TWI645372B - Image calibration system and image calibration method - Google Patents

Image calibration system and image calibration method Download PDF

Info

Publication number
TWI645372B
TWI645372B TW106129114A TW106129114A TWI645372B TW I645372 B TWI645372 B TW I645372B TW 106129114 A TW106129114 A TW 106129114A TW 106129114 A TW106129114 A TW 106129114A TW I645372 B TWI645372 B TW I645372B
Authority
TW
Taiwan
Prior art keywords
image
pattern
color
lens
units
Prior art date
Application number
TW106129114A
Other languages
Chinese (zh)
Other versions
TW201913561A (en
Inventor
葉振凱
Original Assignee
華利納企業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華利納企業股份有限公司 filed Critical 華利納企業股份有限公司
Priority to TW106129114A priority Critical patent/TWI645372B/en
Application granted granted Critical
Publication of TWI645372B publication Critical patent/TWI645372B/en
Publication of TW201913561A publication Critical patent/TW201913561A/en

Links

Abstract

本發明係關於一種影像校正系統及影像校正方法,校正時係使用一圖案板容納標的物於該圖案板的範圍內。其中,該圖案板採用虛擬隨機陣列編碼,具有複數個第一圖案單元及複數個第二圖案單元;所述第一圖案單元以矩陣方式彼此相鄰排列,各該第一圖案單元呈現一第一顏色及一第二顏色之其中之一,且相鄰的所述第一圖案單元彼此顏色相異;所述第二圖案單元分別設置於所述第一圖案單元中。設置於該標的物上之攝影機朝向該圖案板拍攝的影像,可辨識出其相對於該圖案板的方位,以利拼接為一環景影像。The invention relates to an image correction system and an image correction method, which use a pattern plate to accommodate a target object within the range of the pattern plate. Wherein, the pattern plate is encoded by a virtual random array, and has a plurality of first pattern units and a plurality of second pattern units; the first pattern units are arranged adjacent to each other in a matrix manner, and each of the first pattern units presents a first One of a color and a second color, and the adjacent first pattern units are different in color from each other; the second pattern units are respectively disposed in the first pattern unit. An image of the camera disposed on the target object facing the pattern plate can recognize its orientation relative to the pattern plate to facilitate splicing into a ring image.

Description

影像校正系統及影像校正方法Image correction system and image correction method

本發明係關於一種影像校正系統及影像校正方法,特別是一種環景影像之校正系統及校正方法。The invention relates to an image correction system and an image correction method, in particular to a correction system and a correction method for a scene image.

為了讓駕駛人在行車過程中更能掌握車輛的周圍狀況,現今的車輛已逐漸將環景影像系統 (Around View Monitoring, AVM)列為標準配備。環景影像系統包含多個(例如4個以上)攝影機,藉由將攝影機所擷取的影像整合後轉換成一俯視的環景鳥瞰畫面,以供駕駛人行車之參考。In order to make the driver more aware of the surrounding conditions of the vehicle during driving, today's vehicles have gradually listed the Area View Monitoring (AVM) as standard equipment. The surround image system consists of multiple (for example, four or more) cameras, which are integrated into a bird's-eye view of the bird's eye view by integrating the images captured by the camera for reference by the driver.

然而,攝影機所擺設的位置及角度均不同,欲呈現較佳的環景影像品質,各個攝影機所取得影像後的校正與拼接技術便相當重要,不但在新車出廠安裝環景影像系統時需要進行校正,若之後因事故碰撞或模組更新,同樣也需要再予以重新校正。攝影機間的定位校正需要有共同的座標系統,例如世界座標系統(World Coordinates System, WCS),才能讓各個影像可以整合,故每個攝影機需要透過校正程序求取由攝影機座標系統至世界座標系統的轉換資訊,以辨識鏡頭的位置。若轉換資訊存在誤差時,就會使得拼接出的環景鳥瞰影像品質不佳。為了簡化校正程序及確保影像拼接結果,習知技術通常會將攝影機以彼此對稱或固定位置的方式配置,例如設於一般車輛的前、後、左、右的四個位置上的攝影機,限定其必須是兩兩對稱、或者是分別設置於特定位置上;然而,當應用於一般房車之外的標的物如卡車或飛機時,欲限制攝影機僅能對稱配置,則有先天上的困難。However, the positions and angles of the cameras are different. In order to display better image quality, the correction and splicing techniques of the images obtained by each camera are very important. Not only need to be corrected when the new car is installed with the surround image system. If it is later due to an accident collision or a module update, it will also need to be recalibrated. Positioning correction between cameras requires a common coordinate system, such as the World Coordinates System (WCS), so that each image can be integrated, so each camera needs to obtain the calibration system from the camera coordinate system to the world coordinate system. Convert information to identify the position of the lens. If there is an error in the conversion information, the mosaic bird's-eye view image quality will be poor. In order to simplify the calibration procedure and ensure image stitching results, conventional techniques generally configure the cameras in a symmetrical or fixed position with each other, such as cameras located at four positions of the front, rear, left, and right of a general vehicle, and define them. It must be symmetrical or set at a specific position; however, when applied to a target other than a general motor vehicle such as a truck or an airplane, there is inherent difficulty in limiting the camera to be symmetrical only.

一種習知的環景影像校正方式,如第1圖所示,是在車輛11周圍先佈設一棋盤格狀的圖板12。車輛11上的攝影機(圖未示)擷取影像後,利用各個影像中所選取之棋盤格交界的特徵點進行影像校正。考慮攝影機的數量無法太多,而最終又要能拼接成環景影像,故攝影機通常採用魚眼鏡頭或廣角鏡頭,如第2圖所示,其中一個攝影機111的魚眼鏡頭所拍攝得到的影像113將會變形,尤其在邊界處的變形更為明顯。而影像校正系統需將其轉換為平面影像,並以特徵點作為影像拼接的依據。換言之,相鄰二個攝影機所擷取的影像113之間必須要有重疊的特徵,以提供作為二者轉換為平面影像後再進行拼接的依據。可想見地,重疊特徵通常位於影像113的外圍區域,但採用魚眼鏡頭或廣角鏡頭的攝影機111所轉換得到的影像113,其周邊區域的解析度相對較低且變形程度大,因而特徵點的判斷以及後續環景影像的拼接上,具有一定難度。A conventional method for correcting a panoramic image, as shown in FIG. 1, is to first arrange a checkerboard 12 around the vehicle 11. After the camera (not shown) on the vehicle 11 captures the image, the image is corrected using the feature points of the checkerboard boundary selected in each image. Considering that the number of cameras cannot be too much, and finally it is necessary to splicing into a panoramic image, the camera usually uses a fisheye lens or a wide-angle lens. As shown in Fig. 2, the image taken by the fisheye lens of one of the cameras 111 is 113. It will be deformed, especially at the boundary. The image correction system needs to convert it into a flat image, and use feature points as the basis for image stitching. In other words, there must be overlapping features between the images 113 captured by two adjacent cameras to provide a basis for converting the two into planar images. Conceivably, the overlapping feature is usually located in the peripheral region of the image 113, but the image 113 converted by the camera 111 using the fisheye lens or the wide-angle lens has a relatively low resolution and a large degree of deformation in the peripheral region, and thus the feature point is judged. And the subsequent mosaic of the surrounding image has certain difficulty.

也因此,習知的環景影像校正需仰賴大量人工的方式進行後續處理,尤其是具備相當經驗的專業人力,投入相當時間參與影像校正及拼接。詳言之,在初期的棋盤格狀圖板佈設,即需要精確的量測,故通常是以人工方式進行;而接下來的影像擷取、校正對位及拼接調整等程序,仍然需要大量的人力及時間進行判斷及參數設定,來確保校正及拼接的結果。大幅依賴專業人員投入的結果造成工時過長、人力耗費、成本增加且效率低落等問題,且人力的素質與經驗將直接影響校正及拼接的品質,此等因素均造成全景影像系統普及化的阻礙。Therefore, the conventional scene image correction relies on a large number of manual methods for subsequent processing, especially the professional man with considerable experience, and devoted considerable time to image correction and stitching. In particular, in the initial checkerboard layout, accurate measurement is required, so it is usually done manually; and the subsequent image capture, correction alignment and splicing adjustments still require a large number of Manpower and time are judged and parameterized to ensure correction and splicing results. The result of relying heavily on professional input results in problems such as excessive man-hours, labor costs, increased costs, and low efficiency. The quality and experience of manpower will directly affect the quality of calibration and splicing. These factors have all contributed to the popularization of panoramic imaging systems. Obstruction.

有鑑於此,發展一種可全自動且精確的環景影像校正系統及校正方法,在此產業中極具需求及發展潛力。In view of this, the development of a fully automatic and accurate panoramic image correction system and calibration method has great demand and development potential in this industry.

