TWI645082B - Perovskite composite structure - Google Patents

Perovskite composite structure Download PDF

Info

Publication number
TWI645082B
TWI645082B TW106105739A TW106105739A TWI645082B TW I645082 B TWI645082 B TW I645082B TW 106105739 A TW106105739 A TW 106105739A TW 106105739 A TW106105739 A TW 106105739A TW I645082 B TWI645082 B TW I645082B
Authority
TW
Taiwan
Prior art keywords
disulfide
selenide
antimony
diselenide
gallium
Prior art date
Application number
TW106105739A
Other languages
Chinese (zh)
Other versions
TW201831742A (en
Inventor
蔡明志
何羽軒
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW106105739A priority Critical patent/TWI645082B/en
Publication of TW201831742A publication Critical patent/TW201831742A/en
Application granted granted Critical
Publication of TWI645082B publication Critical patent/TWI645082B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

本發明提供一種鈣鈦礦複合結構,其包括吸光層以及位於吸光層外圍的立體阻隔層。吸光層包括鈣鈦礦材料。立體阻隔層包括二維材料。The present invention provides a perovskite composite structure comprising a light absorbing layer and a stereoscopic barrier layer on the periphery of the light absorbing layer. The light absorbing layer comprises a perovskite material. The steric barrier layer comprises a two dimensional material.

Description

鈣鈦礦複合結構Perovskite composite structure

本發明是有關於一種複合結構,且特別是有關於一種鈣鈦礦複合結構。This invention relates to a composite structure, and more particularly to a perovskite composite structure.

有機-無機混成鈣鈦礦(organic-inorganic hybrids perovskite)材料由於具有高光吸收率與高電子遷移率,並可藉由其組成分的變化而改變光吸收波段,因此使用此有機-無機混成鈣鈦礦材料製造的太陽能電池具有高的效率。但有機-無機混成鈣鈦礦材料受限於(1)製程環境需隔絕水氣與氧氣、(2)成品在大氣環境下不穩定以及(3)無法順利成長連續晶體等技術問題。The organic-inorganic hybrid perovskite material has high light absorption rate and high electron mobility, and can change the light absorption band by the change of its composition, so the organic-inorganic hybrid calcium titanium is used. Solar cells made from mineral materials have high efficiency. However, the organic-inorganic hybrid perovskite material is limited by (1) the process environment needs to isolate water vapor and oxygen, (2) the finished product is unstable in the atmosphere, and (3) the technical problem of continuous growth of continuous crystal.

因此,開發出適合在濕式製程中使用、在大氣環境下穩定且具有高電子遷移率的鈣鈦礦材料,是目前研究人員急欲解決的問題。Therefore, the development of perovskite materials suitable for use in wet processes, stable in the atmosphere, and high electron mobility is an issue that researchers are currently trying to solve.

本發明提供一種鈣鈦礦複合結構,其在大氣環境下穩定且具有高電子遷移率。The present invention provides a perovskite composite structure which is stable in an atmospheric environment and has high electron mobility.

本發明的鈣鈦礦複合結構,包括吸光層以及位於吸光層外圍的立體阻隔層。吸光層包括鈣鈦礦材料。立體阻隔層包括二維材料。The perovskite composite structure of the present invention comprises a light absorbing layer and a stereoscopic barrier layer located at the periphery of the light absorbing layer. The light absorbing layer comprises a perovskite material. The steric barrier layer comprises a two dimensional material.

