TWI646492B - Method for optimizing artificial reef deployment in a marine farm - Google Patents
Method for optimizing artificial reef deployment in a marine farm Download PDFInfo
- Publication number
- TWI646492B TWI646492B TW106132732A TW106132732A TWI646492B TW I646492 B TWI646492 B TW I646492B TW 106132732 A TW106132732 A TW 106132732A TW 106132732 A TW106132732 A TW 106132732A TW I646492 B TWI646492 B TW I646492B
- Authority
- TW
- Taiwan
- Prior art keywords
- reef
- index
- area
- landscape
- type
- Prior art date
Links
Landscapes
- Artificial Fish Reefs (AREA)
Abstract
本發明為一種將人工魚礁佈置在海洋牧場的最佳化方法,包含:步驟一、參數及決策變數設定步驟;步驟二、設定佈礁設計的限制式步驟;步驟三、最佳採購數量( )取得的步驟;以及步驟四、佈礁型態配置設計步驟。據此,本發明在一些因素(例如:設定不同功能類型之魚礁礁堆(或稱綴塊(patch))、魚礁礁堆之單價( )、單堆魚礁礁堆佈置時之底面積( )、總預算 、及佈礁計畫區總面積 …等等)的考量下,提供一種人工魚礁佈置在海洋牧場的最佳化方法,以提高單位投入資金之聚魚效果,也就是每一塊錢的投入能帶來最大之聚魚效果,以真正達到提高聚魚效果的目的。 The invention provides an optimization method for arranging artificial reefs in marine pastures, comprising: step one, parameter and decision variable setting steps; step two, setting a restriction step of the reef design; step three, optimal purchase quantity ( The steps taken; and the fourth step, the reef configuration configuration steps. Accordingly, the present invention is based on a number of factors (eg, setting a reef pile (or patch) of different functional types, and a unit price of a reef reef ( ), the bottom area of a single pile of reef reefs ( ),total budget And the total area of the reef plan area ...etc.), to provide an artificial fish reef layout optimization method in the marine pasture, in order to increase the unit's investment in the effect of the fish, that is, the investment of each dollar can bring the greatest effect of the fish, to the real To achieve the purpose of improving the effect of poly fish.
Description
本發明係與人工魚礁佈置方法有關,特別是指一種考量預算將人工魚礁佈置在海洋牧場,能獲致最大聚魚效果之最佳化方法。The invention relates to the artificial fish reef arrangement method, in particular to an optimized method for arranging artificial reefs in marine pastures to obtain the maximum poly-fish effect.
人工魚礁是一種人為的海底堆積物。它是將天然或人工結構物投入海中,藉著這些物體,提供海洋生物一個棲息、避敵及索餌的場所,也因人工魚礁具聚集魚群的能力,因此可保護和增殖漁業資源。Artificial reefs are an artificial seabed deposit. It is the natural or artificial structure that is put into the sea. By these objects, it provides a place for marine organisms to inhabit, avoid enemies and bait. It also protects and proliferates fishery resources because of the ability of artificial reefs to gather fish.
目前人工魚礁之佈置設計並無一定之施工規範可以依循,僅有如魚礁礁堆之體積大小或魚礁礁群彼此間距之建議;因此對於設計人工魚礁生態系統之生態工程師而言,當投放魚礁之位址及所欲投放之礁體選定之後,接下來所面臨的問題即是將這些人工魚礁佈置排列於所選定之場址(Site)中。其中,魚礁礁群(Artificial Reef Communities, 簡稱ARCs) ,而礁群內則包含數堆(Blocks)人工魚礁,至於每堆人工魚礁內包含多座人工魚礁之人工魚礁單體(Unit/Modules)。At present, the design of artificial reefs does not have certain construction specifications to follow, only the size of the reef piles or the spacing of the reefs of the reefs; therefore, for the ecological engineers who design the artificial reef ecosystem, when the reefs are placed After the site and the reefs to be selected, the next problem is to arrange these artificial reefs in the selected site. Among them, the Artificial Reef Communities (ARCs), while the reefs contain several piles of artificial reefs, and each artificial reef contains artificial reefs (Unit/Modules) of artificial reefs.
根據過去的經驗,工程師之佈置設計所憑藉的大都為工程師主觀判斷,然怎樣的佈置形式是考量成本且能夠產生最佳之聚魚效果卻很少被討論。其次,雖然魚礁佈設面積應越廣越好。然用魚礁佈滿一整個區域,不但須耗費大量魚礁,在有限的礁體資源下,其佈設面積亦無法大量的增加,因此理想之方式為成堆投放,並且堆堆相隔,以形成範圍廣大之魚礁區。據此,如何在一些因素(例如:設定不同功能類型之魚礁礁堆(或稱綴塊(patch))、魚礁礁堆之單價( )、單堆魚礁礁堆佈置時之底面積( )、總預算 、及佈礁計畫區總面積 …等等)的考量下,提供一種人工魚礁佈置在海洋牧場的最佳化方法,以提高單位投入資金之聚魚效果,也就是每一塊錢的投入能帶來最大之聚魚效果即是本案發明的動機。 According to past experience, most of the engineers' layout design relies on the subjective judgment of engineers. However, the arrangement is to consider the cost and produce the best poly fish effect but it is rarely discussed. Secondly, although the area of the reef layout should be as wide as possible. However, the use of fish reefs to fill an entire area not only consumes a large number of fish reefs, but also has a large increase in the layout area under limited reef resources. Therefore, the ideal way is to pile up and pile up to form a wide range. The fish reef area. Based on this, how to factor in (for example, setting the reef pile (or patch) of different functional types, and the unit price of the reef reef ( ), the bottom area of a single pile of reef reefs ( ),total budget And the total area of the reef plan area (etc.), to provide an artificial fish reef layout optimization method in the marine pasture, in order to increase the unit's investment in the effect of the fish, that is, the investment of each dollar can bring the biggest effect of the fish is the case The motivation of the invention.