本發明之一主要目的在於提供一種影像校正系統及影像校正方法,可全自動地進行校正並產生正確的環景影像,能大幅減少人力的投入,且能獲得更為精準及強健的結果。One of the main objects of the present invention is to provide an image correction system and an image correction method, which can automatically perform correction and generate a correct scene image, which can greatly reduce manpower input and obtain more accurate and robust results.

承上,本發明採用具有虛擬隨機陣列(Pseudo Random Array, PRA)編碼的圖案板,其上具有相當數量且準確的校正特徵,包含棋盤格狀的複數個第一圖案單元作為背景、以及分別設置於所述第一圖案單元中的複數個第二圖案單元作為特徵點,可以保證任一方位或姿態之攝影機所拍攝到的局部圖案都是唯一的,不僅能夠決定攝影機的校正資料,還能提供複數個確認的證據,在求取影像的空間轉換資訊時(例如,計算Homography matrix)能獲得更為精準及強健的結果,讓攝影機的校正結果更具正確性。The present invention adopts a Pseudo Random Array (PRA) coded pattern board having a considerable number of accurate correction features thereon, including a plurality of first pattern elements in a checkerboard pattern as a background, and respectively set The plurality of second pattern units in the first pattern unit as feature points can ensure that the partial patterns captured by the camera of any orientation or posture are unique, and can not only determine the correction data of the camera, but also provide A plurality of confirmed evidences can obtain more accurate and robust results when the spatial conversion information of the image is obtained (for example, calculating the Homography matrix), so that the calibration result of the camera is more correct.

因為本發明的圖案板具有虛擬隨機陣列(PRA)編碼,因此各鏡頭所擷取的影像具有其唯一性,故標的物設置於圖案板上的位置及角度不受限制,攝影機的的擺設也不須限制其對稱配置或特定位置,從影像上均能辨識出其位置及方位,且相鄰的攝影機所拍攝的影像,也不需具有重疊的區域,當然也不再需要校正重疊區域的特徵點。此外,本發明的技術不限於前述例示的平面影像,也可以以更多的鏡頭分別配置在標的物的前、後、左、右、上、下等,最終可拼接出球形的環景影像,應用於飛機或無人機使其具備避障能力。Because the pattern plate of the present invention has a virtual random array (PRA) code, the image captured by each lens has its uniqueness, so the position and angle of the object placed on the pattern plate are not limited, and the display of the camera is not It is necessary to limit its symmetrical configuration or specific position, and its position and orientation can be recognized from the image, and the images taken by adjacent cameras do not need to have overlapping regions. Of course, it is no longer necessary to correct the feature points of the overlapping regions. . In addition, the technology of the present invention is not limited to the planar images exemplified above, and more lenses may be disposed on the front, back, left, right, up, and down of the target, and finally the spherical panoramic image may be spliced. Used in aircraft or drones to provide obstacle avoidance capabilities.

本發明之校正系統及校正方法僅需利用各攝影機所拍得影像的中心高解析度區域,即可自動且精準的取得校正特徵點,並據此進行影像拼接而產生全景影像。The calibration system and the calibration method of the present invention can automatically and accurately obtain the corrected feature points by using the central high-resolution area of the image captured by each camera, and thereby perform image mosaic to generate a panoramic image.

而校正處理程序中,標的物相對於圖案板的位置不受限,其上鏡頭的方位也不限制,只要大致上朝向圖案板而得以擷取其影像即可,標的物之寬度、長度、高度均不會有影響,系統甚至可自動透過校正圖案的已知規格尺寸,自動回推攝影機的位置及對應的車輛尺寸與類別。In the correction processing program, the position of the target object relative to the pattern plate is not limited, and the orientation of the upper lens is not limited, as long as the image is captured substantially toward the pattern plate, the width, length, and height of the object. There is no impact, the system can automatically automatically push back the position of the camera and the corresponding vehicle size and category by correcting the known size of the pattern.

為達前述目的,本發明提供一種影像校正系統,用於取得一標的物周圍之一環景影像,該標的物上設有至少一鏡頭,該影像校正系統包含:一圖案板、一傳輸模組、一校正模組及一運算模組。該圖案板可容納該標的物於該圖案板的範圍內,該圖案板具有複數個第一圖案單元及複數個第二圖案單元;所述第一圖案單元係以矩陣方式彼此相鄰排列,各該第一圖案單元呈現一第一顏色及一第二顏色之其中之一,且相鄰的所述第一圖案單元彼此顏色相異;所述第二圖案單元分別設置於所述第一圖案單元中。該傳輸模組接收所述鏡頭朝向該圖案板拍攝之一局部影像;該校正模組與該傳輸模組連接,以自該局部影像中擷取並校正得到一矩陣影像;該運算模組於該矩陣影像上辨識出多個所述第一圖案單元及多個所述第二圖案單元,並根據所述第一圖案單元及所述第二圖案單元,計算出所述鏡頭相對於該圖案板上之一方位。In order to achieve the foregoing objective, the present invention provides an image correction system for acquiring a surrounding image of a target object, the target object having at least one lens, the image correction system comprising: a pattern plate, a transmission module, A correction module and an operation module. The pattern plate can accommodate the object within the range of the pattern plate, the pattern plate has a plurality of first pattern units and a plurality of second pattern units; the first pattern units are arranged adjacent to each other in a matrix manner, each The first pattern unit presents one of a first color and a second color, and the adjacent first pattern units are different in color from each other; the second pattern unit is respectively disposed on the first pattern unit in. The transmission module receives a partial image of the lens toward the pattern plate; the correction module is coupled to the transmission module to capture and correct a matrix image from the partial image; the computing module is Recognizing a plurality of the first pattern units and the plurality of second pattern units on a matrix image, and calculating the lens relative to the pattern plate according to the first pattern unit and the second pattern unit One orientation.

該方位包含所述鏡頭相對於該圖案板之一位置參數及一視角參數。該圖案板之所述第二圖案單元係以一虛擬隨機陣列(Pseudo Random Array, PRA)編碼排列,且較佳地,所述第二圖案單元具有一形狀特徵及一顏色特徵,其中該顏色特徵為該第一顏色及該第二顏色之其中之一。該校正模組係擷取該局部影像之中央部分並加以攤平校正,以得到該矩陣影像。The orientation includes a positional parameter and a viewing angle parameter of the lens relative to the pattern plate. The second pattern unit of the pattern board is arranged by a Pseudo Random Array (PRA) code, and preferably, the second pattern unit has a shape feature and a color feature, wherein the color feature Is one of the first color and the second color. The calibration module captures the central portion of the partial image and performs leveling correction to obtain the matrix image.

所述鏡頭係包含複數個鏡頭,且較佳為魚眼鏡頭或廣角鏡頭,該運算模組根據各該鏡頭的該方位,將各該鏡頭之各該局部影像,拼接成該標的物周圍之該環景影像。The lens system includes a plurality of lenses, and is preferably a fisheye lens or a wide-angle lens. The computing module splices the partial images of each lens into the ring around the target according to the orientation of each lens. Scene image.

本發明還提供一種影像校正方法,用於取得一標的物周圍之一環景影像,該影像校正方法包含下列步驟:提供一以虛擬隨機陣列編碼製成之圖案板;將該標的物設置於該圖案板上,其中該標的物上設置有複數個鏡頭;經由各該鏡頭取得一局部影像;自該局部影像中擷取並校正得出一矩陣影像;根據該矩陣影像,計算出各該鏡頭相對於該圖案板上之一方位。The present invention also provides an image correction method for obtaining a scene image around a target object, the image correction method comprising the steps of: providing a pattern plate made by a virtual random array code; setting the object object to the pattern a plurality of lenses are disposed on the object; a partial image is obtained through each lens; a matrix image is obtained and corrected from the partial image; and the lens is calculated according to the matrix image One orientation on the pattern plate.

其中,該圖案板具有複數個第一圖案單元及複數個第二圖案單元,所述第一圖案單元係以矩陣方式彼此相鄰排列,各該第一圖案單元呈現一第一顏色及一第二顏色之其中之一,且相鄰的所述第一圖案單元彼此顏色相異,所述第二圖案單元係分別設置於所述第一圖案單元中;其中,該計算出各該鏡頭相對於該圖案板上之一方位之步驟,係於該矩陣影像上辨識出多個所述第一圖案單元及多個所述第二圖案單元,並根據所述第一圖案單元及所述第二圖案單元,計算出所各該鏡頭相對於該圖案板上之一位置參數及一視角參數。The pattern plate has a plurality of first pattern units and a plurality of second pattern units, the first pattern units are arranged adjacent to each other in a matrix manner, and each of the first pattern units presents a first color and a second One of the colors, and the adjacent first pattern units are different in color from each other, and the second pattern units are respectively disposed in the first pattern unit; wherein, the lens is calculated relative to the The step of one orientation of the pattern plate is to identify a plurality of the first pattern unit and the plurality of the second pattern units on the matrix image, and according to the first pattern unit and the second pattern unit Calculating a positional parameter and a viewing angle parameter of each of the lenses relative to the pattern plate.