在本發明的一實施例中,上述的鈣鈦礦材料可具有如下式(1)的結構: ABX 3(1), 其中A為氨(ammonia,NH 3)、甲胺(methylamine,CH 3NH 2)、乙酸甲脒(methanimidamide,CH 4N 2)、 胺甲脒(aminomethanamidine,HNC(NH 2) 2)、甲脒(formamidine, HC(NH)NH 2)、乙二胺(ethylenediamine,C 2H 4(NH 2) 2)、二甲胺(dimethylamine,(CH 3) 2NH)、咪唑(imidazole,C 3H 4N 2)、乙脒(acetamidine,CH 3CNHNH 2)、丙胺(propylamine,C 3H 7NH 2)、異丙胺(isopropylamine,iso-C 3H 7NH 2)、三甲烯二胺(Trimethylenediamine,(CH 2) 3(NH 2) 2)、乙胺(ethylamine)、丁胺(butylamine,C 4H 9NH 2)、異丁胺(isobutylamine,iso-C 4H 9NH 2)、叔丁基胺(tert-Butylamine,(CH 3) 3CNH 2)、二乙胺(diethylamine, (C 2H 5) 2NH)、5-氨基戊酸(5-Aminovaleric acid,NH 2(CH 2) 4COOH)、 2-噻吩甲胺(thiophenemethylamine C 5H 7NS)、己胺(hexylamine,C 6H 13NH 2)、苯胺(aniline,C 6H 5NH 2)、苄胺(benzylamine,C 6H 5CH 2NH 2)、苯乙胺(phenylethylamine,C 6H 5C 2H 4NH 2)、辛胺(octylamine,C 8H 17NH 2)、癸胺(decylamine,C 10H 21NH 2)、十二胺(dodecylamine,C 12H 25NH 2)、十四胺(tetradecylamine,C 14H 29NH 2)、十六胺(hexadecylamine,C 16H 33NH 2)、油胺(oleylamine,C 18H 35NH 2)、十八胺(octadecylamine,C 18H 37NH 2)、二十胺(eicosylamine,C 20H 41NH 2)、Li、Na、K、Rb、Cs或Cu;B為Cd、Co、Cr、Cu、Fe、Ge、Pb或Sn;X為Cl、Br、I、氰(cyanide,CN)、氰酯(cyanate,NCO)、硫代氰酯(thiocyanate,NCS)、硒氰酸酯(selenocyanate,SeCN)或碲氰酸酯(tellurocyanate,TeCN)。 In an embodiment of the invention, the perovskite material may have the structure of the following formula (1): ABX 3 (1), wherein A is ammonia (NH 3 ), methylamine (CH 3 NH) 2), formamidine acetate (methanimidamide, CH 4 N 2) , amines formamidine (aminomethanamidine, HNC (NH 2) 2), formamidine (formamidine, HC (NH) NH 2), ethylenediamine (ethylenediamine, C 2 H 4 (NH 2 ) 2 ), dimethylamine ((CH 3 ) 2 NH), imidazole (C 3 H 4 N 2 ), acetamidine (CH 3 CNHNH 2 ), propylamine (propylamine, C 3 H 7 NH 2 ), isopropylamine (iso-C 3 H 7 NH 2 ), trimethylenediamine (CH 2 ) 3 (NH 2 ) 2 ), ethylamine, butylamine (butylamine, C 4 H 9 NH 2 ), isobutylamine (iso-C 4 H 9 NH 2 ), tert-Butylamine ((CH 3 ) 3 CNH 2 ), diethylamine (diethylamine) , (C 2 H 5 ) 2 NH), 5-aminovaleric acid (NH 2 (CH 2 ) 4 COOH), 2-thiophenemethylamine C 5 H 7 NS , hexylamine (C 6 H 13 NH 2 ), aniline (C 6 H 5 NH 2 ), benzylamine (C 6 H 5 CH 2 NH 2 ), phenylethylamine (C 6 H) 5 C 2 H 4 NH 2 ), octylamine (C 8 H 17 NH 2 ), decylamine (C 10 H 21 NH 2 ), dodecylamine (C 12 H 25 NH 2 ), ten Tetradecylamine (C 14 H 29 NH 2 ), hexadecylamine (C 16 H 33 NH 2 ), oleylamine (C 18 H 35 NH 2 ), octadecylamine ( C18 H 37) NH 2 ), eicosylamine (C 20 H 41 NH 2 ), Li, Na, K, Rb, Cs or Cu; B is Cd, Co, Cr, Cu, Fe, Ge, Pb or Sn; X is Cl, Br, I, cyanide (CN), cyanate (NCO), thiocyanate (NCS), selenocyanate (SeCN) or tellurocyanate (TeCN) .