本發明的目的在於提供一種將人工魚礁佈置在海洋牧場的最佳化方法。It is an object of the present invention to provide an optimized method for arranging artificial reefs in marine pastures.
緣是,為了達成前述目的,依據本發明所提供一種將人工魚礁佈置在海洋牧場的最佳化方法,包含:In order to achieve the foregoing objective, an optimization method for arranging artificial reefs in marine pastures according to the present invention includes:
步驟一、參數及決策變數設定步驟:該參數包含設定不同功能類型之魚礁礁堆、魚礁礁堆之單價( )、單堆魚礁礁堆佈置時之底面積( )、總預算 、及佈礁計畫區總面積 ,該決策變數為各不同魚礁礁堆的數量( ); Step 1. Parameter and decision variable setting steps: This parameter includes the unit price of the reef reef and the reef reef piled with different functional types ( ), the bottom area of a single pile of reef reefs ( ),total budget And the total area of the reef plan area The decision variable is the number of different reef reefs ( );
步驟二、設定佈礁設計的限制式步驟:包括施工總成本不得超過預算、佈礁總底面積不得大於計畫區總面積、及佈礁位置不得超出佈礁計畫區設定之範圍;Step 2: Set the restrictive steps for the design of the reef: the total construction cost shall not exceed the budget, the total area of the reef shall not exceed the total area of the project area, and the location of the reef shall not exceed the range set by the reef plan area;
步驟三、不同功能類型之魚礁礁堆最佳採購數量( )取得的步驟:採用一種景觀多樣性指數作為最佳化模式之目標式,以求出該不同功能類型之魚礁礁堆的最佳採購數量( );以及 Step 3: Optimal purchase quantity of reef reefs of different functional types ( The steps taken: using a landscape diversity index as the target of the optimization model to determine the optimal number of purchases for the reef piles of the different functional types ( );as well as
步驟四、佈礁型態配置設計步驟:根據該不同功能類型之魚礁礁堆的最佳採購數量( )進行佈放於該佈礁計畫區,以取得複數種設計魚礁群之候選佈置型態,各該候選佈置型態採用一種景觀指標並經電腦運算以取得一最佳的佈置型態。 Step 4: Reef configuration configuration steps: The optimal purchase quantity of the reef reef according to the different functional types ( The deployment is carried out in the reef plan area to obtain candidate layout patterns of a plurality of design reef groups, each of which adopts a landscape index and is computerized to obtain an optimal layout.
較佳地,其中步驟二中的該施工總成本不得超過預算之數學式表示為: ;步驟二中的該佈礁總底面積不得大於計畫區總面積之數學式表示為: 。 Preferably, the mathematical cost in which the total construction cost in the second step does not exceed the budget is expressed as: The mathematical formula of the total bottom area of the reef in step 2 shall not be greater than the total area of the project area as: .
較佳地,其中步驟三中該景觀多樣性指數為香農-韋弗(Shannon-Weaver)多樣性指數,令該香農-韋弗(Shannon-Weaver)多樣性指數為SHDI,且為該步驟最佳化模式之目標函式,其最佳化係指步驟三可以使得該SHDI值具最大值。可以數學公式 表示; 為決策變數;該香農-韋弗(Shannon-Weaver;SHDI)多樣性指數的公式為: ,其中 是不同功能類型之魚礁礁堆 在景觀中出現的機率; 為不同功能類型之魚礁礁堆種類。 Preferably, in the third step, the landscape diversity index is a Shannon-Weaver diversity index, and the Shannon-Weaver diversity index is SHDI, and this step is The objective function of the optimization mode, which is optimized, means that the third step can make the SHDI value have a maximum value. Mathematical formula Express For the decision variable; the Shannon-Weaver (SHDI) diversity index is: ,among them Is a reef pile of different functional types The probability of appearing in the landscape; A type of reef reef for different functional types.
較佳地,其中步驟三中該景觀多樣性指數為辛普森(Simpson)多樣性指數,令該辛普森(Simpson)多樣性指數為SIDI,且為該步驟最佳化模式之目標函式,其最佳化係指步驟三可以使得該SIDI值具最大值。可以數學公式 表示; 為決策變數;該辛普森(Simpson)多樣性指數的公式為: ,其中 是不同功能類型之魚礁礁堆 在景觀中出現的機率; 為不同功能類型之魚礁礁堆種類。 Preferably, in the third step, the landscape diversity index is a Simpson diversity index, and the Simpson diversity index is SIDI, and is the target function of the optimization mode of the step, and the best The system means that step three can make the SIDI value have a maximum value. Mathematical formula Express For decision variables; the formula for the Simpson diversity index is: ,among them Is a reef pile of different functional types The probability of appearing in the landscape; A type of reef reef for different functional types.
較佳地,其中步驟三中該景觀多樣性指數為修正型辛普森(Simpson)多樣性指數,令該修正型辛普森(Simpson)多樣性指數為MSIDI,且為該步驟最佳化模式之目標函式,其最佳化係指步驟三可以使得該MSIDI值具最大值。可以數學公式 表示; 為決策變數;該修正型辛普森(Simpson)多樣性指數的公式為: ,其中 是不同功能類型之魚礁礁堆 在景觀中出現的機率; 為不同功能類型之魚礁礁堆種類。 Preferably, in the third step, the landscape diversity index is a modified Simpson diversity index, and the modified Simpson diversity index is MSIDI, and is the target function of the step optimization mode. The optimization means that step 3 can make the MSIDI value have a maximum value. Mathematical formula Express For decision variables; the formula for the modified Simpson diversity index is: ,among them Is a reef pile of different functional types The probability of appearing in the landscape; A type of reef reef for different functional types.