自該局部影像中擷取並校正得出一矩陣影像之步驟,係擷取該局部影像之中央部分並加以攤平校正,以得到該矩陣影像。The step of extracting and correcting a matrix image from the partial image captures a central portion of the partial image and performs leveling correction to obtain the matrix image.

所述第二圖案單元至少具有一形狀特徵及一顏色特徵。其中該顏色特徵為該第一顏色及該第二顏色之其中之一。The second pattern unit has at least one shape feature and one color feature. Wherein the color feature is one of the first color and the second color.

本實施例之校正方法更包含一步驟:根據各該鏡頭的該方位,將各該鏡頭之各該局部影像,拼接成該標的物周圍之該環景影像。The calibration method of this embodiment further includes a step of splicing each of the partial images of each of the lenses into the panoramic image around the target according to the orientation of each of the lenses.

為讓上述目的、技術特徵和優點能更明顯易懂,下文係以較佳實施例配合所附圖式進行詳細說明。The above objects, technical features and advantages will be more apparent from the following description.

在下文中,將提供實施例以詳細說明本發明之實施態樣。本發明之優點以及功效將藉由本發明所揭露之內容而更為顯著。在此說明所附之圖式係經簡化且做為例示用。圖式中所示之元件數量、形狀及尺寸可依據實際情況而進行修改,且元件的配置可能更為複雜。本發明中也可進行其他方面之實踐或應用,且不偏離本發明所定義之精神及範疇之條件下,可進行各種變化以及調整。In the following, examples will be provided to explain in detail embodiments of the invention. The advantages and effects of the present invention will be more apparent by the disclosure of the present invention. The drawings appended hereto are simplified and are used for illustration. The number, shape and size of the components shown in the drawings can be modified as the case may be, and the configuration of the components may be more complicated. Other variations and modifications can be made without departing from the spirit and scope of the invention as defined in the invention.

請一併參閱第3圖及第4圖,其中第3圖為本發明影像校正系統之方塊示意圖,第4圖為本發明影像校正系統之圖案板容置一標的物之示意圖。本發明之影像校正系統3包含一圖案板30、一傳輸模組31、一校正模組33及一運算模組35。如第4圖所示,首先將一標的物50(本發明以車輛為例)不限方位地隨意擺設於具有虛擬隨機陣列(Pseudo Random Array, PRA)編碼的圖案板30上,圖案板30的大小需足以容納該標的物50於該圖案板30的範圍內,而標的物50上設有至少一鏡頭51(於第4圖未示)。所述鏡頭51以自身的方位或姿態,朝向該圖案板30拍攝得到一視野內的局部影像,並將其傳送至傳輸模組31,而校正模組33與傳輸模組31連接,以對該影像進行擷取及校正,然後運算模組35依據校正後的影像,計算出所述鏡頭51相對於該圖案板30上之一方位,詳細說明如後。Please refer to FIG. 3 and FIG. 4 together. FIG. 3 is a block diagram of the image correction system of the present invention, and FIG. 4 is a schematic diagram of a pattern plate of the image correction system of the present invention. The image correction system 3 of the present invention comprises a pattern board 30, a transmission module 31, a correction module 33 and an operation module 35. As shown in FIG. 4, a target object 50 (the present invention is exemplified by a vehicle) is firstly randomly placed on a pattern plate 30 having a Pseudo Random Array (PRA) code, and the pattern plate 30 is arbitrarily disposed. The size is sufficient to accommodate the target 50 within the range of the pattern sheet 30, and the target 50 is provided with at least one lens 51 (not shown in FIG. 4). The lens 51 captures a partial image in a field of view toward the pattern board 30 in its own orientation or posture, and transmits it to the transmission module 31, and the correction module 33 is connected to the transmission module 31 to The image is captured and corrected, and then the computing module 35 calculates an orientation of the lens 51 relative to the pattern plate 30 based on the corrected image, as described in detail below.

以下以辨識一個5 x 5的位元陣列在虛擬隨機陣列(PRA)中的位置作為例示說明,其係依四個方向攝影機的方位、及座標於(13,18)的位元陣列(偶數列18開始)為例,請參第5圖。The following is an illustration of identifying the position of a 5 x 5 bit array in a virtual random array (PRA), which is based on the orientation of the camera in four directions and the bit array (even columns) at coordinates (13, 18). For example, starting with 18, please refer to Figure 5.

由於虛擬隨機陣列(PRA)的偶數列(0, 2, …, 60)皆與原始的虛擬隨機數列(PRS)相同,利用此特性先找出位元陣列隔行或隔列,其5個位元皆相同的方向(即為偶數列),來代表虛擬隨機陣列(PRA)的水平的方向(即i軸方向),同時依攝影機原點位置開始,決定原始虛擬隨機數列(PRS)為(01111),而01111在原始虛擬隨機數列(PRS)10000100101100111110001101110101的第13個位置(a),故i座標為(i = a = 13)。由前後左右四個鏡頭看到的(13, 18)位元陣列如第5圖所示。Since the even columns (0, 2, ..., 60) of the virtual random array (PRA) are the same as the original virtual random number column (PRS), this feature is used to find out the bit array interlaced or interlaced, and its 5 bits. The same direction (that is, an even column) is used to represent the horizontal direction of the virtual random array (PRA) (ie, the i-axis direction), and the original virtual random number column (PRS) is determined according to the camera origin position (01111). And 01111 is at the 13th position (a) of the original virtual random number sequence (PRS) 10000100101100111110001101110101, so the i coordinate is (i = a = 13). The (13, 18) bit array seen by the front, rear, left, and right lenses is shown in Figure 5.

接下來,取隔壁的奇數列的互補虛擬隨機數列(PRS)為(10110),而它在互補虛擬隨機數列0111101101001100000111001000101的第4個位置,故互補數列被位移的次數(b = 4)。當第一列為原始虛擬隨機數列(PRS)時,j軸座標為 j = 2 x (a-b) mod 31 = 2 x (13 - 4) mod 31 = 2 x 9 = 18。綜合上述二者,即可定出此5 x 5位元陣列在整個虛擬隨機陣列(PRA)的位置(i , j)=(13, 18)。Next, the complementary virtual random number sequence (PRS) of the odd-numbered columns of the partition wall is (10110), and it is at the fourth position of the complementary virtual random number column 0111101101001100000111001000101, so the number of times the complementary sequence is shifted (b=4). When the first column is the original virtual random number sequence (PRS), the j-axis coordinate is j = 2 x (a-b) mod 31 = 2 x (13 - 4) mod 31 = 2 x 9 = 18. Combining the above two, the position of the 5 x 5-bit array in the entire virtual random array (PRA) (i, j) = (13, 18) can be determined.

另外,再以座標於(8, 31)的位元陣列(奇數列31開始)為例說明如下,併參第6圖。In addition, the bit array (starting with the odd-numbered column 31) coordinates (8, 31) is taken as an example, and the sixth figure is shown.

由虛擬隨機陣列(PRA)的偶數列(0, 2, …, 60)皆與原始的虛擬隨機數列(PRS)相同,利用此特性首先找出位元陣列隔行或格列,其5個位元皆相同的方向(即為偶數列),來代表虛擬隨機陣列(PRA)的水平的方向(即i軸方向),同時依攝影機原點位置開始,決定原始虛擬隨機數列(PRS)的數列為(10110),而10110在原始虛擬隨機數列10000100101100111110001101110101的第8個位置(a),故i座標為(i = a = 8)。由前後左右四個鏡頭看到的(8, 31)位元陣列如第6圖所示。The even columns (0, 2, ..., 60) of the virtual random array (PRA) are the same as the original virtual random number column (PRS). Using this feature, first find the bit array interlaced or lattice, and its 5 bits. The same direction (that is, an even column) is used to represent the horizontal direction of the virtual random array (PRA) (ie, the i-axis direction), and the number of the original virtual random number (PRS) is determined according to the camera origin position ( 10110), and 10110 is at the 8th position (a) of the original virtual random number sequence 10000100101100111110001101110101, so the i coordinate is (i = a = 8). The (8, 31) bit array seen by the front, rear, left, and right lenses is shown in Figure 6.