在本發明的一實施例中,上述的二維材料例如是硫化鉍(bismuth sulfide,Bi 2S 3)、黑磷(black phosphorus)、六方氮化硼(hexagonal boron nitride,h-BN)、石墨烯(graphene)、石墨烯氧化物(graphene oxide,GO)、還原態石墨烯(reduced graphene oxide,rGO)、硒化銦(indium selenide,In 2Se 3)、二硫錫鉛(lead tin disulfide,PbSnS 2)、磷烯(phosphorene)、硫化砷(arsenic sulfide,As 2S 3)、銻砷硫化物(antimony arsenic sulfide,SbAsS 3);單硫族化合物(monochalcogenides,MX),例如鉍鉈碲化物(bismuth thallium telluride,BiTlTe)、硫化銅(copper sulfide,CuS)、硒化鎵(gallium selenide,GaSe)、鎵硒碲化物(gallium selenide telluride,GaSeTe)、硫化鎵(gallium sulfide,GaS)、鎵硫硒化物(gallium sulfide selenide,GaSSe)、碲化鎵(gallium telluride,GaTe)、硒化鍺(germanium selenide,GeSe)、硫化鍺(germanium sulphide,GeS)、硒化銦(indium selenide,InSe)、碲化銦(indium telluride、InTe)、硒化鉈(thallium selenide,TlSe)、硒化錫(tin selenide,SnSe)、鉈鎵二硫化物(thallium gallium disulfide,TlGaS 2)、鉈鎵二硒化物(thallium gallium diselenide,TlGaSe 2)、鉈銦二硫化物(thallium indium disulfide,TlInS 2);二硫族化合物(dichalcogenides,MX 2),例如二硒化鉿(hafnium diselenide,HfSe 2)、二硫化鉿(hafnium disulfide,HfS 2)、二硒化鉬(molybdenum diselenide,MoSe 2)、二硫化鉬(molybdenum disulfide、MoS 2)、鉬硫硒化物(molybdenum sulfide selenide,MoSSe)、鉬鎢二硒化物(molybdenum tungsten diselenide,MoWSe 2)、鉬鎢二硫化物(molybdenum tungsten disulfide,MoWS 2)、二硫化鎢(tungsten disulfide,WS 2)、二硒化鎢(tungsten diselenide,WSe 2)、二硒化錸(rhenium diselenide,ReSe 2)、二硫化鉭(tantalum disulfide,TaS 2)、二硒化錫(tin diselenide,SnSe 2)、二硫化錫(tin disulfide,SnS 2)、錸鉬二硫化物(rhenium molybdenum disulfide,ReMoS 2)、錸鈮二硒化物(rhenium niobium diselenide,ReNbSe 2)、錸鈮二硫化物(rhenium niobium disulfide,ReNbS 2)、二碲化鎢(tungsten ditelluride,WTe 2)、鎢硫硒化物(tungsten sulfide selenide,WSSe)、二硒化鋯(zirconium diselenide,ZrSe 2)、二硫化鋯(zirconium disulfide,ZrS 2)、二碲化鋯(zirconium ditelluride,ZrTe 2);三硫族化合物(trichalcogenides,MX 3),例如三硫化鈦(titanium trisulfide,TiS 3);碘化物(iodides,MI 2),例如二碘化鎘(cadmium diiodide,CdI 2)、二碘化鉛(lead diiodide,PbI 2)或其組合(含一種或兩種以上)。 In an embodiment of the invention, the two-dimensional material is, for example, bismuth sulfide (Bi 2 S 3 ), black phosphorus, hexagonal boron nitride (h-BN), graphite. Graphene, graphene oxide (GO), reduced graphene oxide (rGO), indium selenide (In 2 Se 3 ), lead tin disulfide (lead tin disulfide, PbSnS 2 ), phosphorene, arsenic sulfide (As 2 S 3 ), antimony arsenic sulfide (SbAsS 3 ); monochalcogenides (MX), such as telluride (bismuth thallium telluride, BiTlTe), copper sulfide (CuS), gallium selenide (GaSe), gallium selenide telluride (GaSeTe), gallium sulfide (GaS), gallium sulfide Gallium sulfide selenide (GaSSe), gallium telluride (GaTe), germanium selenide (GeSe), germanium sulfide (germanium) Sulphide, GeS), indium selenide (InSe), indium telluride (InTe), thallium selenide (TlSe), tin selenide (SnSe), bismuth gallium disulfide (thallium gallium disulfide, TlGaS 2 ), thallium gallium diselenide (TlGaSe 2 ), thallium indium disulfide (TlInS 2 ); dichalcogenide (MX 2 ), for example two selenide hafnium (hafnium diselenide, HfSe 2), disulfide hafnium (hafnium disulfide, HfS 2), diselenide molybdenum (molybdenum diselenide, MoSe 2), molybdenum disulfide (molybdenum disulfide, MoS 2), molybdenum sulfur selenide ( molybdenum sulfide selenide, MoSSe), molybdenum diselenide, tungsten (molybdenum tungsten diselenide, MoWSe 2) , molybdenum disulfide, tungsten (molybdenum tungsten disulfide, MoWS 2) , tungsten disulfide (tungsten disulfide, WS 2), tungsten diselenide (tungsten diselenide, WSe 2), diselenide Re (rhenium diselenide, ReSe 2), tantalum disulfide (tantalum disulfide TaS 2), diselenide tin (tin diselenide, SnSe 2), tin disulfide (tin disulfide, SnS 2), rhenium, molybdenum disulfide (rhenium molybdenum disulfide, ReMoS 2) , rhenium, niobium diselenide (rhenium niobium diselenide , ReNbSe 2 ), rhenium niobium disulfide (ReNbS 2 ), tungsten tungsten ditelluride (WTe 2 ), tungsten sulfide selenide (WSSe), zirconium diselenide , ZrSe 2 ), zirconium disulfide (ZrS 2 ), zirconium ditelluride (ZrTe 2 ), trihalogengenides (MX 3 ), such as titanium trisulfide (TiS 3 ) Iodide (MI 2 ), such as cadmium diiodide (CdI 2 ), lead diiodide (PbI 2 ), or a combination thereof (containing one or two or more).

在本發明的一實施例中,上述的吸光層可更包括二維材料。In an embodiment of the invention, the light absorbing layer may further comprise a two-dimensional material.

在本發明的一實施例中,上述的立體阻隔層更包括有機胺。In an embodiment of the invention, the stereoscopic barrier layer further comprises an organic amine.

在本發明的一實施例中,上述的有機胺例如是氨、甲胺、乙酸甲脒、胺甲脒、甲脒、乙二胺、二甲胺、咪唑、 乙脒、丙胺、異丙胺、三甲烯二胺、乙胺、丁胺、異丁胺、叔丁基胺、二乙胺、5-氨基戊酸、2-噻吩甲胺、己胺、苯胺、苄胺、苯乙胺、辛胺、癸胺、十二胺、十四胺、十六胺、油胺、十八胺、二十胺或其組合(含一種或兩種以上)。In an embodiment of the invention, the organic amine is, for example, ammonia, methylamine, formamidine acetate, amine formamidine, formamidine, ethylenediamine, dimethylamine, imidazole, acetamidine, propylamine, isopropylamine, trimethylamine. Enamine, ethylamine, butylamine, isobutylamine, tert-butylamine, diethylamine, 5-aminopentanoic acid, 2-thiophenemethylamine, hexylamine, aniline, benzylamine, phenethylamine, octylamine, Indamine, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, octadecylamine, amoximine or a combination thereof (containing one or two or more).