較佳地,其中步驟四中該景觀指標採用景觀相對聚集度指數(contagion index),令該景觀相對聚集度指數(contagion index)為RC,且為該步驟最佳化模式之目標函式,其最佳化係指步驟四可以使得該RC值具最大值。可以數學公式 表示; 為決策變數,指得是各礁群的佈礁位置;該景觀相對聚集度指數(contagion index) 的公式為: , 是不同功能類型之魚礁礁堆,類型 i與類型 k相鄰的機率。其中該 的求法是 ,其中 是一個隨機抽選的網格細胞(lattice cell),屬於不同功能類型之魚礁礁堆 i的機率,通常可以不同功能類型之魚礁礁堆 i佔整個景觀的面積比例來估算;而 是在給定不同功能類型之魚礁礁堆 i的情況下,不同功能類型之魚礁礁堆 k與其相鄰的條件機率,亦即 ,式中 是景觀中,不同魚礁礁堆類型,類型 i和類型 k相鄰的共同邊界長度; 是不同功能類型之魚礁礁堆 i細胞的總邊數或以景觀中不同綴塊間邊界的總長度估計。 Preferably, in the step 4, the landscape index adopts a landscape relative concentration index (contagion index), so that the landscape relative concentration index (contagion index) is RC, and is the target function of the step optimization mode, Optimization means that step four can have a maximum value for the RC value. Mathematical formula Express For decision-making variables, it refers to the position of the reefs of each reef group; the formula for the relative concentration index of the landscape is: , Different types of functional reef reef stack type k i and adjacent type probability. Which should The method of seeking is ,among them Is a randomly selected cells in the grid (lattice cell), belonging to different functional types of reef fish reef probability i stack can usually be different types of functional stack reef fish reef i proportion to estimated area of the entire landscape; and Given in the case of different functional types of reef fish reef stack i, the different functional types of reef fish reef stack adjacent thereto conditions the probability of k, i.e. In the formula Is the common boundary length in the landscape, different reef types, type i and type k adjacent; It is the total number of sides of i- cells of fish reef piles of different functional types or estimated by the total length of the boundaries between different patches in the landscape.
較佳地,其中步驟四中該景觀指標採用平均綴塊分維指數,令該平均綴塊分維指數為MPFD,且為該步驟最佳化模式之目標函式,其最佳化係指步驟四可以使得該MPFD值具最大值。可以數學公式 表示; 為決策變數,指得是各礁群的佈礁位置;該平均綴塊分維指數的公式為: , 為不同功能類型之魚礁礁堆,類型 i與類型 k的周長, 為不同功能類型之魚礁礁堆,類型 i與類型 k的面積, 為不同功能類型之魚礁礁堆,類型 i與類型 k的數量;又 。 Preferably, in the fourth step, the landscape indicator adopts an average patch block fractal dimension, so that the average patch block fractal dimension is MPFD, and is the target function of the step optimization mode, and the optimization refers to the step. Fourth, the MPFD value can be maximized. Mathematical formula Express For the decision variable, it refers to the position of the reef of each reef group; the formula of the average patch fractal dimension is: , For the reef piles of different functional types, the perimeter of type i and type k , For the reef piles of different functional types, the area of type i and type k , For the reef piles of different functional types, the number of types i and type k ; .
較佳地,其中步驟四中該景觀指標採用面積加權平均綴塊分維指數,令該面積加權平均綴塊分維指數為AWMPFD,且為該步驟最佳化模式之目標函式,其最佳化係指步驟四可以使得該AWMPFD值具最大值。可以數學公式為 表示; 為決策變數,指得是各礁群的佈礁位置;該面積加權平均綴塊分維指數的公式為: ,式中 為不同功能類型之魚礁礁堆,類型 i與類型 k的面積與景觀總面積的比值;又 。 Preferably, in the fourth step, the landscape index adopts an area weighted average block fractal dimension, so that the area weighted average block fractal index is AWMPFD, and is the target function of the step optimization mode, and the best The system means that step 4 can make the AWMPFD value have a maximum value. Can be mathematically Express For decision-making variables, it refers to the location of the reefs of each reef group; the formula for the area-weighted average patch fractal dimension is: In the formula For the reef piles of different functional types, the ratio of the area of type i and type k to the total area of the landscape; .
較佳地,其中步驟四中該景觀指標採用周長面積分維指數,令該周長面積分維指數為PAFRAC,且為該步驟最佳化模式之目標函式,其最佳化係指步驟四可以使得該PAFRAC值具最大值。可以數學公式為 表示; 為決策變數,指得是各礁群的佈礁位置;該周長面積分維指數的公式為: , L為不同功能類型之魚礁礁堆,類型 i與類型 k的周長, 為不同功能類型之魚礁礁堆,類型 i與類型 k的面積, h是常數;又 。 Preferably, in the fourth step, the landscape index adopts a perimeter area fractal dimension, so that the perimeter area fractal dimension is PAFRAC, and is the target function of the step optimization mode, and the optimization refers to the step Four can make the PAFRAC value have a maximum value. Can be mathematically Express For decision-making variables, it refers to the location of the reefs of each reef group; the formula for the fractal dimension of the perimeter area is: , L is a reef pile of different functional types, the perimeter of type i and type k , For fish reef reefs of different functional types, the area of type i and type k , h is a constant; .
據此,本發明在一些因素(例如:設定不同功能類型之魚礁礁堆、魚礁礁堆之單價( )、單堆魚礁礁堆佈置時之底面積( )、總預算 、及佈礁計畫區總面積 …等等)的考量下,提供一種人工魚礁佈置在海洋牧場的最佳化方法,以提高單位投入資金之聚魚效果,也就是每一塊錢的投入能帶來最大之聚魚效果,以真正達到提高聚魚效果的目的。 Accordingly, the present invention is based on a number of factors (eg, setting the unit price of reef piles and reef reefs of different functional types ( ), the bottom area of a single pile of reef reefs ( ),total budget And the total area of the reef plan area ...etc.), to provide an artificial fish reef layout optimization method in the marine pasture, in order to increase the unit's investment in the effect of the fish, that is, the investment of each dollar can bring the greatest effect of the fish, to the real To achieve the purpose of improving the effect of poly fish.
有關本發明為達成上述目的,所採用之技術、手段及其他之功效,茲舉一較佳可行實施例並配合圖式詳細說明如後。The present invention has been described in connection with the preferred embodiments of the present invention in accordance with the accompanying drawings.