取奇數列的互補虛擬隨機數列(PRS)為(10001),而它在互補虛擬隨機數列0111101101001100000111001000101的第24個位置,故互補數列被位移的次數(b = 24)。當第一列不為原始虛擬隨機數列(PRS)時,j軸座標為 j = 2 x (a-b) mod 31+1 = 2 x (8 - 24) mod 31+1 = 2 x (-16) mod 31+1 = 2 x 15 + 1 = 31。綜合兩者,即可定出此5 x 5位元陣列在整個虛擬隨機陣列(PRA)的位置(i , j)=(8, 31)。The complementary virtual random number sequence (PRS) of the odd-numbered column is (10001), and it is at the 24th position of the complementary virtual random number column 0111101101001100000111001000101, so the number of times the complementary sequence is shifted (b=24). When the first column is not the original virtual random number column (PRS), the j-axis coordinate is j = 2 x (ab) mod 31+1 = 2 x (8 - 24) mod 31+1 = 2 x (-16) mod 31+1 = 2 x 15 + 1 = 31. By combining the two, the position of the 5 x 5-bit array in the entire virtual random array (PRA) (i, j) = (8, 31) can be determined.

透過上述的性質,可以將虛擬隨機陣列(PRA)設計成定位圖形。接著,只要透過攝影機擷取定位圖形,並能從影像中辨識出一個 m x m的位元陣列,便可以做攝影機定位。最直接設計定位圖形的方法是將虛擬隨機陣列(PRA)中為”0”的位元轉換成黑色,”1”的位元轉換成白色,並配合世界座標系統的X軸和Y軸的方向,將原本虛擬隨機陣列(PRA)以左上至右下的編排方式,改從左下至右上編排來產生出定位圖形。Through the above properties, a virtual random array (PRA) can be designed as a positioning pattern. Then, as long as the positioning pattern is captured by the camera and an array of m x m bits can be identified from the image, the camera can be positioned. The most straightforward way to design a positioning pattern is to convert a bit of "0" in the virtual random array (PRA) to black, and the bit of "1" to white, and match the direction of the X and Y axes of the world coordinate system. The original virtual random array (PRA) is arranged from the upper left to the lower right, and the positioning pattern is generated from the lower left to the upper right.

根據前述的理論,以下將進一步說明其應用於具有虛擬隨機陣列(PRA)編碼的圖案板30。第7圖所示為圖案板30之局部,為清楚說明,定義棋盤格背景係由複數個第一圖案單元301、302所組成。所述第一圖案單元301、302係以矩陣方式彼此相鄰排列,各該第一圖案單元301、302呈現一第一顏色及一第二顏色之其中之一,於本實施例中,第一顏色及第二顏色分別指黑色及白色,且相鄰的所述第一圖案單元301、302之顏色彼此相異,藉此,形成一黑白相間的棋盤格狀之背景圖案,然可以理解地,第一顏色及第二顏色不作限制。本發明之一重要特徵在於,圖案板30更包含複數個第二圖案單元303、304,分別設置於所述第一圖案單元301、302中,而較佳地,所述第二圖案單元301、302係以虛擬隨機陣列(PRA)編碼排列,且至少具有一形狀特徵及一顏色特徵。In accordance with the foregoing theory, it will be further explained below that it is applied to a pattern plate 30 having a virtual random array (PRA) code. Figure 7 shows a portion of the pattern plate 30. For clarity of illustration, the defined checkerboard background is comprised of a plurality of first pattern elements 301, 302. The first pattern unit 301, 302 is arranged adjacent to each other in a matrix manner, and each of the first pattern units 301, 302 presents one of a first color and a second color. In this embodiment, the first The color and the second color respectively refer to black and white, and the colors of the adjacent first pattern units 301 and 302 are different from each other, thereby forming a black and white checkerboard background pattern, but understandably, The first color and the second color are not limited. An important feature of the present invention is that the pattern plate 30 further includes a plurality of second pattern units 303, 304 respectively disposed in the first pattern units 301, 302, and preferably, the second pattern unit 301, The 302 series is arranged in a virtual random array (PRA) code and has at least one shape feature and one color feature.

換言之,可以視為圖案板30上的每一個方格單元均是一個第一圖案單元301、302內含一個第二圖案單元303、304所組成。本實施例的第一圖案單元301、302為黑色或及白色的方格,而第二圖案單元303、304為菱形(實際應用時可以是採用任何其他形狀,例如圓形)且為黑色或白色,故排列組合後共有4種可能性,請參閱第8A圖至第8D圖。詳言之,第8A圖顯示之方格單元30a係由黑色的第一圖案單元及黑色的第二圖案單元所組成,故視覺上方格單元30a為全黑,第8B圖顯示之方格單元30b係由黑色的第一圖案單元及白色的第二圖案單元所組成,第8C圖顯示之方格單元30c係由白色的第一圖案單元及黑色的第二圖案單元所組成,而第8D圖顯示之方格單元30d係由白色的第一圖案單元及白色的第二圖案單元所組成,故視覺上方格單元30d為全白。In other words, it can be considered that each of the square cells on the pattern plate 30 is composed of a first pattern unit 301, 302 containing a second pattern unit 303, 304. The first pattern units 301, 302 of this embodiment are black or white squares, and the second pattern units 303, 304 are diamond-shaped (in practical applications, any other shape, such as a circle), and black or white. Therefore, there are 4 possibilities after the combination, please refer to Figures 8A to 8D. In detail, the checker cell 30a shown in FIG. 8A is composed of a black first pattern unit and a black second pattern unit, so that the visual upper cell unit 30a is all black, and the eighth cell shown in FIG. 30b is composed of a black first pattern unit and a white second pattern unit, and the box unit 30c shown in FIG. 8C is composed of a white first pattern unit and a black second pattern unit, and the 8D image is formed. The displayed cell unit 30d is composed of a white first pattern unit and a white second pattern unit, so that the visual upper cell unit 30d is completely white.

第9圖所示為於一較佳實施例中,每個方格單元中,第一圖案單元301、302與第二圖案單元303、304之配置比例。以第8C圖的方格單元30c為例,第一圖案單元301、302為一個基礎矩形具有長(ℓ)及寬(w),第二圖案單元303、304為一適當的菱形圖案(實際應用時也可以是採用任何其他形狀,例如圓形),位於在第一圖案單元301、302的中心位置,也就是第一圖案單元301、302與第二圖案單元303、304的中心重疊,以作為後續位置辨識之用。如第9圖所示第二圖案單元303、304的尺寸與位置,第二圖案單元303、304係以中心為基準,並在長(ℓ)方向及寬(w)方向上分別延伸ℓ/4及w/4。Figure 9 is a diagram showing the arrangement ratio of the first pattern units 301, 302 and the second pattern units 303, 304 in each of the square cells in a preferred embodiment. Taking the grid cell 30c of FIG. 8C as an example, the first pattern unit 301, 302 has a base rectangle having a length (1) and a width (w), and the second pattern unit 303, 304 is a suitable diamond pattern (a practical application). It may also be in any other shape, such as a circular shape, located at the center of the first pattern unit 301, 302, that is, the center of the first pattern unit 301, 302 overlaps with the center of the second pattern unit 303, 304, as Subsequent location identification. As shown in FIG. 9, the size and position of the second pattern units 303, 304, the second pattern units 303, 304 are centered on the basis and extend l/4 in the length (l) direction and the width (w) direction, respectively. And w/4.

須說明的是,第二圖案單元303、304可以是任意形狀,例如圓形或菱形,其中,隨著鏡頭的解析度愈高,可以使用愈複雜的形狀。當第二圖案單元303、304在形狀上具有更多的特徵,便可以隱含更多的資訊,無論在後續影像辨識或其他方位辨別等運用上,將具備更多的應用可能性。因此,第二圖案單元303、304之形狀及顏色在本發明中不作限制。It should be noted that the second pattern units 303, 304 may be of any shape, such as a circle or a diamond shape, wherein the higher the resolution of the lens, the more complicated the shape can be used. When the second pattern elements 303, 304 have more features in shape, more information can be implied, and there will be more application possibilities in subsequent image recognition or other orientation recognition. Therefore, the shape and color of the second pattern units 303, 304 are not limited in the present invention.