在本發明的一實施例中,上述的二維材料的長度例如是0.5μm至10μm。In an embodiment of the invention, the length of the two-dimensional material described above is, for example, 0.5 μm to 10 μm.

基於上述,在本發明的鈣鈦礦複合結構中,位於具有鈣鈦礦材料的吸光層的外圍的立體阻隔層可隔絕水氣與空氣,因此在大氣環境下穩定。此外,由於本發明的鈣鈦礦複合結構的吸光層及/或立體阻隔層包括二維材料,因此有助於提升鈣鈦礦的電子傳輸能力。Based on the above, in the perovskite composite structure of the present invention, the stereoscopic barrier layer located on the periphery of the light absorbing layer having the perovskite material can insulate moisture and air, and thus is stable in an atmospheric environment. In addition, since the light absorbing layer and/or the steric barrier layer of the perovskite composite structure of the present invention includes a two-dimensional material, it contributes to an improvement in the electron transporting ability of the perovskite.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1是依照本發明的實施例的鈣鈦礦複合結構的剖面示意圖。1 is a schematic cross-sectional view of a perovskite composite structure in accordance with an embodiment of the present invention.

請參照圖1,本實施例的鈣鈦礦複合結構100包括吸光層110以及立體阻隔層120。吸光層包括鈣鈦礦材料。在本發明中,「鈣鈦礦材料」是指具有「鈣鈦礦結構」的材料,而非特指鈣鈦氧化物(CaTiO 3)。也就是說,「鈣鈦礦材料」包含具有與鈣鈦氧化物相同類型的晶體結構的任何材料。上述的鈣鈦礦材料具有如下式(1)的結構: ABX 3(1), 其中A與B為陽離子,X為陰離子。所述A陽離子為一價,而B陽離子為二價。 Referring to FIG. 1 , the perovskite composite structure 100 of the present embodiment includes a light absorbing layer 110 and a stereoscopic barrier layer 120 . The light absorbing layer comprises a perovskite material. In the present invention, the "perovskite material" means a material having a "perovskite structure", and not specifically a calcium titanium oxide (CaTiO 3 ). That is, the "perovskite material" contains any material having the same type of crystal structure as the calcium titanium oxide. The above perovskite material has the structure of the following formula (1): ABX 3 (1), wherein A and B are cations, and X is an anion. The A cation is monovalent and the B cation is divalent.

舉例來說,在本實施例中,A例如是氨、甲胺、乙酸甲脒、胺甲脒、甲脒、乙二胺、二甲胺、咪唑、 乙脒、丙胺、異丙胺、三甲烯二胺、乙胺、丁胺、異丁胺、叔丁基胺、二乙胺、5-氨基戊酸、2-噻吩甲胺、己胺、苯胺、苄胺、苯乙胺、辛胺、癸胺、十二胺、十四胺、十六胺、油胺、十八胺、二十胺、Li、Na、K、Rb、Cs或Cu;B為Cd、Co、Cr、Cu、Fe、Ge、Pb或Sn;X為Cl、Br、I、氰、氰酯、硫代氰酯、硒氰酸酯或碲氰酸酯,但本發明不限於此。換言之,本實施例的鈣鈦礦材料為選擇一種無機材料搭配一種有機材料所構成的有機無機混成鈣鈦礦材料。For example, in the present embodiment, A is, for example, ammonia, methylamine, formamidine acetate, amine formamidine, formamidine, ethylenediamine, dimethylamine, imidazole, acetamidine, propylamine, isopropylamine, trimethylene Amine, ethylamine, butylamine, isobutylamine, tert-butylamine, diethylamine, 5-aminopentanoic acid, 2-thiophenemethylamine, hexylamine, aniline, benzylamine, phenethylamine, octylamine, decylamine , dodecylamine, tetradecylamine, hexadecylamine, oleylamine, octadecylamine, icosylamine, Li, Na, K, Rb, Cs or Cu; B is Cd, Co, Cr, Cu, Fe, Ge, Pb or Sn; X is Cl, Br, I, cyanide, cyanoester, thiocyanate, selenocyanate or phthalocyanate, but the invention is not limited thereto. In other words, the perovskite material of the present embodiment is an organic-inorganic hybrid perovskite material composed of an inorganic material and an organic material.

本發明的有機無機混成鈣鈦礦材料因為是混合而成的材料,所以同時具備有機化合物與無機晶體的特性。無機成分形成由共價與離子交互作用鍵結的骨架(framework),可提供高的載子遷移率(carrier mobility)。有機成分則有助於材料的自組裝機制。而且,能藉由降低有機成分維度(dimensionality)與無機片材之間的電性耦合(electronic coupling),來調整有機無機材料的電性。Since the organic-inorganic hybrid perovskite material of the present invention is a mixed material, it has properties of both an organic compound and an inorganic crystal. The inorganic component forms a framework that is bonded by covalent interaction with ions, providing high carrier mobility. Organic ingredients contribute to the self-assembly mechanism of the material. Moreover, the electrical properties of the organic inorganic material can be adjusted by reducing the electrical coupling between the organic component dimensionality and the inorganic sheet.