需先說明的是,雖然魚礁佈設面積應越廣越好。然用魚礁佈滿一整個區域,不但須耗費大量魚礁,在有限的礁體資源下,其佈設面積亦無法大量的增加,因此理想之方式為成堆投放,並且堆堆相隔,以形成範圍廣大之魚礁區。因此本實施例是以魚礁礁堆(block)為設計之尺度。其設計方式亦可同樣推論應用於魚礁礁群之佈置設計。以本實施例來說,是由數(十)個魚礁單體(module)形成一堆,每堆間之距離應為50~100公尺。而若欲推廣至礁群(group)之佈置,則每單位礁群內含10~20堆的礁堆,兩兩礁群之間距則為300~500公尺。其狀態如圖1所示,顯示人工魚礁棲地組成示意圖。該圖1表示一個人工魚礁棲地係由數個人工魚礁礁群(artificial reef communities (sets))所組成;此外任一礁群則由數個人工魚礁礁堆(artificial reef blocks)所構成。It should be noted that although the area of the fish reef should be wider, the better. However, the use of fish reefs to fill an entire area not only consumes a large number of fish reefs, but also has a large increase in the layout area under limited reef resources. Therefore, the ideal way is to pile up and pile up to form a wide range. The fish reef area. Therefore, this embodiment is based on a fish reef reef. The design method can also be inferred for the layout design of the fish reef group. In the present embodiment, a pile is formed by several (ten) reef modules, and the distance between each pile should be 50 to 100 meters. If you want to promote the arrangement of the group, there are 10~20 piles of reefs per unit of reef, and the distance between the two groups is 300~500 meters. Its state is shown in Figure 1, which shows a schematic diagram of the composition of artificial reef habitats. Figure 1 shows an artificial reef habitat consisting of several artificial reef communities (sets); in addition, any reef group consists of several artificial reef blocks.
閱圖2所示,本發明實施例所提供的一種將人工魚礁佈置在海洋牧場的最佳化方法,其主要係由步驟一:參數及決策變數設定步驟11、步驟二:設定佈礁設計的限制式步驟12、步驟三:最佳採購數量( )取得的步驟13、以及步驟四:佈礁型態配置設計步驟14所完成,其中: As shown in FIG. 2, an optimization method for arranging an artificial reef in an ocean pasture according to an embodiment of the present invention is mainly performed by Step 1: Parameter and Decision Variable Setting Step 11 and Step 2: Setting the Reef Design Restricted Step 12, Step 3: Optimal Purchase Quantity ( ) Step 13 taken, and Step 4: Reef configuration configuration step 14 is completed, where:
該步驟一、參數及決策變數設定步驟11:參閱圖3所示,顯示參數設定示意範例。該參數包含設定不同功能類型之魚礁礁堆(或稱綴塊(patch))、魚礁礁堆之單價( )、單堆魚礁礁堆佈置時之底面積( )、總預算 、及佈礁計畫區總面積 ,該決策變數為各不同魚礁礁堆的數量( );其中k為不同功能類型之魚礁礁堆編號,且本實施例中該不同功能類型之魚礁礁堆是舉四種為例,而該魚礁礁堆是指與周圍地區在外貌或性質上有所不同之景觀元素,並具有一定內部均質性的空間單元。在本實施例中,可為巨型人工魚礁礁堆、仔魚礁礁堆、或誘導礁礁堆。至於未佈礁之海床相對於其他形式之礁體,其在空間中所佔據之位置,除視為基底(matrix)外,亦可視為一「無佈礁」魚礁礁堆,因此在本實施例中視為一種「空魚礁」礁堆類型。該基底是指景觀中分布最廣、連續性最大的背景結構。在本實施例中,即為未佈礁之海床景觀。 Step 1, parameter and decision variable setting step 11: Referring to FIG. 3, a schematic example of parameter setting is displayed. This parameter includes the unit price of a reef reef (or patch) and a reef reef set for different functional types ( ), the bottom area of a single pile of reef reefs ( ),total budget And the total area of the reef plan area The decision variable is the number of different reef reefs ( Where k is the reef pile number of different functional types, and in this embodiment, the reef pile of the different functional types is exemplified by four examples, and the reef pile refers to the appearance or nature of the surrounding area. Different spatial elements and spatial units with certain internal homogeneity. In this embodiment, it may be a giant artificial reef reef pile, a larva reef pile, or an induced reef pile. As for the unremoved seabed relative to other forms of reef, its position in space, besides being regarded as a matrix, can also be regarded as a “reef-free reef” reef pile, so in this implementation In the case, it is considered an "air reef" reef type. The base refers to the most widely distributed and most continuous background structure in the landscape. In this embodiment, it is a seabed landscape that is not reefed.
該步驟二、設定佈礁設計的限制式步驟12:包括施工總成本不得超過預算、佈礁總底面積不得大於計畫區總面積、及佈礁位置不得超出佈礁計畫區設定之範圍;本實施例中,該施工總成本不得超過預算之數學式表示為: ;參閱圖3所示,該m=4。該佈礁總底面積不得大於計畫區總面積之數學式表示為: ;參閱圖3所示,該m=4。 Step 2: Set the restrictive step 12 of the reef design: including the total construction cost shall not exceed the budget, the total area of the reef shall not exceed the total area of the project area, and the location of the reef shall not exceed the range set by the reef plan area; In this embodiment, the total cost of the construction shall not exceed the mathematical formula of the budget as: ; Referring to Figure 3, the m = 4. The mathematical formula of the total area of the reef must not exceed the total area of the project area as: ; Referring to Figure 3, the m = 4.