接下來將說明影像擷取及校正的過程。首先,考量鏡頭的設置數量,前述的鏡頭51為複數個廣角鏡頭或魚眼鏡頭。如第10圖所示,當鏡頭51為魚眼鏡頭時,其朝向該圖案板30拍攝得到一局部影像61,如圖所示,愈靠近周圍的部分,解析度愈低且影像的變形(distortion)愈嚴重。鏡頭51朝向圖案板30拍攝取得局部影像61後,便可傳送至本發明的影像校正系統3,由該傳輸模組31接收所述鏡頭51拍攝得到的局部影像61。該校正模組33與該傳輸模組31連接,以自該局部影像61中擷取並校正得到一矩陣影像63,如第11圖所示。更明確而言,校正模組33係擷取該局部影像61之解析度較高且變形較少之中央部分,並加以攤平校正,以得到該矩陣影像63。然後,該矩陣影像63傳送至運算模組35,該運算模組35於該矩陣影像63上辨識出多個所述第一圖案單元301、302及多個所述第二圖案單元303、304,並根據所述第一圖案單元301、302及所述第二圖案單元303、304,計算出所述鏡頭51相對於該圖案板30上之一方位。Next, the process of image capture and correction will be explained. First, considering the number of lenses to be set, the aforementioned lens 51 is a plurality of wide-angle lenses or fisheye lenses. As shown in FIG. 10, when the lens 51 is a fisheye lens, it is photographed toward the pattern plate 30 to obtain a partial image 61. As shown in the figure, the closer to the surrounding portion, the lower the resolution and the distortion of the image (distortion) The more serious it is. The lens 51 is imaged toward the pattern plate 30 to obtain a partial image 61, and then transmitted to the image correction system 3 of the present invention. The transmission module 31 receives the partial image 61 captured by the lens 51. The correction module 33 is connected to the transmission module 31 to extract and correct a matrix image 63 from the partial image 61, as shown in FIG. More specifically, the correction module 33 captures the central portion of the partial image 61 with high resolution and less distortion, and performs leveling correction to obtain the matrix image 63. The matrix image 63 is transmitted to the computing module 35. The computing module 35 identifies a plurality of the first pattern units 301 and 302 and the plurality of second pattern units 303 and 304 on the matrix image 63. And determining, according to the first pattern unit 301, 302 and the second pattern unit 303, 304, an orientation of the lens 51 relative to the pattern plate 30.

因該圖案板30之所述第二圖案單元303、304係以一虛擬隨機陣列(PRA)編碼排列,故攤平校正後的該矩陣影像63,回到該圖案板30上加以比較,可得到一個唯一的結果,因此該運算模組35可以計算出所述鏡頭51相對於該圖案板30上之一方位,較佳係包含所述鏡頭51相對於該圖案板30之一位置參數及一視角參數。而根據此等位置參數及視角參數等方位資訊,本發明之影像校正系統3可準確且快速地將將各該鏡頭51之各該局部影像61,拼接成該標的物50周圍之環景影像。Since the second pattern units 303 and 304 of the pattern plate 30 are arranged in a virtual random array (PRA) code, the corrected matrix image 63 is returned to the pattern plate 30 for comparison. A unique result, so the computing module 35 can calculate an orientation of the lens 51 relative to the pattern plate 30, preferably including a positional parameter and a viewing angle of the lens 51 relative to the pattern plate 30. parameter. According to the orientation information such as the positional parameters and the viewing angle parameters, the image correction system 3 of the present invention can accurately and quickly splicing the partial images 61 of the respective lenses 51 into a panoramic image around the target 50.

本發明之技術重點之一在於採用含有虛擬隨機陣列(PRA)編碼的圖案板30,以下將針對該圖案板30之配置,並以標的物50上設置前後左右共設置4個鏡頭51朝向圖案板30進行說明。One of the technical points of the present invention is to use a pattern plate 30 containing a virtual random array (PRA) code. The following is a configuration for the pattern plate 30, and four lenses 51 are arranged on the target object 50 to face the pattern plate. 30 for explanation.

本發明的圖案板採用以一維的m階虛擬隨機數列(Pseudo Random Sequences, PRS)為基礎,組合成大小為 的虛擬隨機陣列(PRA)二維圖案,使得任一鏡頭51在任一位置所觀察到的任一個m x m的局部二維影像,都是唯一的。也因為每個鏡頭51會看到獨一無二的m x m局部二維影像,故該影像在整個虛擬隨機陣列(PRA)二維圖案(即圖案板30)上的方位也可以被判別出來。因此,可以藉由m x m局部二維影像進行攝影機校正,同時也能轉換成其在整體虛擬隨機陣列(PRA)上的方位。 The pattern plate of the present invention is combined into a size based on a one-dimensional m-order Pseudo Random Sequences (PSS). The virtual random array (PRA) two-dimensional pattern is such that any one of the mxm partial two-dimensional images observed by any of the lenses 51 at any position is unique. Also, since each lens 51 sees a unique mxm partial two-dimensional image, the orientation of the image on the entire virtual random array (PRA) two-dimensional pattern (ie, the pattern plate 30) can also be discriminated. Therefore, camera correction can be performed by mxm local 2D images, and can also be converted into its orientation on the overall virtual random array (PRA).

為說明圖案板30的設計程序,以下將以m = 5的虛擬隨機數列(PRS)為例,說明具有虛擬隨機陣列(PRA)編碼之圖案板30的建置。透過5階虛擬隨機數列的本質多項式(primitive polynomial): ,同時取初始數列(A i+4, A i+3, A i+2, A i+1, A i)為00001,故獲得虛擬隨機數列為:a= a 0a 1a 2…a 30= 10000100101100111110001101110101,然而,沒有其他任一個長度為5的數列具有同樣的性質。 To explain the design procedure of the pattern plate 30, the construction of the pattern plate 30 having the virtual random array (PRA) code will be described below by taking a virtual random number (PRS) of m = 5 as an example. Primitive polynomial through a 5th-order virtual random number sequence: While a solution of the initial series (A i + 4, A i + 3, A i + 2, A i + 1, A i) 00001, so to obtain pseudorandom number as: a = a 0 a 1 a 2 ... a 30 = 10000100101100111110001101110101, however, no other series of length 5 has the same properties.

接著,透過上述階數為5且長度為n=31的虛擬隨機數列(PRS),可以建構出一個大小為n x 2n = 31 x 62的虛擬隨機陣列(PRA)如下: = = 。 其中,所有的偶數列c 2k(0≦k≦30)皆與原始的虛擬隨機數列(a= a 0a 1a 2…a n-1)相同。c 1為a的互補數列(complement series): 。接著,將c 1向右做k次循環位移(circular shift right),可得csr k(0≦k≦30)共31個虛擬隨機數列(PRS)。將他們一次排入PRA 5,31得到所有的奇數列為c 2k+1= csr k,以得到相對應的虛擬隨機陣列(PRA)的位元陣列。 Then, through the above-mentioned virtual random number sequence (PRS) of order 5 and length n=31, a virtual random array (PRA) of size nx 2n = 31 x 62 can be constructed as follows: = = . Among them, all even columns c 2k (0≦k≦30) are identical to the original virtual random number sequence (a= a 0 a 1 a 2 ... a n-1 ). c 1 complementary to a number of columns (complement series): . Next, c 1 is made to the right circular shift right, and a total of 31 virtual random number sequences (PRS) of csr k (0≦k≦30) are obtained. They are discharged into the PRA 5, 31 at a time to obtain all the odd columns as c 2k+1 = csr k to obtain a corresponding array of virtual random arrays (PRAs).

由於一個虛擬隨機數列的互補數列仍然是一個虛擬隨機數列(除了111….1會被定義為000….0),因此,在虛擬隨機陣列(PRA)中所有的奇數列皆為虛擬隨機數列(PRS)。此外,透過程式的模擬驗證,可以證實虛擬隨機陣列(PRA)在四個不同的視點方向,皆具有視窗特性:當一個m x m的視窗區塊在一個階數為m的虛擬隨機陣列(PRA)中滑動而衍生的位元陣列,其中每一個m x m的位元陣列,都只會出現一次。Since the complementary sequence of a virtual random number sequence is still a virtual random number sequence (except that 111....1 will be defined as 000....0), all odd columns in the virtual random array (PRA) are virtual random numbers ( PRS). In addition, through the simulation verification of the program, it can be confirmed that the virtual random array (PRA) has window characteristics in four different viewpoint directions: when an mxm window block is in a virtual random array (PRA) of order m. Sliding derived bit arrays, where each mxm bit array, will only appear once.

回到前述標的物50的長度與寬度,設定標的物50的平面面積為L x W。再考量一般施工場域的大小、標的物50擺設位置的可變化量,及圖案板30上的有效觀察區域,在標的物50前後左右四個方向各保有T公分的校正區域。為符合上述的要求,可設計圖案板30尺寸為 。而針對階數為m的虛擬隨機陣列(PRA)而言,圖案板30中的每一個方格單元30a、30b、30c、30d的長寬分別為: Returning to the length and width of the aforementioned object 50, the plane area of the target 50 is set to L x W. Considering the size of the general construction field, the changeable amount of the target 50, and the effective observation area on the pattern plate 30, the correction area of the T cm is maintained in the four directions of the object 50. In order to meet the above requirements, the size of the pattern plate 30 can be designed as . For a virtual random array (PRA) of order m, the length and width of each of the grid cells 30a, 30b, 30c, 30d in the pattern plate 30 are: ; .