在本實施例中,吸光層110可更包括二維材料。二維材料例如是硫化鉍、黑磷、六方氮化硼、石墨烯、石墨烯氧化物、還原態石墨烯、硒化銦、二硫錫鉛、磷烯、硫化砷、銻砷硫化物;單硫族化合物,例如鉍鉈碲化物、硫化銅、硒化鎵、鎵硒碲化物、硫化鎵、鎵硫硒化物、碲化鎵、硒化鍺、硫化鍺、硒化銦、碲化銦、硒化鉈、硒化錫、鉈鎵二硫化物、鉈鎵二硒化物、鉈銦二硫化物;二硫族化合物,例如二硒化鉿、二硫化鉿、二硒化鉬、二硫化鉬、鉬硫硒化物、鉬鎢二硒化物、鉬鎢二硫化物、二硫化鎢、二硒化鎢、二硒化錸、二硫化鉭、二硒化錫、二硫化錫、錸鉬二硫化物、錸鈮二硒化物、錸鈮二硫化物、二碲化鎢、鎢硫硒化物、二硒化鋯、二硫化鋯、二碲化鋯;三硫族化合物,例如三硫化鈦;碘化物,例如二碘化鎘、二碘化鉛或其組合(含一種或兩種以上),但本發明不限於此。二維材料的長度例如是0.2μm至20μm。在本實施例中,由於吸光層110包括具有高電子遷移率的二維材料,因此有助於提升鈣鈦礦的電子傳輸能力以及光轉換效率。In this embodiment, the light absorbing layer 110 may further include a two-dimensional material. The two-dimensional materials are, for example, barium sulfide, black phosphorus, hexagonal boron nitride, graphene, graphene oxide, reduced graphene, indium selenide, lead disulfide, phosphorus, arsenic sulfide, antimony arsenide sulfide; Chalcogenides such as telluride, copper sulfide, gallium selenide, gallium selenide telluride, gallium sulfide, gallium sulfide selenide, gallium antimonide, antimony selenide, antimony sulfide, indium selenide, indium antimonide, selenium Antimony, tin selenide, antimony gallium disulfide, antimony gallium diselenide, antimony indium disulfide; dichalcogenide such as antimony diselenide, antimony disulfide, molybdenum diselenide, molybdenum disulfide, molybdenum Sulfur selenide, molybdenum tungsten diselenide, molybdenum tungsten disulfide, tungsten disulfide, tungsten diselenide, antimony diselenide, antimony disulfide, tin diselenide, tin disulfide, antimony molybdenum disulfide, antimony Bismuth selenide, bismuth disulfide, tungsten disulfide, tungsten sulphide selenide, zirconium diselenide, zirconium disulfide, zirconium dinitride; trichalcogenide such as titanium trisulfide; iodide, for example Cadmium iodide, lead diiodide or a combination thereof (containing one or two or more), but the invention is not limited thereto. The length of the two-dimensional material is, for example, 0.2 μm to 20 μm. In the present embodiment, since the light absorbing layer 110 includes a two-dimensional material having high electron mobility, it contributes to an improvement in electron transporting ability and light conversion efficiency of the perovskite.

立體阻隔層120位於吸光層110的外圍。立體阻隔層120可包括二維材料。二維材料例如是硫化鉍、黑磷、六方氮化硼、石墨烯、石墨烯氧化物、還原態石墨烯、硒化銦、二硫錫鉛、磷烯、硫化砷、銻砷硫化物;單硫族化合物,例如鉍鉈碲化物、硫化銅、硒化鎵、鎵硒碲化物、硫化鎵、鎵硫硒化物、碲化鎵、硒化鍺、硫化鍺、硒化銦、碲化銦、硒化鉈、硒化錫、鉈鎵二硫化物、鉈鎵二硒化物、鉈銦二硫化物;二硫族化合物,例如二硒化鉿、二硫化鉿、二硒化鉬、二硫化鉬、鉬硫硒化物、鉬鎢二硒化物、鉬鎢二硫化物、二硫化鎢、二硒化鎢、二硒化錸、二硫化鉭、二硒化錫、二硫化錫、錸鉬二硫化物、錸鈮二硒化物、錸鈮二硫化物、二碲化鎢、鎢硫硒化物、二硒化鋯、二硫化鋯、二碲化鋯;三硫族化合物,例如三硫化鈦;碘化物,例如二碘化鎘、二碘化鉛或其組合(含一種或兩種以上),但本發明不限於此。二維材料的長度例如是0.2μm至20μm。在本實施例中,由於立體阻隔層120包括上述的二維材料且位於吸光層110的外圍,因此具有立體阻隔功能以隔絕水氣。也就是說,立體阻隔層120可防止水氣與空氣接觸吸光層110(尤其是吸光層110中的鈣鈦礦材料),因此本發明的鈣鈦礦複合結構在大氣環境下是相當穩定。The stereoscopic barrier layer 120 is located at the periphery of the light absorbing layer 110. The steric barrier layer 120 can comprise a two dimensional material. The two-dimensional materials are, for example, barium sulfide, black phosphorus, hexagonal boron nitride, graphene, graphene oxide, reduced graphene, indium selenide, lead disulfide, phosphorus, arsenic sulfide, antimony arsenide sulfide; Chalcogenides such as telluride, copper sulfide, gallium selenide, gallium selenide telluride, gallium sulfide, gallium sulfide selenide, gallium antimonide, antimony selenide, antimony sulfide, indium selenide, indium antimonide, selenium Antimony, tin selenide, antimony gallium disulfide, antimony gallium diselenide, antimony indium disulfide; dichalcogenide such as antimony diselenide, antimony disulfide, molybdenum diselenide, molybdenum disulfide, molybdenum Sulfur selenide, molybdenum tungsten diselenide, molybdenum tungsten disulfide, tungsten disulfide, tungsten diselenide, antimony diselenide, antimony disulfide, tin diselenide, tin disulfide, antimony molybdenum disulfide, antimony Bismuth selenide, bismuth disulfide, tungsten disulfide, tungsten sulphide selenide, zirconium diselenide, zirconium disulfide, zirconium dinitride; trichalcogenide such as titanium trisulfide; iodide, for example Cadmium iodide, lead diiodide or a combination thereof (containing one or two or more), but the invention is not limited thereto. The length of the two-dimensional material is, for example, 0.2 μm to 20 μm. In the present embodiment, since the stereoscopic barrier layer 120 includes the above two-dimensional material and is located at the periphery of the light absorbing layer 110, it has a stereoscopic barrier function to block moisture. That is to say, the stereoscopic barrier layer 120 prevents moisture and air from contacting the light absorbing layer 110 (especially the perovskite material in the light absorbing layer 110), and thus the perovskite composite structure of the present invention is relatively stable in an atmospheric environment.