該步驟三、最佳採購數量( )取得的步驟13:參閱圖3及圖4所示,採用一種景觀多樣性指數的目標式,以求出該不同功能類型之魚礁礁堆的最佳採購數量( )。本實施例中,該景觀多樣性指數為香農-韋弗(Shannon-Weaver)多樣性指數,令該香農-韋弗(Shannon-Weaver)多樣性指數為SHDI,且該步驟最佳化模式之目標函式,最佳化係指步驟三可以使得該SHDI值具最大值。公式可以 表示; 為決策變數;該香農-韋弗(Shannon-Weaver;SHDI)多樣性指數的公式為: ,其中 是不同功能類型之魚礁礁堆 在景觀中出現的機率; 為不同功能類型之魚礁礁堆種類;參閱圖3所示,該m=4;ln為以e為底之自然對數。參閱圖4所示,本實施例是以三種不同佈礁設計,並採香農-韋弗(Shannon-Weaver)多樣性指數作為說明。假設總預算為30單位,配合圖3之參數,透過步驟二,可至少獲致在圖4中有設計案例編號1-1、2-1及3-1等三候選設計案例。透過步驟三之運算,可獲得建議之各礁堆購買數量建議值,巨型人工魚礁數量6堆、仔魚礁10堆、誘導礁8堆,即設計案例編號1-1為本次設計之優選建議。 Step 3, the optimal number of purchases ( Step 13: Refer to Figure 3 and Figure 4, using a target of the Landscape Diversity Index to find the optimal number of purchases for the reef piles of the different functional types ( ). In this embodiment, the landscape diversity index is the Shannon-Weaver diversity index, and the Shannon-Weaver diversity index is SHDI, and the step optimization mode is adopted. The objective function, optimization means that step 3 can make the SHDI value have a maximum value. Formula can Express For the decision variable; the Shannon-Weaver (SHDI) diversity index is: ,among them Is a reef pile of different functional types The probability of appearing in the landscape; For the reef pile types of different functional types; see Figure 3, the m = 4; ln is the natural logarithm of e. Referring to Figure 4, this embodiment is based on three different reef designs, and the Shannon-Weaver diversity index is used as an illustration. Assuming a total budget of 30 units, in conjunction with the parameters of Figure 3, through the second step, at least three candidate design cases with design case numbers 1-1, 2-1 and 3-1 in Figure 4 can be obtained. Through the calculation of Step 3, the recommended recommended value of each reef purchase quantity can be obtained. The number of giant artificial reefs is 6 piles, 10 piles of larvae and 10 piles of induced reefs, that is, design case No. 1-1 is the preferred proposal for this design.
該步驟四、佈礁型態配置設計步驟14:參閱圖5所示,根據該不同功能類型之魚礁礁堆的最佳採購數量( )進行佈放於該佈礁計畫區,以取得複數種設計魚礁群之候選佈置型態,各該候選佈置型態採用一種景觀指標並經電腦運算以取得一最佳的佈置型態。本實施例中,將經步驟三獲得建議的各礁堆購買數量建議值進行佈置後得到如圖5中三種候選佈礁設計,即圖5中的設計案例編號1-1、2-1、3-1,且各具有對應的佈置示意圖;此時可透過FRAGSTATS軟體根據所選用的該景觀指標採用景觀相對聚集度指數(contagion index、簡稱RC或CONTAG)、平均綴塊分維指數(簡稱MPFD)、面積加權平均綴塊分維指數(簡稱AWMPFD)、或周長面積分維指數(簡稱PAFRAC)以求得步驟四中各佈礁型態所對應之目標函數值,由計算結果可發現,設計案例編號1-1,可做為以MPFD做為目標式時之建議優選佈置;至於設計案例編號1-2,可做為以RC做為目標式時之建議優選佈置;設計案例編號1-3則可做為以AWMPFD或PAFRAC做為目標式時之建議優選佈置。 Step 4: Reef configuration configuration step 14: Refer to Figure 5, according to the optimal purchase quantity of the reef pile of the different function types ( The deployment is carried out in the reef plan area to obtain candidate layout patterns of a plurality of design reef groups, each of which adopts a landscape index and is computerized to obtain an optimal layout. In this embodiment, the recommended values of the reef purchase quantities obtained through the third step are arranged to obtain the three candidate reef designs as shown in FIG. 5, that is, the design case numbers 1-1, 2-1, and 3 in FIG. -1, and each has a corresponding layout diagram; at this time, the FRAGSTATS software can adopt the landscape relative aggregation index (contagion index, RC or CONTAG) and the average patch fractal index (MPFD) according to the selected landscape index. , area weighted average block fractal dimension index (abbreviated as AWMPFD), or perimeter area fractal dimension index (abbreviated as PAFRAC) to obtain the objective function value corresponding to each reef type in step four, which can be found from the calculation result, design Case No. 1-1 can be used as the recommended preferred arrangement when using MPFD as the target type; as for the design case number 1-2, it can be used as the recommended preferred arrangement when RC is the target; Design Case No. 1-3 It can be used as a suggested preferred arrangement when targeting AWMPFD or PAFRAC.
據此,本發明在一些因素(例如:設定不同功能類型之魚礁礁堆、魚礁礁堆之單價( )、單堆魚礁礁堆佈置時之底面積( )、總預算 、及佈礁計畫區總面積 …等等)的考量下,卻時能夠提供一種人工魚礁佈置在海洋牧場的最佳化方法,以提高單位投入資金之聚魚效果,也就是每一塊錢的投入能帶來最大之聚魚效果,以真正達到提高聚魚效果的目的。 Accordingly, the present invention is based on a number of factors (eg, setting the unit price of reef piles and reef reefs of different functional types ( ), the bottom area of a single pile of reef reefs ( ),total budget And the total area of the reef plan area Under the consideration of ..., etc., it is possible to provide an artificial fish reef in the marine pasture optimization method to improve the effect of the unit to invest in the fish, that is, the investment of each dollar can bring the biggest fish effect In order to truly achieve the purpose of improving the effect of poly fish.