由於建構出的虛擬隨機陣列(PRA)可能會出現連續的位元1或位元0,若以全黑的基本矩形表示位元1,全白的基本矩形表示位元0,就會在代表PRA的校正圖案中顯示長條的同一顏色區域,很難進行位元的辨識。為克服這種問題,本發明重新對虛擬隨機陣列(PRA)的各位元進行圖案編碼。首先針對 大小的虛擬隨機陣列(PRA)建立一個由黑白相間的棋盤狀背景底圖,由黑白相間的基本矩形之方格單元構成。接著再依虛擬隨機陣列(PRA)的對應位元值,將基本矩形重新制訂,組合成本發明的具虛擬隨機陣列(PRA)編碼的圖案板30,如第4圖及第7圖所示。 Since the constructed virtual random array (PRA) may have consecutive bit 1 or bit 0, if the all-black basic rectangle represents bit 1, and the all-white basic rectangle represents bit 0, it will represent PRA. The same color area of the strip is displayed in the correction pattern, and it is difficult to identify the bit. To overcome this problem, the present invention re-encodes the bits of a virtual random array (PRA). First targeted The size of the virtual random array (PRA) creates a black-and-white checkerboard background image consisting of black and white basic rectangular square cells. The basic rectangle is then re-formulated according to the corresponding bit value of the virtual random array (PRA), and combined with the virtual random array (PRA) coded pattern plate 30 of the invention, as shown in FIGS. 4 and 7.

本發明的圖案板30設計至少具有下列優點:(1) 圖案板30包含兩組相互垂直、間距固定的直線組所排列的矩陣,在影像辨識技術上相對容易被偵測出來;(2)相較於傳統的人工或基礎矩形的四個邊角擷取及校正方法,本方法可以使用直線組計算交點,具有次像素的精準度;(3)邊角的數量是冗餘的,因此可以使用四個以上的校正特徵點求取影像轉換矩陣,提供更為精確的轉換資訊;(4)由於虛擬隨機陣列(PRA)是由虛擬隨機數列(PRS)所組成,故m階的虛擬隨機陣列(PRA)圖案可以依初始數列與排列方式而有許多的變形,增加系統與校正圖案間的配對類型,建立基礎的防仿冒機制。The design of the pattern plate 30 of the present invention has at least the following advantages: (1) The pattern plate 30 comprises two matrixes arranged in a line group which are perpendicular to each other and fixed in pitch, and is relatively easy to be detected in image recognition technology; (2) phase Compared with the traditional four-corner extraction and correction method of artificial or basic rectangle, this method can use the line group to calculate the intersection point with the accuracy of sub-pixels; (3) the number of corners is redundant, so it can be used More than four correction feature points are used to obtain the image conversion matrix to provide more accurate conversion information. (4) Since the virtual random array (PRA) is composed of virtual random number series (PRS), the m-order virtual random array ( The PRA) pattern can be deformed according to the initial sequence and arrangement, increasing the pairing type between the system and the correction pattern, and establishing a basic anti-counterfeiting mechanism.

為了從擷取影像中找出一個m x m的區塊大小來做定位,首先將霍夫轉換(Hough transform)找出的特徵線做分類。從使用的定位圖形來看,特徵線主要是由二類直線所組成,包含:第一圖案單元301、302的水平和垂直直線、以及第二圖案單元303、304菱形四邊所構成的直線。由於第一圖案單元301、302中的水平和垂直直線的邊緣點比第二圖案單元303、304菱形四邊所構成的邊緣點還多,所以在直線偵測時會先被找出。而在稍後找出第二圖案單元303、304菱形四邊所構成的直線都會與第一圖案單元301、302的水平和垂直直線相交,可以利用此特性將它過濾掉。最後,可以得到水平和垂直直線組成的二個特徵線群組。然而,於其他實施例中,第二圖案單元303、304也可以是採用其他形狀,例如圓形。In order to find a block size of m x m from the captured image for positioning, the feature lines found by Hough transform are first classified. From the positioning pattern used, the feature line is mainly composed of two types of straight lines, including horizontal and vertical straight lines of the first pattern units 301 and 302, and straight lines formed by the four sides of the second pattern unit 303 and 304. Since the edge points of the horizontal and vertical lines in the first pattern unit 301, 302 are more than the edge points formed by the diamond-shaped four sides of the second pattern unit 303, 304, they are first found in the line detection. The line formed by the diamond-shaped four sides of the second pattern unit 303, 304 is later found to intersect the horizontal and vertical lines of the first pattern unit 301, 302, and this characteristic can be used to filter it out. Finally, two sets of feature lines composed of horizontal and vertical lines can be obtained. However, in other embodiments, the second pattern elements 303, 304 may also take other shapes, such as a circle.

接著從這二個特徵線群組中,設法找出一個 m x m的區塊大小。雖然圖案板30上的每個方格單元30a、30b、30c、30d實際上皆為相同大小,但若使用魚眼鏡頭或攝影機的視點是從斜的角度觀看時,原本相同的方格單元30a、30b、30c、30d,會因為透視投影的關係,造成在影像中各個方格單元30a、30b、30c、30d的像素不相同。此透視投影造成的扭曲失真(distortion)效果會隨著攝影機視點越斜,讓方格單元30a、30b、30c、30d大小在影像中的像素長呈現數倍的差距,如第10圖所示。Then from these two feature line groups, try to find a block size of m x m. Although each of the grid cells 30a, 30b, 30c, 30d on the pattern plate 30 are actually the same size, if the viewpoint of the fisheye lens or the camera is viewed from an oblique angle, the originally identical grid unit 30a , 30b, 30c, 30d, because of the perspective projection relationship, the pixels of each of the square cells 30a, 30b, 30c, 30d in the image are different. The distortion effect caused by this perspective projection will be skewed with the camera viewpoint, causing the size of the grid cells 30a, 30b, 30c, 30d to appear several times in the image, as shown in Fig. 10.

最後,從二個特徵線群組中各選出相鄰m+1條直線,來構成m x m的區塊大小,接著再從區塊中各個網格的中心點,取出像素顏色,並依照黑色為0、白色為1的轉換方法得到一個位元陣列,再到虛擬隨機陣列(PRA)中進行比對,來得知此位元陣列在虛擬隨機陣列(PRA)的位置 ,以及二個特徵線群組所對應的水平和垂直方向。 Finally, adjacent m+1 lines are selected from each of the two feature line groups to form a block size of mxm, and then the pixel color is taken out from the center point of each grid in the block, and is 0 according to black. The white-to-one conversion method obtains a bit array and then compares it into a virtual random array (PRA) to know the position of the bit array in the virtual random array (PRA). And the horizontal and vertical directions corresponding to the two feature line groups.

承上,因為本發明的圖案板30具有虛擬隨機陣列(PRA)編碼,因此各鏡頭62所擷取的影像具有其唯一性,因此如第12圖所示,可將標的物50不限方位地隨意擺設於圖案板30上,仍能實施本發明。此外,各鏡頭62的擺設也不須限制其對稱配置或特定位置,只要大致上朝向圖案板30,即能從影像辨識出各鏡頭62的位置及方位。也當然可以在圖案板30上定義任一點為原點,然後計算出所有鏡頭51相對於原點的座標位置及方位。此外,本發明的技術不限於前述例示的平面影像,也可以應用於立體影像;詳言之,例如以至少6個鏡頭分別配置在標的物的前、後、左、右、上、下,最終可拼接出球形的環景影像,當應用於飛機或無人機時,可具備完善的的避障能力。In view of the above, since the pattern plate 30 of the present invention has a virtual random array (PRA) code, the image captured by each lens 62 has its uniqueness, so that as shown in FIG. 12, the object 50 can be infinitely oriented. The present invention can still be implemented by being arbitrarily placed on the pattern plate 30. In addition, the arrangement of each lens 62 does not need to limit its symmetrical arrangement or specific position. As long as it is substantially facing the pattern plate 30, the position and orientation of each lens 62 can be recognized from the image. It is of course also possible to define any point on the pattern plate 30 as the origin, and then calculate the coordinate position and orientation of all the lenses 51 with respect to the origin. In addition, the technology of the present invention is not limited to the above-described planar image, and can also be applied to a stereoscopic image; in detail, for example, at least six lenses are respectively disposed in front, back, left, right, up, and down of the target object, and finally It can be spliced out of the spherical panoramic image, and it can be equipped with perfect obstacle avoidance when applied to airplanes or drones.