此外,在本實施例中,由於立體阻隔層120中的二維材料具有高電子遷移率,因此立體阻隔層120有助於提升鈣鈦礦的電子傳輸能力以及光轉換效率。Further, in the present embodiment, since the two-dimensional material in the stereoscopic barrier layer 120 has high electron mobility, the stereoscopic barrier layer 120 contributes to enhancing the electron transporting ability and light conversion efficiency of the perovskite.

在本實施例中,立體阻隔層120可更包括有機胺。有機胺例如是氨、甲胺、乙酸甲脒、胺甲脒、甲脒、乙二胺、二甲胺、咪唑、 乙脒、丙胺、異丙胺、三甲烯二胺、乙胺、丁胺、異丁胺、叔丁基胺、二乙胺、5-氨基戊酸、2-噻吩甲胺、己胺、苯胺、苄胺、苯乙胺、辛胺、癸胺、十二胺、十四胺、十六胺、油胺、十八胺、二十胺或其組合(含一種或兩種以上)。在本實施例中,立體阻隔層120中的有機胺具有類似「鈍化」的功能,可防止水氣與空氣接觸吸光層110(尤其是吸光層110中的鈣鈦礦材料),因此本發明的鈣鈦礦複合結構在大氣環境下是相當穩定。In this embodiment, the steric barrier layer 120 may further comprise an organic amine. The organic amine is, for example, ammonia, methylamine, formamidine acetate, amine formamidine, formamidine, ethylenediamine, dimethylamine, imidazole, acetamidine, propylamine, isopropylamine, trimethylenediamine, ethylamine, butylamine, and different amines. Butylamine, tert-butylamine, diethylamine, 5-aminopentanoic acid, 2-thienylmethylamine, hexylamine, aniline, benzylamine, phenethylamine, octylamine, decylamine, dodecylamine, tetradecylamine, Hexadecylamine, oleylamine, octadecylamine, icosylamine or a combination thereof (containing one or two or more). In the present embodiment, the organic amine in the stereoscopic barrier layer 120 has a function of "passivation", which prevents moisture and air from contacting the light absorbing layer 110 (especially the perovskite material in the light absorbing layer 110), and thus the present invention The perovskite composite structure is quite stable in the atmosphere.

綜上所述,在本發明的鈣鈦礦複合結構中,位於具有鈣鈦礦材料的吸光層的外圍的立體阻隔層可隔絕水氣與空氣,因此在大氣環境下穩定。此外,由於本發明的鈣鈦礦複合結構的吸光層及/或立體阻隔層包括二維材料,因此有助於提升鈣鈦礦的電子傳輸能力。由於本發明的鈣鈦礦複合結構具有在大氣環境穩定、具有高電子傳輸能力以及高光轉換效率等優點,因此適合用於高靈敏度的光感測器以及太陽能電池等。In summary, in the perovskite composite structure of the present invention, the stereoscopic barrier layer located on the periphery of the light absorbing layer having the perovskite material can insulate moisture and air, and thus is stable in an atmospheric environment. In addition, since the light absorbing layer and/or the steric barrier layer of the perovskite composite structure of the present invention includes a two-dimensional material, it contributes to an improvement in the electron transporting ability of the perovskite. Since the perovskite composite structure of the present invention has advantages such as stability in an atmospheric environment, high electron transport capability, and high light conversion efficiency, it is suitable for use in a highly sensitive photosensor and a solar cell.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧鈣鈦礦複合結構 100‧‧‧ Perovskite composite structure

110‧‧‧吸光層 110‧‧‧Light absorbing layer

120‧‧‧立體阻隔層 120‧‧‧Three-dimensional barrier

圖1是依照本發明的實施例的鈣鈦礦複合結構的剖面示意圖。1 is a schematic cross-sectional view of a perovskite composite structure in accordance with an embodiment of the present invention.

Claims (5)

一種鈣鈦礦複合結構,包括:吸光層,包括鈣鈦礦材料;以及立體阻隔層,位於所述吸光層的外圍,其中所述吸光層以及所述立體阻隔層包括二維材料,其中所述二維材料的長度為0.2μm至20μm。 A perovskite composite structure comprising: a light absorbing layer comprising a perovskite material; and a steric barrier layer on a periphery of the light absorbing layer, wherein the light absorbing layer and the steric barrier layer comprise a two-dimensional material, wherein The two-dimensional material has a length of 0.2 μm to 20 μm. 如申請專利範圍第1項所述的鈣鈦礦複合結構,其中所述鈣鈦礦材料具有如下式(1)的結構:ABX3 (1),其中A為氨、甲胺、乙酸甲脒、胺甲脒、甲脒、乙二胺、二甲胺、咪唑、乙脒、丙胺、異丙胺、三甲烯二胺、乙胺、丁胺、異丁胺、叔丁基胺、二乙胺、5-氨基戊酸、2-噻吩甲胺、己胺、苯胺、苄胺、苯乙胺、辛胺、癸胺、十二胺、十四胺、十六胺、油胺、十八胺、二十胺、Li、Na、K、Rb、Cs或Cu;B為Cd、Co、Cr、Cu、Fe、Ge、Pb或Sn;X為Cl、Br、I、氰、氰酯、硫代氰酯、硒氰酸酯或碲氰酸酯。 The perovskite composite structure according to claim 1, wherein the perovskite material has the structure of the following formula (1): ABX 3 (1), wherein A is ammonia, methylamine, methyl acetate, Aminoguanidine, formazan, ethylenediamine, dimethylamine, imidazole, acetamidine, propylamine, isopropylamine, trimethylenediamine, ethylamine, butylamine, isobutylamine, tert-butylamine, diethylamine, 5 -aminovaleric acid, 2-thienylmethylamine, hexylamine, aniline, benzylamine, phenethylamine, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, octadecylamine, twenty Amine, Li, Na, K, Rb, Cs or Cu; B is Cd, Co, Cr, Cu, Fe, Ge, Pb or Sn; X is Cl, Br, I, cyanide, cyanoester, thiocyanate, Selenocyanate or phthalocyanate. 如申請專利範圍第1項所述的鈣鈦礦複合結構,其中所述二維材料包括硫化鉍、黑磷、六方氮化硼、石墨烯、石墨烯氧化物、還原態石墨烯、硒化銦、二硫錫鉛、磷烯、硫化砷、銻砷硫化物;單硫族化合物,所述單硫族化合物為鉍鉈碲化物、硫化銅、硒化鎵、鎵硒碲化物、硫化鎵、鎵硫硒化物、碲化鎵、硒化鍺、硫化鍺、硒化銦、碲化銦、硒化鉈、硒化錫、鉈鎵二硫化物、鉈鎵二硒 化物或鉈銦二硫化物;二硫族化合物,所述二硫族化合物為二硒化鉿、二硫化鉿、二硒化鉬、二硫化鉬、鉬硫硒化物、鉬鎢二硒化物、鉬鎢二硫化物、二硫化鎢、二硒化鎢、二硒化錸、二硫化鉭、二硒化錫、二硫化錫、錸鉬二硫化物、錸鈮二硒化物、錸鈮二硫化物、二碲化鎢、鎢硫硒化物、二硒化鋯、二硫化鋯或二碲化鋯;三硫族化合物,所述三硫族化合物為三硫化鈦;碘化物,所述碘化物為二碘化鎘、二碘化鉛或其組合。 The perovskite composite structure according to claim 1, wherein the two-dimensional material comprises barium sulfide, black phosphorus, hexagonal boron nitride, graphene, graphene oxide, reduced graphene, indium selenide , disulfide lead, phosphoenene, arsenic sulfide, antimony arsenide sulfide; monochalcogenide, the monochalcogenide is telluride, copper sulfide, gallium selenide, gallium selenide, gallium sulfide, gallium Sulfur selenide, gallium antimonide, antimony selenide, antimony sulfide, indium selenide, indium antimonide, antimony selenide, tin selenide, antimony gallium disulfide, germanium gallium diselenide a compound or bismuth indium disulfide; a dichalcogenide, which is bismuth selenide, bismuth disulfide, molybdenum diselenide, molybdenum disulfide, molybdenum sulphide selenide, molybdenum tungsten diselenide, molybdenum Tungsten disulfide, tungsten disulfide, tungsten diselenide, antimony diselenide, antimony disulfide, tin diselenide, tin disulfide, antimony molybdenum disulfide, antimony diselenide, antimony disulfide, Di-tungsten tungsten, tungsten sulphide selenide, zirconium diselenide, zirconium disulfide or zirconium dinitride; trichalcogenide, the trichalcogenide is titanium trisulfide; iodide, the iodide is diiodide Cadmium, lead diiodide or a combination thereof. 如申請專利範圍第1項所述的鈣鈦礦複合結構,其中所述立體阻隔層更包括有機胺。 The perovskite composite structure according to claim 1, wherein the stereoscopic barrier layer further comprises an organic amine. 如申請專利範圍第4項所述的鈣鈦礦複合結構,其中所述有機胺包括氨、甲胺、乙酸甲脒、胺甲脒、甲脒、乙二胺、二甲胺、咪唑、乙脒、丙胺、異丙胺、三甲烯二胺、乙胺、丁胺、異丁胺、叔丁基胺、二乙胺、5-氨基戊酸、2-噻吩甲胺、己胺、苯胺、苄胺、苯乙胺、辛胺、癸胺、十二胺、十四胺、十六胺、油胺、十八胺、二十胺或其組合。 The perovskite composite structure according to claim 4, wherein the organic amine comprises ammonia, methylamine, formamidine acetate, amine formamidine, formamidine, ethylenediamine, dimethylamine, imidazole, and acetamidine. , propylamine, isopropylamine, trimethylenediamine, ethylamine, butylamine, isobutylamine, tert-butylamine, diethylamine, 5-aminopentanoic acid, 2-thiophenemethylamine, hexylamine, aniline, benzylamine, Phenylethylamine, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, oleylamine, octadecylamine, icosylamine or a combination thereof.
TW106105739A 2017-02-21 2017-02-21 Perovskite composite structure TWI645082B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106105739A TWI645082B (en) 2017-02-21 2017-02-21 Perovskite composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106105739A TWI645082B (en) 2017-02-21 2017-02-21 Perovskite composite structure

Publications (2)

Publication Number Publication Date
TW201831742A TW201831742A (en) 2018-09-01
TWI645082B true TWI645082B (en) 2018-12-21

Family

ID=64426311

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106105739A TWI645082B (en) 2017-02-21 2017-02-21 Perovskite composite structure

Country Status (1)

Country Link
TW (1) TWI645082B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335212B (en) * 2021-11-18 2023-09-12 北京无线电计量测试研究所 Composite material and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346018A (en) * 2013-06-26 2013-10-09 中国科学院青岛生物能源与过程研究所 Iodide solar cell prepared through solid-liquid reactions and provided with perovskite structures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346018A (en) * 2013-06-26 2013-10-09 中国科学院青岛生物能源与过程研究所 Iodide solar cell prepared through solid-liquid reactions and provided with perovskite structures

Also Published As

Publication number Publication date
TW201831742A (en) 2018-09-01

Similar Documents

Publication Publication Date Title
US10453620B2 (en) Perovskite composite structure
Shin et al. BaCu2Sn (S, Se) 4: earth-abundant chalcogenides for thin-film photovoltaics
Ogawa et al. Synthesis of Ag–In binary sulfide nanoparticles—structural tuning and their photoluminescence properties
Chaki et al. Effect of indium and antimony doping in SnS single crystals
Wang et al. First-principles study of photovoltaics and carrier mobility for non-toxic halide perovskite CH 3 NH 3 SnCl 3: theoretical prediction
Zhang et al. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices
US20170018371A1 (en) Perovskite solar cell
JP2018536995A5 (en)
Lindwall et al. Thermodynamics of the S–Sn system: Implication for synthesis of earth abundant photovoltaic absorber materials
Saha et al. Electrodeposition fabrication of chalcogenide thin films for photovoltaic applications
ES2523141T3 (en) Precursor solution to form a thin semiconductor film based on CIS, CIGS or CZTS
CA3159462A1 (en) 2d perovskite tandem photovoltaic devices
Yang et al. Reducing Pb concentration in α-CsPbI3 based perovskite solar cell materials via alkaline-earth metal doping: a DFT computational study
TWI645082B (en) Perovskite composite structure
Turkevych et al. Potential of AgBiI4 rudorffites for indoor photovoltaic energy harvesters in autonomous environmental nanosensors
JP2020013982A5 (en)
Koskela et al. Solution deposition of a bournonite CuPbSbS3 semiconductor thin film from the dissolution of bulk materials with a thiol-amine solvent mixture
JP2013216888A (en) Ink composition, chalcogenide semiconductor film, photovoltaic device and method for forming the same
Miao et al. 2D material and perovskite heterostructure for optoelectronic applications
Krishnaiah et al. Cu/(Co+ Sn) ratio effects on physical and photodetective properties for visible light absorbing Cu2CoSnS4 nanoparticles via a one-pot hydrothermal process
Nasr et al. Current transport and capacitance-voltage characteristics of Sb2Se3/n-Si heterojunction diode prepared by electron beam evaporation
JP5653472B2 (en) Ink production method
Devika et al. Review on ternary chalcogenides: potential photoabsorbers
Guo et al. Anisotropic interfacial properties of monolayer GeSe—metal contacts
Dalui et al. Colloidal semiconductor nanocrystals: From bottom-up nanoarchitectonics to energy harvesting applications