present invention does not limit the internal circuit architecture of the output switches 115 and 116. In the present embodiment, the output switch 115 is a P-type transistor P11, and the output switch 116 is an N-type transistor N11. The gate of the P-type transistor P11 is coupled to the core circuit 111 and the control switch 113. The source of the P-type transistor P11 is coupled to the voltage source 131. The drain of the P-type transistor P11 is coupled to the bond pad 120. When the P-type transistor P11 is turned on, the P-type transistor P11 transmits the voltage of the voltage source 131 to the bonding pad 120. In addition, the gate of the N-type transistor N11 is coupled to the core circuit 111 and the control switch 114. The drain of the N-type transistor N11 is coupled to the bond pad 120. The source of the N-type transistor N11 receives the ground voltage GND. When the N-type transistor N11 is turned on, the N-type transistor N11 transmits the ground voltage GND to the bonding pad 120. In other embodiments, the output switch 115 is an N-type transistor and the output switch 116 is a P-type transistor. In some embodiments, the output switches 115 and 116 are both N-type transistors or both P-type transistors.

第2A圖為本發明之上電控制電路的一可能實施例。如圖所示,上電控制電路200A包括偵測電路210及240、一切換電路220以及緩衝器230及250。偵測電路210偵測電壓源131的電壓,用以產生一偵測信號予節點ND1。本發明並不限定偵測電路210的電路架構。在本實施例中,偵測電路210係為一P型電晶體Pdet。P型電晶體Pdet的閘極耦接節點ND2,其源極耦接電壓源131,其汲極耦接節點ND1。 Figure 2A is a possible embodiment of the power control circuit of the present invention. As shown, the power-on control circuit 200A includes detection circuits 210 and 240, a switching circuit 220, and buffers 230 and 250. The detecting circuit 210 detects the voltage of the voltage source 131 for generating a detection signal to the node ND1. The present invention does not limit the circuit architecture of the detection circuit 210. In this embodiment, the detecting circuit 210 is a P-type transistor Pdet. The gate of the P-type transistor Pdet is coupled to the node ND2, the source of which is coupled to the voltage source 131, and the drain of which is coupled to the node ND1.

切換電路220耦接電壓源131及132,並根據節點ND1的位準,輸出電壓源131或132的電壓予節點ND2。舉例而 言,當節點ND1為一高位準時,切換電路220輸出電壓源132的電壓至節點ND2。當節點ND1為一低位準時,切換電路220輸出電壓源131的電壓至節點ND2。本發明並不限定切換電路220的電路架構。在本實施例中,切換電路220包括一P型電晶體Psw及一N型電晶體Nsw。P型電晶體Psw的閘極耦接節點ND1,其源極耦接電壓源131,其汲極耦接節點ND2。當節點ND1為低位準時,P型電晶體Psw被導通,用以傳送電壓源131的電壓至節點ND2。N型電晶體Nsw的閘極耦接節點ND1,其汲極耦接電壓源132,其源極耦接節點ND2。當節點ND1為高位準時,N型電晶體Nsw被導通,用以傳送電壓源132的電壓至節點ND2。 The switching circuit 220 is coupled to the voltage sources 131 and 132, and outputs the voltage of the voltage source 131 or 132 to the node ND2 according to the level of the node ND1. For example In other words, when the node ND1 is at a high level, the switching circuit 220 outputs the voltage of the voltage source 132 to the node ND2. When the node ND1 is at a low level, the switching circuit 220 outputs the voltage of the voltage source 131 to the node ND2. The present invention does not limit the circuit architecture of the switching circuit 220. In this embodiment, the switching circuit 220 includes a P-type transistor Psw and an N-type transistor Nsw. The gate of the P-type transistor Psw is coupled to the node ND1, the source of which is coupled to the voltage source 131, and the drain of which is coupled to the node ND2. When the node ND1 is at a low level, the P-type transistor Psw is turned on to transfer the voltage of the voltage source 131 to the node ND2. The gate of the N-type transistor Nsw is coupled to the node ND1, the drain of which is coupled to the voltage source 132, and the source of which is coupled to the node ND2. When the node ND1 is at a high level, the N-type transistor Nsw is turned on to transfer the voltage of the voltage source 132 to the node ND2.

在一可能實施例中,上電控制電路200A更包括一設定單元260。設定單元260用以設定節點ND2的初始位準。在一可能實施例中,設定單元260係為一電容C。電容C接收接地電壓GND,用以設定節點ND2的初始位準為一低位準(或稱第一位準)。在此例中,在一初始期間,當電壓源131的電壓達第一預設值時,由於節點ND2為低位準,故P型電晶體Pdet導通,用以將電壓源131的電壓傳送至節點ND1。然而,當電壓源131的電壓逐漸增加,並大於第二預設值時,節點ND2由低位準變化至高位準。因此,P型電晶體Pdet不導通,用以停止傳送電壓源131的電壓至節點ND1。 In a possible embodiment, the power-on control circuit 200A further includes a setting unit 260. The setting unit 260 is configured to set an initial level of the node ND2. In a possible embodiment, the setting unit 260 is a capacitor C. The capacitor C receives the ground voltage GND for setting the initial level of the node ND2 to a low level (or first level). In this example, during an initial period, when the voltage of the voltage source 131 reaches the first predetermined value, since the node ND2 is at a low level, the P-type transistor Pdet is turned on to transmit the voltage of the voltage source 131 to the node. ND1. However, when the voltage of the voltage source 131 gradually increases and is greater than the second predetermined value, the node ND2 changes from a low level to a high level. Therefore, the P-type transistor Pdet is not turned on to stop the voltage of the voltage source 131 from being transmitted to the node ND1.

緩衝器230根據節點ND2的位準,產生一回授信號sw_fb以及一控制信號sw18。在本實施例中,回授信號sw_fb的位準等於節點ND2的位準,並且控制信號sw18的位準相對於節點ND2的位準。舉例而言,當節點ND2為低位準時,回授信號 sw_fb為低位準,但控制信號sw18為高位準(如稱第二位準)。當節點ND2為高位準時,回授信號sw_fb為高位準,但控制信號sw18為低位準。本發明並不限定緩衝器230的電路架構。在本實施例中,緩衝器230包括P型電晶體P21、P22及N型電晶體N21、N22。P型電晶體P21與N型電晶體N21構成一第一反相器。P型電晶體P22與N型電晶體N22構成一第二反相器。 The buffer 230 generates a feedback signal sw_fb and a control signal sw18 according to the level of the node ND2. In this embodiment, the level of the feedback signal sw_fb is equal to the level of the node ND2, and the level of the control signal sw18 is relative to the level of the node ND2. For example, when the node ND2 is at a low level, the feedback signal is Sw_fb is low, but the control signal sw18 is at a high level (such as the second level). When the node ND2 is at a high level, the feedback signal sw_fb is at a high level, but the control signal sw18 is at a low level. The present invention does not limit the circuit architecture of the buffer 230. In the present embodiment, the buffer 230 includes P-type transistors P21 and P22 and N-type transistors N21 and N22. The P-type transistor P21 and the N-type transistor N21 constitute a first inverter. The P-type transistor P22 and the N-type transistor N22 constitute a second inverter.

P型電晶體P21的閘極耦接節點ND2,其源極耦接電壓源131,其汲極耦接N型電晶體N21的汲極。N型電晶體N21的閘極耦接節點ND2,其源極接收接地電壓GND。在本實施例中,N型電晶體N21的汲極電壓作為控制信號sw18。另外,P型電晶體P22的閘極接收控制信號sw18,其源極耦接電壓源131,其汲極耦接N型電晶體N22的汲極。N型電晶體N22的閘極接收控制信號sw18,其源極接收接地電壓GND。在本實施例中,N型電晶體N22的汲極電壓作為回授信號sw_fb。 The gate of the P-type transistor P21 is coupled to the node ND2, the source of which is coupled to the voltage source 131, and the drain of which is coupled to the drain of the N-type transistor N21. The gate of the N-type transistor N21 is coupled to the node ND2, and the source thereof receives the ground voltage GND. In the present embodiment, the drain voltage of the N-type transistor N21 is used as the control signal sw18. In addition, the gate of the P-type transistor P22 receives the control signal sw18, the source of which is coupled to the voltage source 131, and the drain of which is coupled to the drain of the N-type transistor N22. The gate of the N-type transistor N22 receives the control signal sw18, and its source receives the ground voltage GND. In the present embodiment, the drain voltage of the N-type transistor N22 is used as the feedback signal sw_fb.