搭配前述的影像校正系統,本發明之另一實施例揭露一種影像校正方法,如第13圖所示之流程圖。該影像校正方法包含下列步驟:(S11)提供一以虛擬隨機陣列編碼製成之圖案板30;(S12)將該標的物50設置於該圖案板30上,其中該標的物50上設有複數個鏡頭51;(S13)經由各該鏡頭51取得一局部影像61;(S14)自該局部影像61中擷取並校正得出一矩陣影像63;(S15)根據該矩陣影像63,計算出各該鏡頭51相對於該圖案板上之一方位;(S16)根據各該鏡頭51的該方位,將各該鏡頭51之各該局部影像61拼接成該標的物50周圍之該環景影像。In conjunction with the foregoing image correction system, another embodiment of the present invention discloses an image correction method, such as the flowchart shown in FIG. The image correction method comprises the following steps: (S11) providing a pattern plate 30 made by a virtual random array code; (S12) arranging the object 50 on the pattern plate 30, wherein the object 50 is provided with a plurality of a lens 51; (S13) obtaining a partial image 61 via each of the lenses 51; (S14) extracting and correcting a matrix image 63 from the partial image 61; (S15) calculating each of the matrix images 63 based on the matrix image 63 The partial orientation of the lens 51 relative to the pattern plate is (S16). The partial image 61 of each of the lenses 51 is spliced into the panoramic image around the target object 50 according to the orientation of the lens 51.

其中,步驟(S14)係擷取該局部影像61之中央部分並加以攤平校正,以得到該矩陣影像63。The step (S14) captures the central portion of the partial image 61 and performs leveling correction to obtain the matrix image 63.

如同前述實施例,該圖案板30具有複數個第一圖案單元301、302及複數個第二圖案單元303、304,所述第一圖案單元301、302係以矩陣方式彼此相鄰排列,各該第一圖案單元301、302呈現第一顏色及第二顏色之其中之一,且相鄰的所述第一圖案單元301、302彼此顏色相異,所述第二圖案單元303、304係分別設置於所述第一圖案單元301、302中。其中,該計算出各該鏡頭51相對於該圖案板30上之一方位之步驟,係於該矩陣影像63上辨識出多個所述第一圖案單元301、302及多個所述第二圖案單元303、304,並根據所述第一圖案單元及所述第二圖案單元301、302,計算出所各該鏡頭51相對於該圖案板30上之位置參數及視角參數。所述第二圖案單303、304元至少具有一形狀特徵及一顏色特徵,其中該顏色特徵為該第一顏色及該第二顏色之其中之一。As in the foregoing embodiment, the pattern plate 30 has a plurality of first pattern units 301, 302 and a plurality of second pattern units 303, 304, the first pattern units 301, 302 being arranged adjacent to each other in a matrix manner, each of which The first pattern unit 301, 302 presents one of the first color and the second color, and the adjacent first pattern units 301, 302 are different in color from each other, and the second pattern units 303, 304 are respectively set In the first pattern unit 301, 302. The step of calculating the orientation of each of the lenses 51 relative to the pattern plate 30 is to identify a plurality of the first pattern units 301, 302 and the plurality of second patterns on the matrix image 63. The units 303 and 304 calculate the position parameters and the angle of view parameters of the lens 51 relative to the pattern plate 30 according to the first pattern unit and the second pattern unit 301 and 302. The second pattern sheet 303, 304 has at least one shape feature and one color feature, wherein the color feature is one of the first color and the second color.

綜上所述,本發明所提供之影像校正系統及影像校正方法,利用具有虛擬隨機陣列編碼的圖案板,任一方位或姿態的鏡頭所拍攝到的局部圖案都是唯一的,因此標的物相對於圖案板之擺設位置不受限,鏡頭的方位亦不受限,各鏡頭只要確保大致上朝向圖案板即可,不需如先前技術具有位於重疊區域的特徵點。藉此,能精準地進行校正並產生正確的環景影像,且能自動地進行以大幅減少人力的投入。In summary, the image correction system and the image correction method provided by the present invention use a pattern plate having a virtual random array code, and the partial patterns captured by the lens of any orientation or posture are unique, so the object is relatively The position of the pattern plate is not limited, and the orientation of the lens is not limited. Each lens only needs to be substantially oriented toward the pattern plate, and there is no need to have feature points in the overlapping area as in the prior art. Thereby, the correction can be accurately performed and the correct panoramic image can be generated, and can be automatically performed to greatly reduce the input of manpower.

上述之實施例僅用來例舉本發明之實施態樣,以及闡釋本發明之技術特徵,並非用來限制本創作之保護範疇。任何熟悉此技術者可輕易完成之改變或均等性之安排均屬於本發明所主張之範圍,本發明之權利保護範圍以申請專利範圍為準。The embodiments described above are only intended to illustrate the embodiments of the present invention, and to explain the technical features of the present invention, and are not intended to limit the scope of protection of the present invention. Any change or singularity that can be easily accomplished by those skilled in the art is within the scope of the invention. The scope of the invention is defined by the scope of the patent application.

11‧‧‧車輛11‧‧‧ Vehicles

111‧‧‧攝影機111‧‧‧ camera

113‧‧‧影像113‧‧‧ images

12‧‧‧圖板12‧‧‧Plate

3‧‧‧影像校正系統3‧‧‧Image Correction System

30‧‧‧圖案板30‧‧‧pattern board

30a~30d‧‧‧方格單元30a~30d‧‧‧ square unit

301‧‧‧第一圖案單元301‧‧‧First pattern unit

302‧‧‧第一圖案單元302‧‧‧First pattern unit

303‧‧‧第二圖案單元303‧‧‧Second pattern unit

304‧‧‧第二圖案單元304‧‧‧Second pattern unit

31‧‧‧傳輸模組31‧‧‧Transmission module

33‧‧‧校正模組33‧‧‧ calibration module

35‧‧‧該運算模組35‧‧‧The computing module

50‧‧‧標的物50‧‧‧ Subject matter

51‧‧‧鏡頭51‧‧‧ lens

61‧‧‧局部影像61‧‧‧Partial imagery

63‧‧‧矩陣影像63‧‧‧ Matrix Image

S11~S16‧‧‧步驟S11~S16‧‧‧Steps

第1圖為習知影像校正系統之示意圖; 第2圖為習知影像校正系統之鏡頭所拍攝影像之示意圖; 第3圖為本發明影像校正系統之方塊圖; 第4圖為圖案板與標的物之示意圖; 第5圖為一校正實施例之示意圖; 第6圖為另一校正實施例之示意圖; 第7圖為圖案板之局部示意圖; 第8A圖至第8D圖為圖案板上各方格單元之示意圖; 第9圖為圖案板上其中一方格單元之示意圖; 第10圖為鏡頭擷取一局部影像之示意圖; 第11圖為將該局部影像擷取校正得出一矩陣影像之示意圖; 第12圖為本發明另一實施態樣之示意圖;以及 第13圖為本發明影像校正方法之流程圖。1 is a schematic diagram of a conventional image correction system; FIG. 2 is a schematic diagram of an image taken by a lens of a conventional image correction system; FIG. 3 is a block diagram of the image correction system of the present invention; Figure 5 is a schematic view of a correction embodiment; Figure 6 is a schematic view of another correction embodiment; Figure 7 is a partial schematic view of the pattern plate; Figures 8A to 8D are drawings on the pattern plate Figure 9 is a schematic diagram of one of the cells on the pattern board; Figure 10 is a schematic diagram of a partial image captured by the lens; Figure 11 is a schematic diagram of the correction of the partial image to obtain a matrix image Figure 12 is a schematic view of another embodiment of the present invention; and Figure 13 is a flow chart of the image correction method of the present invention.

Claims (9)

一種影像校正系統,用於取得一標的物周圍之一環景影像,該標的物上設有至少一鏡頭,該影像校正系統包含:一圖案板,可容納該標的物於該圖案板的範圍內,該圖案板具有:複數個第一圖案單元,以矩陣方式彼此相鄰排列,各該第一圖案單元呈現一第一顏色及一第二顏色之其中之一,且相鄰的所述第一圖案單元彼此顏色相異;以及複數個第二圖案單元,以一虛擬隨機陣列(Pseudo Random Array,PRA)編碼排列的方式分別設置於所述第一圖案單元中,其中,各所述第二圖案單元分別具有一形狀特徵及一顏色特徵,且該顏色特徵為該第一顏色及該第二顏色其中之一;一傳輸模組,接收所述鏡頭朝向該圖案板拍攝之一局部影像;一校正模組,與該傳輸模組連接,以自該局部影像中擷取並校正得到一矩陣影像;一運算模組,於該矩陣影像上辨識出多個所述第一圖案單元及多個所述第二圖案單元,並根據所述第一圖案單元及所述第二圖案單元,計算出所述鏡頭相對於該圖案板上之一方位。 An image correction system for obtaining a panoramic image around a target object, the target object having at least one lens, the image correction system comprising: a pattern plate for accommodating the target object within the range of the pattern plate, The pattern plate has a plurality of first pattern units arranged adjacent to each other in a matrix manner, each of the first pattern units exhibiting one of a first color and a second color, and the adjacent first patterns The units are different in color from each other; and the plurality of second pattern units are respectively disposed in the first pattern unit in a Pseudo Random Array (PRA) code arrangement, wherein each of the second pattern units Each has a shape feature and a color feature, and the color feature is one of the first color and the second color; a transmission module receives a partial image of the lens toward the pattern plate; a calibration mode a group, connected to the transmission module, to extract and correct a matrix image from the partial image; an operation module, to identify a plurality of the first image on the matrix image And a plurality of the second pattern units, and calculating an orientation of the lens relative to the pattern board according to the first pattern unit and the second pattern unit. 如申請專利範圍第1項所述之影像系統,其中,該校正模組係擷取該局部影像之中央部分並加以攤平校正,以得到該矩陣影像。 The image system of claim 1, wherein the correction module captures a central portion of the partial image and performs leveling correction to obtain the matrix image. 如申請專利範圍第1項所述之影像系統,其中,該至少一鏡頭係包含複數個鏡頭,該運算模組根據各該鏡頭的該方位,將各該鏡頭之各該局部影像,拼接成該標的物周圍之該環景影像。 The image system of claim 1, wherein the at least one lens system comprises a plurality of lenses, and the operation module splices the partial images of each of the lenses into the image according to the orientation of each lens. The panoramic image around the subject matter. 如申請專利範圍第3項所述之影像系統,其中,所述鏡頭為魚眼鏡頭。 The image system of claim 3, wherein the lens is a fisheye lens. 如申請專利範圍第1項所述之影像系統,其中,該方位包含所述鏡頭相對於該圖案板之一位置參數及一視角參數。 The image system of claim 1, wherein the orientation comprises a positional parameter and a viewing angle parameter of the lens relative to the pattern plate. 一種影像校正方法,用於取得一標的物周圍之一環景影像,該影像校正方法包含下列步驟:提供一圖案板,其中,該圖案板具有複數個第一圖案單元及複數個第二圖案單元,所述第一圖案單元係以矩陣方式彼此相鄰排列,各該第一圖案單元呈現一第一顏色及一第二顏色之其中之一,且相鄰的所述第一圖案單元彼此顏色相異,所述第二圖案單元係以一虛擬隨機陣列(Pseudo Random Array,PRA)編碼排列的方式分別設置於所述第一圖案單元中,各所述第二圖案單元分別具有一形狀特徵及一顏色特徵,且該顏色特徵為該第一顏色及該第二顏色其中之一;將該標的物設置於該圖案板上,其中該標的物上設有複數個鏡頭;經由各該鏡頭取得一局部影像;自該局部影像中擷取並校正得出一矩陣影像;根據該矩陣影像,計算出各該鏡頭相對於該圖案板上之一方位。 An image correction method for obtaining a scene image around a target object, the image correction method comprising the steps of: providing a pattern plate, wherein the pattern plate has a plurality of first pattern units and a plurality of second pattern units, The first pattern units are arranged adjacent to each other in a matrix manner, and each of the first pattern units presents one of a first color and a second color, and the adjacent first pattern units are different in color from each other. The second pattern unit is respectively disposed in the first pattern unit in a Pseudo Random Array (PRA) code arrangement, and each of the second pattern units has a shape feature and a color respectively. a feature, and the color feature is one of the first color and the second color; the object is disposed on the pattern plate, wherein the target object is provided with a plurality of lenses; and a partial image is obtained through each lens Extracting and correcting a matrix image from the partial image; and calculating, according to the matrix image, an orientation of each lens relative to the pattern plate. 如申請專利範圍第6項所述之影像校正方法,其中,該計算出各該鏡頭相對於該圖案板上之一方位之步驟,係於該矩陣影像上辨識出多個所述第一圖案單元及多個所述第二圖案單元,並根據所述第一圖案單元及所述第二圖案單元,計算出所各該鏡頭相對於該圖案板上之一位置參數及一視角參數。 The image correction method of claim 6, wherein the step of calculating an orientation of each of the lenses relative to the pattern plate identifies a plurality of the first pattern units on the matrix image And a plurality of the second pattern units, and calculating a position parameter and a viewing angle parameter of each of the lenses relative to the pattern plate according to the first pattern unit and the second pattern unit. 如申請專利範圍第7項所述之影像校正方法,其中,自該局部影像中擷取並校正得出一矩陣影像之步驟,係擷取該局部影像之中央部分並加以攤平校正,以得到該矩陣影像。 The image correction method of claim 7, wherein the step of extracting and correcting a matrix image from the partial image is performed by capturing a central portion of the partial image and leveling the correction to obtain The matrix image. 如申請專利範圍第6項所述之影像校正方法,更包含下列步驟:根據各該鏡頭的該方位,將各該鏡頭之各該局部影像,拼接成該標的物周圍之該環景影像。 The image correction method of claim 6, further comprising the step of: splicing each of the partial images of each of the lenses into the panoramic image around the target according to the orientation of each lens.
TW106129114A 2017-08-28 2017-08-28 Image calibration system and image calibration method TWI645372B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106129114A TWI645372B (en) 2017-08-28 2017-08-28 Image calibration system and image calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106129114A TWI645372B (en) 2017-08-28 2017-08-28 Image calibration system and image calibration method

Publications (2)

Publication Number Publication Date
TWI645372B true TWI645372B (en) 2018-12-21
TW201913561A TW201913561A (en) 2019-04-01

Family

ID=65431692

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129114A TWI645372B (en) 2017-08-28 2017-08-28 Image calibration system and image calibration method

Country Status (1)

Country Link
TW (1) TWI645372B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020237574A1 (en) * 2019-05-30 2020-12-03 深圳市大疆创新科技有限公司 Method and apparatus for calibrating internal parameters of camera, method and apparatus for calibrating relative attitude of camera, unmanned aerial vehicle and storage apparatus
TWI793702B (en) * 2021-08-05 2023-02-21 明志科技大學 Method for obtaining optical projection mechanism of camera

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120002057A1 (en) * 2009-03-26 2012-01-05 Aisin Seiki Kabushiki Kaisha Camera calibration apparatus
TW201427389A (en) * 2012-12-28 2014-07-01 Ind Tech Res Inst Automatic calibration for vehicle camera and image conversion method and device applying the same
CN106101635A (en) * 2016-05-05 2016-11-09 威盛电子股份有限公司 Vehicle surrounding image processing method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120002057A1 (en) * 2009-03-26 2012-01-05 Aisin Seiki Kabushiki Kaisha Camera calibration apparatus
TW201427389A (en) * 2012-12-28 2014-07-01 Ind Tech Res Inst Automatic calibration for vehicle camera and image conversion method and device applying the same
CN106101635A (en) * 2016-05-05 2016-11-09 威盛电子股份有限公司 Vehicle surrounding image processing method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020237574A1 (en) * 2019-05-30 2020-12-03 深圳市大疆创新科技有限公司 Method and apparatus for calibrating internal parameters of camera, method and apparatus for calibrating relative attitude of camera, unmanned aerial vehicle and storage apparatus
TWI793702B (en) * 2021-08-05 2023-02-21 明志科技大學 Method for obtaining optical projection mechanism of camera

Also Published As

Publication number Publication date
TW201913561A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
CN102227746B (en) Stereoscopic image processing device, method, recording medium and stereoscopic imaging apparatus
JP5739584B2 (en) 3D image synthesizing apparatus and method for visualizing vehicle periphery
US20200177866A1 (en) Calibration apparatus, chart for calibration, chart pattern generation apparatus, and calibration method
US9319667B2 (en) Image conversion method and device using calibration reference pattern
CN104050662B (en) Method for directly obtaining depth image through light field camera one-time imaging
CN110288527B (en) Panoramic aerial view generation method of vehicle-mounted panoramic camera
JP2010078768A (en) Stereoscopic image capturing apparatus and stereoscopic image capturing system
US9581787B2 (en) Method of using a light-field camera to generate a three-dimensional image, and light field camera implementing the method
CN101883215A (en) Imaging device
CN102164298A (en) Method for acquiring element image based on stereo matching in panoramic imaging system
CN108234989B (en) convergent integrated imaging shooting method based on checkerboard calibration plate
KR101759798B1 (en) Method, device and system for generating an indoor two dimensional plan view image
CN111508027A (en) Method and device for calibrating external parameters of camera
TWI645372B (en) Image calibration system and image calibration method
CN112017238A (en) Method and device for determining spatial position information of linear object
CN111652937B (en) Vehicle-mounted camera calibration method and device
CN108805921A (en) Image-taking system and method
CN113989392A (en) Color chessboard calibration method and device of splicing camera and camera
CN114549666B (en) AGV-based panoramic image splicing calibration method
TWI424259B (en) Camera calibration method
US9380285B2 (en) Stereo image processing method, stereo image processing device and display device
CN115393555A (en) Three-dimensional image acquisition method, terminal device and storage medium
CN109429013A (en) Image correcting system and image correcting method
CN108230273B (en) Three-dimensional image processing method of artificial compound eye camera based on geometric information
CN112446926A (en) Method and device for calibrating relative position of laser radar and multi-eye fisheye camera