值得一提的是,在其他的實施方式中,步驟三中該景觀多樣性指數可為辛普森(Simpson)多樣性指數,令該辛普森(Simpson)多樣性指數為SIDI,且為該步驟最佳化模式之目標函式,其最佳化係指步驟三可以使得該SIDI值具最大值,可以數學公式 表示; 為決策變數;該辛普森(Simpson)多樣性指數的公式為: ,其中 是不同功能類型之魚礁礁堆 在景觀中出現的機率; 為不同功能類型之魚礁礁堆種類。參閱圖4所示,當步驟三中該景觀多樣性指數是採用辛普森(Simpson)多樣性指數時,經過步驟二、三之運算,可獲得建議之各礁堆購買數量建議值,巨型人工魚礁數量8堆、仔魚礁8堆、誘導礁6堆,即設計案例編號3-1為設計之優選建議。 It is worth mentioning that in other embodiments, the landscape diversity index in step 3 may be the Simpson diversity index, and the Simpson diversity index is SIDI, and the step is optimized. The objective function of the mode, the optimization means that the third step can make the SIDI value have a maximum value, and the mathematical formula can be Express For decision variables; the formula for the Simpson diversity index is: ,among them Is a reef pile of different functional types The probability of appearing in the landscape; A type of reef reef for different functional types. Referring to Figure 4, when the Simpson diversity index is used in Step 3, after the steps 2 and 3, the recommended number of recommended reef purchases, the number of giant artificial reefs, can be obtained. 8 piles, 8 piles of larvae and 6 piles of induced reefs, ie design case number 3-1 is the preferred design proposal.
在其他的實施方式中,步驟三中該景觀多樣性指數為修正型辛普森(Simpson)多樣性指數,令該修正型辛普森(Simpson)多樣性指數為MSIDI,且為該步驟最佳化模式之目標函式,其最佳化係指步驟三可以使得該MSIDI值具最大值。可以數學公式 表示; 為決策變數;該修正型辛普森(Simpson)多樣性指數的公式為: ,其中 是不同功能類型之魚礁礁堆 在景觀中出現的機率; 為不同功能類型之魚礁礁堆種類。參閱圖4所示,當步驟三中該景觀多樣性指數是採用修正型辛普森(Simpson)多樣性指數時,經過步驟二、三之運算,可獲得建議之各礁堆購買數量建議值,巨型人工魚礁數量8堆、仔魚礁8堆、誘導礁6堆,即設計案例編號3-1為設計之優選建議。 In other embodiments, the landscape diversity index in step 3 is a modified Simpson diversity index, and the modified Simpson diversity index is MSIDI, and is the target of the optimization mode of the step. The function, which is optimized, means that step 3 can make the MSIDI value have a maximum value. Mathematical formula Express For decision variables; the formula for the modified Simpson diversity index is: ,among them Is a reef pile of different functional types The probability of appearing in the landscape; A type of reef reef for different functional types. Referring to Figure 4, when the landscape diversity index is in the modified Simpson diversity index in step three, after the steps 2 and 3, the recommended number of recommended reef purchases can be obtained. There are 8 piles of reefs, 8 piles of larvae and 6 piles of induced reefs. Design case No. 3-1 is the preferred design proposal.
值得說明的是,在步驟四中該景觀指標採用景觀相對聚集度指數(contagion index、簡稱RC)、平均綴塊分維指數(簡稱MPFD)、面積加權平均綴塊分維指數(簡稱AWMPFD)、及周長面積分維指數(簡稱PAFRAC)分別說明如下:It is worth noting that in step 4, the landscape index adopts the landscape relative aggregation index (contagion index, RC for short), the average patch block fractal index (MPFD), and the area weighted average block index (AWMPFD). And the perimeter area fractal index (referred to as PAFRAC) are described as follows:
該景觀指標採用景觀相對聚集度指數(contagion index),令該景觀相對聚集度指數(contagion index)為RC,且為該步驟最佳化模式之目標函式,其最佳化係指步驟四可以使得該RC值具最大值。可以數學公式 表示; 為決策變數,指得是各礁群的佈礁位置;該景觀相對聚集度指數(contagion index) 的公式為: , 是不同功能類型之魚礁礁堆,類型 i與類型 k相鄰的機率。其中該 的求法是 ,其中 是一個隨機抽選的網格細胞(lattice cell),屬於不同功能類型之魚礁礁堆 i的機率,通常可以不同功能類型之魚礁礁堆 i佔整個景觀的面積比例來估算;而 是在給定不同功能類型之魚礁礁堆 i的情況下,不同功能類型之魚礁礁堆 k與其相鄰的條件機率,亦即 ,式中 是景觀中,不同魚礁礁堆類型,類型 i和類型 k相鄰的共同邊界長度(或以共同邊界之長度估算); 是不同功能類型之魚礁礁堆 i細胞的總邊數或以景觀中不同綴塊間邊界的總長度估計。 The landscape index adopts a landscape relative concentration index (contagion index), so that the relative concentration index of the landscape is RC, and is the target function of the optimization mode of the step, and the optimization means that step 4 can be This RC value is made to have a maximum value. Mathematical formula Express For decision-making variables, it refers to the position of the reefs of each reef group; the formula for the relative concentration index of the landscape is: , Different types of functional reef reef stack type k i and adjacent type probability. Which should The method of seeking is ,among them Is a randomly selected cells in the grid (lattice cell), belonging to different functional types of reef fish reef probability i stack can usually be different types of functional stack reef fish reef i proportion to estimated area of the entire landscape; and Given in the case of different functional types of reef fish reef stack i, the different functional types of reef fish reef stack adjacent thereto conditions the probability of k, i.e. In the formula Is the common boundary length of the different reef types in the landscape, type i and type k (or estimated by the length of the common boundary); It is the total number of sides of i- cells of fish reef piles of different functional types or estimated by the total length of the boundaries between different patches in the landscape.
該景觀指標採用平均綴塊分維指數,令該平均綴塊分維指數為MPFD,且為該步驟最佳化模式之目標函式,其最佳化係指步驟四可以使得該MPFD值具最大。可以數學公式 表示; 為決策變數,指得是各礁群的佈礁位置;該平均不同功能類型之魚礁礁堆分維指數的公式為: , 為不同功能類型之魚礁礁堆,類型 i與類型 k的周長, 為不同功能類型之魚礁礁堆,類型 i與類型 k的面積, 為不同功能類型之魚礁礁堆,類型 i與類型 k的數量;又 。 The landscape index adopts an average patch block fractal dimension, so that the average patch block fractal dimension is MPFD, and is the target function of the step optimization mode, and the optimization means that step 4 can make the MPFD value have the largest value. . Mathematical formula Express For decision-making variables, it refers to the location of the reefs of each reef group; the formula for the fractal index of the reef piles of the average different functional types is: , For the reef piles of different functional types, the perimeter of type i and type k , For the reef piles of different functional types, the area of type i and type k , For the reef piles of different functional types, the number of types i and type k ; .