偵測電路240根據回授信號sw_fb、控制信號sw18、電壓源132的電壓以及一回復信號rcv_on,產生一偵測信號SDT。在本實施例中,當電壓源131的電壓達第一預設值並且電壓源132的電壓未達第二預設值時,偵測電路240產生高位準的偵測信號SDT。當電壓源131的電壓達第一預設值並且電壓源132的電壓達第二預設值時,偵測電路240將偵測信號SDT從高位準調整至低位準。然而,當電壓源132的電壓減少並低於第二預設值時,偵測電路240將偵測信號SDT從低位準改變至高位準。由於偵測信號SDT由低位準回復到高位準,故偵測電路240作為一狀態回復機制。 The detecting circuit 240 generates a detecting signal S DT according to the feedback signal sw_fb, the control signal sw18, the voltage of the voltage source 132, and a reply signal rcv_on. In this embodiment, when the voltage of the voltage source 131 reaches the first preset value and the voltage of the voltage source 132 does not reach the second preset value, the detecting circuit 240 generates the high level detection signal S DT . When the voltage of the voltage source 131 reaches the first preset value and the voltage of the voltage source 132 reaches the second preset value, the detecting circuit 240 adjusts the detection signal S DT from a high level to a low level. However, when the voltage of the voltage source 132 decreases and is lower than the second predetermined value, the detecting circuit 240 changes the detection signal S DT from a low level to a high level. Since the detection signal S DT returns from a low level to a high level, the detection circuit 240 acts as a state recovery mechanism.

本發明並不限定偵測電路240的電路架構。在一可能實施例中,偵測電路240包括邏輯電路241、242及一傳輸閘(transmission gate)243。傳輸閘243耦接電壓源132,並根據回授信號sw_fb及控制信號sw18傳送電壓源132的電壓予邏輯電路242。在本實施例中,傳輸閘243包括一P型電晶體P23及一N型電晶體N23。P型電晶體P23的閘極接收控制信號sw18,其源極耦接電壓源132,其汲極耦接邏輯電路242。N型電晶體N23的閘極接收回授信號sw_fb,其汲極耦接電壓源132,其源極耦接邏輯電路242。此外,P型電晶體P23的基極耦接電壓源131,並且N型電晶體N23的基極接收接地電壓GND。 The present invention does not limit the circuit architecture of the detection circuit 240. In a possible embodiment, the detection circuit 240 includes logic circuits 241, 242 and a transmission gate 243. The transmission gate 243 is coupled to the voltage source 132 and transmits the voltage of the voltage source 132 to the logic circuit 242 according to the feedback signal sw_fb and the control signal sw18. In the present embodiment, the transfer gate 243 includes a P-type transistor P23 and an N-type transistor N23. The gate of the P-type transistor P23 receives the control signal sw18, the source of which is coupled to the voltage source 132, and the drain of which is coupled to the logic circuit 242. The gate of the N-type transistor N23 receives the feedback signal sw_fb, the drain of which is coupled to the voltage source 132, and the source of which is coupled to the logic circuit 242. Further, the base of the P-type transistor P23 is coupled to the voltage source 131, and the base of the N-type transistor N23 receives the ground voltage GND.

邏輯電路242根據回授信號sw_fb及電壓源132的電壓,輸出偵測信號SDT。舉例而言,當回授信號sw_fb為低位準時,邏輯電路242輸出高位準的偵測信號SDT。當回授信號sw_fb為高位準並且電壓源132的電壓達第二預設值時,邏輯電路242輸出低位準的偵測信號SDT。然而,當回授信號sw_fb為高位準並且電壓源132的電壓低於第二預設值時,邏輯電路242輸出高位準的偵測信號SDT。本發明並不限定邏輯電路242的電路架構。在本實施例中,邏輯電路242係為一反及閘(NAND)。 The logic circuit 242 outputs the detection signal S DT according to the voltage of the feedback signal sw_fb and the voltage source 132. For example, when the feedback signal sw_fb is at a low level, the logic circuit 242 outputs a high level detection signal S DT . When the feedback signal sw_fb is at a high level and the voltage of the voltage source 132 reaches a second predetermined value, the logic circuit 242 outputs a low level detection signal S DT . However, when the feedback signal sw_fb is at a high level and the voltage of the voltage source 132 is lower than the second predetermined value, the logic circuit 242 outputs the high level detection signal S DT . The present invention does not limit the circuit architecture of logic circuit 242. In the present embodiment, the logic circuit 242 is a NAND.

邏輯電路241接收回授信號sw_fb及回復信號rcv_on,並耦接節點ND1。當電壓源131的電壓達第一預設值並且電壓源132的電壓未達第二預設值時,由於回授信號sw_fb為低位準,故邏輯電路241輸出高位準至節點ND1。當電壓源132的電壓達第二預設值時,邏輯電路241輸出低位準至節點ND1。本發明並不限定邏輯電路241的電路架構。在本實施例中,邏 輯電路241係為一反及閘(NAND)。 The logic circuit 241 receives the feedback signal sw_fb and the reply signal rcv_on and is coupled to the node ND1. When the voltage of the voltage source 131 reaches the first preset value and the voltage of the voltage source 132 does not reach the second preset value, since the feedback signal sw_fb is at the low level, the logic circuit 241 outputs the high level to the node ND1. When the voltage of the voltage source 132 reaches the second predetermined value, the logic circuit 241 outputs a low level to the node ND1. The present invention does not limit the circuit architecture of the logic circuit 241. In this embodiment, logic The circuit 241 is a NAND.

緩衝器250根據偵測信號SDT產生回復信號rcv_on。在一可能實施例中,回復信號rcv_on的位準相對於偵測信號SDT的位準。舉例而言,當偵測信號SDT為高位準時,回復信號rcv_on為低位準。當偵測信號SDT為低位準時,回復信號rcv_on為高位準。在一可能實施例中,回復信號rcv_on可作為第1圖的驅動信號SD1。在另一可能實施例中,緩衝器250更產生驅動信號SD2,用以驅動第1圖的控制開關114。 The buffer 250 generates a reply signal rcv_on based on the detection signal S DT . In a possible embodiment, the level of the reply signal rcv_on is relative to the level of the detection signal S DT . For example, when the detection signal S DT is at a high level, the reply signal rcv_on is at a low level. When the detection signal S DT is at a low level, the reply signal rcv_on is at a high level. In a possible embodiment, the reply signal rcv_on can be used as the drive signal S D1 of FIG. In another possible embodiment, the buffer 250 further generates a drive signal S D2 for driving the control switch 114 of FIG.

在本實施例中,緩衝器250包括一P型電晶體P24及一N型電晶體N24。P型電晶體P24與N型電晶體N24構成一第一反相器,並反相偵測信號SDT的位準,用以產生回復信號rcv_on。如圖所示,P型電晶體P24的閘極接收偵測信號SDT,其源極接收電壓源131的電壓,其汲極耦接N型電晶體N24的汲極,用以產生回復信號rcv_on。N型電晶體N24的閘極接收偵測信號SDT,其源極接收接地電壓GND。 In the present embodiment, the buffer 250 includes a P-type transistor P24 and an N-type transistor N24. The P-type transistor P24 and the N-type transistor N24 form a first inverter, and invert the level of the detection signal S DT to generate a reply signal rcv_on. As shown, the gate of the P-type transistor P24 receives the detection signal S DT , the source of which receives the voltage of the voltage source 131, and the drain of which is coupled to the drain of the N-type transistor N24 for generating the reply signal rcv_on. . The gate of the N-type transistor N24 receives the detection signal S DT , and its source receives the ground voltage GND.

在其它實施例中,緩衝器250更包括一P型電晶體P25及一N型電晶體N25。P型電晶體P25與N型電晶體N25構成一第二反相器。第二反相器反相回復信號rcv_on,用以產生驅動信號SD2。如圖所示,P型電晶體P25的閘極接收回復信號rcv_on,其源極接收電壓源131的電壓,其汲極耦接N型電晶體N25的汲極,用以產生驅動信號SD2。N型電晶體N25的閘極接收回復信號rcv_on,其源極接收接地電壓GND。在另一可能實施例中,緩衝器250更包括一第三反相器(未顯示)。第三反相器反相驅動信號SD2,用以產生一反相信號,其中該反相信號可 作為第1圖的驅動信號SD1In other embodiments, the buffer 250 further includes a P-type transistor P25 and an N-type transistor N25. The P-type transistor P25 and the N-type transistor N25 constitute a second inverter. The second inverter inverts the reply signal rcv_on for generating the drive signal S D2 . As shown, the gate of the P-type transistor P25 receives the recovery signal rcv_on, the source of which receives the voltage of the voltage source 131, and the drain of which is coupled to the drain of the N-type transistor N25 for generating the driving signal S D2 . The gate of the N-type transistor N25 receives the return signal rcv_on, and its source receives the ground voltage GND. In another possible embodiment, the buffer 250 further includes a third inverter (not shown). The third inverter inverts the driving signal S D2 for generating an inverted signal, wherein the inverted signal can be used as the driving signal S D1 of FIG. 1 .

第2B圖為本發明之上電控制電路的另一可能實施例。第2B圖相似第2A圖,不同之處在於,上電控制電路200B多了一電壓供給電路260。電壓供給電路260耦接於電壓源131與偵測電路240之間,用以供電予偵測電路240。在本實施例中,電壓供給電路260係供電予邏輯電路242。 Figure 2B is another possible embodiment of the power control circuit of the present invention. Fig. 2B is similar to Fig. 2A except that the power-up control circuit 200B has a voltage supply circuit 260. The voltage supply circuit 260 is coupled between the voltage source 131 and the detection circuit 240 for supplying power to the detection circuit 240. In the present embodiment, the voltage supply circuit 260 supplies power to the logic circuit 242.

當電壓源131的電壓達第一預設值並且電壓源132的電壓未達第二預設值時,電壓供給電路260直接提供電壓源131的電壓予邏輯電路242。然而,當電壓源131的電壓達第一預設值並且電壓源132的電壓達第二預設值時,電壓供給電路260減少電壓源131的電壓,用以產生一衰減電壓VR,並將衰減電壓VR提供予邏輯電路242。 When the voltage of the voltage source 131 reaches the first predetermined value and the voltage of the voltage source 132 does not reach the second predetermined value, the voltage supply circuit 260 directly supplies the voltage of the voltage source 131 to the logic circuit 242. However, when the voltage of the voltage source 131 reaches the first predetermined value and the voltage of the voltage source 132 reaches the second predetermined value, the voltage supply circuit 260 reduces the voltage of the voltage source 131 to generate an attenuation voltage V R and pad voltage V R to provide the logic circuit 242.

本發明並不限定電壓供給電路260的電路架構。在本實施例中,電壓供給電路260包括一P型電晶體P26、N型電晶體N26及N27。P型電晶體P26的閘極接收回授信號sw_fb,其源極接收電壓源131的電壓,其汲極耦接偵測電路240,其基極接收電壓源131的電壓。當P型電晶體P26導通時,P型電晶體P26將電壓源131的電壓提供予邏輯電路242。另外,N型電晶體N26的閘極接收回授信號sw_fb,其汲極接收電壓源131的電壓,其源極耦接N型電晶體N27的閘極與汲極。N型電晶體N27的源極耦接偵測電路240。N型電晶體N26與N27的基極接收接地電壓GND。當N型電晶體N26與N27導通時,N型電晶體N26與N27衰減電壓源131的電壓,用以產生衰減電壓VR,並提供衰減電壓VR予邏輯電路242。 The present invention does not limit the circuit architecture of the voltage supply circuit 260. In the present embodiment, the voltage supply circuit 260 includes a P-type transistor P26, N-type transistors N26 and N27. The gate of the P-type transistor P26 receives the feedback signal sw_fb, the source of which receives the voltage of the voltage source 131, the drain of which is coupled to the detection circuit 240, and the base of which receives the voltage of the voltage source 131. When the P-type transistor P26 is turned on, the P-type transistor P26 supplies the voltage of the voltage source 131 to the logic circuit 242. In addition, the gate of the N-type transistor N26 receives the feedback signal sw_fb, the drain of which receives the voltage of the voltage source 131, and the source of which is coupled to the gate and the drain of the N-type transistor N27. The source of the N-type transistor N27 is coupled to the detection circuit 240. The bases of the N-type transistors N26 and N27 receive the ground voltage GND. When N-type transistors N26 and N27 are turned on, N-type transistors N26 and N27 attenuate the voltage of voltage source 131 to generate attenuated voltage V R and provide attenuating voltage V R to logic circuit 242.

第2C圖為本發明之上電控制電路的另一可能實施例。第2C圖相似第2A圖,不同之處在於上電控制電路200C更包括一位準轉換電路(level shifter)270。位準轉換電路270耦接於偵測電路240與緩衝器250之間。在本實施例中,位準轉換電路270用以調整偵測信號SDT的位準,用以產生一輸出信號SOT。舉例而言,當偵測信號SDT為1.8V時,位準轉換電路270將偵測信號SDT的位準從1.8V提升至3.3V。此時,輸出信號SOT為3.3V。當偵測信號SDT為0V時,位準轉換電路270維持偵測信號SDT的位準。因此,輸出信號SOT為0V。緩衝器250再根據輸出信號SOT產生回復信號rcv_on。在本實施例中,回復信號rcv_on的位準相對於輸出信號SOT的位準。舉例而言,當輸出信號SOT為高位準(如3.3V)時,回復信號rcv_on為低位準(如0V)。當輸出信號SOT為低位準(如0V)時,回復信號rcv_on為高位準(如3.3V)。 Figure 2C is another possible embodiment of the power control circuit of the present invention. The 2C diagram is similar to the 2A diagram, except that the power-on control circuit 200C further includes a level shifter 270. The level conversion circuit 270 is coupled between the detection circuit 240 and the buffer 250. In this embodiment, the level conversion circuit 270 is configured to adjust the level of the detection signal S DT to generate an output signal S OT . For example, when the detection signal S DT is 1.8V, the level conversion circuit 270 raises the level of the detection signal S DT from 1.8V to 3.3V. At this time, the output signal S OT is 3.3V. When the detection signal S DT is 0V, the level conversion circuit 270 maintains the level of the detection signal S DT . Therefore, the output signal S OT is 0V. The buffer 250 then generates a reply signal rcv_on based on the output signal S OT . In this embodiment, the level of the reply signal rcv_on is relative to the level of the output signal S OT . For example, when the output signal S OT is at a high level (eg, 3.3V), the reply signal rcv_on is at a low level (eg, 0V). When the output signal S OT is at a low level (eg, 0V), the reply signal rcv_on is at a high level (eg, 3.3V).

本發明並不限定位準轉換電路270的電路架構。在一可能實施例中,位準轉換電路270包括一反相器271、P型電晶體P28~P30以及N型電晶體N28~N30。反相器271的輸入端接收偵測信號SDT,其輸出端耦接N型電晶體N29的閘極。在本實施例中,反相器271包括一P型電晶體P30以及一N型電晶體N30。P型電晶體P30的閘極接收偵測信號SDT,其源極接收電壓源131的電壓,其汲極耦接N型電晶體N29的閘極。N型電晶體N30的閘極接收偵測信號SDT,其汲極耦接P型電晶體P30的汲極,其源極接收接地電壓GND。 The present invention is not limited to the circuit architecture of the quasi-conversion circuit 270. In a possible embodiment, the level conversion circuit 270 includes an inverter 271, P-type transistors P28-P30, and N-type transistors N28-N30. The input end of the inverter 271 receives the detection signal S DT , and the output end thereof is coupled to the gate of the N-type transistor N29. In the present embodiment, the inverter 271 includes a P-type transistor P30 and an N-type transistor N30. The gate of the P-type transistor P30 receives the detection signal S DT , the source of which receives the voltage of the voltage source 131 and the drain of which is coupled to the gate of the N-type transistor N29. The gate of the N-type transistor N30 receives the detection signal S DT , the drain of which is coupled to the drain of the P-type transistor P30, and the source thereof receives the ground voltage GND.

P型電晶體P28的閘極耦接緩衝器250以及P型電晶體P29的汲極,其源極接收電壓源131的電壓,其汲極耦接N型 電晶體N28的汲極以及P型電晶體P29的閘極。N型電晶體N28的閘極接收偵測信號SDT,其源極接收接地電壓GND。P型電晶體P29的閘極耦接N型電晶體N28的汲極,其源極接收電壓源131的電壓,其汲極耦接緩衝器250以及N型電晶體N29的汲極。N型電晶體N29的閘極耦接P型電晶體P30的汲極,其汲極耦接P型電晶體P29的汲極,其源極接收接地電壓GND。 The gate of the P-type transistor P28 is coupled to the buffer 250 and the drain of the P-type transistor P29. The source receives the voltage of the voltage source 131, and the drain is coupled to the drain of the N-type transistor N28 and the P-type. The gate of crystal P29. The gate of the N-type transistor N28 receives the detection signal S DT , and its source receives the ground voltage GND. The gate of the P-type transistor P29 is coupled to the drain of the N-type transistor N28, the source of which receives the voltage of the voltage source 131, and the drain of which is coupled to the drain of the buffer 250 and the N-type transistor N29. The gate of the N-type transistor N29 is coupled to the drain of the P-type transistor P30, the drain of which is coupled to the drain of the P-type transistor P29, and the source thereof receives the ground voltage GND.

第2D圖為本發明之上電控制電路的另一可能實施例。第2D圖相似第2A圖,不同之處在於第2D圖的上電控制電路200D更包括一電壓供給電路260以及一位準轉換電路270。由於電壓供給電路260及位準轉換電路270的動作原理已敍明如上,故不再贅述。在本實施例中,電壓供給電路260供電予邏輯電路242及反相器271。稍後將以第2D圖為例,說明上電控制電路200D的動作原理。 Figure 2D is another possible embodiment of the power control circuit of the present invention. The 2D picture is similar to the 2A picture, except that the power-on control circuit 200D of the 2D figure further includes a voltage supply circuit 260 and a one-bit conversion circuit 270. Since the operation principle of the voltage supply circuit 260 and the level conversion circuit 270 has been described above, it will not be described again. In the present embodiment, the voltage supply circuit 260 supplies power to the logic circuit 242 and the inverter 271. The operation principle of the power-on control circuit 200D will be described later by taking the 2D picture as an example.

第3A圖為本發明之電壓供給電路的另一可能實施例。如圖所示,電壓供給電路300A包括P型電晶體311~313。P型電晶體311~313的基極均接收電壓源131的電壓。另外,P型電晶體311的閘極接收回授信號sw_fb,其源極接收電壓源131的電壓,其汲極耦接偵測電路240。P型電晶體312的閘極接收控制信號sw18,其源極接收電壓源131的電壓。P型電晶體313的閘極與源極耦接P型電晶體312的汲極,其汲極耦接偵測電路240。在本實施例中,當P型電晶體311導通時,P型電晶體311傳送電壓源131的電壓至偵測電路240。當P型電晶體312及313導通時,P型電晶體312及313衰減電壓源131的電壓,並將衰減後的電壓提供予偵測電路240。 Figure 3A is another possible embodiment of the voltage supply circuit of the present invention. As shown, the voltage supply circuit 300A includes P-type transistors 311 to 313. The bases of the P-type transistors 311 to 313 receive the voltage of the voltage source 131. In addition, the gate of the P-type transistor 311 receives the feedback signal sw_fb, the source of which receives the voltage of the voltage source 131, and the drain of which is coupled to the detection circuit 240. The gate of the P-type transistor 312 receives the control signal sw18, the source of which receives the voltage of the voltage source 131. The gate and the source of the P-type transistor 313 are coupled to the drain of the P-type transistor 312, and the drain of the P-type transistor 313 is coupled to the detection circuit 240. In the present embodiment, when the P-type transistor 311 is turned on, the P-type transistor 311 transmits the voltage of the voltage source 131 to the detecting circuit 240. When the P-type transistors 312 and 313 are turned on, the P-type transistors 312 and 313 attenuate the voltage of the voltage source 131 and supply the attenuated voltage to the detecting circuit 240.

第3B圖為本發明之電壓供給電路的另一可能實施例。電壓供給電路300B包括N型電晶體321~323。在本實施例中,N型電晶體321~323的基極均接收接地電壓GND。另外,N型電晶體321之閘極接收控制信號sw18,其汲極接收電壓源131的電壓,其源極耦接偵測電路240。N型電晶體322之閘極接收回授信號sw_fb,其汲極接收電壓源131的電壓。N型電晶體323之閘極與汲極耦接N型電晶體322的源極,其源極耦接偵測電路240。在本實施例中,當N型電晶體321導通時,N型電晶體321傳送電壓源131的電壓至偵測電路240。當N型電晶體322及323導通時,N型電晶體322及323衰減電壓源131的電壓,並將衰減後的電壓提供予偵測電路240。 Figure 3B is another possible embodiment of the voltage supply circuit of the present invention. The voltage supply circuit 300B includes N-type transistors 321 to 323. In the present embodiment, the bases of the N-type transistors 321 to 323 receive the ground voltage GND. In addition, the gate of the N-type transistor 321 receives the control signal sw18, the drain of which receives the voltage of the voltage source 131, and the source of which is coupled to the detection circuit 240. The gate of the N-type transistor 322 receives the feedback signal sw_fb, and its drain receives the voltage of the voltage source 131. The gate and the drain of the N-type transistor 323 are coupled to the source of the N-type transistor 322, and the source thereof is coupled to the detection circuit 240. In the present embodiment, when the N-type transistor 321 is turned on, the N-type transistor 321 transmits the voltage of the voltage source 131 to the detecting circuit 240. When the N-type transistors 322 and 323 are turned on, the N-type transistors 322 and 323 attenuate the voltage of the voltage source 131 and supply the attenuated voltage to the detecting circuit 240.

第3C圖為本發明之電壓供給電路的另一可能實施例。如圖所示,電壓供給電路300C包括P型電晶體331、332以及一N型電晶體333。P型電晶體331及332的基極均接收電壓源131的電壓。另外,P型電晶體331的閘極接收回授信號sw_fb,其源極接收電壓源131的電壓,其汲極耦接偵測電路240。P型電晶體332的閘極接收控制信號sw18,其源極接收電壓源131的電壓。N型電晶體333的閘極與汲極耦接P型電晶體332的汲極。N型電晶體333的源極耦接偵測電路240。N型電晶體333的基極接收接地電壓GND。 Figure 3C is another possible embodiment of the voltage supply circuit of the present invention. As shown, the voltage supply circuit 300C includes P-type transistors 331, 332 and an N-type transistor 333. The bases of the P-type transistors 331 and 332 each receive the voltage of the voltage source 131. In addition, the gate of the P-type transistor 331 receives the feedback signal sw_fb, the source of which receives the voltage of the voltage source 131, and the drain of which is coupled to the detection circuit 240. The gate of the P-type transistor 332 receives the control signal sw18, and its source receives the voltage of the voltage source 131. The gate and the drain of the N-type transistor 333 are coupled to the drain of the P-type transistor 332. The source of the N-type transistor 333 is coupled to the detection circuit 240. The base of the N-type transistor 333 receives the ground voltage GND.

在本實施例中,當P型電晶體331導通時,P型電晶體332與N型電晶體333不導通。因此,P型電晶體331傳送電壓源131的電壓至偵測電路240。當P型電晶體332與N型電晶體333導通時,P型電晶體331不導通。此時,P型電晶體332與N型電 晶體333衰減電壓源131的電壓,並將衰減後的電壓提供予偵測電路240。 In the present embodiment, when the P-type transistor 331 is turned on, the P-type transistor 332 and the N-type transistor 333 are not turned on. Therefore, the P-type transistor 331 transmits the voltage of the voltage source 131 to the detecting circuit 240. When the P-type transistor 332 and the N-type transistor 333 are turned on, the P-type transistor 331 is not turned on. At this time, P-type transistor 332 and N-type electricity The crystal 333 attenuates the voltage of the voltage source 131 and supplies the attenuated voltage to the detection circuit 240.

第3D圖為本發明之電壓供給電路的另一可能實施例。電壓供給電路300D包括P型電晶體341、343以及一N型電晶體342。P型電晶體341及343的基極接收電壓源131的電壓。P型電晶體341之閘極接收回授信號sw_fb,其源極接收電壓源131的電壓,其汲極耦接偵測電路240。N型電晶體342之閘極接收回授信號sw_fb,其汲極接收電壓源131的電壓。P型電晶體343的源極耦接N型電晶體342的源極。P型電晶體343的閘極與汲極耦接偵測電路240。 Figure 3D is another possible embodiment of the voltage supply circuit of the present invention. The voltage supply circuit 300D includes P-type transistors 341, 343 and an N-type transistor 342. The bases of the P-type transistors 341 and 343 receive the voltage of the voltage source 131. The gate of the P-type transistor 341 receives the feedback signal sw_fb, the source of which receives the voltage of the voltage source 131, and the drain of which is coupled to the detection circuit 240. The gate of the N-type transistor 342 receives the feedback signal sw_fb, and its drain receives the voltage of the voltage source 131. The source of the P-type transistor 343 is coupled to the source of the N-type transistor 342. The gate and the drain of the P-type transistor 343 are coupled to the detection circuit 240.

在本實施例中,當P型電晶體341導通時,N型電晶體342與P型電晶體343不導通。因此,P型電晶體341傳送電壓源131的電壓至偵測電路240。當N型電晶體342與P型電晶體343導通時,P型電晶體341不導通。因此,N型電晶體342與P型電晶體343衰減電壓源131的電壓,並將衰減後的電壓提供予偵測電路240。 In the present embodiment, when the P-type transistor 341 is turned on, the N-type transistor 342 and the P-type transistor 343 are not turned on. Therefore, the P-type transistor 341 transmits the voltage of the voltage source 131 to the detecting circuit 240. When the N-type transistor 342 and the P-type transistor 343 are turned on, the P-type transistor 341 is not turned on. Therefore, the N-type transistor 342 and the P-type transistor 343 attenuate the voltage of the voltage source 131 and supply the attenuated voltage to the detecting circuit 240.

第4A~4C圖為本發明之上電控制電路的操作示意圖。為方便說明,以下將第2D圖所示的上電控制電路200D為例,說明上電控制電路200D的動作原理。當電壓源131及132開始輸出電壓時,電壓源131及132的電壓逐漸上升。當電壓源131的電壓達一第一預設值並且電壓源132的電壓未達一第二預設值時,上電控制電路200D進入一電源開啟模式。 4A-4C are schematic diagrams showing the operation of the power control circuit of the present invention. For convenience of explanation, the operation principle of the power-on control circuit 200D will be described below by taking the power-on control circuit 200D shown in FIG. 2D as an example. When the voltage sources 131 and 132 start to output voltages, the voltages of the voltage sources 131 and 132 gradually rise. When the voltage of the voltage source 131 reaches a first preset value and the voltage of the voltage source 132 does not reach a second preset value, the power-on control circuit 200D enters a power-on mode.

在電源開啟模式下,節點ND2的初始位準為低位準,故偵測電路210傳送電壓源131的電壓至節點ND1。因此,節點 ND1為高位準,使得切換電路220傳送電壓源132的電壓至節點ND2。由於電壓源132的電壓未達第二預設值,故節點ND2維持在低位準。因此,緩衝器230輸出高位準的控制信號sw18,以及低位準的回授信號sw_fb。 In the power-on mode, the initial level of the node ND2 is low, so the detection circuit 210 transmits the voltage of the voltage source 131 to the node ND1. Therefore, the node ND1 is at a high level, causing switching circuit 220 to transfer the voltage of voltage source 132 to node ND2. Since the voltage of the voltage source 132 does not reach the second preset value, the node ND2 is maintained at a low level. Therefore, the buffer 230 outputs a high level control signal sw18 and a low level feedback signal sw_fb.

由於回授信號sw_fb為低位準,故邏輯電路241設定節點ND1為高位準。因此,切換電路220繼續輸出電壓源132的電壓至節點ND2。另外,由於回授信號sw_fb為低位準,故邏輯電路242輸出高位準的偵測信號SDT。此時,緩衝器250輸出低位準的回復信號rcv_on。 Since the feedback signal sw_fb is at a low level, the logic circuit 241 sets the node ND1 to a high level. Therefore, the switching circuit 220 continues to output the voltage of the voltage source 132 to the node ND2. In addition, since the feedback signal sw_fb is at a low level, the logic circuit 242 outputs a high level detection signal S DT . At this time, the buffer 250 outputs a low level reply signal rcv_on.

在一可能實施例中,回復信號rcv_on作為一第一驅動信號,用以驅動第1圖的控制開關113。在另一可能實施例中,緩衝器250更輸出高位準的驅動信號SD2。在此例中,驅動信號SD2可作為一第二驅動信號,用以驅動第1圖的控制開關114。在其它實施例中,緩衝器250更具有一反相器(未顯示),用以反相驅動信號SD2,並產生一第三驅動信號。在此例中,第三驅動信號用以驅動第1圖的控制開關113。另外,由於回授信號sw_fb為低位準並且控制信號sw18為高位準,因此,傳輸閘243不導通。再者,由於回授信號sw_fb為低位準,故電壓供給電路260提供電壓源131的電壓予邏輯電路242。 In a possible embodiment, the reply signal rcv_on is used as a first driving signal for driving the control switch 113 of FIG. In another possible embodiment, the buffer 250 further outputs a high level drive signal S D2 . In this example, the drive signal S D2 can be used as a second drive signal for driving the control switch 114 of FIG. In other embodiments, the buffer 250 further has an inverter (not shown) for inverting the drive signal S D2 and generating a third drive signal. In this example, the third drive signal is used to drive the control switch 113 of FIG. In addition, since the feedback signal sw_fb is at a low level and the control signal sw18 is at a high level, the transfer gate 243 is not turned on. Moreover, since the feedback signal sw_fb is at a low level, the voltage supply circuit 260 supplies the voltage of the voltage source 131 to the logic circuit 242.

請參考第4B圖,當電壓源131的電壓達第一預設值並且電壓源132的電壓達第二預設值時,節點ND2的位準從低位準改變至高位準。因此,上電控制電路200D進入一正常模式。在此模式下,緩衝器230產生低位準的控制信號sw18及高位準的回授信號sw_fb。由於回授信號sw_fb為高位準,故傳輸閘243 提供電壓源132的電壓予邏輯電路242。由於電壓源132的電壓已達第二預設值,故邏輯電路242輸出低位準的偵測信號SDT。此時,緩衝器250輸出高位準的回復信號rcv_on以及低位準的驅動信號SD2Referring to FIG. 4B, when the voltage of the voltage source 131 reaches the first preset value and the voltage of the voltage source 132 reaches the second preset value, the level of the node ND2 changes from the low level to the high level. Therefore, the power-on control circuit 200D enters a normal mode. In this mode, the buffer 230 generates a low level control signal sw18 and a high level feedback signal sw_fb. Since the feedback signal sw_fb is at a high level, the transfer gate 243 provides the voltage of the voltage source 132 to the logic circuit 242. Since the voltage of the voltage source 132 has reached the second predetermined value, the logic circuit 242 outputs the low level detection signal S DT . At this time, the buffer 250 outputs a high level of the reply signal rcv_on and a low level of the drive signal S D2 .

由於回復信號rcv_on與回授信號sw_fb均為高位準,故邏輯電路241令節點ND1為低位準。因此,切換電路220改輸出電壓源131的電壓至節點ND2。由於電壓源131的電壓已達第一預設值,故節點ND2維持在高位準。另外,回復信號rcv_on可能作為第1圖的驅動信號SD1,因此,控制開關113不導通。另外,由於驅動信號SD2為低位準,因此,控制開關114也不導通。此時,輸出開關115及116係由核心電路111所控制。另外,在正常模式下,電壓供給電路260衰減電壓源131的電壓,用以產生衰減電壓VR予邏輯電路242。 Since the reply signal rcv_on and the feedback signal sw_fb are both high, the logic circuit 241 sets the node ND1 to a low level. Therefore, the switching circuit 220 changes the voltage of the output voltage source 131 to the node ND2. Since the voltage of the voltage source 131 has reached the first predetermined value, the node ND2 is maintained at a high level. Further, the reply signal rcv_on may be used as the drive signal S D1 of FIG. 1 , and therefore, the control switch 113 is not turned on. In addition, since the drive signal S D2 is at a low level, the control switch 114 is also not turned on. At this time, the output switches 115 and 116 are controlled by the core circuit 111. Additionally, in the normal mode, voltage supply circuit 260 attenuates the voltage of voltage source 131 for generating attenuated voltage V R to logic circuit 242.

請參考第4C圖,當電壓源132停止輸出電壓時,電壓源132的電壓逐漸減少。當電壓源132的電壓低於第二預設值時,上電控制電路200D進入一電源關閉模式。在此模式中,由於電壓源132的電壓低於第二預設值,故傳輸閘243傳送低位準予邏輯電路242。因此,邏輯電路242輸出高位準的偵測信號SDT。此時,緩衝器250輸出低位準的回復信號rcv_on,使得邏輯電路241輸出高位準予節點ND1。因此,切換單元220改輸出電壓源132的電壓至節點ND2。由於電壓源132的電壓低於第二預設值,故節點ND2為低位準。 Referring to FIG. 4C, when the voltage source 132 stops the output voltage, the voltage of the voltage source 132 gradually decreases. When the voltage of the voltage source 132 is lower than the second predetermined value, the power-on control circuit 200D enters a power-off mode. In this mode, the transfer gate 243 transmits the low level grant logic 242 since the voltage of the voltage source 132 is below the second predetermined value. Therefore, the logic circuit 242 outputs the high level detection signal S DT . At this time, the buffer 250 outputs the low level reply signal rcv_on, so that the logic circuit 241 outputs the high level grant node ND1. Therefore, the switching unit 220 changes the voltage of the output voltage source 132 to the node ND2. Since the voltage of the voltage source 132 is lower than the second predetermined value, the node ND2 is at a low level.

此時,緩衝器230輸出高位準的控制信號sw18以及低位準的回授信號sw_fb。因此,電壓供給電路260提供電壓源 131的電壓予邏輯電路242。邏輯電路242輸出高位準的偵測信號SDT,故緩衝器250輸出低位準的回復信號rcv_on。當回復信號rcv_on作為第1圖的驅動信號SD1時,控制開關113被導通,用以不導通輸出開關115。另外,由於緩衝器250輸出高位準的驅動信號SD2,故第1圖的控制開關114被導通。因此,輸出開關116不被導通。由於輸出開關115及116均不被導通,故可避免漏電流現象。 At this time, the buffer 230 outputs a high level control signal sw18 and a low level feedback signal sw_fb. Therefore, the voltage supply circuit 260 supplies the voltage of the voltage source 131 to the logic circuit 242. The logic circuit 242 outputs the high level detection signal S DT , so the buffer 250 outputs the low level reply signal rcv_on. When the reply signal rcv_on is used as the drive signal S D1 of FIG. 1, the control switch 113 is turned on to turn off the output switch 115. Further, since the buffer 250 outputs the high level drive signal S D2 , the control switch 114 of Fig. 1 is turned on. Therefore, the output switch 116 is not turned on. Since the output switches 115 and 116 are not turned on, leakage current can be avoided.

在上述實施例中,當電壓源131的電壓已達第一預設值並且電壓源132的電壓未達第二預設值時,上電控制電路200D進入一電源開啟模式。在此模式下,上電控制電路200D控制輸出開關115及116,用以避免輸出開關115及116同時被導通。當電壓源132的電壓達第二預設值時,上電控制電路200D進入一正常模式。在此模式下,上電控制電路200D不再控制輸出開關115及116。此時,輸出開關115及116由核心電路111所控制。當電壓源132停止提供輸出電壓時,電壓源132的電壓逐漸下降。當電壓源132的電壓低於第二預設值時,上電控制電路200D進入一電源關閉模式。在此模式下,上電控制電路200D再度控制輸出開關115及116,用以避免輸出開關115及116同時被導通以及漏電流現象的發生。 In the above embodiment, when the voltage of the voltage source 131 has reached the first predetermined value and the voltage of the voltage source 132 has not reached the second preset value, the power-on control circuit 200D enters a power-on mode. In this mode, power-up control circuit 200D controls output switches 115 and 116 to prevent output switches 115 and 116 from being turned on at the same time. When the voltage of the voltage source 132 reaches the second predetermined value, the power-on control circuit 200D enters a normal mode. In this mode, the power up control circuit 200D no longer controls the output switches 115 and 116. At this time, the output switches 115 and 116 are controlled by the core circuit 111. When voltage source 132 ceases to provide an output voltage, the voltage of voltage source 132 gradually decreases. When the voltage of the voltage source 132 is lower than the second predetermined value, the power-on control circuit 200D enters a power-off mode. In this mode, the power-on control circuit 200D again controls the output switches 115 and 116 to prevent the output switches 115 and 116 from being turned on at the same time and the leakage current phenomenon.

除非另作定義,在此所有詞彙(包含技術與科學詞彙)均屬本發明所屬技術領域中具有通常知識者之一般理解。此外,除非明白表示,詞彙於一般字典中之定義應解釋為與其相關技術領域之文章中意義一致,而不應解釋為理想狀態或過分正式之語態。 Unless otherwise defined, all terms (including technical and scientific terms) are used in the ordinary meaning Moreover, unless expressly stated, the definition of a vocabulary in a general dictionary should be interpreted as consistent with the meaning of an article in its related art, and should not be interpreted as an ideal state or an overly formal voice.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾。舉例來,本發明實施例所系統、裝置或是方法可以硬體、軟體或硬體以及軟體的組合的實體實施例加以實現。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. . For example, the system, apparatus or method of the embodiments of the present invention may be implemented in a physical embodiment of a combination of hardware, software or hardware and software. Therefore, the scope of the invention is defined by the scope of the appended claims.

Claims (20)

一種具狀態回復機制之上電控制電路,包括:一第一偵測電路,偵測一第一電壓源的電壓,用以產生一第一偵測信號予一第一節點;一切換電路,耦接該第一電壓源以及一第二電壓源,並根據該第一節點的位準,輸出該第一或第二電壓源的電壓予一第二節點;一第一緩衝器,根據該第二節點的位準,產生一回授信號以及一控制信號;一第二偵測電路,根據該回授信號、該控制信號、該第二電壓源的電壓以及一回復信號,產生一第二偵測信號;以及一第二緩衝器,根據該第二偵測信號產生該回復信號。 An electrical control circuit with a state recovery mechanism includes: a first detection circuit for detecting a voltage of a first voltage source for generating a first detection signal to a first node; a switching circuit coupled Connecting the first voltage source and a second voltage source, and outputting the voltage of the first or second voltage source to a second node according to the level of the first node; a first buffer according to the second a level of the node generates a feedback signal and a control signal; a second detection circuit generates a second detection according to the feedback signal, the control signal, the voltage of the second voltage source, and a reply signal And a second buffer that generates the reply signal according to the second detection signal. 如申請專利範圍第1項所述之具狀態回復機制之上電控制電路,其中當該第一電壓源的電壓達一第一預設值並且該第二電壓源的電壓未達一第二預設值時,該具狀態回復機制之上電控制電路進入一第一模式,在該第一模式下,該第一偵測電路傳送該第一電壓源的電壓至該第一節點,該切換電路輸出該第二電壓源的電壓至該第二節點,該第二偵測電路根據該回授信號產生該第二偵測信號,該第二緩衝器根據該第二偵測信號產生具有一第一位準的回復信號。 The state control mechanism as claimed in claim 1, wherein the voltage of the first voltage source reaches a first preset value and the voltage of the second voltage source does not reach a second When the value is set, the state control circuit upper electrical control circuit enters a first mode, in the first mode, the first detecting circuit transmits the voltage of the first voltage source to the first node, the switching circuit Outputting the voltage of the second voltage source to the second node, the second detecting circuit generates the second detecting signal according to the feedback signal, and the second buffer generates a first according to the second detecting signal Level of reply signal. 如申請專利範圍第2項所述之具狀態回復機制之上電控制電路,其中當該第一電壓源的電壓達該第一預設值並且該第二電壓源的電壓達該第二預設值時,該具狀態回復機制之上電控制電路進入一第二模式,在該第二模式下,該第二節點具 有一第二位準,該第一緩衝器根據該第二節點的電壓產生該回授信號,該第二偵測電路根據該回授信號改變該第一節點的位準,並產生該第二偵測信號,該切換電路根據該第一節點的位準,輸出該第一電壓源的電壓至該第二節點,該第二緩衝器根據該第二偵測信號產生具有該第二位準的回復信號,該第二位準高於該第一位準。 The state control mechanism as claimed in claim 2, wherein the voltage of the first voltage source reaches the first preset value and the voltage of the second voltage source reaches the second preset In the case of the value, the electrical control circuit on the state returning mechanism enters a second mode, and in the second mode, the second node a second level, the first buffer generates the feedback signal according to the voltage of the second node, and the second detecting circuit changes the level of the first node according to the feedback signal, and generates the second detection Measuring a signal, the switching circuit outputs a voltage of the first voltage source to the second node according to a level of the first node, and the second buffer generates a response with the second level according to the second detection signal The second level of the signal is higher than the first level. 如申請專利範圍第3項所述之具狀態回復機制之上電控制電路,其中當該第二電壓源的電壓減少並低於該第二預設值時,該具狀態回復機制之上電控制電路進入一第三模式,在該第三模式下,該第二偵測電路根據該第二電壓源的電壓產生該第二偵測信號,該第二緩衝器根據該第二偵測信號產生具有該第一位準的回復信號,用以改變該第一節點的位準,該切換電路根據該第一節點的位準輸出該第二電壓源的電壓至該第二節點。 The state control mechanism upper power control circuit as described in claim 3, wherein when the voltage of the second voltage source decreases and is lower than the second preset value, the state feedback mechanism is electrically controlled The circuit enters a third mode. In the third mode, the second detecting circuit generates the second detecting signal according to the voltage of the second voltage source, and the second buffer generates the second detecting signal according to the second detecting signal. The first level of the reply signal is used to change the level of the first node, and the switching circuit outputs the voltage of the second voltage source to the second node according to the level of the first node. 如申請專利範圍第1項所述之具狀態回復機制之上電控制電路,更包括:一位準轉換電路,耦接於該第二偵測電路與該第二緩衝器之間,其中該位準轉換電路調整該第二偵測信號的位準,用以產生一輸出信號,該第二緩衝器根據該輸出信號產生該回復信號。 The power control circuit of the state recovery mechanism of claim 1, further comprising: a quasi-conversion circuit coupled between the second detection circuit and the second buffer, wherein the bit The quasi-conversion circuit adjusts the level of the second detection signal to generate an output signal, and the second buffer generates the reply signal according to the output signal. 如申請專利範圍第1項所述之具狀態回復機制之上電控制電路,更包括:一電壓供給電路,耦接於該第一電壓源與該第二偵測電路之間,其中當該第一電壓源的電壓達該第一預設值並且該第二 電壓源的電壓未達該第二預設值時,該電壓供給電路提供該第一電壓源的電壓予該第二偵測電路,當該第一電壓源的電壓達該第一預設值並且該第二電壓源的電壓達該第二預設值時,該電壓供給電路減少該第一電壓源的電壓,用以產生一衰減電壓,並將該衰減電壓提供予該第二偵測電路。 The power control circuit of the state recovery mechanism, as described in claim 1, further comprising: a voltage supply circuit coupled between the first voltage source and the second detection circuit, wherein the a voltage of the voltage source reaches the first preset value and the second When the voltage of the voltage source does not reach the second preset value, the voltage supply circuit supplies the voltage of the first voltage source to the second detecting circuit, when the voltage of the first voltage source reaches the first preset value and When the voltage of the second voltage source reaches the second predetermined value, the voltage supply circuit reduces the voltage of the first voltage source to generate an attenuation voltage, and supplies the attenuation voltage to the second detection circuit. 如申請專利範圍第6項所述之具狀態回復機制之上電控制電路,其中該電壓供給電路包括:一P型電晶體,其閘極接收該回授信號,其源極耦接該第一電壓源,其汲極耦接該第二偵測電路;一第一N型電晶體,其閘極接收該回授信號,其汲極耦接該第一電壓源;以及一第二N型電晶體,其閘極與汲極耦接該第一N型電晶體的源極,其源極耦接該第二偵測電路。 The electrical control circuit of the state recovery mechanism as described in claim 6 , wherein the voltage supply circuit comprises: a P-type transistor, the gate receiving the feedback signal, and the source coupled to the first a voltage source having a drain coupled to the second detecting circuit; a first N-type transistor having a gate receiving the feedback signal, a drain coupled to the first voltage source; and a second N-type battery The gate is coupled to the source of the first N-type transistor, and the source is coupled to the second detecting circuit. 如申請專利範圍第6項所述之具狀態回復機制之上電控制電路,其中該電壓供給電路包括:一第一P型電晶體,其閘極接收該回授信號,其源極耦接該第一電壓源,其汲極耦接該第二偵測電路;一第二P型電晶體,其閘極接收該控制信號,其源極耦接該第一電壓源;以及一第三P型電晶體,其閘極與源極耦接該第二P型電晶體的汲極,其汲極耦接該第二偵測電路。 The state control circuit upper power control circuit according to claim 6, wherein the voltage supply circuit comprises: a first P-type transistor, the gate receives the feedback signal, and the source is coupled to the source a first voltage source having a drain coupled to the second detecting circuit; a second P-type transistor having a gate receiving the control signal, a source coupled to the first voltage source; and a third P-type The gate is coupled to the drain of the second P-type transistor, and the drain is coupled to the second detecting circuit. 如申請專利範圍第1項所述之具狀態回復機制之上電控制電路,其中該電壓供給電路包括: 一第一N型電晶體,其閘極接收該控制信號,其汲極耦接該第一電壓源,其源極耦接該第二偵測電路;一第二N型電晶體,其閘極接收該回授信號,其汲極耦接該第一電壓源;以及一第三N型電晶體,其閘極與汲極耦接該第二N型電晶體的源極,其源極耦接該第二偵測電路。 The state control mechanism is as described in claim 1, wherein the voltage supply circuit comprises: a first N-type transistor having a gate receiving the control signal, a drain coupled to the first voltage source, a source coupled to the second detection circuit, and a second N-type transistor having a gate Receiving the feedback signal, the drain is coupled to the first voltage source; and a third N-type transistor, the gate and the drain are coupled to the source of the second N-type transistor, and the source is coupled The second detecting circuit. 如申請專利範圍第1項所述之具狀態回復機制之上電控制電路,其中該第二偵測電路包括:一第一邏輯電路,接收該回授信號及該第二電壓源的電壓,並輸出該第二偵測信號;一傳輸閘,耦接於該第二電壓源與該第一邏輯電路之間;以及一第二邏輯電路,接收該回授信號及該回復信號,並耦接該第一節點。 The state control circuit of the above-mentioned claim, wherein the second detecting circuit comprises: a first logic circuit, receiving the feedback signal and the voltage of the second voltage source, and Outputting the second detection signal; a transmission gate coupled between the second voltage source and the first logic circuit; and a second logic circuit receiving the feedback signal and the reply signal, and coupling the The first node. 一種操作電路,包括:一核心電路,接收一第一電壓源的電壓以及一第二電壓源的電壓,並產生一第一控制信號以及一第二控制信號;一第一輸出開關,根據該第一控制信號,傳送該第一電壓源的電壓予一接合墊;一第二輸出開關,根據該第二控制信號,傳送一接地電壓予該接合墊;以及一上電控制電路,根據該第一及第二電壓源的電壓,控制該第一及第二輸出開關,並包括: 一第一偵測電路,偵測該第一電壓源的電壓,用以產生一第一偵測信號予一第一節點;一切換電路,耦接該第一及第二電壓源,並根據該第一節點的位準,輸出該第一或第二電壓源的電壓予一第二節點;一第一緩衝器,根據該第二節點的位準,產生一回授信號以及一控制信號;一第二偵測電路,根據該回授信號、該控制信號、該第二電壓源的電壓以及一回復信號,產生一第二偵測信號;以及一第二緩衝器,根據該第二偵測信號產生該回復信號,並根據該第二偵測信號控制該第一及第二輸出開關。 An operating circuit includes: a core circuit that receives a voltage of a first voltage source and a voltage of a second voltage source, and generates a first control signal and a second control signal; a first output switch, according to the first a control signal, transmitting the voltage of the first voltage source to a bonding pad; a second output switch transmitting a ground voltage to the bonding pad according to the second control signal; and a power-on control circuit, according to the first And a voltage of the second voltage source, controlling the first and second output switches, and comprising: a first detecting circuit for detecting a voltage of the first voltage source for generating a first detecting signal to a first node; a switching circuit coupled to the first and second voltage sources, and according to the a level of the first node, outputting the voltage of the first or second voltage source to a second node; a first buffer, generating a feedback signal and a control signal according to the level of the second node; The second detecting circuit generates a second detecting signal according to the feedback signal, the control signal, the voltage of the second voltage source, and a reply signal, and a second buffer according to the second detecting signal The reply signal is generated, and the first and second output switches are controlled according to the second detection signal. 如申請專利範圍第11項所述之操作電路,其中當該第一電壓源的電壓達一第一預設值並且該第二電壓源的電壓未達一第二預設值時,該上電控制電路進入一第一模式,在該第一模式下,該第一偵測電路傳送該第一電壓源的電壓至該第一節點,該切換電路輸出該第二電壓源的電壓至該第二節點,該第二偵測電路根據該回授信號產生該第二偵測信號,該第二緩衝器根據該第二偵測信號產生具有一第一位準的回復信號。 The operation circuit of claim 11, wherein the power is turned on when the voltage of the first voltage source reaches a first preset value and the voltage of the second voltage source does not reach a second preset value. The control circuit enters a first mode, in which the first detecting circuit transmits the voltage of the first voltage source to the first node, and the switching circuit outputs the voltage of the second voltage source to the second The second detecting circuit generates the second detecting signal according to the feedback signal, and the second buffer generates a return signal having a first level according to the second detecting signal. 如申請專利範圍第12項所述之操作電路,其中當該第一電壓源的電壓達該第一預設值並且該第二電壓源的電壓達該第二預設值時,該上電控制電路進入一第二模式,在該第二模式下,該第二節點具有一第二位準,該第一緩衝器根 據該第二節點的電壓產生該回授信號,該第二偵測電路根據該回授信號改變該第一節點的位準,並產生該第二偵測信號,該切換電路根據該第一節點的位準,輸出該第一電壓源的電壓至該第二節點,該第二緩衝器根據該第二偵測信號產生具有該第二位準的回復信號,該第二位準高於該第一位準。 The operation circuit of claim 12, wherein when the voltage of the first voltage source reaches the first preset value and the voltage of the second voltage source reaches the second preset value, the power-on control The circuit enters a second mode, in which the second node has a second level, the first buffer root The feedback signal is generated according to the voltage of the second node, the second detecting circuit changes the level of the first node according to the feedback signal, and generates the second detection signal, and the switching circuit is configured according to the first node. a level of the first voltage source to the second node, the second buffer generating a reply signal having the second level according to the second detection signal, the second level being higher than the first level One is accurate. 如申請專利範圍第13項所述之操作電路,其中當該第二電壓源的電壓減少並低於該第二預設值時,該上電控制電路進入一第三模式,在該第三模式下,該第二偵測電路根據該第二電壓源的電壓產生該第二偵測信號,該第二緩衝器根據該第二偵測信號產生具有該第一位準的回復信號,用以改變該第一節點的位準,該切換電路根據該第一節點的位準輸出該第二電壓源的電壓至該第二節點。 The operation circuit of claim 13, wherein when the voltage of the second voltage source decreases and is lower than the second preset value, the power-on control circuit enters a third mode, in the third mode The second detecting circuit generates the second detecting signal according to the voltage of the second voltage source, and the second buffer generates a return signal having the first level according to the second detecting signal, for changing The level of the first node, the switching circuit outputs the voltage of the second voltage source to the second node according to the level of the first node. 如申請專利範圍第11項所述之操作電路,更包括:一位準轉換電路,耦接於該第二偵測電路與該第二緩衝器之間,其中該位準轉換電路調整該第二偵測信號的位準,用以產生一輸出信號,該第二緩衝器根據該輸出信號產生該回復信號。 The operation circuit of claim 11, further comprising: a quasi-conversion circuit coupled between the second detection circuit and the second buffer, wherein the level conversion circuit adjusts the second The level of the detection signal is used to generate an output signal, and the second buffer generates the reply signal according to the output signal. 如申請專利範圍第11項所述之操作電路,更包括:一電壓供給電路,耦接於該第一電壓源與該第二偵測電路之間,其中當該第一電壓源的電壓達該第一預設值並且該第二電壓源的電壓未達該第二預設值時,該電壓供給電路提供該第一電壓源的電壓予該第二偵測電路,當該第一電壓源的電壓達該第一預設值並且該第二電壓源的電壓達該 第二預設值時,該電壓供給電路減少該第一電壓源的電壓,用以產生一衰減電壓,並將該衰減電壓提供予該第二偵測電路。 The operation circuit of claim 11, further comprising: a voltage supply circuit coupled between the first voltage source and the second detection circuit, wherein when the voltage of the first voltage source reaches the When the voltage of the second voltage source does not reach the second preset value, the voltage supply circuit supplies the voltage of the first voltage source to the second detecting circuit, when the first voltage source The voltage reaches the first preset value and the voltage of the second voltage source reaches the The second voltage supply circuit reduces the voltage of the first voltage source to generate an attenuation voltage and provides the attenuation voltage to the second detection circuit. 如申請專利範圍第16項所述之操作電路,其中該電壓供給電路包括:一P型電晶體,其閘極接收該回授信號,其源極耦接該第一電壓源,其汲極耦接該第二偵測電路;一第一N型電晶體,其閘極接收該回授信號,其汲極耦接該第一電壓源;以及一第二N型電晶體,其閘極與汲極耦接該第一N型電晶體的源極,其源極耦接該第二偵測電路。 The operating circuit of claim 16, wherein the voltage supply circuit comprises: a P-type transistor, the gate receiving the feedback signal, the source coupled to the first voltage source, and the drain coupling Connected to the second detecting circuit; a first N-type transistor, the gate receiving the feedback signal, the drain electrode coupled to the first voltage source; and a second N-type transistor, the gate and the gate The source is coupled to the source of the first N-type transistor, and the source is coupled to the second detecting circuit. 如申請專利範圍第16項所述之操作電路,其中該電壓供給電路包括:一第一P型電晶體,其閘極接收該回授信號,其源極耦接該第一電壓源,其汲極耦接該第二偵測電路;一第二P型電晶體,其閘極接收該控制信號,其源極耦接該第一電壓源;以及一第三P型電晶體,其閘極與源極耦接該第二P型電晶體的汲極,其汲極耦接該第二偵測電路。 The operating circuit of claim 16, wherein the voltage supply circuit comprises: a first P-type transistor, the gate receiving the feedback signal, the source of which is coupled to the first voltage source, and The pole is coupled to the second detecting circuit; a second P-type transistor, the gate receiving the control signal, the source of the second voltage source coupled to the first voltage source; and a third P-type transistor having a gate The source is coupled to the drain of the second P-type transistor, and the drain is coupled to the second detecting circuit. 如申請專利範圍第11項所述之操作電路,其中該電壓供給電路包括:一第一N型電晶體,其閘極接收該控制信號,其汲極耦接該第一電壓源,其源極耦接該第二偵測電路; 一第二N型電晶體,其閘極接收該回授信號,其汲極耦接該第一電壓源;以及一第三N型電晶體,其閘極與汲極耦接該第二N型電晶體的源極,其源極耦接該第二偵測電路。 The operation circuit of claim 11, wherein the voltage supply circuit comprises: a first N-type transistor, wherein the gate receives the control signal, and the drain is coupled to the first voltage source, and the source thereof The second detecting circuit is coupled to the second detecting circuit; a second N-type transistor having a gate receiving the feedback signal and a drain coupled to the first voltage source; and a third N-type transistor having a gate and a drain coupled to the second N-type The source of the transistor has a source coupled to the second detecting circuit. 如申請專利範圍第11項所述之操作電路,其中該第二偵測電路包括:一第一邏輯電路,接收該回授信號及該第二電壓源的電壓,並輸出該第二偵測信號;一傳輸閘,耦接於該第二電壓源與該第一邏輯電路之間;以及一第二邏輯電路,接收該回授信號及該回復信號,並耦接該第一節點。 The operation circuit of claim 11, wherein the second detection circuit comprises: a first logic circuit, receiving the feedback signal and the voltage of the second voltage source, and outputting the second detection signal a transmission gate coupled between the second voltage source and the first logic circuit; and a second logic circuit that receives the feedback signal and the reply signal and is coupled to the first node.
TW106125859A 2017-08-01 2017-08-01 Power-on control circuit with state-recovery mechanism and operating circuit utilizing the same TWI646781B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106125859A TWI646781B (en) 2017-08-01 2017-08-01 Power-on control circuit with state-recovery mechanism and operating circuit utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106125859A TWI646781B (en) 2017-08-01 2017-08-01 Power-on control circuit with state-recovery mechanism and operating circuit utilizing the same

Publications (2)

Publication Number Publication Date
TWI646781B true TWI646781B (en) 2019-01-01
TW201911748A TW201911748A (en) 2019-03-16

Family

ID=65803663

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125859A TWI646781B (en) 2017-08-01 2017-08-01 Power-on control circuit with state-recovery mechanism and operating circuit utilizing the same

Country Status (1)

Country Link
TW (1) TWI646781B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070103210A1 (en) * 2005-11-07 2007-05-10 Taiwan Semiconductor Manufacturing Company, Ltd. Power-on reset circuit for an integrated circuit
US7221199B2 (en) * 2003-12-24 2007-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Circuit and method for generating level-triggered power up reset signal
US20080100351A1 (en) * 2006-10-31 2008-05-01 Hynix Semiconductor Inc. Power-on reset circuit
US20140097873A1 (en) * 2011-06-21 2014-04-10 Southeast University Power-on-reset (por) circuit with zero steady-state current consumption and stable pull-up voltage
US8963590B2 (en) * 2007-06-13 2015-02-24 Honeywell International Inc. Power cycling power on reset circuit for fuse initialization circuitry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7221199B2 (en) * 2003-12-24 2007-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Circuit and method for generating level-triggered power up reset signal
US20070103210A1 (en) * 2005-11-07 2007-05-10 Taiwan Semiconductor Manufacturing Company, Ltd. Power-on reset circuit for an integrated circuit
TWI338449B (en) * 2005-11-07 2011-03-01 Taiwan Semiconductor Mfg Power-on reset circuit
US20080100351A1 (en) * 2006-10-31 2008-05-01 Hynix Semiconductor Inc. Power-on reset circuit
US8963590B2 (en) * 2007-06-13 2015-02-24 Honeywell International Inc. Power cycling power on reset circuit for fuse initialization circuitry
US20140097873A1 (en) * 2011-06-21 2014-04-10 Southeast University Power-on-reset (por) circuit with zero steady-state current consumption and stable pull-up voltage

Also Published As

Publication number Publication date
TW201911748A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
US10340917B2 (en) Receiver circuitry and method for converting an input signal from a source voltage domain into an output signal for a destination voltage domain
KR20150037033A (en) Impedance calibration circuit
KR100670682B1 (en) Data output circuit in semiconductor memory device and its method
KR100519788B1 (en) Input buffer
TWI651734B (en) Data output circuit of semiconductor apparatus
JP2010182393A (en) Predriver and output driver circuit using the same
TWI646781B (en) Power-on control circuit with state-recovery mechanism and operating circuit utilizing the same
KR20170064842A (en) Transmitter and Semiconductor Apparatus
US10056897B1 (en) Power-on control circuit with state-recovery mechanism and operating circuit utilizing the same
KR102445814B1 (en) Semiconductor Apparatus
KR101322221B1 (en) Malfunction protection circuit for source driver ic with cog form and flat panel display control apparatus with the same
TWI773021B (en) Display device and driving device thereof
TWI634407B (en) Power-on control circuit and control circuit utilizing the same
KR100640783B1 (en) Data output driver for reducing noise
KR20120047385A (en) Output buffer
KR20220085266A (en) Power domain changing circuit and operation method thereof
TWI436584B (en) Output circuit with reducing overshoot function
WO2019141141A1 (en) Drive circuit and serializer/deserializer
US20140210537A1 (en) Electronic device
TW201701587A (en) Receiver circuit
KR20040026726A (en) Input and output circuit of semiconductor device
TWI815374B (en) Level shifter
KR20120057382A (en) Level shifter
KR20090048888A (en) Duty cycle correction circuit of semiconductor memory apparatus
KR20180112460A (en) Semiconductor Apparatus