TWI646677B - Image sensor and manufacturing method thereof - Google Patents
Image sensor and manufacturing method thereof Download PDFInfo
- Publication number
- TWI646677B TWI646677B TW105137886A TW105137886A TWI646677B TW I646677 B TWI646677 B TW I646677B TW 105137886 A TW105137886 A TW 105137886A TW 105137886 A TW105137886 A TW 105137886A TW I646677 B TWI646677 B TW I646677B
- Authority
- TW
- Taiwan
- Prior art keywords
- pixel
- electrode
- photoelectric conversion
- image sensor
- conversion layer
- Prior art date
Links
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
本揭露內容係提供一種影像感測器及其製造方法。影像感測器包括一畫素感測電路、一畫素電極以及一光電轉換層。畫素感測電路對應至少相鄰的一第一畫素區和一第二畫素區。畫素電極設置於畫素感測電路上,畫素電極對應第一畫素區和第二畫素區,畫素電極包括一第一電極和一第二電極且電性連接至畫素感測電路,其中第一電極與第二電極係為共平面,第一電極與第二電極具有不同極性,且位於第一畫素區中的第一電極或第二電極相鄰於位於第二畫素區中具有相同極性的第一電極或第二電極。光電轉換層設置於畫素感測電路及畫素電極上,其中光電轉換層包括一感光層及一載子傳輸層,感光層位於載子傳輸層上,載子傳輸層位於畫素電極及感光層之間。 The disclosure provides an image sensor and a method of fabricating the same. The image sensor includes a pixel sensing circuit, a pixel electrode, and a photoelectric conversion layer. The pixel sensing circuit corresponds to at least one of the first pixel region and the second pixel region. The pixel electrode is disposed on the pixel sensing circuit, wherein the pixel electrode corresponds to the first pixel region and the second pixel region, and the pixel electrode comprises a first electrode and a second electrode and is electrically connected to the pixel sensing a circuit, wherein the first electrode and the second electrode are coplanar, the first electrode and the second electrode have different polarities, and the first electrode or the second electrode located in the first pixel region is adjacent to the second pixel A first electrode or a second electrode having the same polarity in the region. The photoelectric conversion layer is disposed on the pixel sensing circuit and the pixel electrode, wherein the photoelectric conversion layer comprises a photosensitive layer and a carrier transport layer, the photosensitive layer is located on the carrier transport layer, and the carrier transport layer is located on the pixel electrode and the photosensitive layer Between the layers.
Description
本揭露內容是有關於一種影像感測器及其製造方法。 The disclosure relates to an image sensor and a method of fabricating the same.
多年來為了使影像感測晶片(CMOS Image Sensor)在暗光源環境下仍可具有明亮的表現,相關業者均著重於發展高感光度感測元件。 In recent years, in order to enable the CMOS Image Sensor to have a bright performance in a dark light source environment, the related companies have focused on developing high-sensitivity sensing elements.
然而,一般使用矽材料為主的感光元件,為了在相同晶片面積下增加解析度,大幅提升畫素數目造成畫素面積(pixel size)不斷縮小,也相對降低了每個畫素的進光量以及收光面積。由於感測元件的進光量及收光面積的限制,即使半導體製程不斷進步,感測元件畫素面積無法再縮小,畫素數目亦無法再提升,因此影像感測晶片解析度也無法再提高。因此,如何增加進光量及收光面積為目前探討之處,也是目前影像感測元件的發展重點。 However, in general, a photosensitive material mainly composed of a ruthenium material is used, in order to increase the resolution under the same wafer area, the pixel number is greatly increased, the pixel size is continuously reduced, and the amount of light entering each pixel is relatively reduced. Light collection area. Due to the limitation of the amount of light entering the light-receiving element and the light-receiving area, even if the semiconductor process continues to advance, the pixel area of the sensing element can no longer be reduced, and the number of pixels can no longer be increased, so the resolution of the image sensing chip can no longer be improved. Therefore, how to increase the amount of light entering and the area of light collection is the current discussion, and it is also the development focus of current image sensing components.
根據本揭露內容之一實施例,係提出一種影像感測器。影像感測器包括一畫素感測電路、一畫素電極以及一光電轉換層。畫素感測電路對應至少相鄰的一第一畫素區和一第二畫素區。畫素電極設置於畫素感測電路上,畫素電極對應第一畫素區和第二畫素區,畫素電極包括一第一電極和一第二電極且電性連接至畫素感測電路,其中第一電極與第二電極係為共平面,第一電極與第二電極具有不同極性,且位於第一畫素區中的第一電極或第二電極相鄰於位於第二畫素區中具有相同極性的第一電極或第二電極。光電轉換層設置於畫素感測電路及畫素電極上,其中光電轉換層包括一感光層及一載子傳輸層,感光層位於載子傳輸層上,載子傳輸層位於畫素電極及感光層之間。 According to an embodiment of the present disclosure, an image sensor is proposed. The image sensor includes a pixel sensing circuit, a pixel electrode, and a photoelectric conversion layer. The pixel sensing circuit corresponds to at least one of the first pixel region and the second pixel region. The pixel electrode is disposed on the pixel sensing circuit, wherein the pixel electrode corresponds to the first pixel region and the second pixel region, and the pixel electrode comprises a first electrode and a second electrode and is electrically connected to the pixel sensing a circuit, wherein the first electrode and the second electrode are coplanar, the first electrode and the second electrode have different polarities, and the first electrode or the second electrode located in the first pixel region is adjacent to the second pixel A first electrode or a second electrode having the same polarity in the region. The photoelectric conversion layer is disposed on the pixel sensing circuit and the pixel electrode, wherein the photoelectric conversion layer comprises a photosensitive layer and a carrier transport layer, the photosensitive layer is located on the carrier transport layer, and the carrier transport layer is located on the pixel electrode and the photosensitive layer Between the layers.
根據本揭露內容之另一實施例,係提出一種影像感測器。影像感測器包括一畫素感測電路、一畫素隔離結構、一畫素電極以及一光電轉換層。畫素隔離結構設置於畫素感測電路上。畫素電極包括一第一電極和一第二電極,且第一電極和第二電極電性連接至畫素感測電路,其中第一電極和第二電極彼此係共平面。光電轉換層設置於畫素感測電路上,其中光電轉換層位於畫素隔離結構之中,且光電轉換層的頂表面低於畫素隔離結構的頂表面。 According to another embodiment of the present disclosure, an image sensor is provided. The image sensor includes a pixel sensing circuit, a pixel isolation structure, a pixel electrode, and a photoelectric conversion layer. The pixel isolation structure is disposed on the pixel sensing circuit. The pixel electrode includes a first electrode and a second electrode, and the first electrode and the second electrode are electrically connected to the pixel sensing circuit, wherein the first electrode and the second electrode are coplanar with each other. The photoelectric conversion layer is disposed on the pixel sensing circuit, wherein the photoelectric conversion layer is located in the pixel isolation structure, and the top surface of the photoelectric conversion layer is lower than the top surface of the pixel isolation structure.
根據本揭露內容之再一實施例,係提出一種影像感測器。影像感測器包括一畫素感測電路、一畫素電極以及一光電轉換層。畫素感測電路對應複數個畫素區。畫素電極設置於畫素感測電路上,畫素電極包括一第一電極和一第二電極且電性連接至畫素感測電路,其中第一電極與第二電極係為共平面,第一電 極與第二電極具有不同極性。光電轉換層設置於畫素感測電路上,且光電轉換層具有複數個光電轉換層區塊,各個光電轉換層區塊分別對應至各個畫素區,且此些光電轉換層區塊彼此係經由一畫素隔離溝槽分隔開來。 According to still another embodiment of the present disclosure, an image sensor is provided. The image sensor includes a pixel sensing circuit, a pixel electrode, and a photoelectric conversion layer. The pixel sensing circuit corresponds to a plurality of pixel regions. The pixel electrode is disposed on the pixel sensing circuit, the pixel electrode includes a first electrode and a second electrode and is electrically connected to the pixel sensing circuit, wherein the first electrode and the second electrode are coplanar, One electric The pole and the second electrode have different polarities. The photoelectric conversion layer is disposed on the pixel sensing circuit, and the photoelectric conversion layer has a plurality of photoelectric conversion layer blocks, each of the photoelectric conversion layer blocks respectively corresponding to each pixel region, and the photoelectric conversion layer blocks are mutually connected via A pixel isolation trench is separated.
根據本揭露內容之又一實施例,係提出一種影像感測器的製造方法。影像感測器的製造方法包括以下步驟:提供一畫素感測電路,畫素感測電路對應複數個畫素區;設置一畫素電極於畫素感測電路上,畫素電極包括一第一電極和一第二電極且電性連接至畫素感測電路,其中第一電極與第二電極係為共平面,第一電極與第二電極具有不同極性;以及設置一光電轉換層於畫素感測電路上,且光電轉換層具有複數個光電轉換層區塊,各個光電轉換層區塊分別對應至各個畫素區,且此些光電轉換層區塊彼此係經由一畫素隔離溝槽分隔開來。 According to still another embodiment of the present disclosure, a method of fabricating an image sensor is provided. The method for manufacturing an image sensor includes the following steps: providing a pixel sensing circuit, the pixel sensing circuit corresponding to the plurality of pixel regions; and setting a pixel electrode on the pixel sensing circuit, the pixel electrode includes a first An electrode and a second electrode are electrically connected to the pixel sensing circuit, wherein the first electrode and the second electrode are coplanar, the first electrode and the second electrode have different polarities; and a photoelectric conversion layer is disposed On the sensing circuit, the photoelectric conversion layer has a plurality of photoelectric conversion layer blocks, each of the photoelectric conversion layer blocks respectively corresponding to each pixel region, and the photoelectric conversion layer blocks are connected to each other via a pixel isolation trench Separated by.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉多個實施例,作詳細說明如下: In order to provide a better understanding of the above and other aspects of the present invention, various embodiments are described below in detail as follows:
10、20-1、20-2、30、40、40-1、40-2、40-3、50、60、70、80、90、90-1、1200、1200-1、1200-2‧‧‧影像感測器 10, 20-1, 20-2, 30, 40, 40-1, 40-2, 40-3, 50, 60, 70, 80, 90, 90-1, 1200, 1200-1, 1200-2‧ ‧‧Image sensor
100‧‧‧畫素感測電路 100‧‧‧ pixel sensing circuit
110‧‧‧矽基板 110‧‧‧矽 substrate
120‧‧‧電子元件 120‧‧‧Electronic components
200‧‧‧畫素隔離結構 200‧‧‧ pixel isolation structure
200a、230a、250a、300a‧‧‧頂表面 200a, 230a, 250a, 300a‧‧‧ top surface
210‧‧‧第一電極 210‧‧‧First electrode
220‧‧‧第二電極 220‧‧‧second electrode
230、240‧‧‧非導電層 230, 240‧‧‧ non-conductive layer
250、M1~Mn‧‧‧金屬層 250, M1~Mn‧‧‧ metal layer
300‧‧‧光電轉換層 300‧‧‧ photoelectric conversion layer
300-1~300-5‧‧‧光電轉換層區塊 300-1~300-5‧‧‧ photoelectric conversion layer block
300T‧‧‧畫素隔離溝槽 300T‧‧‧ pixel isolation trench
310‧‧‧感光層 310‧‧‧Photosensitive layer
320‧‧‧載子傳輸層 320‧‧‧ Carrier Transport Layer
330‧‧‧光電轉換材料第一前驅物材料 330‧‧‧Photoelectric conversion material first precursor material
330-1、330-2‧‧‧第一材料部分 330-1, 330-2‧‧‧Parts of the first material
340‧‧‧光電轉換材料第二前驅物材料 340‧‧‧Photoelectric conversion material second precursor material
400‧‧‧水氧保護層 400‧‧‧Water Oxygen Protective Layer
1B-1B’、3B-3B’、4B-4B’‧‧‧剖面線 1B-1B’, 3B-3B’, 4B-4B’‧‧‧ hatching
C1、C2、V1、V2、S‧‧‧連接柱 C1, C2, V1, V2, S‧‧‧ connecting columns
P1~P8‧‧‧畫素區 P1~P8‧‧‧ pixel area
PR‧‧‧圖案化光阻層 PR‧‧‧ patterned photoresist layer
△H‧‧‧高度差 △H‧‧‧ height difference
第1A圖繪示本揭露內容之一實施例之影像感測器之上視圖。 FIG. 1A is a top view of an image sensor according to an embodiment of the present disclosure.