該景觀指標採用面積加權平均綴塊分維指數,令該面積加權平均綴塊分維指數為AWMPFD,且為該步驟最佳化模式之目標函式,其最佳化係指步驟四可以使得該AWMPFD值具最大。可以數學公式為 表示; 為決策變數,指得是各礁群的佈礁位置;該面積加權平均不同功能類型之魚礁礁堆分維指數的公式為: ,式中 為不同功能類型之魚礁礁堆,類型 i與類型 k的面積與景觀總面積的比值;又 。 The landscape index adopts an area-weighted average patch block fractal dimension, so that the area weighted average patch block fractal dimension is AWMPFD, and is the target function of the step optimization mode, and the optimization means that step 4 can make the The AWMPFD value is the largest. Can be mathematically Express For decision-making variables, it refers to the location of the reefs of each reef group; the formula for the fractal dimension of the reef piles of the weighted average different functional types is: In the formula For the reef piles of different functional types, the ratio of the area of type i and type k to the total area of the landscape; .
該景觀指標採用周長面積分維指數,令該周長面積分維指數為PAFRAC,且為該步驟最佳化模式之目標函式,其最佳化係指步驟四可以使得該PAFRAC值具最大。可以數學公式為 表示; 為決策變數,指得是各礁群的佈礁位置;該周長面積分維指數的公式為: , L為不同功能類型之魚礁礁堆,類型 i與類型 k的周長, 為不同功能類型之魚礁礁堆,類型 i與類型 k的面積, h是常數;又 。 The landscape index adopts the perimeter area fractal index, so that the perimeter area fractal dimension is PAFRAC, and is the target function of the step optimization mode, and the optimization means that step 4 can make the PAFRAC value the largest. . Can be mathematically Express For decision-making variables, it refers to the location of the reefs of each reef group; the formula for the fractal dimension of the perimeter area is: , L is a reef pile of different functional types, the perimeter of type i and type k , For fish reef reefs of different functional types, the area of type i and type k , h is a constant; .
最後,前述所有景觀指標,皆可以FRAGSTATS軟體求得。指令對照如下表。Finally, all of the aforementioned landscape indicators can be obtained by FRAGSTATS software. The instructions are compared to the table below.
<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>景觀指數名稱</b></td><td><b>FRAGSTATS</b><b>指令名稱</b></td></tr><tr><td> Shannon多樣性指數 </td><td> SHDI </td></tr><tr><td> Simpson多樣性指數 </td><td> SIDI </td></tr><tr><td> 修正型Simpson多樣性指數 </td><td> MSIDI </td></tr><tr><td> 相對聚集度指數 </td><td> RC(CONTAG) </td></tr><tr><td> 平均綴塊分維指數 </td><td> MPFD (FRAC_MN) </td></tr><tr><td> 面積加權平均綴塊分維指數 </td><td> AWMPFD (FRAC_AM) </td></tr><tr><td> 周長面積分維指數 <i>perimeter-area fractal dimension</i></td><td> PAFRAC </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>landscape index name</b></td><td><b>FRAGSTATS </b><b>Instruction Name</b></td></tr><tr><td> Shannon Diversity Index</td><td> SHDI </td></tr><tr> <td> Simpson Diversity Index</td><td> SIDI </td></tr><tr><td> Modified Simpson Diversity Index</td><td> MSIDI </td></tr ><tr><td> Relative Aggregation Index</td><td> RC(CONTAG) </td></tr><tr><td> Average Patch Fractal Dimension Index</td><td> MPFD (FRAC_MN) </td></tr><tr><td> Area Weighted Average Patch Fractal Dimension Index</td><td> AWMPFD (FRAC_AM) </td></tr><tr><td> Perimeter area fractal dimension <i>perimeter-area fractal dimension</i></td><td> PAFRAC </td></tr></TBODY></TABLE>
綜上所述,上述實施例及圖式僅為本發明之較佳實施例而已,當不能以之限定本發明實施之範圍,舉凡依本發明申請專利範圍所作之均等變化與修飾,皆應屬本發明專利涵蓋之範圍內。In the above, the above embodiments and the drawings are only the preferred embodiments of the present invention, and the scope of the present invention is not limited thereto, and the equivalent changes and modifications according to the scope of the present invention should be The scope of the invention is covered.