第1B圖繪示沿剖面線1B-1B’之剖面示意圖。 Fig. 1B is a schematic cross-sectional view along section line 1B-1B'.
第2A圖繪示本揭露內容之另一實施例之影像感測器之示意圖。 FIG. 2A is a schematic diagram of an image sensor according to another embodiment of the disclosure.
第2B圖繪示本揭露內容之另一實施例之影像感測器之示意圖。 FIG. 2B is a schematic diagram of an image sensor according to another embodiment of the disclosure.
第3A圖繪示本揭露內容之再一實施例之影像感測器之上視圖。 FIG. 3A is a top view of an image sensor according to still another embodiment of the disclosure.
第3B圖繪示沿剖面線3B-3B’之剖面示意圖。 Fig. 3B is a schematic cross-sectional view along section line 3B-3B'.
第4A圖繪示本揭露內容之又一實施例之影像感測器之上視圖。 FIG. 4A is a top view of an image sensor according to still another embodiment of the present disclosure.
第4B圖繪示沿剖面線4B-4B’之剖面示意圖。 Fig. 4B is a schematic cross-sectional view along section line 4B-4B'.
第4C圖~第4E圖繪示沿剖面線4B-4B’之多個實施例之剖面示意圖。 4C through 4E are cross-sectional views showing various embodiments along section line 4B-4B'.
第5圖繪示本揭露內容之更一實施例之影像感測器之示意圖。 FIG. 5 is a schematic diagram of an image sensor according to a further embodiment of the disclosure.
第6圖繪示本揭露內容之更另一實施例之影像感測器之示意圖。 FIG. 6 is a schematic diagram of an image sensor according to still another embodiment of the present disclosure.
第7圖繪示本揭露內容之再另一實施例之影像感測器之上視圖。 FIG. 7 is a top view of an image sensor according to still another embodiment of the present disclosure.
第8圖繪示本揭露內容之又另一實施例之影像感測器之上視圖。 FIG. 8 is a top view of an image sensor according to still another embodiment of the present disclosure.
第9圖繪示本揭露內容之更另一實施例之影像感測器之上視圖。 FIG. 9 is a top view of an image sensor according to still another embodiment of the present disclosure.
第9A圖繪示本揭露內容之更另一實施又之影像感測器之上視圖。 FIG. 9A is a top view of an image sensor according to still another implementation of the disclosure.
第10A圖~第10D圖繪示依照本發明之一實施例之一種影像感測器之製造方法示意圖。 10A to 10D are schematic views showing a method of manufacturing an image sensor according to an embodiment of the present invention.
第11A圖~第11C圖繪示依照本發明之另一實施例之一種影像感測器之製造方法示意圖。 11A to 11C are schematic views showing a method of manufacturing an image sensor according to another embodiment of the present invention.
第12圖繪示本揭露內容之更再一實施例之影像感測器之剖面示意圖。 FIG. 12 is a cross-sectional view showing an image sensor according to still another embodiment of the present disclosure.
第12A圖~第12B圖繪示本揭露內容之更再一些實施例之影像感測器之剖面示意圖。 12A to 12B are cross-sectional views showing an image sensor of still further embodiments of the present disclosure.
第13A圖~第13F圖繪示依照本發明之更再一實施例之一種影像感測器之製造方法示意圖。 13A to 13F are schematic views showing a method of manufacturing an image sensor according to still another embodiment of the present invention.
本揭露內容之實施例中,影像感測器之光電轉換層的頂表面低於畫素隔離結構的頂表面,如此一來,因為此兩個頂表面的高度差,而使得製作完成的光電轉換層被畫素隔離結構隔離在一個畫素區中,因此可以避免相鄰的畫素區中的光電轉換層發生串音(cross talk)的議題。以下係詳細敘述本揭露內容之實施例。實施例所提出的細部組成為舉例說明之用,並非對本揭露內容欲保護之範圍做限縮。具有通常知識者當可依據實際實施態樣的需要對該些組成加以修飾或變化。 In an embodiment of the disclosure, the top surface of the photoelectric conversion layer of the image sensor is lower than the top surface of the pixel isolation structure, so that the photoelectric conversion is completed because of the difference in height between the two top surfaces. The layer is isolated by a pixel isolation structure in one pixel region, so that the problem of cross talk of the photoelectric conversion layer in the adjacent pixel region can be avoided. The embodiments of the present disclosure are described in detail below. The details of the embodiments are for illustrative purposes and are not intended to limit the scope of the disclosure. Those having ordinary knowledge may modify or change the components as needed in accordance with the actual implementation.
第1A圖繪示本揭露內容之一實施例之影像感測器之上視圖,第1B圖繪示沿第1A圖之剖面線1B-1B’之剖面示意圖。如第1A~1B圖所示,影像感測器10包括一畫素感測電路100、一畫素電極(210、220)、一光電轉換層300及一水氧保護層400。畫素感測電路100對應至少相鄰的一第一畫素區P1和一第二畫素區P2。畫素電極設置於畫素感測電路100上,畫素電極對應第一畫素區P1和第二畫素區P2,畫素電極包括一第一電極210和一第二電極220且電性連接至畫素感測電路100。第一電極210 與第二電極220係為共平面,第一電極210與第二電極220具有不同極性,且位於第一畫素區P1中的第一電極210或第二電極220相鄰於位於第二畫素區P2中具有相同極性的第一電極210或第二電極220。光電轉換層300設置於畫素感測電路300及畫素電極上,光電轉換層300包括一感光層310及一載子傳輸層320,感光層310位於載子傳輸層320上,載子傳輸層320位於畫素電極(第一電極210、第二電極220)及感光層310之間。 1A is a top view of an image sensor according to an embodiment of the present disclosure, and FIG. 1B is a cross-sectional view taken along line 1B-1B' of FIG. 1A. As shown in FIGS. 1A-1B, the image sensor 10 includes a pixel sensing circuit 100, a pixel electrode (210, 220), a photoelectric conversion layer 300, and a water and oxygen protection layer 400. The pixel sensing circuit 100 corresponds to at least a first pixel region P1 and a second pixel region P2 adjacent to each other. The pixel electrode is disposed on the pixel sensing circuit 100. The pixel electrode corresponds to the first pixel region P1 and the second pixel region P2. The pixel electrode includes a first electrode 210 and a second electrode 220 and is electrically connected. To the pixel sensing circuit 100. First electrode 210 The first electrode 210 and the second electrode 220 have different polarities, and the first electrode 210 or the second electrode 220 located in the first pixel region P1 is adjacent to the second pixel. The first electrode 210 or the second electrode 220 having the same polarity in the region P2. The photoelectric conversion layer 300 is disposed on the pixel sensing circuit 300 and the pixel electrode. The photoelectric conversion layer 300 includes a photosensitive layer 310 and a carrier transport layer 320. The photosensitive layer 310 is located on the carrier transport layer 320, and the carrier transport layer 320 is located between the pixel electrodes (the first electrode 210 and the second electrode 220) and the photosensitive layer 310.
光電轉換層300中,感光層310吸收光子後產生激子(exciton),激子再分離成電子和電洞,電子和電洞受電場影響下而分別往兩極移動而形成光電流。實際的操作狀況下,電場的產生可能會來自於電極、光電轉換層300中的各層能階差異、或是外加操作電壓等方式。實施例中,載子傳輸層320可以是電子傳輸層(ETL)或電洞傳輸層(HTL),可提升激子分離及傳導載子,因此可以提升光電轉換層300的整體光電轉換效率。並且,載子傳輸層320也可以具有載子阻擋層(carrier barrier layer)的功能,換言之,可以阻擋載子由電極回流至光電轉換層300,因此可以有效抑制暗電流(dark current)。或者,載子傳輸層320也可以避免感光層310與電極介面間作用,而具有提高電極穩定性功能。 In the photoelectric conversion layer 300, the photosensitive layer 310 absorbs photons to generate excitons, and the excitons are separated into electrons and holes, and the electrons and holes are moved to the two electrodes to form photocurrents under the influence of the electric field. Under actual operating conditions, the generation of the electric field may come from the electrode, the energy level difference of each layer in the photoelectric conversion layer 300, or the applied operating voltage. In the embodiment, the carrier transport layer 320 may be an electron transport layer (ETL) or a hole transport layer (HTL), which can enhance exciton separation and conduct carriers, and thus can improve the overall photoelectric conversion efficiency of the photoelectric conversion layer 300. Further, the carrier transport layer 320 may also have a function as a carrier barrier layer, in other words, it is possible to block the carrier from flowing back to the photoelectric conversion layer 300 by the electrodes, and thus it is possible to effectively suppress a dark current. Alternatively, the carrier transport layer 320 can also prevent the interaction between the photosensitive layer 310 and the electrode interface, and has the function of improving the electrode stability.
實施例中,載子傳輸層320的材料包括氧化鈦(TiO2)、氧化鋅(ZnO)、氧化鋁(Al2O3)、富勒烯衍生物(PCBM)、聚3,4-乙烯基二氧噻吩:聚苯乙烯磺酸鹽(PEDOC:PSS)、氧化鎳(NiO)和/或氧化釩(V2O5)、PFN、乙氧基聚乙烯亞胺(PEIE)、聚乙烯亞胺(PEI)、三氧化鉬(MoO3)、三氧化鎢(WO3)、LiF(氟化鋰)、4,7-二苯基-1,10-菲羅啉(bphen,bathophenanthroline)、8-羥基喹 啉鋁(Alq3),但不限於此。 In the embodiment, the material of the carrier transport layer 320 includes titanium oxide (TiO 2 ), zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), fullerene derivative (PCBM), poly 3,4-vinyl Dioxythiophene: polystyrene sulfonate (PEDOC: PSS), nickel oxide (NiO) and/or vanadium oxide (V 2 O 5 ), PFN, ethoxylated polyethyleneimine (PEIE), polyethyleneimine (PEI), molybdenum trioxide (MoO 3 ), tungsten trioxide (WO 3 ), LiF (lithium fluoride), 4,7-diphenyl-1,10-phenanthroline (bphen,bathophenanthroline), 8- Aluminum hydroxyquinolate (Alq3), but is not limited thereto.
由於電場的產生可能會來自於電極、光電轉換層300中的各層能階差異、或是外加操作電壓,而電子和電洞會受電場影響而形成光電流,因此當載子傳輸層320作為載子阻擋層的功能時,可以經由能階匹配選擇適用的材料,便可以不犧牲太多光電轉換效率而有效地降低暗電流(dark current)。 Since the generation of the electric field may come from the energy level difference of the electrodes, the layers in the photoelectric conversion layer 300, or the applied operating voltage, the electrons and the holes may be affected by the electric field to form a photocurrent, so when the carrier transport layer 320 serves as a load When the sub-barrier layer functions, the applicable material can be selected via energy level matching, and the dark current can be effectively reduced without sacrificing too much photoelectric conversion efficiency.
於一實施例中,載子傳輸層320與畫素電極形成之一能障(energy barrier)例如是大於影像感測器的一操作電壓。舉例而言,載子傳輸層320與畫素電極形成之能障例如是大於影像感測器的操作電壓約0.3電子伏特(eV)。如此一來,可以避免因為施加操作電壓而造成電極上的電子或電動具有足夠能量越過能障而產生暗電流。 In one embodiment, an energy barrier formed by the carrier transport layer 320 and the pixel electrode is, for example, greater than an operating voltage of the image sensor. For example, the energy barrier formed by the carrier transport layer 320 and the pixel electrode is, for example, greater than about 0.3 electron volts (eV) of the operating voltage of the image sensor. In this way, it is possible to avoid that the electrons or electric power on the electrode have sufficient energy to pass the energy barrier to generate a dark current due to the application of the operating voltage.
舉例而言,載子傳輸層320作為載子阻擋層可以包括三種類型的阻擋層:(1)、電子、電洞阻擋層,其材料例如可以是1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene,TPBI)、4,4',4"-三(咔唑-9-基)三苯胺(Tris(4-carbazoyl-9-ylphenyl)amine,TCTA);(2)電洞阻擋層,其材料例如可以是氧化鈦(TiO2)、氧化鋅(ZnO);以及(3)電子阻擋層,其材料例如可以是PFN、三氧化鉬(MoO3)、N,N'-二苯基-N,N'-(1-萘基)-1,1'-聯苯-4,4'-二胺(N,N'-Bis-(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine,NPB)。上述列舉的材料可以搭配例如是鋁製作的畫素電極(其功函數大約為4.2eV)以及鈣鈦礦材料製作的感光層310(鈣鈦礦的最高填滿分子軌域能階大約為5.45eV、最低未填滿分子軌 域能階大約為3.95eV)。 For example, the carrier transport layer 320 as a carrier barrier layer may include three types of barrier layers: (1), an electron, a hole barrier layer, and the material thereof may be, for example, 1,3,5-tris(1-benzene 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene, TPBI), 4,4',4"-tris(carbazole-9- (Tris(4-carbazoyl-9-ylphenyl)amine, TCTA); (2) a hole barrier layer, the material of which may be, for example, titanium oxide (TiO 2 ), zinc oxide (ZnO); and (3) The electron blocking layer may be made of PFN, molybdenum trioxide (MoO 3 ), N, N'-diphenyl-N, N'-(1-naphthyl)-1,1'-biphenyl-4, for example. 4'-Diamine (N,N'-Bis-(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine, NPB). The material can be matched with, for example, a pixel electrode made of aluminum (having a work function of about 4.2 eV) and a photosensitive layer 310 made of a perovskite material (the highest filling sub-orbital energy level of the perovskite is about 5.45 eV, the minimum is not The filling sub-track domain energy level is about 3.95 eV).
實施例中,第一電極210的材料與第二電極220的材料例如係為不同,利用不同電極材料的不同功函數與光電轉換層300的能階進行匹配,因而能夠進一步提升光電轉換層300的轉換效率及抑制暗電流(dark current)。一些實施例中,第一電極210的材料與第二電極210的材料可分別包括鋁、金、銀、鈦、鎳、銅、鎢、鉭、氮化鈦(TiN)、及前述金屬之合金、和/或包覆氮化鈦之鋁或是其它半導體製程相容的金屬。 In the embodiment, the material of the first electrode 210 is different from the material of the second electrode 220, for example, by using different work functions of different electrode materials to match the energy levels of the photoelectric conversion layer 300, thereby further improving the photoelectric conversion layer 300. Conversion efficiency and suppression of dark current. In some embodiments, the material of the first electrode 210 and the material of the second electrode 210 may include aluminum, gold, silver, titanium, nickel, copper, tungsten, tantalum, titanium nitride (TiN), and an alloy of the foregoing metals, And/or coated with titanium nitride or other semiconductor process compatible metals.
實施例中,光電轉換層300中,感光層310上可以有一修飾層(未繪示),以減少感光層310表面或晶隙間的缺陷。修飾層的材料可以是富勒烯衍生物(PCBM),或是其它減少懸浮鍵(dangling bond)的材料。 In the embodiment, in the photoelectric conversion layer 300, a photosensitive layer (not shown) may be disposed on the photosensitive layer 310 to reduce defects on the surface of the photosensitive layer 310 or between the crystal gaps. The material of the modifying layer can be a fullerene derivative (PCBM) or other material that reduces the dangling bond.
第2A圖繪示本揭露內容之另一實施例之影像感測器之示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。 FIG. 2A is a schematic diagram of an image sensor according to another embodiment of the disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.
如第2A圖所示,影像感測器20-1包括一畫素感測電路100、一畫素電極、一畫素隔離結構200以及一光電轉換層300。畫素隔離結構200設置於畫素感測電路100上。實施例中,畫素電極包括一第一電極210和一第二電極220,且第一電極210和第二電極220電性連接至畫素感測電路100。光電轉換層300設置於畫素感測電路100上,光電轉換層300位於畫素隔離結構200之中,且光電轉換層300的一頂表面300a低於畫素隔離結構200的一頂表面200a。 As shown in FIG. 2A, the image sensor 20-1 includes a pixel sensing circuit 100, a pixel electrode, a pixel isolation structure 200, and a photoelectric conversion layer 300. The pixel isolation structure 200 is disposed on the pixel sensing circuit 100. In an embodiment, the pixel electrode includes a first electrode 210 and a second electrode 220 , and the first electrode 210 and the second electrode 220 are electrically connected to the pixel sensing circuit 100 . The photoelectric conversion layer 300 is disposed on the pixel sensing circuit 100, and the photoelectric conversion layer 300 is located in the pixel isolation structure 200, and a top surface 300a of the photoelectric conversion layer 300 is lower than a top surface 200a of the pixel isolation structure 200.
實施例中,如第2A圖所示,光電轉換層300的頂表面300a和畫素隔離結構200的頂表面200a之一高度差△H例如是大於0,可依各種製程做調整。舉例而言,一實施例中,高度差△H可以例如是大於或等於0.1微米。一些實施例中,光電轉換層300的高度例如是0.2~0.5微米,畫素隔離結構200的高度例如是>0.2微米。一些其他實施例中,光電轉換層300的頂表面300a和畫素隔離結構200的頂表面200a也可以齊平(未繪示於圖式中),則高度差△H例如是等於0(相當於不具有高度差)。 In the embodiment, as shown in FIG. 2A, the height difference ΔH of the top surface 300a of the photoelectric conversion layer 300 and the top surface 200a of the pixel isolation structure 200 is, for example, greater than 0, and can be adjusted according to various processes. For example, in one embodiment, the height difference ΔH may be, for example, greater than or equal to 0.1 μm. In some embodiments, the height of the photoelectric conversion layer 300 is, for example, 0.2 to 0.5 μm, and the height of the pixel isolation structure 200 is, for example, >0.2 μm. In some other embodiments, the top surface 300a of the photoelectric conversion layer 300 and the top surface 200a of the pixel isolation structure 200 may also be flush (not shown in the drawing), and the height difference ΔH is equal to 0 (equivalent to Does not have a height difference).
實施例中,光電轉換層300的頂表面300a低於畫素隔離結構200的頂表面200a,因為高度差△H而自然使得製作完成的光電轉換層300被畫素隔離結構200隔離在一個畫素區中,因此可以避免相鄰的畫素區中的光電轉換層300發生串音(cross talk)的議題。 In the embodiment, the top surface 300a of the photoelectric conversion layer 300 is lower than the top surface 200a of the pixel isolation structure 200, because the height difference ΔH naturally causes the completed photoelectric conversion layer 300 to be isolated by a pixel isolation structure 200 in one pixel. In the region, it is therefore possible to avoid the problem of cross talk of the photoelectric conversion layer 300 in the adjacent pixel regions.
如第2A圖所示,第一電極210和第二電極220均設置於畫素感測電路100上且彼此係共平面。相較於一般將兩個電極上下堆疊設置的設計,第一電極210和第二電極220之平面式的單層電極設計更可以進一步提高入光量。 As shown in FIG. 2A, the first electrode 210 and the second electrode 220 are both disposed on the pixel sensing circuit 100 and are coplanar with each other. Compared with the design in which the two electrodes are generally stacked one on top of the other, the planar single-layer electrode design of the first electrode 210 and the second electrode 220 can further increase the amount of light incident.
實施例中,第一電極210的材料與第二電極220的材料可以相同或不同。實施例中,第一電極210和第二電極220的材料例如可分別包括鋁、金、銀、鈦、鎳、鉭、鎢和/或銅、氮化鈦和/或包覆氮化鈦之鋁或是其它半導體製程相容的金屬,但不限於此。 In an embodiment, the material of the first electrode 210 and the material of the second electrode 220 may be the same or different. In an embodiment, the materials of the first electrode 210 and the second electrode 220 may include, for example, aluminum, gold, silver, titanium, nickel, tantalum, tungsten, and/or copper, titanium nitride, and/or aluminum coated with titanium nitride, respectively. Or other semiconductor process compatible metals, but are not limited to this.
一些實施例中,光電轉換層300可以包括有機材料或是無機有機複合材料,例如可以是量子點(quantum dot)材料、 單晶鈣鈦礦型結構甲基銨碘化鉛(methyl ammonium lead iodide perovskite)材料、多晶鈣鈦礦型結構甲基銨碘化鉛材料、非晶相鈣鈦礦型結構甲基銨碘化鉛材料或單晶、多晶或非晶相之鈣鈦礦型結構甲基銨氯碘化鉛(methyl ammonium lead iodide chloride perovskite)材料。舉例而言,量子點材料可以是量子點膜(quantum dot film),鈣鈦礦型結構甲基銨碘化鉛材料例如是鈣鈦礦型結構甲基銨三碘化鉛(CH3NH3PbI3)奈米線(nanowire),鈣鈦礦型結構甲基銨氯碘化鉛材料例如是鈣鈦礦型結構甲基銨氯二碘化鉛(CH3NH3PbI2Cl)或鈣鈦礦型結構甲基銨摻雜氯碘化鉛(CH3NH3PbI3-xClx)。 In some embodiments, the photoelectric conversion layer 300 may include an organic material or an inorganic organic composite material, for example, a quantum dot material, a single crystal perovskite structure, methyl ammonium lead iodide perovskite. Material, polycrystalline perovskite structure methyl ammonium iodide lead material, amorphous phase perovskite structure methyl ammonium iodide lead material or single crystal, polycrystalline or amorphous phase perovskite structure A A methyl ammonium lead iodide chloride perovskite material. For example, the quantum dot material may be a quantum dot film, and the perovskite structure methyl ammonium iodide lead material is, for example, a perovskite structure methyl ammonium triiodide (CH 3 NH 3 PbI). 3 ) nanowire, perovskite structure methyl ammonium chloride lead iodide material such as perovskite structure methyl ammonium chloride lead diiodide (CH 3 NH 3 PbI 2 Cl) or perovskite The structure of methylammonium is doped with lead chloroiodide (CH 3 NH 3 PbI 3-x Cl x ).
如第2A圖所示,實施例中,影像感測器20-1更可包括水氧保護層400,水氧保護層400包覆畫素感測電路100、畫素隔離結構200以及光電轉換層300。 As shown in FIG. 2A, in the embodiment, the image sensor 20-1 may further include a water and oxygen protection layer 400, and the water oxygen protection layer 400 covers the pixel sensing circuit 100, the pixel isolation structure 200, and the photoelectric conversion layer. 300.
第2B圖繪示本揭露內容之另一實施例之影像感測器之示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。本實施例與第2A圖所示的實施例之差別主要在於光電轉換層300的設計。 FIG. 2B is a schematic diagram of an image sensor according to another embodiment of the disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again. The difference between this embodiment and the embodiment shown in FIG. 2A is mainly in the design of the photoelectric conversion layer 300.
請參照第2B圖,影像感測器20-2中,光電轉換層300可包括一感光層310及一載子傳輸層320,載子傳輸層320設置於畫素電極(第一電極210、第二電極220)和感光層310之間。實施例中,載子傳輸層320例如可以是電子傳輸層(ETL)或電洞傳輸層(HTL),具有助於光電轉換層300提升激子分離及傳導載子的功能,因此可以提升光電轉換層300的整體光電轉換效 率。並且,載子傳輸層320也具有載子阻擋層的功能,可以阻擋載子由電極回流至光電轉換層300,因此可以有效抑制暗電流,或是具有提高電極穩定性功能。 Referring to FIG. 2B, in the image sensor 20-2, the photoelectric conversion layer 300 may include a photosensitive layer 310 and a carrier transport layer 320. The carrier transport layer 320 is disposed on the pixel electrode (the first electrode 210, the first Between the two electrodes 220) and the photosensitive layer 310. In an embodiment, the carrier transport layer 320 may be, for example, an electron transport layer (ETL) or a hole transport layer (HTL), which has the function of facilitating the photoelectric conversion layer 300 to enhance exciton separation and conduct carriers, thereby improving photoelectric conversion. Overall photoelectric conversion of layer 300 rate. Further, the carrier transport layer 320 also has a function as a carrier blocking layer, and can block the carrier from flowing back to the photoelectric conversion layer 300 by the electrode, so that the dark current can be effectively suppressed or the electrode stability can be improved.
本實施例中,如第2B圖所示,載子傳輸層320的頂表面低於畫素隔離結構200的頂表面200a。 In the present embodiment, as shown in FIG. 2B, the top surface of the carrier transport layer 320 is lower than the top surface 200a of the pixel isolation structure 200.
實施例中,載子傳輸層320的材料例如可包括氧化鈦(TiO2)、氧化鋅(ZnO)、氧化鋁(Al2O3)、富勒烯衍生物(PCBM)、聚3,4-乙烯基二氧噻吩:聚苯乙烯磺酸鹽(PEDOC:PSS)、氧化鎳(NiO)和/或氧化釩(V2O5)、PFN、乙氧基聚乙烯亞胺(PEIE)、聚乙烯亞胺(PEI)、三氧化鉬(MoO3)、三氧化鎢(WO3)、LiF(氟化鋰)、4,7-二苯基-1,10-菲羅啉(bphen,bathophenanthroline)或是8-羥基喹啉鋁(Alq3)。 In an embodiment, the material of the carrier transport layer 320 may include, for example, titanium oxide (TiO 2 ), zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), fullerene derivative (PCBM), poly 3,4- Vinyl dioxythiophene: polystyrene sulfonate (PEDOC: PSS), nickel oxide (NiO) and/or vanadium oxide (V 2 O 5 ), PFN, ethoxylated polyethyleneimine (PEIE), polyethylene Imine (PEI), molybdenum trioxide (MoO 3 ), tungsten trioxide (WO 3 ), LiF (lithium fluoride), 4,7-diphenyl-1,10-phenanthroline (bphen,bathophenanthroline) or It is 8-hydroxyquinoline aluminum (Alq3).
第3A圖繪示本揭露內容之再一實施例之影像感測器之上視圖,第3B圖繪示沿剖面線3B-3B’之剖面示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。本實施例與前述第2A圖所示的實施例之差別主要在於畫素隔離結構200定義多個畫素區的設計。 FIG. 3A is a top view of the image sensor according to still another embodiment of the present disclosure, and FIG. 3B is a cross-sectional view along the section line 3B-3B'. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again. The difference between this embodiment and the embodiment shown in the above FIG. 2A is mainly that the pixel isolation structure 200 defines a design of a plurality of pixel regions.
如第3A~3B圖所示,影像感測器30中,畫素隔離結構200定義複數個畫素區,例如第3A~3B圖所示的畫素區P1和P2;光電轉換層300具有分隔開來的複數個光電轉換層區塊,例如如第3A~3B圖所示的光電轉換層區塊300-1和300-2。各個光電轉換層區塊對應各個畫素區設置,舉例而言,光電轉換層區塊300-1對應畫素區P1設置,光電轉換層區塊300-2對應畫素區 P2設置,光電轉換層區塊300-1和光電轉換層區塊300-2彼此分隔開來。 As shown in FIGS. 3A-3B, in the image sensor 30, the pixel isolation structure 200 defines a plurality of pixel regions, such as the pixel regions P1 and P2 shown in FIGS. 3A-3B; the photoelectric conversion layer 300 has points. The plurality of photoelectric conversion layer blocks are separated, for example, the photoelectric conversion layer blocks 300-1 and 300-2 as shown in FIGS. 3A to 3B. Each of the photoelectric conversion layer blocks is disposed corresponding to each pixel region. For example, the photoelectric conversion layer block 300-1 is disposed corresponding to the pixel region P1, and the photoelectric conversion layer block 300-2 corresponds to the pixel region. The P2 setting, the photoelectric conversion layer block 300-1 and the photoelectric conversion layer block 300-2 are spaced apart from each other.
如第3A~3B圖所示,影像感測器30中,第一電極210位於一個光電轉換層區塊的中間,第二電極220環繞各個光電轉換層區塊且定義各個畫素區。如第3A圖所示的實施例中,第二電極220完整環繞一個光電轉換層區塊。一些其他實施例中,第二電極220亦可以具有小缺口(未繪示於圖中),當光電轉換層是以濕式製程製作時,此小缺口可以容許光電轉換層之材料流動至其他畫素區的第二電極220處,而可以在多個畫素區內形成等高的光電轉換層。 As shown in FIGS. 3A-3B, in the image sensor 30, the first electrode 210 is located in the middle of one photoelectric conversion layer block, and the second electrode 220 surrounds each photoelectric conversion layer block and defines respective pixel regions. In the embodiment shown in Fig. 3A, the second electrode 220 completely surrounds one of the photoelectric conversion layer blocks. In some other embodiments, the second electrode 220 may also have a small gap (not shown in the figure). When the photoelectric conversion layer is fabricated by a wet process, the small gap may allow the material of the photoelectric conversion layer to flow to other paintings. At the second electrode 220 of the prime region, a uniform photoelectric conversion layer can be formed in the plurality of pixel regions.
第4A圖繪示本揭露內容之又一實施例之影像感測器之上視圖,第4B圖繪示沿剖面線4B-4B’之剖面示意圖,第4C圖~第4E圖繪示沿剖面線4B-4B’之多個實施例之剖面示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。本實施例與第3A~3B圖所示的實施例之差別主要在於畫素隔離結構200的設計。 4A is a top view of an image sensor according to still another embodiment of the present disclosure, FIG. 4B is a cross-sectional view along section line 4B-4B′, and FIG. 4C to FIG. 4E are diagrams along a section line. A schematic cross-sectional view of various embodiments of 4B-4B'. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again. The difference between this embodiment and the embodiment shown in FIGS. 3A-3B is mainly in the design of the pixel isolation structure 200.
如第4A~4B圖所示,影像感測器40中,畫素隔離結構200更可包括複數個非導電層230,非導電層230位於第一電極210和第二電極220之上。 As shown in FIGS. 4A-4B , in the image sensor 40 , the pixel isolation structure 200 further includes a plurality of non-conductive layers 230 , and the non-conductive layer 230 is located above the first electrode 210 and the second electrode 220 .
如第4A~4B圖所示,畫素隔離結構200的頂表面200a也就是此些非導電層230的頂表面230a。因此,畫素隔離結構200的頂表面200a和光電轉換層300的頂表面300a的高度差△H也就是非導電層230的頂表面230a和光電轉換層300的頂表 面300a的高度差。如第4A~4B圖所示的實施例中,非導電層230位於第一電極210和第二電極220之上。實施例中,非導電層230的材料例如是氮化矽或是氧化矽,光電轉換層300位於兩個非導電層230之間。 As shown in FIGS. 4A-4B, the top surface 200a of the pixel isolation structure 200 is also the top surface 230a of the non-conductive layers 230. Therefore, the height difference ΔH between the top surface 200a of the pixel isolation structure 200 and the top surface 300a of the photoelectric conversion layer 300 is also the top surface 230a of the non-conductive layer 230 and the top surface of the photoelectric conversion layer 300. The height difference of the face 300a. As in the embodiment shown in FIGS. 4A-4B, the non-conductive layer 230 is located above the first electrode 210 and the second electrode 220. In the embodiment, the material of the non-conductive layer 230 is, for example, tantalum nitride or tantalum oxide, and the photoelectric conversion layer 300 is located between the two non-conductive layers 230.
如第4B圖所示的實施例中,影像感測器40的非導電層230的側壁實質上對齊第一電極210和第二電極220的側邊。 As in the embodiment shown in FIG. 4B, the sidewalls of the non-conductive layer 230 of the image sensor 40 are substantially aligned with the sides of the first electrode 210 and the second electrode 220.
請參照第4C圖~第4E圖。如第4C圖所示的實施例中,影像感測器40-1的非導電層230實質上覆蓋第一電極210和第二電極220。如第4D圖所示的實施例中,影像感測器40-2的非導電層230位於第一電極210和第二電極220的部分頂表面上,且部分地暴露出第一電極210和第二電極220的頂表面。如第4E圖所示的實施例中,影像感測器40-3的非導電層230覆蓋第一電極210和第二電極220且延伸至位於第一電極210和第二電極220之間,而光電轉換層300位於第一電極210和第二電極220之間的非導電層230上。 Please refer to pictures 4C to 4E. As in the embodiment shown in FIG. 4C, the non-conductive layer 230 of the image sensor 40-1 substantially covers the first electrode 210 and the second electrode 220. In the embodiment shown in FIG. 4D, the non-conductive layer 230 of the image sensor 40-2 is located on a portion of the top surface of the first electrode 210 and the second electrode 220, and partially exposes the first electrode 210 and the The top surface of the two electrodes 220. In the embodiment shown in FIG. 4E, the non-conductive layer 230 of the image sensor 40-3 covers the first electrode 210 and the second electrode 220 and extends between the first electrode 210 and the second electrode 220, and The photoelectric conversion layer 300 is located on the non-conductive layer 230 between the first electrode 210 and the second electrode 220.
第5圖繪示本揭露內容之更一實施例之影像感測器之示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。 FIG. 5 is a schematic diagram of an image sensor according to a further embodiment of the disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.
如第5圖所示,影像感測器50中,光電轉換層300的頂表面300a高於第一電極210和第二電極220的頂表面。換言之,影像感測器50的光電轉換層300位於兩個非導電層230之間,非導電層230位於第一電極210和第二電極220之間。 As shown in FIG. 5, in the image sensor 50, the top surface 300a of the photoelectric conversion layer 300 is higher than the top surfaces of the first electrode 210 and the second electrode 220. In other words, the photoelectric conversion layer 300 of the image sensor 50 is located between the two non-conductive layers 230 , and the non-conductive layer 230 is located between the first electrode 210 and the second electrode 220 .
實施例中,影像感測器50更可包括矽基板110,畫 素感測電路100位於矽基板110上。畫素感測電路100例如可包括電子元件120、金屬層M1~Mn、連接柱S、放大器...等,舉例而言,電子元件120例如可以是讀取電路的電晶體,金屬層M1~Mn中例如可以包括電容...等電子元件,連接柱S例如用作訊號通道,但不以此為限。實施例中,第一電極210與第二電極220是經由連接柱(via)電性連接至畫素感測電路100,舉例而言,第一電極210和第二電極220分別經由連接柱V1和V2電性連接至畫素感測電路100的金屬層Mn。實施例中,畫素隔離結構200可更包括非導電層240,非導電層230位於非導電層240上,非導電層240例如是由介電材料(例如是氧化矽層)製成,而非導電層230作為保護層例如是氮化矽層。 In an embodiment, the image sensor 50 further includes a 矽 substrate 110, painted The pixel sensing circuit 100 is located on the germanium substrate 110. The pixel sensing circuit 100 may include, for example, an electronic component 120, a metal layer M1 Mn, a connection post S, an amplifier, etc., for example, the electronic component 120 may be, for example, a transistor of a read circuit, a metal layer M1~ The Mn may include, for example, an electronic component such as a capacitor, and the connection post S is used as, for example, a signal channel, but is not limited thereto. In an embodiment, the first electrode 210 and the second electrode 220 are electrically connected to the pixel sensing circuit 100 via a via, for example, the first electrode 210 and the second electrode 220 are respectively connected via the connecting column V1 and V2 is electrically connected to the metal layer Mn of the pixel sensing circuit 100. In an embodiment, the pixel isolation structure 200 may further include a non-conductive layer 240 on the non-conductive layer 240, and the non-conductive layer 240 is made of, for example, a dielectric material (for example, a hafnium oxide layer) instead of The conductive layer 230 as a protective layer is, for example, a tantalum nitride layer.
前述第3A~5圖所述的實施例中,都以半導體製程中最上層的金屬層作為第一電極210和第二電極220(畫素電極)。 In the embodiments described in the above FIGS. 3A to 5, the uppermost metal layer in the semiconductor process is used as the first electrode 210 and the second electrode 220 (pixel electrode).
第6圖繪示本揭露內容之更另一實施例之影像感測器之示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。本實施例中,是以半導體製程中由上而下的第二層金屬層作為第一電極210和第二電極220(畫素電極)。 FIG. 6 is a schematic diagram of an image sensor according to still another embodiment of the present disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again. In this embodiment, the second metal layer from top to bottom in the semiconductor process is used as the first electrode 210 and the second electrode 220 (pixel electrodes).
如第6圖所示,影像感測器60中,畫素隔離結構200更可包括複數個金屬層250,金屬層250位於第一電極210和第二電極220之上。如第6圖所示,畫素隔離結構200的頂表面200a也就是此些金屬層250的頂表面250a。因此,畫素隔離結構200的頂表面200a和光電轉換層300的頂表面300a的高度差△H也就是金屬層250的頂表面250a和光電轉換層300的頂表 面300a的高度差,金屬層250電性絕緣於第一電極210和第二電極220。如第6圖所示的實施例中,光電轉換層300的頂表面300a更高於第一電極210和第二電極220的頂表面。 As shown in FIG. 6 , in the image sensor 60 , the pixel isolation structure 200 further includes a plurality of metal layers 250 , and the metal layer 250 is located above the first electrode 210 and the second electrode 220 . As shown in FIG. 6, the top surface 200a of the pixel isolation structure 200 is also the top surface 250a of the metal layers 250. Therefore, the height difference ΔH between the top surface 200a of the pixel isolation structure 200 and the top surface 300a of the photoelectric conversion layer 300 is also the top surface 250a of the metal layer 250 and the top surface of the photoelectric conversion layer 300. The height of the surface 300a is different, and the metal layer 250 is electrically insulated from the first electrode 210 and the second electrode 220. As in the embodiment shown in FIG. 6, the top surface 300a of the photoelectric conversion layer 300 is higher than the top surfaces of the first electrode 210 and the second electrode 220.
一些實施例中,金屬層250設置於非導電層240上,因此金屬層250和非導電層240構成畫素隔離結構200。 In some embodiments, the metal layer 250 is disposed on the non-conductive layer 240, and thus the metal layer 250 and the non-conductive layer 240 constitute the pixel isolation structure 200.
第7圖繪示本揭露內容之再另一實施例之影像感測器之上視圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。本實施例與前述實施例之差別主要在於第一電極210和第二電極220之配置的設計。 FIG. 7 is a top view of an image sensor according to still another embodiment of the present disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again. The difference between this embodiment and the foregoing embodiment is mainly in the design of the configuration of the first electrode 210 and the second electrode 220.
如第7圖所示,影像感測器70中,第二電極220定義複數個畫素區P1~P4,光電轉換層區塊300-1、300-2、300-3和300-4分別對應畫素區P1、P2、P3和P4設置,光電轉換層區塊300-1、300-2、300-3和300-4彼此分隔開來。各個畫素區基本上為矩形。 As shown in FIG. 7, in the image sensor 70, the second electrode 220 defines a plurality of pixel regions P1 to P4, and the photoelectric conversion layer blocks 300-1, 300-2, 300-3, and 300-4 correspond to each other. The pixel regions P1, P2, P3, and P4 are disposed, and the photoelectric conversion layer blocks 300-1, 300-2, 300-3, and 300-4 are spaced apart from each other. Each pixel area is substantially rectangular.
第8圖繪示本揭露內容之又另一實施例之影像感測器之上視圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。本實施例與前述實施例之差別主要在於第一電極210和第二電極220之配置的設計。 FIG. 8 is a top view of an image sensor according to still another embodiment of the present disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again. The difference between this embodiment and the foregoing embodiment is mainly in the design of the configuration of the first electrode 210 and the second electrode 220.
如第8圖所示,影像感測器80中,第二電極220定義複數個畫素區P1~P5,光電轉換層區塊300-1、300-2、300-3、300-4和300-5分別對應畫素區P1、P2、P3、P4和P5設置,光電轉換層區塊300-1、300-2、300-3、300-4和300-5彼此分隔開 來。各個畫素區基本上為六邊形。 As shown in FIG. 8, in the image sensor 80, the second electrode 220 defines a plurality of pixel regions P1 to P5, and the photoelectric conversion layer blocks 300-1, 300-2, 300-3, 300-4, and 300. -5 corresponding to the pixel regions P1, P2, P3, P4, and P5, respectively, and the photoelectric conversion layer blocks 300-1, 300-2, 300-3, 300-4, and 300-5 are spaced apart from each other Come. Each pixel area is substantially hexagonal.
一些其他實施例中,如第7~8圖所示的結構中,第二電極220亦可以具有小缺口(未繪示於圖中),使得多個畫素區P1、P2、P3…之間的光電轉換層區塊可以彼此連通,此些小缺口可以容許光電轉換層之材料在多個畫素區之間流動,而可以在多個畫素區內形成等高的光電轉換層。 In some other embodiments, in the structure shown in FIGS. 7-8, the second electrode 220 may also have a small gap (not shown in the figure), so that between the plurality of pixel regions P1, P2, P3, ... The photoelectric conversion layer blocks may be in communication with each other, and the small gaps may allow the material of the photoelectric conversion layer to flow between the plurality of pixel regions, and may form equal height photoelectric conversion layers in the plurality of pixel regions.
第9圖繪示本揭露內容之更另一實施例之影像感測器之上視圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。本實施例與前述實施例之差別主要在於第一電極210、第二電極220和非導電層230之配置的設計。 FIG. 9 is a top view of an image sensor according to still another embodiment of the present disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again. The difference between this embodiment and the foregoing embodiment is mainly in the design of the configuration of the first electrode 210, the second electrode 220, and the non-conductive layer 230.
如第9圖所示,影像感測器90是4x2的畫素區陣列。第一電極210和第二電極220為平行排列的條狀電極。本實施例中,畫素隔離結構200定義出8個畫素區P1、P2、P3、P4、P5、P6、P7和P8。各個畫素區中,多個第一電極210經由多個連接柱C1及金屬層Mn彼此電性連接,多個第二電極220經由多個連接柱C2及金屬層Mn彼此電性連接。舉例而言,畫素感測電路100可包括多個金屬層,此些金屬層中與畫素電極之間相隔最短距離的一金屬層透過連接柱與畫素電極(例如是第一電極210)做電性連接,此些金屬層中與畫素電極之間相隔最短距離的金屬層透過連接柱與畫素電極(例如是第二電極220)做電性連接。光電轉換層300則對應8個畫素區P1~P8具有8個光電轉換層區塊。 As shown in Fig. 9, the image sensor 90 is a 4x2 pixel area array. The first electrode 210 and the second electrode 220 are strip electrodes arranged in parallel. In this embodiment, the pixel isolation structure 200 defines eight pixel regions P1, P2, P3, P4, P5, P6, P7, and P8. In each of the pixel regions, the plurality of first electrodes 210 are electrically connected to each other via the plurality of connection pillars C1 and the metal layer Mn, and the plurality of second electrodes 220 are electrically connected to each other via the plurality of connection pillars C2 and the metal layer Mn. For example, the pixel sensing circuit 100 may include a plurality of metal layers, and a metal layer of the metal layer separated from the pixel electrode by the shortest distance passes through the connection pillar and the pixel electrode (for example, the first electrode 210). The electrical connection is made, and the metal layer separated from the pixel electrode by the shortest distance in the metal layer is electrically connected to the pixel electrode (for example, the second electrode 220) through the connection pillar. The photoelectric conversion layer 300 has eight photoelectric conversion layer blocks corresponding to the eight pixel regions P1 to P8.
第9A圖繪示本揭露內容之更另一實施又之影像感測器之上視圖。本實施例中與前述實施例相同或相似之元件係沿 用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。本實施例與前述實施例之差別主要在於第一電極210和第二電極220之配置的設計。 FIG. 9A is a top view of an image sensor according to still another implementation of the disclosure. The same or similar component of the embodiment as in the previous embodiment For the same or similar components, the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again. The difference between this embodiment and the foregoing embodiment is mainly in the design of the configuration of the first electrode 210 and the second electrode 220.
一些實施例中,第一電極210和第二電極220之其中一者環繞第一電極210和第二電極220之其中另一者。如第9A圖所示,影像感測器90-1中,第二電極220定義複數個畫素區P1~P2,光電轉換層區塊300-1和300-2分別對應畫素區P1和P2設置,光電轉換層區塊300-1和300-2彼此分隔開來。 In some embodiments, one of the first electrode 210 and the second electrode 220 surrounds the other of the first electrode 210 and the second electrode 220. As shown in FIG. 9A, in the image sensor 90-1, the second electrode 220 defines a plurality of pixel regions P1 to P2, and the photoelectric conversion layer blocks 300-1 and 300-2 correspond to the pixel regions P1 and P2, respectively. It is provided that the photoelectric conversion layer blocks 300-1 and 300-2 are spaced apart from each other.
實施例中,如第9A圖所示,第二電極220環繞第一電極210,因此相鄰的畫素區以第二電極220彼此相鄰。第二電極220環繞單一個畫素區,使得單一個畫素區內的訊號會留在該畫素區內,而不會串音(crosstalk)到相鄰的另一個畫素區中,而影響到隔壁的畫素區。舉例而言,第二電極220環繞畫素區P1,使得畫素區P1因照光而產生的光電流侷限在畫素區P1中,不會串音至相鄰的畫素區P2中。 In the embodiment, as shown in FIG. 9A, the second electrode 220 surrounds the first electrode 210, and thus the adjacent pixel regions are adjacent to each other with the second electrode 220. The second electrode 220 surrounds a single pixel region, so that the signal in a single pixel region remains in the pixel region without crosstalk to another adjacent pixel region, and the effect is affected. Go to the pixel area next door. For example, the second electrode 220 surrounds the pixel region P1 such that the photocurrent generated by the pixel region P1 due to illumination is confined in the pixel region P1 and does not crosstalk to the adjacent pixel region P2.
第10A圖~第10D圖繪示依照本發明之一實施例之一種影像感測器(如第2A圖所示的影像感測器20-1)之製造方法示意圖。以下係參照第2A圖及第10A圖~第10D圖描述依照本發明之一實施例之一種影像感測器之製造方法。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。 10A to 10D are schematic views showing a manufacturing method of an image sensor (such as the image sensor 20-1 shown in FIG. 2A) according to an embodiment of the present invention. Hereinafter, a method of manufacturing an image sensor according to an embodiment of the present invention will be described with reference to FIGS. 2A and 10A to 10D. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.
如第10A圖所示,首先,提供矽基板及其上的畫素感測電路100。 As shown in FIG. 10A, first, a germanium substrate and a pixel sensing circuit 100 thereon are provided.
接著,如第10B圖所示,設置畫素電極及畫素隔離 結構200於畫素感測電路100上。如第10B圖所示,畫素電極包括第一電極210和第二電極220電性連接至畫素感測電路100。實施例中,以一個製程製作第一電極210和第二電極220於畫素感測電路100上,如此一來,第一電極210和第二電極220可以在同一個製程中製作完成,具有簡化製程的優點。 Next, as shown in Figure 10B, set the pixel electrode and pixel isolation Structure 200 is on pixel sensing circuit 100. As shown in FIG. 10B, the pixel electrode includes a first electrode 210 and a second electrode 220 electrically connected to the pixel sensing circuit 100. In the embodiment, the first electrode 210 and the second electrode 220 are formed on the pixel sensing circuit 100 in a single process, so that the first electrode 210 and the second electrode 220 can be fabricated in the same process, which is simplified. The advantages of the process.
然後,如第10C圖所示,設置光電轉換層300於畫素感測電路100上,且光電轉換層300的頂表面300a低於畫素隔離結構200的頂表面200a。實施例中,以一個塗佈或蒸鍍製程製作光電轉換層300於畫素感測電路100上。因為頂表面200a和頂表面300a之高度差△H的設計,而自然使得製作完成的光電轉換層300被畫素隔離結構200隔離在一個畫素中,因此不會發生相鄰的畫素中的光電轉換層300發生串音(cross talk)的議題。 Then, as shown in FIG. 10C, the photoelectric conversion layer 300 is disposed on the pixel sensing circuit 100, and the top surface 300a of the photoelectric conversion layer 300 is lower than the top surface 200a of the pixel isolation structure 200. In the embodiment, the photoelectric conversion layer 300 is formed on the pixel sensing circuit 100 by a coating or evaporation process. Because of the design of the height difference ΔH between the top surface 200a and the top surface 300a, the photoelectric conversion layer 300 is completely isolated by the pixel isolation structure 200 in one pixel, so that adjacent pixels do not occur. The photoelectric conversion layer 300 has a problem of cross talk.
接著,如第10D圖所示,形成水氧保護層400。水氧保護層400包覆畫素感測電路100、畫素隔離結構200以及光電轉換層300。至此,製作完成如第10D圖(第2A圖)所示的影像感測器20-1。 Next, as shown in FIG. 10D, a water oxygen protective layer 400 is formed. The water oxygen protective layer 400 covers the pixel sensing circuit 100, the pixel isolation structure 200, and the photoelectric conversion layer 300. So far, the image sensor 20-1 shown in Fig. 10D (Fig. 2A) is completed.
以下係根據前述實施例之影像感測器20-1之製造方法分別描述如第2B~9圖所示的影像感測器20-2~90之製造方法。 Hereinafter, the manufacturing method of the image sensors 20-2 to 90 shown in FIGS. 2B to 9 will be respectively described according to the manufacturing method of the image sensor 20-1 of the foregoing embodiment.
如第2B圖所示的影像感測器20-2之製造方法與前述實施例之差別主要在於光電轉換層300的設計。本實施例中,製作感光層310之前,先形成載子傳輸層320於畫素隔離結構200上,接著再製作感光層310於載子傳輸層320上,以形成光電轉換層300。 The manufacturing method of the image sensor 20-2 as shown in FIG. 2B differs from the foregoing embodiment mainly in the design of the photoelectric conversion layer 300. In this embodiment, before the photosensitive layer 310 is formed, the carrier transport layer 320 is formed on the pixel isolation structure 200, and then the photosensitive layer 310 is formed on the carrier transport layer 320 to form the photoelectric conversion layer 300.
第11A圖~第11C圖繪示依照本發明之另一實施例之一種影像感測器(如第3A~3B圖所示的影像感測器30)之製造方法示意圖。如第3A~3B圖所示的影像感測器30之製造方法與前述第2A圖所示的實施例之差別主要在於所製作的畫素隔離結構200具有不同的結構。換言之,也就是在進行畫素隔離結構200之圖案化製程時,選用影像感測器30所預定的畫素隔離結構200之圖案來進行。 11A-11C are schematic diagrams showing a method of manufacturing an image sensor (such as the image sensor 30 shown in FIGS. 3A-3B) according to another embodiment of the present invention. The difference between the manufacturing method of the image sensor 30 shown in FIGS. 3A to 3B and the embodiment shown in FIG. 2A is mainly that the pixel isolation structure 200 to be fabricated has a different structure. In other words, when the patterning process of the pixel isolation structure 200 is performed, the pattern of the pixel isolation structure 200 predetermined by the image sensor 30 is selected.
詳細來說,如第11A圖所示,提供矽基板及其上的畫素感測電路100;接著,如第11B圖所示,設置畫素隔離結構200於畫素感測電路100上。影像感測器30的畫素隔離結構200定義多個畫素區,例如是畫素區P1和P2。 In detail, as shown in FIG. 11A, the germanium substrate and the pixel sensing circuit 100 thereon are provided; then, as shown in FIG. 11B, the pixel isolation structure 200 is disposed on the pixel sensing circuit 100. The pixel isolation structure 200 of the image sensor 30 defines a plurality of pixel regions, such as pixel regions P1 and P2.
接著,如第11C圖所示,以一個塗佈或蒸鍍製程製作光電轉換層300於畫素感測電路100上。因為頂表面200a和頂表面300a之高度差△H的設計,而自然使得製作完成的光電轉換層300被畫素隔離結構200隔離開來,而在多個畫素區中形成分隔開來的多個光電轉換層區塊,因此不會發生相鄰的畫素中的光電轉換層300(多個光電轉換層區塊)發生串音(cross talk)的議題。至此,製作完成如第11C圖(第3A~3B圖)所示的影像感測器30。 Next, as shown in FIG. 11C, the photoelectric conversion layer 300 is formed on the pixel sensing circuit 100 by a coating or vapor deposition process. Because of the design of the height difference ΔH between the top surface 200a and the top surface 300a, the completed photoelectric conversion layer 300 is naturally isolated by the pixel isolation structure 200, and is separated in a plurality of pixel regions. Since a plurality of photoelectric conversion layer blocks are generated, the problem of cross talk of the photoelectric conversion layer 300 (multiple photoelectric conversion layer blocks) in adjacent pixels does not occur. Thus far, the image sensor 30 shown in Fig. 11C (Figs. 3A to 3B) is completed.
如第4A~4B圖所示的影像感測器40之製造方法與前述第3A~3B圖所示的實施例之差別主要在於所製作的畫素隔離結構200具有不同的結構。換言之,也就是在進行畫素隔離結構200之圖案化製程時,選用影像感測器40所預定的第一電極210和第二電極220之圖案來進行,接著再形成非導電層230於第一電極210和第二電極220之上。 The difference between the manufacturing method of the image sensor 40 shown in FIGS. 4A to 4B and the embodiment shown in the above-mentioned 3A to 3B is mainly that the pixel isolation structure 200 to be fabricated has a different structure. In other words, when the patterning process of the pixel isolation structure 200 is performed, the pattern of the first electrode 210 and the second electrode 220 predetermined by the image sensor 40 is selected, and then the non-conductive layer 230 is formed. Above the electrode 210 and the second electrode 220.
詳細來說,本實施例中,以單次製程形成第一電極210和第二電極220於畫素感測電路100上,接著形成非導電層230於第一電極210和第二電極220上,如第4A~4B圖所示。 In this embodiment, the first electrode 210 and the second electrode 220 are formed on the pixel sensing circuit 100 in a single process, and then the non-conductive layer 230 is formed on the first electrode 210 and the second electrode 220. As shown in Figures 4A-4B.
如第5圖所示的影像感測器50之製造方法與前述第3A~3B圖所示的實施例之差別主要在於所製作的光電轉換層300。本實施例之塗佈或蒸鍍完成的光電轉換層300具有較高的頂表面300a。 The manufacturing method of the image sensor 50 shown in FIG. 5 differs from the embodiment shown in the above-mentioned 3A to 3B mainly in the produced photoelectric conversion layer 300. The coating or vapor-deposited photoelectric conversion layer 300 of this embodiment has a higher top surface 300a.
並且,本實施例中,可以先形成連接柱V1和V2於畫素感測電路100上,接著再製作第一電極210和第二電極220於連接柱V1和V2上。 Moreover, in this embodiment, the connection pillars V1 and V2 may be formed on the pixel sensing circuit 100, and then the first electrode 210 and the second electrode 220 may be fabricated on the connection columns V1 and V2.
如第6圖所示的影像感測器60之製造方法與前述第5圖所示的實施例之差別主要在於所製作的畫素隔離結構200具有不同的結構。換言之,也就是在進行畫素隔離結構200之圖案化製程時,選用影像感測器60所預定的第一電極210和第二電極220之圖案來進行後,接著再形成金屬層250於第一電極210和第二電極220之上。 The method of manufacturing the image sensor 60 as shown in FIG. 6 differs from the embodiment shown in FIG. 5 mainly in that the pixel isolation structure 200 is formed to have a different structure. In other words, when the patterning process of the pixel isolation structure 200 is performed, the pattern of the first electrode 210 and the second electrode 220 predetermined by the image sensor 60 is selected, and then the metal layer 250 is formed. Above the electrode 210 and the second electrode 220.
詳細來說,本實施例中,以單次蒸鍍製程形成第一電極210和第二電極220以及非導電層240於畫素感測電路100上,接著形成金屬層250於非導電層240上。 In detail, in this embodiment, the first electrode 210 and the second electrode 220 and the non-conductive layer 240 are formed on the pixel sensing circuit 100 in a single evaporation process, and then the metal layer 250 is formed on the non-conductive layer 240. .
如第7~8圖所示的影像感測器70和80之製造方法與前述實施例之差別主要在於所製作的第一電極210和第二電極220具有不同的結構。換言之,也就是在進行畫素隔離結構200之圖案化製程時,選用影像感測器70和80所預定的第一電極210和第二電極220之圖案來進行。 The manufacturing method of the image sensors 70 and 80 as shown in FIGS. 7 to 8 differs from the foregoing embodiment mainly in that the fabricated first electrode 210 and second electrode 220 have different structures. In other words, when the patterning process of the pixel isolation structure 200 is performed, the patterns of the first electrode 210 and the second electrode 220 predetermined by the image sensors 70 and 80 are selected.
如第9圖所示的影像感測器90之製造方法與前述實施例之差別主要在於所製作的第一電極210、第二電極220和非導電層230具有不同的結構。換言之,也就是在進行畫素隔離結構200之圖案化製程時,選用影像感測器90所預定的第一電極210和第二電極220之圖案來進行後,接著再形成非導電層230於第一電極210和第二電極220之上。 The manufacturing method of the image sensor 90 as shown in FIG. 9 differs from the foregoing embodiment mainly in that the fabricated first electrode 210, second electrode 220, and non-conductive layer 230 have different structures. In other words, when the patterning process of the pixel isolation structure 200 is performed, the pattern of the first electrode 210 and the second electrode 220 predetermined by the image sensor 90 is selected, and then the non-conductive layer 230 is formed. An electrode 210 and a second electrode 220 are disposed above.
第12圖繪示本揭露內容之更再一實施例之影像感測器之剖面示意圖。第12A圖~第12B圖繪示本揭露內容之更再一些實施例之影像感測器之剖面示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。 FIG. 12 is a cross-sectional view showing an image sensor according to still another embodiment of the present disclosure. 12A to 12B are cross-sectional views showing an image sensor of still further embodiments of the present disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.
如第12圖所示,影像感測器1200包括一畫素感測電路100、一畫素電極以及一光電轉換層300。畫素感測電路100對應複數個畫素區,例如是畫素區P1和P2。畫素電極設置於畫素感測電路100上,畫素電極包括一第一電極210和一第二電極220且電性連接至畫素感測電路100。第一電極210與第二電極200係為共平面,且第一電極210與第二電極220具有不同極性。光電轉換層300設置於畫素感測電路100上,且光電轉換層300具有複數個光電轉換層區塊,例如是光電轉換層區塊300-1和300-2。各個光電轉換層區塊分別對應至各個畫素區,且光電轉換層區塊彼此係經由一畫素隔離溝槽300T分隔開來。 As shown in FIG. 12, the image sensor 1200 includes a pixel sensing circuit 100, a pixel electrode, and a photoelectric conversion layer 300. The pixel sensing circuit 100 corresponds to a plurality of pixel regions, such as pixel regions P1 and P2. The pixel electrode is disposed on the pixel sensing circuit 100. The pixel electrode includes a first electrode 210 and a second electrode 220 and is electrically connected to the pixel sensing circuit 100. The first electrode 210 and the second electrode 200 are coplanar, and the first electrode 210 and the second electrode 220 have different polarities. The photoelectric conversion layer 300 is disposed on the pixel sensing circuit 100, and the photoelectric conversion layer 300 has a plurality of photoelectric conversion layer blocks, for example, photoelectric conversion layer blocks 300-1 and 300-2. Each of the photoelectric conversion layer blocks respectively corresponds to each of the pixel regions, and the photoelectric conversion layer blocks are separated from each other by a pixel isolation trench 300T.
實施例中,各個光電轉換層區塊被畫素隔離溝槽300T隔離在一個畫素區中,因此可以避免相鄰的畫素區中的光電轉換層300(光電轉換層區塊)發生串音(cross talk)的議題。舉例而 言,光電轉換層區塊300-1對應至畫素區P1,光電轉換層區塊300-2對應至畫素區P2,且光電轉換層區塊300-1和光電轉換層區塊300-2彼此係經由畫素隔離溝槽300T分隔開來。 In the embodiment, each of the photoelectric conversion layer blocks is separated by a pixel isolation trench 300T in one pixel region, so that crosstalk of the photoelectric conversion layer 300 (photoelectric conversion layer block) in the adjacent pixel regions can be avoided. (cross talk) issue. For example In other words, the photoelectric conversion layer block 300-1 corresponds to the pixel area P1, the photoelectric conversion layer block 300-2 corresponds to the pixel area P2, and the photoelectric conversion layer block 300-1 and the photoelectric conversion layer block 300-2 They are separated from each other by a pixel isolation trench 300T.
實施例中,如第12圖所示,各個光電轉換層區塊300-1、300-2分別位於各個畫素區P1、P2中的第一電極210和第二電極220之間。 In the embodiment, as shown in Fig. 12, the respective photoelectric conversion layer blocks 300-1, 300-2 are located between the first electrode 210 and the second electrode 220 in the respective pixel regions P1, P2, respectively.
實施例中,光電轉換層300可包括量子點材料、單晶鈣鈦礦型結構甲基銨碘化鉛材料、多晶鈣鈦礦型結構甲基銨碘化鉛材料、非晶相鈣鈦礦型結構甲基銨碘化鉛材料或單晶、多晶或非晶相之鈣鈦礦型結構甲基銨氯碘化鉛材料,但不限於此。 In an embodiment, the photoelectric conversion layer 300 may include a quantum dot material, a single crystal perovskite structure methyl ammonium iodide material, a polycrystalline perovskite structure methyl ammonium iodide material, an amorphous phase perovskite. The structure is a methyl ammonium iodide lead material or a single crystal, polycrystalline or amorphous phase perovskite structure methyl ammonium chloroiodide material, but is not limited thereto.
如第12圖所示的實施例中,影像感測器1200的畫素隔離溝槽300T的側壁實質上對齊第一電極210和第二電極220的側邊。 In the embodiment shown in FIG. 12, the sidewalls of the pixel isolation trench 300T of the image sensor 1200 are substantially aligned with the sides of the first electrode 210 and the second electrode 220.
如第12A圖所示的實施例中,影像感測器1200-1的各個光電轉換層區塊300-1、300-2均覆蓋對應的各個畫素區P1、P2中第一電極210和第二電極220。 In the embodiment shown in FIG. 12A, each of the photoelectric conversion layer blocks 300-1 and 300-2 of the image sensor 1200-1 covers the first electrode 210 and the first of the corresponding pixel regions P1 and P2. Two electrodes 220.
如第12B圖所示的實施例中,影像感測器1200-2的畫素隔離溝槽300T暴露出部份的第一電極210和部份的第二電極220。舉例而言,如第12B圖所示,對應畫素區P1/P2的光電轉換層區塊300-1/300-2覆蓋一些第一電極210和第二電極220而暴露出畫素區P1/P2邊緣的部分第二電極220。 In the embodiment shown in FIG. 12B, the pixel isolation trench 300T of the image sensor 1200-2 exposes a portion of the first electrode 210 and a portion of the second electrode 220. For example, as shown in FIG. 12B, the photoelectric conversion layer block 300-1/300-2 corresponding to the pixel region P1/P2 covers some of the first electrode 210 and the second electrode 220 to expose the pixel region P1/ A portion of the second electrode 220 at the edge of P2.
第13A圖~第13F圖繪示依照本發明之更再一實施例之一種影像感測器(如第12圖所示的影像感測器1200)之製造方法示意圖。以下係參照第12圖及第13A圖~第13F圖描述依照 本發明之一實施例之一種影像感測器之製造方法。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。 13A to 13F are schematic views showing a manufacturing method of an image sensor (such as the image sensor 1200 shown in FIG. 12) according to still another embodiment of the present invention. The following is described with reference to FIG. 12 and FIG. 13A to FIG. 13F. A method of fabricating an image sensor according to an embodiment of the present invention. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.
如第13A圖所示,提供一畫素感測電路100,畫素感測電路100對應複數個畫素區;接著,如第13A圖所示,設置一畫素電極於畫素感測電路100上。如第13A圖所示,畫素電極包括一第一電極210和一第二電極220且電性連接至畫素感測電路100,其中第一電極210與第二電極220係為共平面,且第一電極210與第二電極220具有不同極性。 As shown in FIG. 13A, a pixel sensing circuit 100 is provided. The pixel sensing circuit 100 corresponds to a plurality of pixel regions. Next, as shown in FIG. 13A, a pixel electrode is disposed on the pixel sensing circuit 100. on. As shown in FIG. 13A, the pixel electrode includes a first electrode 210 and a second electrode 220 and is electrically connected to the pixel sensing circuit 100, wherein the first electrode 210 and the second electrode 220 are coplanar, and The first electrode 210 and the second electrode 220 have different polarities.
接著,如第13B~13F圖所示,設置一光電轉換層300於畫素感測電路100上,且光電轉換層300具有複數個光電轉換層區塊,各個光電轉換層區塊分別對應至各個畫素區,且此些光電轉換層區塊彼此係經由一畫素隔離溝槽300T分隔開來。光電轉換層300的製造方法例如包括以下步驟。 Next, as shown in FIGS. 13B-13F, a photoelectric conversion layer 300 is disposed on the pixel sensing circuit 100, and the photoelectric conversion layer 300 has a plurality of photoelectric conversion layer blocks, and each photoelectric conversion layer block corresponds to each The pixel regions, and the photoelectric conversion layer blocks are separated from each other by a pixel isolation trench 300T. The method of manufacturing the photoelectric conversion layer 300 includes, for example, the following steps.
如第13B圖所示,形成一圖案化光阻層PR於畫素感測電路100上。實施例中,圖案化光阻層PR的圖案對應於畫素區的配置。 As shown in FIG. 13B, a patterned photoresist layer PR is formed on the pixel sensing circuit 100. In an embodiment, the pattern of the patterned photoresist layer PR corresponds to the configuration of the pixel region.
如第13C圖所示,形成一光電轉換材料第一前驅材料330於第一電極210與第二電極220及圖案化光阻層PR的結構上。實施例中,光電轉換材料第一前驅材料330全面性地製作於第一電極210與第二電極220上並且覆蓋第一電極210與第二電極220及圖案化光阻層PR的結構上。實施例中,光電轉換材料第一前驅材料330例如是無機材料。一實施例中,光電轉換材料第一前驅材料330例如是碘化鉛(PbI2)。 As shown in FIG. 13C, a first photoelectric conversion material precursor material 330 is formed on the structures of the first electrode 210 and the second electrode 220 and the patterned photoresist layer PR. In the embodiment, the photoelectric conversion material first precursor material 330 is formed on the first electrode 210 and the second electrode 220 in a comprehensive manner and covers the structures of the first electrode 210 and the second electrode 220 and the patterned photoresist layer PR. In an embodiment, the photoelectric conversion material first precursor material 330 is, for example, an inorganic material. In one embodiment, the first precursor material 330 of the photoelectric conversion material is, for example, lead iodide (PbI 2 ).
如第13D圖所示,移除部分(partly removing)光電轉換材料第一前驅材料330以形成複數個第一材料部分,其中各個第一材料部分對應各個畫素區。舉例而言,移除部分光電轉換材料第一前驅材料330以形成第一材料部分330-1和330-2,第一材料部分330-1對應畫素區P1,第一材料部分330-2對應畫素區P2。實施例中,例如可進行一掀離(lift-off)製程,以移除圖案化光阻層PR以及位於圖案化光阻層PR上的部分光電轉換材料第一前驅材料330。 As shown in FIG. 13D, the first precursor material 330 of the photoelectric conversion material is partially removed to form a plurality of first material portions, wherein each of the first material portions corresponds to each of the pixel regions. For example, a portion of the photoelectric conversion material first precursor material 330 is removed to form first material portions 330-1 and 330-2, the first material portion 330-1 corresponding to the pixel region P1, and the first material portion 330-2 corresponding Pixel area P2. In an embodiment, for example, a lift-off process may be performed to remove the patterned photoresist layer PR and a portion of the photoelectric conversion material first precursor material 330 on the patterned photoresist layer PR.
如第13E圖所示,提供一光電轉換材料第二前驅物340與第一材料部分進行反應。實施例中,光電轉換材料第二前驅物材料340例如是氣體化合物。一實施例中,光電轉換材料第二驅物材料340例如是甲基銨碘(methyl ammonium iodide)。 As shown in Fig. 13E, a photoelectric conversion material second precursor 340 is provided to react with the first material portion. In an embodiment, the photoelectric conversion material second precursor material 340 is, for example, a gaseous compound. In one embodiment, the second conversion material 340 of the photoelectric conversion material is, for example, methyl ammonium iodide.
接著,如第13F圖所示,光電轉換材料第二前驅物材料340與第一材料部分進行反應後形成光電轉換層300。由於光電轉換材料第二前驅物材料340只會和光電轉換材料第一前驅物材料330發生反應,因此可以維持圖案化後的多個第一材料部分的配置,使得光電轉換材料第二前驅物材料340與第一材料部分進行反應後形成的光電轉換層300可以具有預定的圖案。反應後形成的光電轉換層300可包括量子點材料、單晶鈣鈦礦型結構甲基銨碘化鉛材料、多晶鈣鈦礦型結構甲基銨碘化鉛材料、非晶相鈣鈦礦型結構甲基銨碘化鉛材料或單晶、多晶或非晶相鈣鈦礦型結構甲基銨氯碘化鉛材料,但不限於此。接著,形成如第12圖所示的影像感測器1200。 Next, as shown in FIG. 13F, the photoelectric conversion material second precursor material 340 is reacted with the first material portion to form the photoelectric conversion layer 300. Since the photoelectric conversion material second precursor material 340 only reacts with the photoelectric conversion material first precursor material 330, the configuration of the patterned plurality of first material portions can be maintained, so that the photoelectric conversion material second precursor material The photoelectric conversion layer 300 formed after the reaction of 340 with the first material portion may have a predetermined pattern. The photoelectric conversion layer 300 formed after the reaction may include a quantum dot material, a single crystal perovskite structure methylammonium iodide material, a polycrystalline perovskite structure methylammonium iodide material, an amorphous phase perovskite. The structure is a methyl ammonium iodide lead material or a single crystal, polycrystalline or amorphous phase perovskite structure methyl ammonium chloroiodide material, but is not limited thereto. Next, an image sensor 1200 as shown in Fig. 12 is formed.
綜上所述,雖然本發明已以多個實施例揭露如上, 然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the invention has been disclosed above in various embodiments, It is not intended to limit the invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
Claims (27)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/394,712 US10038019B2 (en) | 2015-12-29 | 2016-12-29 | Image sensor and manufacturing method thereof |
US15/813,088 US10403657B2 (en) | 2015-12-29 | 2017-11-14 | Image sensor |
US16/015,307 US10418392B2 (en) | 2015-12-29 | 2018-06-22 | Image sensor and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104144278 | 2015-12-29 | ||
??104144278 | 2015-12-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201735332A TW201735332A (en) | 2017-10-01 |
TWI646677B true TWI646677B (en) | 2019-01-01 |
Family
ID=61021481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105137886A TWI646677B (en) | 2015-12-29 | 2016-11-18 | Image sensor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI646677B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI739546B (en) * | 2020-02-20 | 2021-09-11 | 神盾股份有限公司 | Light-receiving cell and optical biometrics sensor using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070075253A1 (en) * | 2005-09-30 | 2007-04-05 | Fuji Photo Film Co., Ltd. | X-ray imaging device and X-ray CT apparatus |
US20090127599A1 (en) * | 2007-11-16 | 2009-05-21 | Ju Hyun Kim | Image Sensor and Method of Manufacturing the Same |
US20100060769A1 (en) * | 2008-09-11 | 2010-03-11 | Fujifilm Corporation | Solid-state imaging device and imaging apparatus |
US20110025899A1 (en) * | 2007-10-19 | 2011-02-03 | Philipp Schmaelzle | Array of microlenses with integrated illumination |
-
2016
- 2016-11-18 TW TW105137886A patent/TWI646677B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070075253A1 (en) * | 2005-09-30 | 2007-04-05 | Fuji Photo Film Co., Ltd. | X-ray imaging device and X-ray CT apparatus |
US20110025899A1 (en) * | 2007-10-19 | 2011-02-03 | Philipp Schmaelzle | Array of microlenses with integrated illumination |
US20090127599A1 (en) * | 2007-11-16 | 2009-05-21 | Ju Hyun Kim | Image Sensor and Method of Manufacturing the Same |
US20100060769A1 (en) * | 2008-09-11 | 2010-03-11 | Fujifilm Corporation | Solid-state imaging device and imaging apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW201735332A (en) | 2017-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10418392B2 (en) | Image sensor and manufacturing method thereof | |
US10038033B2 (en) | Image sensor | |
JP6502093B2 (en) | Method and apparatus for detecting infrared radiation with gain | |
KR102673658B1 (en) | Organic photoelectronic device and image sensor | |
JP5118041B2 (en) | Encapsulated electrodes for organic devices | |
EP2577747B1 (en) | Method and apparatus for providing a charge blocking layer on an infrared up-conversion device | |
EP3300114B1 (en) | Imaging element, multilayer imaging element and imaging device | |
KR20180060166A (en) | Optoelectronic diode and electronic device | |
CN105308749A (en) | Solid-state image-pickup device, method of manufacturing the same, and electronic apparatus | |
US20170077431A1 (en) | Organic photoelectric conversion device | |
US10483325B2 (en) | Light emitting phototransistor | |
KR20150115477A (en) | Organic photoelectronic device and image sensor | |
KR102195813B1 (en) | Organic photoelectronic device and image sensor | |
KR20170024805A (en) | Organic photoelectronic device and image sensor | |
KR20160084162A (en) | Organic photoelectronic device and image sensor | |
TWI646677B (en) | Image sensor and manufacturing method thereof | |
JP4524223B2 (en) | Functional device and method for manufacturing the same, solid-state imaging device and method for manufacturing the same | |
KR20150085457A (en) | Image sensor and electronic device including the same | |
JP6904334B2 (en) | Laminated structure and its manufacturing method | |
US9590121B2 (en) | Optoelectronic device, and image sensor and electronic device including the same | |
US11557741B2 (en) | Photoelectric conversion devices and organic sensors and electronic devices | |
JP2017073426A (en) | Imaging element | |
KR20240005767A (en) | Display device and method of manufacturing the display device | |
CN111192962A (en) | Photoelectric conversion device, organic sensor, and electronic apparatus | |
KR20150123141A (en) | Image sensor and electronic device including the same |