11‧‧‧參數及決策變數設定步驟11‧‧‧Parameter and decision variable setting steps
12‧‧‧設定佈礁設計的限制式步驟12‧‧‧Setting restricted steps for reef design
13‧‧‧最佳採購數量()取得的步驟13‧‧‧Best purchase quantity ( ) steps taken
14‧‧‧佈礁型態配置設計步驟14‧‧‧ Reef configuration configuration steps
‧‧‧魚礁礁堆之單價 ‧‧‧Unit price of reef reef
‧‧‧單堆魚礁礁堆佈置時之底面積 ‧‧‧Bottom area of single pile reef reefs
‧‧‧總預算 ‧‧‧total budget
‧‧‧佈礁計畫區總面積 ‧‧‧ Total area of the reef plan area
‧‧‧決策變數為各不同魚礁礁堆的數量 ‧‧‧Decision variables for the number of different reef reefs
SHDI‧‧‧香農-韋弗(Shannon-Weaver)多樣性指數SHDI‧‧ Shannon-Weaver Diversity Index
‧‧‧不同功能類型之魚礁礁堆在景觀中出現的機率 ‧‧‧Reef piles of different functional types Probability in the landscape
‧‧‧不同功能類型之魚礁礁堆種類 ‧‧‧Fish reef pile types of different functional types
RC(或CONTAG)‧‧‧景觀相對聚集度指數RC (or CONTAG) ‧ ‧ landscape relative aggregation index
MPFD‧‧‧平均綴塊分維指數MPFD‧‧‧Average block fractal index
AWMPFD‧‧‧面積加權平均綴塊分維指數AWMPFD‧‧‧ area weighted average block fractal index
PAFRAC‧‧‧周長面積分維指數PAFRAC‧‧‧ perimeter area fractal index
SIDI‧‧‧辛普森(Simpson)多樣性指數SIDI‧‧ Simpson Diversity Index
MSIDI‧‧‧修正型辛普森(Simpson)多樣性指數MSIDI‧‧‧Modified Simpson Diversity Index
圖1是本發明實施例的示意圖,顯示人工魚礁棲地組成狀態。 圖2是本發明實施例的步驟圖。 圖3是本發明實施例參數特定示意範例圖。 圖4是本發明實施例步驟三設計範例示意圖。 圖5是本發明實施例步驟四設計範例示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of an embodiment of the invention showing the composition of an artificial reef habitat. Figure 2 is a step diagram of an embodiment of the present invention. FIG. 3 is a diagram showing a specific example of parameters of an embodiment of the present invention. 4 is a schematic diagram of a design example of the third step of the embodiment of the present invention. FIG. 5 is a schematic diagram of a design example of the fourth step of the embodiment of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106132732A TWI646492B (en) | 2017-09-25 | 2017-09-25 | Method for optimizing artificial reef deployment in a marine farm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106132732A TWI646492B (en) | 2017-09-25 | 2017-09-25 | Method for optimizing artificial reef deployment in a marine farm |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI646492B true TWI646492B (en) | 2019-01-01 |
TW201915909A TW201915909A (en) | 2019-04-16 |
Family
ID=65803611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106132732A TWI646492B (en) | 2017-09-25 | 2017-09-25 | Method for optimizing artificial reef deployment in a marine farm |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI646492B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978804A (en) * | 1996-04-11 | 1999-11-02 | Dietzman; Gregg R. | Natural products information system |
US7353113B2 (en) * | 2004-12-07 | 2008-04-01 | Sprague Michael C | System, method and computer program product for aquatic environment assessment |
CN101669453A (en) * | 2009-09-30 | 2010-03-17 | 上海海洋大学 | Quantification and evaluation method for artificial marine habitat configuration combined effect |
US20150366170A1 (en) * | 2013-02-14 | 2015-12-24 | Econcrete Tech Ltd. | Methods and matrices for promoting fauna and flora growth |
-
2017
- 2017-09-25 TW TW106132732A patent/TWI646492B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978804A (en) * | 1996-04-11 | 1999-11-02 | Dietzman; Gregg R. | Natural products information system |
US7353113B2 (en) * | 2004-12-07 | 2008-04-01 | Sprague Michael C | System, method and computer program product for aquatic environment assessment |
CN101669453A (en) * | 2009-09-30 | 2010-03-17 | 上海海洋大学 | Quantification and evaluation method for artificial marine habitat configuration combined effect |
US20150366170A1 (en) * | 2013-02-14 | 2015-12-24 | Econcrete Tech Ltd. | Methods and matrices for promoting fauna and flora growth |
Also Published As
Publication number | Publication date |
---|---|
TW201915909A (en) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
White et al. | Matching spatial property rights fisheries with scales of fish dispersal | |
Morris | Adaptation and habitat selection in the eco-evolutionary process | |
Hagen et al. | Biodiversity, species interactions and ecological networks in a fragmented world | |
Damschen et al. | How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats | |
Sripanomyom et al. | Traditional salt-pans hold major concentrations of overwintering shorebirds in Southeast Asia | |
McLeod et al. | Habitat value of Sydney rock oyster (Saccostrea glomerata) reefs on soft sediments | |
Scyphers et al. | Ecological value of submerged breakwaters for habitat enhancement on a residential scale | |
CN107341565A (en) | Northwest Pacific Japan anchovy resource abundance Forecasting Methodology | |
Gil et al. | Context‐dependent landscape of fear: algal density elicits risky herbivory in a coral reef | |
Whalen et al. | Heatwave restructures marine intertidal communities across a stress gradient | |
Sarneel et al. | Herbivores enforce sharp boundaries between terrestrial and aquatic ecosystems | |
Santos et al. | Spatial analysis of Protected Areas of the coastal/marine environment of Brazil | |
Kuchma et al. | Landscape diversity indexes application for agricultural land use optimization | |
CN112132418A (en) | Natural protected area ecological environment evaluation method based on high-resolution remote sensing image | |
Teurlincx et al. | Managing successional stage heterogeneity to maximize landscape-wide biodiversity of aquatic vegetation in ditch networks | |
Bertocci et al. | Compounded perturbations in coastal areas: contrasting responses to nutrient enrichment and the regime of storm‐related disturbance depend on life‐history traits | |
Chen | Conservation of the Southern River Terrapin Batagur affinis (Reptilia: Testudines: Geoemydidae) in Malaysia: A case study involving local community participation | |
Chen et al. | Bird community structure is driven by urbanization level, blue-green infrastructure configuration and precision farming in Taizhou, China | |
TWI646492B (en) | Method for optimizing artificial reef deployment in a marine farm | |
Troast et al. | A multi-tiered assessment of fish community responses to habitat restoration in a coastal lagoon | |
Cao et al. | Effects of landscape pattern evolution on plant species and functional trait diversity in Hunshandak Sandland | |
CN109034462A (en) | Maize population cropping pattern optimization method and device | |
Sprößig et al. | Defining the baseline for river restoration: comparing carabid beetle diversity of natural and human-impacted riparian habitats | |
Ruppert et al. | Community assembly and the sustainability of habitat offsetting targets in the first compensation lake in the oil sands region in Alberta, Canada | |
Gross et al. | Nekton community responses to seagrass differ with shoreline slope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |