TWI644865B - Method for preparing cuinx2 compound nano-particles using polyol - Google Patents

Method for preparing cuinx2 compound nano-particles using polyol Download PDF

Info

Publication number
TWI644865B
TWI644865B TW098121924A TW98121924A TWI644865B TW I644865 B TWI644865 B TW I644865B TW 098121924 A TW098121924 A TW 098121924A TW 98121924 A TW98121924 A TW 98121924A TW I644865 B TWI644865 B TW I644865B
Authority
TW
Taiwan
Prior art keywords
polyol
solution
copper indium
copper
element compound
Prior art date
Application number
TW098121924A
Other languages
Chinese (zh)
Other versions
TW201100331A (en
Inventor
蕭育展
高騏
林春榮
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW098121924A priority Critical patent/TWI644865B/en
Publication of TW201100331A publication Critical patent/TW201100331A/en
Application granted granted Critical
Publication of TWI644865B publication Critical patent/TWI644865B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Powder Metallurgy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一種利用多元醇合成銅銦化物奈米粒子的方法,其包含:分別調配銅(Cu)元素化合物之多元醇溶液、銦(In)元素化合物之多元醇溶液及X元素化合物之醇類溶液,其中X元素選自硫(S)、硒(Se)或碲(Te);混合銅元素化合物之多元醇溶液、銦元素化合物之多元醇溶液及X元素化合物之醇類溶液成為一多元醇混合液;加熱含有銅元素、銦元素及X元素的多元醇混合液至溫度高於一結晶溫度,以得到銅銦化物(CuInX2)的奈米粒子;以及過濾獲得銅銦化物的奈米粒子。A method for synthesizing copper indium nitride nanoparticles by using a polyol, comprising: separately preparing a polyol solution of a copper (Cu) element compound, a polyol solution of an indium (In) element compound, and an alcohol solution of an X element compound, wherein The X element is selected from the group consisting of sulfur (S), selenium (Se) or cerium (Te); a polyol solution of a mixed copper element compound, a polyol solution of an indium element compound, and an alcohol solution of an X element compound to form a polyol mixture Heating a polyol mixture containing a copper element, an indium element, and an X element to a temperature higher than a crystallization temperature to obtain a copper indium compound (CuInX 2 ) nanoparticle; and filtering to obtain a copper indium halide nanoparticle.

Description

利用多元醇合成銅銦化物奈米粒子的方法Method for synthesizing copper indium nitride nanoparticles by using polyol

本發明係關於一種利用多元醇合成銅銦化物奈米粒子的方法,特別是關於一種利用多元醇對元素原料具有高溶解度以及多元醇的沸點高於銅銦化物結晶溫度的雙重特性,來進行液相合成反應合成銅銦化物(CuInX2)或銅銦鎵硒化物(CuIn1-yGaySe2)之奈米粒子的方法。The present invention relates to a method for synthesizing copper indium nitride nanoparticles by using a polyol, and more particularly to a liquid using a polyol having a high solubility for an elemental raw material and a boiling point of a polyol higher than a crystallization temperature of a copper indium compound. A method of synthesizing a nanoparticle of copper indium (CuInX 2 ) or copper indium gallium selenide (CuIn 1-y Ga y Se 2 ) by a phase synthesis reaction.

薄膜式太陽能電池一直被公認為是目前最有機會取代矽晶類太陽能電池的技術,因為薄膜式太陽能電池不需使用矽晶片,故可相對減低原料成本及避免原料短缺等問題。惟,薄膜式太陽能電池的發電效率尚無法達到如單晶矽太陽能電池般的高效率,但其開發的潛力仍一直備受矚目,其中薄膜式太陽能電池多使用黃銅礦型半導體Cu-III-VI2(III=鋁Al、鎵Ga、銦In;VI=硫S、硒Se、碲Te)的複合材料,例如利用銅銦硫CIS(Cu-In-S)、銅銦硒CISe(Cu-In-Se)或銅銦鎵硒CIGS(Cu-In-Ga-Se)做為薄膜式太陽能電池之吸收層。此類複合材料廣泛應用於半導體產業與太陽能產業之領域,其中銅銦鎵硒CIGS(Cu-In-Ga-Se)奈米粒子因可藉由鎵(Ga)元素來取代銦(In)元素以操控材料於奈米尺度下能隙(band gap)的變化來提升發電效率,故銅銦鎵硒CIGS薄膜式太陽能電池的發電效率可以達到19%以上。因此,若能在玻璃基材上成功製做低成本、高效率的銅銦鎵硒CIGS薄膜式太陽能電池,預計售價為每平方英尺6.5美金。若以10%的效率計算,每平方英尺可以產生10W的電力,其每瓦電力成本為0.65美金,此發電成本遠比目前世面上任何類型之太陽能電池都便宜。Thin film solar cells have long been recognized as the most popular technology to replace twin solar cells. Because thin film solar cells do not require the use of germanium wafers, they can reduce raw material costs and avoid shortage of raw materials. However, the power generation efficiency of thin film solar cells is not as high as that of single crystal germanium solar cells, but its development potential has been attracting attention. Among them, thin film solar cells use chalcopyrite type semiconductor Cu-III- Composite material of VI 2 (III = aluminum Al, gallium Ga, indium In; VI = sulfur S, selenium Se, 碲Te), for example, using copper indium sulfide CIS (Cu-In-S), copper indium selenide CISe (Cu- In-Se) or copper indium gallium selenide CIGS (Cu-In-Ga-Se) is used as an absorption layer of a thin film solar cell. Such composite materials are widely used in the semiconductor industry and the solar energy industry, in which copper indium gallium selenide CIGS (Cu-In-Ga-Se) nanoparticles can replace indium (In) elements by gallium (Ga) elements. The power generation efficiency of the copper indium gallium selenide CIGS thin film solar cell can be more than 19% by controlling the change of the band gap at the nanometer scale. Therefore, if a low-cost, high-efficiency copper indium gallium selenide CIGS thin film solar cell can be successfully fabricated on a glass substrate, the estimated price is 6.5 US dollars per square foot. If calculated at 10% efficiency, it can generate 10W of electricity per square foot, and its cost per watt of electricity is 0.65 US dollars. This power generation cost is far cheaper than any type of solar cell in the world.

由於黃銅礦型半導體Cu-III-VI2在光電系統上具有潛在的應用價值而備受矚目,因此合成黃銅礦型複合材料的方法就顯得極為重要。要製作此類複合材料做為薄膜式太陽能電池的吸收層有數種方式,例如:一般是在真空環境下將銅銦硫CIS等材料做為靶材,直接利用蒸鍍或濺鍍形成在基板上。此真空鍍製方式有利於完成高效率的吸收層,然而其相對所需製程設備也較為昂貴,同時必需使用具有腐蝕毒性的硒化氫(H2Se)氣體進行硒化反應;另一方面,亦可在無真空環境下先將銅銦硫CIS等材料的前驅物(precursor)塗佈在基板上,接著再藉由高溫熱處理方式將前驅物還原成銅銦硫CIS等材料。此高溫熱處理將銅銦硫CIS還原的方式雖可降低成本,但僅能得到大粒徑的低效率之均一吸收層。Because of the potential application value of the chalcopyrite-type semiconductor Cu-III-VI 2 in photovoltaic systems, the method of synthesizing chalcopyrite composites is extremely important. There are several ways to make such a composite material as an absorbing layer of a thin film solar cell. For example, a material such as copper indium sulphur CIS is generally used as a target in a vacuum environment, and is directly formed on a substrate by evaporation or sputtering. . This vacuum plating method is advantageous for completing a high-efficiency absorption layer. However, it is relatively expensive compared to the required process equipment, and it is necessary to use selenization reaction using a corrosion-toxic hydrogen selenide (H 2 Se) gas; A precursor of a material such as copper indium sulfide CIS may be applied to the substrate in a vacuum-free environment, and then the precursor may be reduced to a material such as copper indium sulfide CIS by a high temperature heat treatment. This high-temperature heat treatment reduces the cost by reducing the copper indium sulfide CIS, but only a low-efficiency uniform absorption layer having a large particle diameter can be obtained.

故,有必要提供一種合成銅銦化物奈米粒子的新方法,以解決習知技術所存在的問題,以便兼顧製造成本及發電效率。Therefore, it is necessary to provide a new method for synthesizing copper indium nitride nanoparticles to solve the problems of the prior art in order to achieve both manufacturing cost and power generation efficiency.

本發明之主要目的在於提供一種利用多元醇合成銅銦化物奈米粒子的方法,其係在常壓下利用多元醇(polyol)溶解各種元素原料,並在多元醇提供的液相環境下加熱至適當結晶溫度,以使元素原料進行合成反應並結晶成銅銦化物(CuInX2)或銅銦鎵硒化物(CuIn1-yGaySe2)之奈米粒子,合成期間不需使用昂貴製程設備或具毒性的氫化硒氣體,進而有利於降低製造成本及提高製程安全性。The main object of the present invention is to provide a method for synthesizing copper indium nitride nanoparticles by using a polyol, which dissolves various elemental raw materials by using a polyol under normal pressure, and is heated in a liquid phase environment provided by a polyol to Appropriate crystallization temperature to synthesize the elemental material and crystallize it into copper indium (CuInX 2 ) or copper indium gallium selenide (CuIn 1-y Ga y Se 2 ) nanoparticle, without using expensive process equipment during synthesis Or toxic hydrogen selenide gas, which in turn helps to reduce manufacturing costs and improve process safety.

本發明之次要目的在於提供一種利用多元醇合成銅銦化物奈米粒子的方法,其係藉由適當控制多元醇液相環境的加熱溫度及時間等參數,以合成具有奈米級粒徑的銅銦化物或銅銦鎵硒化物之奈米粒子,並利用網版印刷搭配快速熱退火或烘烤的方式在基板上形成銅銦化物或銅銦鎵硒化物之吸收層,進而有利於降低材料粒徑及提高發電效率。A secondary object of the present invention is to provide a method for synthesizing copper indium nitride nanoparticles by using a polyol, which is capable of synthesizing a nanometer-sized particle by appropriately controlling parameters such as heating temperature and time of a liquid phase environment of a polyol. Copper indium or copper indium gallium selenide nanoparticle, and using screen printing with rapid thermal annealing or baking to form a copper indium or copper indium gallium selenide absorption layer on the substrate, thereby reducing the material Particle size and improved power generation efficiency.

為達上述之目的,本發明提供一種利用多元醇合成銅銦化物奈米粒子的方法,其包含:分別調配銅(Cu)元素化合物之多元醇溶液、銦(In)元素化合物之多元醇溶液及X元素化合物之醇類溶液,其中X元素選自硫(S)、硒(Se)或碲(Te);混合銅元素化合物之多元醇溶液、銦元素化合物之多元醇溶液及X元素化合物之醇類溶液成為一多元醇混合液;加熱含有銅元素、銦元素及X元素的多元醇混合液至溫度高於一結晶溫度,以得到銅銦化物(CuInX2)的奈米粒子;以及過濾獲得銅銦化物的奈米粒子。In order to achieve the above object, the present invention provides a method for synthesizing copper indium nitride nanoparticles by using a polyol, comprising: separately preparing a polyol solution of a copper (Cu) element compound, a polyol solution of an indium (In) element compound, and An alcohol solution of a X element compound, wherein the X element is selected from the group consisting of sulfur (S), selenium (Se) or cerium (Te); a polyol solution of a mixed copper element compound, a polyol solution of an indium element compound, and an alcohol of an X element compound The solution is a polyol mixture; heating the polyol mixture containing copper, indium and X to a temperature higher than a crystallization temperature to obtain copper indium (CuInX 2 ) nanoparticles; and filtering Nanoparticles of copper indium.

在本發明的一實施例中,銅元素化合物之多元醇溶液中的多元醇選自二甘醇、三甘醇或四甘醇;或選自乙二醇或聚乙二醇。In an embodiment of the invention, the polyol in the polyol solution of the copper element compound is selected from the group consisting of diethylene glycol, triethylene glycol or tetraethylene glycol; or is selected from ethylene glycol or polyethylene glycol.

在本發明的一實施例中,銦元素化合物之多元醇溶液中的多元醇選自二甘醇、三甘醇或四甘醇;或選自乙二醇或聚乙二醇。In an embodiment of the invention, the polyol in the polyol solution of the indium element compound is selected from the group consisting of diethylene glycol, triethylene glycol or tetraethylene glycol; or is selected from ethylene glycol or polyethylene glycol.

在本發明的一實施例中,X元素化合物之醇類溶液中的醇類選自多元醇或單元醇。In an embodiment of the invention, the alcohol in the alcohol solution of the X element compound is selected from the group consisting of a polyol or a unit alcohol.

在本發明的一實施例中,該多元醇選自二甘醇,三甘醇或四甘醇;或選自乙二醇或聚乙二醇。該單元醇選自乙醇、丙醇類或丁醇類。In an embodiment of the invention, the polyol is selected from the group consisting of diethylene glycol, triethylene glycol or tetraethylene glycol; or is selected from ethylene glycol or polyethylene glycol. The unit alcohol is selected from the group consisting of ethanol, propanol or butanol.

在本發明的一實施例中,當X元素化合物之醇類溶液中的醇類選自單元醇時,在混合成該多元醇混合液之後,先加熱去除該多元醇混合液內之單元醇,接著再將該多元醇混合液之溫度提高至該結晶溫度。In an embodiment of the present invention, when the alcohol in the alcohol solution of the X element compound is selected from the group of alcohols, after mixing the polyol mixture, the unit alcohol in the polyol mixture is heated and removed. The temperature of the polyol mixture is then increased to the crystallization temperature.

在本發明的一實施例中,該多元醇之沸點高於該銅銦化物的結晶溫度。In an embodiment of the invention, the boiling point of the polyol is higher than the crystallization temperature of the copper indium compound.

在本發明的一實施例中,該銅銦化物的奈米粒子之粒徑介於20至50奈米(nm)之間。In an embodiment of the invention, the copper indium halide nanoparticles have a particle size between 20 and 50 nanometers (nm).

在本發明的一實施例中,另包含:在調配溶液時,另調配鎵元素化合物之多元醇溶液;在混合溶液時,另加入鎵元素化合物之多元醇溶液,以共同混合成該多元醇混合液;在加熱該多元醇混合液至溫度高於一結晶溫度時,得到銅銦鎵化物(CuIn1-yGayX2)的奈米粒子,其中y介於0.3至0.6之間;以及過濾獲得銅銦鎵化物的奈米粒子。In an embodiment of the present invention, the method further comprises: when formulating the solution, additionally formulating a polyol solution of the gallium element compound; when mixing the solution, adding a polyol solution of the gallium element compound to jointly mix into the polyol mixture. Liquid; when heating the polyol mixture to a temperature higher than a crystallization temperature, obtaining copper indium gallium (CuIn 1-y Ga y X 2 ) nanoparticles, wherein y is between 0.3 and 0.6; A copper indium gallium halide nanoparticle is obtained.

在本發明的一實施例中,銅銦鎵化物的X元素選自硒(Se)。In an embodiment of the invention, the X element of the copper indium gallium compound is selected from the group consisting of selenium (Se).

在本發明的一實施例中,在過濾後另包含:將銅銦化物(或銅銦鎵化物)的奈米粒子與有機印刷油墨填料混合調配成一印刷油墨;將該印刷油墨網版印刷至一基板的表面上;高溫去除該印刷油墨中的有機印刷油墨填料,僅留下由銅銦化物(或銅銦鎵化物)形成的一吸收層於該基板上。In an embodiment of the present invention, after filtering, the copper indium (or copper indium gallium) nanoparticle is mixed with the organic printing ink filler to form a printing ink; and the printing ink is screen printed to a printing ink. On the surface of the substrate; the organic printing ink filler in the printing ink is removed at a high temperature, leaving only an absorbing layer formed of copper indium (or copper indium gallium) on the substrate.

在本發明的一實施例中,利用快速熱退火(rapid thermal annealing,RTA)或烘烤進行高溫去除該有機印刷油墨填料。In an embodiment of the invention, the organic printing ink filler is removed at a high temperature by rapid thermal annealing (RTA) or baking.

在本發明的一實施例中,該基板為透明硬式基板或透明可撓性軟式基板。In an embodiment of the invention, the substrate is a transparent hard substrate or a transparent flexible flexible substrate.

為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features and advantages of the present invention will become more <RTIgt;

請參照第1、2、3及4圖所示,本發明提供一種利用多元醇合成銅銦化物奈米粒子的方法,其主要包含下述步驟:分別調配銅(Cu)元素化合物之多元醇溶液、銦(In)元素化合物之多元醇溶液及X元素化合物之醇類溶液,其中X元素選自硫(S)、硒(Se)或碲(Te),及X元素化合物之醇類溶液的醇類可選自多元醇或單元醇;混合銅元素化合物之多元醇溶液、銦元素化合物之多元醇溶液及X元素化合物之醇類溶液成為一多元醇混合液;加熱含有銅元素、銦元素及X元素的多元醇混合液至溫度高於一結晶溫度,以得到銅銦化物(CuInX2)的奈米粒子;以及過濾獲得銅銦化物的奈米粒子。本發明係利用多元醇對各種元素原料具有高溶解度以及多元醇的沸點高於銅銦化物結晶溫度的雙重特性,來進行液相合成反應,進而製備銅銦化物或其衍生物的奈米粒子(粒徑介於20至50奈米之間),以便後續用於製造具有半導體特性薄膜之基板(例如玻璃基板或可撓性基板),以應用於製造各種薄膜式太陽能電池或其他半導體電子元件。本發明將於下文列舉第一至四實施並搭配第1至4圖來對本發明之合成方法進行詳細說明。Referring to Figures 1, 2, 3 and 4, the present invention provides a method for synthesizing copper indium nitride nanoparticles by using a polyol, which mainly comprises the steps of separately preparing a polyol solution of a copper (Cu) element compound. a polyol solution of an indium (In) element compound and an alcohol solution of an X element compound, wherein the X element is selected from the group consisting of sulfur (S), selenium (Se) or cerium (Te), and an alcohol of an alcohol solution of an X element compound The type may be selected from a polyol or a unit alcohol; a polyol solution in which a copper element compound is mixed, a polyol solution of an indium element compound, and an alcohol solution of an X element compound are used as a polyol mixture; heating contains copper element, indium element, and The polyol mixture of the X element is heated to a temperature higher than a crystallization temperature to obtain a copper indium hydride (CuInX 2 ) nanoparticle; and the copper indium hydride nanoparticle is obtained by filtration. The invention utilizes the dual characteristics that the polyol has high solubility to various element raw materials and the boiling point of the polyol is higher than the crystallization temperature of the copper indium compound, thereby performing liquid phase synthesis reaction, thereby preparing nano particles of copper indium compound or its derivative ( The particle size is between 20 and 50 nanometers for subsequent use in the manufacture of substrates having semiconductor-characteristic films, such as glass substrates or flexible substrates, for use in the fabrication of various thin film solar cells or other semiconductor electronic components. The present invention will be described in detail below with reference to the first to fourth embodiments and in conjunction with the first to fourth figures.

請參照第1圖所示,本發明第一實施例之利用多元醇合成銅銦化物奈米粒子的方法係用以合成銅銦硫化物(CuInS2)。如第1圖所示,首先準備50ml(毫升)之二甘醇(diethylene glycol,DEG)做為多元醇。接著,取0.2g(公克)之氯化銦InCl3升溫至50℃溶解於10ml之二甘醇(DEG)中,以調配成銦(In)元素化合物之二甘醇溶液備用。另外,取0.1514g之硫脲(NH2CSNH2)加入20ml之二甘醇溶解於配有冷凝管之三口反應器內,以調配成硫(S)元素化合物之二甘醇溶液備用。隨後,另取0.0895g之氯化銅(CuCl)粉末及剩餘的二甘醇(DEG)溶液,以調配成銅(Cu)元素化合物之二甘醇溶液,並將其與銦元素化合物之二甘醇溶液一併加入具有冷凝管之三口反應器內,以進一步與硫(S)元素化合物之二甘醇溶液攪拌混合成為一二甘醇混合液。接著,將該二甘醇混合液加熱升溫至200至240℃維持2小時以上,例如以200℃維持加熱約2小時,上述溫度可使銅、銦、硫元素充分反應,並合成銅銦硫化物(CuInS2)的結晶,待充分結晶後,使該二甘醇混合液降至常溫,以濾紙過濾結晶之奈米粒子,並利用酒精清洗及進行離心,烘乾後即可得銅銦硫化物(CuInS2)的奈米粒子,其銅:銦:硫之莫爾數比=1:1:2.2,粒徑介於30至40奈米(nm)之間。Referring to Fig. 1, a method for synthesizing copper indium nitride nanoparticles using a polyol according to a first embodiment of the present invention is for synthesizing copper indium sulfide (CuInS 2 ). As shown in Fig. 1, first, 50 ml (ml) of diethylene glycol (DEG) was prepared as a polyol. Next, 0.2 g (g) of indium chloride InCl 3 was heated to 50 ° C and dissolved in 10 ml of diethylene glycol (DEG) to prepare a diethylene glycol solution of the indium (In) element compound for use. Separately, 0.1514 g of thiourea (NH 2 CSNH 2 ) was added to 20 ml of diethylene glycol to be dissolved in a three-port reactor equipped with a condenser tube to prepare a diethylene glycol solution of a sulfur (S) element compound for use. Subsequently, another 0.0895 g of copper chloride (CuCl) powder and the remaining diethylene glycol (DEG) solution were prepared to prepare a solution of copper (Cu) elemental compound in diethylene glycol, and it was combined with the indium element compound The alcohol solution is added to a three-port reactor having a condenser tube, and further stirred and mixed with a diethylene glycol solution of a sulfur (S) element compound to form a diethylene glycol mixture. Next, the diethylene glycol mixture is heated and heated to 200 to 240 ° C for 2 hours or more, for example, heating is maintained at 200 ° C for about 2 hours. The above temperature can fully react copper, indium and sulfur, and synthesize copper indium sulfide. Crystallization of (CuInS 2 ), after sufficient crystallization, the diethylene glycol mixture is lowered to normal temperature, and the crystallized nano particles are filtered by a filter paper, washed with alcohol and centrifuged, and dried to obtain copper indium sulfide. The nanoparticle of (CuInS 2 ) has a copper:indium:sulfur molar ratio=1:1:2.2, and a particle diameter of between 30 and 40 nanometers (nm).

請參照第2圖所示,本發明第二實施例之利用多元醇合成銅銦化物奈米粒子的方法係用以合成銅銦硒化物(CuInSe2)。如第2圖所示,首先準備50ml之二甘醇(DEG)做為多元醇。接著,取0.2g(公克)之氯化銦InCl3升溫至50℃溶解於10ml之二甘醇(DEG)中,以調配成銦(In)元素化合物之二甘醇溶液備用。另外,取0.157g之硒(Se)粉末、0.09g之硼氫化鈉(NaBH4)(莫耳數需稍多於硒粉約10%)與10ml乙醇(Ethanol,EtOH)加入具有冷凝管之三口反應器內並封口於常溫攪拌,待硒粉完全溶解溶液呈現清透橘紅色,即形成硒氫化鈉(NaHSe)溶液,也就是硒(Se)元素化合物之乙醇溶液。隨後,另取0.0895g之氯化銅(CuCl)粉末及剩餘的二甘醇(DEG)溶液,以調配成銅(Cu)元素化合物之二甘醇溶液,並將其與銦元素化合物之二甘醇溶液一併加入三口反應器內,以進一步與硒(Se)元素化合物之乙醇溶液攪拌混合成為一以二甘醇為主之混合液。接著,將該二甘醇混合液加熱升溫。在初步升溫至120℃時,由於該二甘醇混合液混合有乙醇使沸點降低,因此將開始沸騰迴流。此時,打開三口反應器之開口讓乙醇揮發,僅剩二甘醇。接著,再繼續加熱直到溫度升至210至240℃維持2小時以上,例如以240℃維持加熱約4至6小時,上述溫度可使銅、銦、硒元素充分反應,並合成銅銦硒化物(CuInSe2)的結晶。待充分結晶後,使該二甘醇混合液降至常溫,以濾紙過濾結晶之奈米粒子,並利用酒精清洗及進行離心,烘乾後即可得銅銦硒化物(CuInSe2)的奈米粒子,其銅:銦:硒之莫爾數比=1:1:2.2,粒徑介於35至50奈米(nm)之間。Referring to Fig. 2, a method for synthesizing copper indium nitride nanoparticles using a polyol according to a second embodiment of the present invention is for synthesizing copper indium selenide (CuInSe 2 ). As shown in Fig. 2, 50 ml of diethylene glycol (DEG) was first prepared as a polyol. Next, 0.2 g (g) of indium chloride InCl 3 was heated to 50 ° C and dissolved in 10 ml of diethylene glycol (DEG) to prepare a diethylene glycol solution of the indium (In) element compound for use. In addition, 0.157 g of selenium (Se) powder, 0.09 g of sodium borohydride (NaBH 4 ) (the molar number is slightly more than about 10% of the selenium powder) and 10 ml of ethanol (Ethanol, EtOH) are added to the three ports with the condensation tube. The reactor is sealed and stirred at room temperature. When the solution of the selenium powder is completely dissolved, the solution is clear orange-red, that is, a solution of sodium selenide (NaHSe), that is, an ethanol solution of a selenium (Se) element compound. Subsequently, another 0.0895 g of copper chloride (CuCl) powder and the remaining diethylene glycol (DEG) solution were prepared to prepare a solution of copper (Cu) elemental compound in diethylene glycol, and it was combined with the indium element compound The alcohol solution is added to the three-port reactor together, and further stirred and mixed with the ethanol solution of the selenium (Se) element compound to form a mixture of diethylene glycol. Next, the diethylene glycol mixture was heated and heated. At the initial temperature rise to 120 ° C, since the diethylene glycol mixture is mixed with ethanol to lower the boiling point, boiling reflux will begin. At this point, the opening of the three-port reactor was opened to allow the ethanol to evaporate, leaving only diethylene glycol. Then, continue to heat until the temperature is raised to 210 to 240 ° C for more than 2 hours, for example, to maintain heating at 240 ° C for about 4 to 6 hours, the above temperature can fully react copper, indium, selenium elements, and synthesize copper indium selenide ( Crystallization of CuInSe 2 ). After sufficient crystallization, the diethylene glycol mixture is lowered to normal temperature, and the crystallized nano particles are filtered by a filter paper, washed with alcohol and centrifuged, and dried to obtain a copper indium selenide (CuInSe 2 ) nanometer. Particles, copper: indium: molar ratio of selenium = 1:1: 2.2, particle size between 35 and 50 nanometers (nm).

請參照第3圖所示,本發明第三實施例之利用多元醇合成銅銦化物奈米粒子的方法係用以合成銅銦碲化物(CuInTe2)。如第3圖所示,首先準備70ml(毫升)之四甘醇(tetraethylene glycol,TEG)做為多元醇。接著,取0.2g(公克)之氯化銦InCl3升溫至50℃溶解於10ml之四甘醇(TEG)中,以調配成銦(In)元素化合物之四甘醇溶液備用。另外,取0.2538g之碲(Te)粉末加入20ml之四甘醇,加熱升溫至90℃溶解於配有冷凝管及通入氬氣之三口反應器內,攪拌10分鐘後,取0.7525g之硼氫化鈉(NaBH4)(莫耳數需多於碲粉約10倍)加入反應器內,攪拌後顏色由黑色轉為深紫色,即形成碲氫化鈉(NaHTe)溶液,也就是碲(Te)元素化合物之四甘醇溶液。隨後,另取0.0895g之氯化銅(CuCl)粉末及剩餘的四甘醇(TEG)溶液,升溫至150℃使其溶解,待溶解後降至常溫,以調配成銅(Cu)元素化合物之四甘醇溶液,接著將其與銦元素化合物之四甘醇溶液一併加入具有冷凝管之三口反應器內,以進一步與碲(Te)元素化合物之四甘醇溶液攪拌混合成為一四甘醇混合液。接著,將該四甘醇混合液加熱升溫至280至310℃維持6小時以上,例如以280℃維持加熱約6小時,上述溫度可使銅、銦、碲元素充分反應,並合成銅銦碲化物(CuInTe2)的結晶。待充分結晶後,使該四甘醇混合液降至常溫,以濾紙過濾結晶之奈米粒子,並利用酒精清洗及進行離心,烘乾後即可得銅銦碲化物(CuInTe2)的奈米粒子,其銅:銦:碲之莫爾數比=1:1:2.2,粒徑介於35至50奈米(nm)之間。Referring to Fig. 3, a method for synthesizing copper indium halide nanoparticles using a polyol according to a third embodiment of the present invention is for synthesizing copper indium telluride (CuInTe 2 ). As shown in Fig. 3, 70 ml (ml) of tetraethylene glycol (TEG) was first prepared as a polyol. Next, 0.2 g (g) of indium chloride InCl 3 was heated to 50 ° C and dissolved in 10 ml of tetraethylene glycol (TEG) to prepare a tetraethylene glycol solution of the indium (In) element compound for use. In addition, 0.2538 g of cerium (Te) powder was added to 20 ml of tetraethylene glycol, heated to 90 ° C and dissolved in a three-port reactor equipped with a condenser and argon gas. After stirring for 10 minutes, 0.7525 g of boron was taken. Sodium hydride (NaBH 4 ) (more than about 10 times the molar number of strontium) is added to the reactor. After mixing, the color changes from black to dark purple, which forms a solution of sodium hydride (NaHTe), which is 碲 (Te). A tetraethylene glycol solution of the elemental compound. Subsequently, another 0.0895 g of copper chloride (CuCl) powder and the remaining tetraethylene glycol (TEG) solution were taken, and the temperature was raised to 150 ° C to dissolve it, and after being dissolved, it was lowered to normal temperature to prepare a copper (Cu) element compound. The tetraethylene glycol solution is then added to the three-port reactor with the condensing tube together with the tetraethylene glycol solution of the indium element compound to further mix and mix with the tetraethylene glycol solution of the cerium (Te) element compound to form a tetraethylene glycol. Mixture. Next, the tetraethylene glycol mixture is heated and heated to 280 to 310 ° C for 6 hours or more, for example, heating is maintained at 280 ° C for about 6 hours. The above temperature can fully react copper, indium and bismuth elements, and synthesize copper indium telluride. Crystallization of (CuInTe 2 ). After sufficient crystallization, the tetraethylene glycol mixture is lowered to normal temperature, and the crystallized nano particles are filtered by a filter paper, washed with alcohol and centrifuged, and dried to obtain a copper indium telluride (CuInTe 2 ) nanometer. Particles, copper: indium: molar ratio of enthalpy = 1:1: 2.2, particle size between 35 and 50 nanometers (nm).

請參照第4圖所示,本發明第四實施例之利用多元醇合成銅銦化物奈米粒子的方法係係用以合成銅銦鎵硒化物(CuIn1-yGaySe2),其中y介於0.3至0.6之間。如第4圖所示,首先準備50ml之四甘醇(TEG)做為多元醇。接著,取0.0942g(公克)之氯化銦InCl3及0.05g(公克)之氯化鎵GaCl3分別溶解於10ml之四甘醇(TEG)中,以調配成銦(In)元素化合物之四甘醇溶液及鎵(Ga)元素化合物之四甘醇溶液備用。另外,取0.1233g之硒(Se)粉末、0.0709g之硼氫化鈉(NaBH4)(莫耳數需稍多於硒粉約10%)與10ml乙醇(Ethanol,EtOH)加入具有冷凝管之三口反應器內並封口於常溫攪拌,待硒粉完全溶解溶液呈現清透橘紅色,即形成硒氫化鈉(NaHSe)溶液,也就是硒(Se)元素化合物之乙醇溶液。隨後,另取0.0703g之氯化銅(CuCl)粉末及剩餘的四甘醇(TEG)溶液,以調配成銅(Cu)元素化合物之四甘醇溶液,並將其與銦元素化合物之四甘醇溶液一併加入三口反應器內,以進一步與硒(Se)元素化合物之乙醇溶液攪拌混合成為一以四甘醇為主之混合液。接著,將該四甘醇混合液加熱升溫。在初步升溫至120℃時,由於該四甘醇混合液混合有乙醇使沸點降低,因此將開始沸騰迴流,使沸騰維持30分鐘。此時,打開三口反應器之開口讓乙醇揮發。接著,另加入鎵元素化合物之四甘醇溶液,再繼續加熱至125℃使沸騰維持30分鐘,讓乙醇完全揮發,僅剩四甘醇。接著,再繼續加熱直到溫度升至280至310℃維持6小時以上,例如以280℃維持加熱約6小時,上述溫度可使銅、銦、鎵、硒元素充分反應,並合成銅銦鎵硒化物(CuIn0.6Ga0.4Se2)的結晶。待充分結晶後,使該四甘醇混合液降至常溫,以濾紙過濾結晶之奈米粒子,並利用酒精清洗及進行離心,烘乾後即可得銅銦鎵硒化物(CuIn0.6Ga0.4Se2)的奈米粒子,粒徑介於35至50奈米(nm)之間。Referring to FIG. 4, a method for synthesizing copper indium nitride nanoparticles using a polyol according to a fourth embodiment of the present invention is for synthesizing copper indium gallium selenide (CuIn 1-y Ga y Se 2 ), wherein y Between 0.3 and 0.6. As shown in Fig. 4, 50 ml of tetraethylene glycol (TEG) was first prepared as a polyol. Next, 0.0942 g (g) of indium chloride InCl 3 and 0.05 g (g) of gallium chloride GaCl 3 were respectively dissolved in 10 ml of tetraethylene glycol (TEG) to prepare an indium (In) element compound A glycol solution and a tetraethylene glycol solution of a gallium (Ga) element compound are used. In addition, 0.1233 g of selenium (Se) powder, 0.0709 g of sodium borohydride (NaBH 4 ) (the molar number is slightly more than about 10% of the selenium powder) and 10 ml of ethanol (Ethanol, EtOH) are added to the three with a condenser tube. The reactor is sealed and stirred at room temperature. When the solution of the selenium powder is completely dissolved, the solution is clear orange-red, that is, a solution of sodium selenide (NaHSe), that is, an ethanol solution of a selenium (Se) element compound. Subsequently, another 0.0703 g of copper chloride (CuCl) powder and the remaining tetraethylene glycol (TEG) solution were prepared to prepare a tetraethylene glycol solution of a copper (Cu) element compound, and the indium element compound The alcohol solution was added to the three-port reactor together, and further stirred and mixed with the ethanol solution of the selenium (Se) element compound to form a tetraethylene glycol-based mixture. Next, the tetraethylene glycol mixture was heated and heated. When the initial temperature is raised to 120 ° C, since the tetraethylene glycol mixture is mixed with ethanol to lower the boiling point, boiling reflux is started, and boiling is maintained for 30 minutes. At this point, open the opening of the three-port reactor to allow the ethanol to evaporate. Next, a tetraethylene glycol solution of a gallium compound was further added, and heating was continued to 125 ° C to maintain boiling for 30 minutes, and the ethanol was completely volatilized, leaving only tetraethylene glycol. Then, continue to heat until the temperature rises to 280 to 310 ° C for more than 6 hours, for example, to maintain heating at 280 ° C for about 6 hours, the above temperature can fully react copper, indium, gallium, selenium elements, and synthesize copper indium gallium selenide Crystallization of (CuIn 0.6 Ga 0.4 Se 2 ). After sufficient crystallization, the tetraethylene glycol mixture is lowered to room temperature, and the crystallized nano particles are filtered by a filter paper, washed with alcohol and centrifuged, and dried to obtain copper indium gallium selenide (CuIn 0.6 Ga 0.4 Se). 2 ) Nanoparticles having a particle size between 35 and 50 nanometers (nm).

請參照第5圖所示,其揭示由本發明第一至第三實施例合成之(a)銅銦硫化物(CuInS2)、(b)銅銦硒化物(CuInSe2)及(c)銅銦碲化物(CuInTe2)等奈米粒子之X-光繞射圖。如第5圖所示,各奈米粒子之繞射峰經由粉末繞射標準聯合委員會(Joint Committee of Powder Diffraction Standards,JCPDS)之第27-0159號、第40-1487號及第34-1498號粉末標準比對後完全符合。再者,請參照第6圖所示,其揭示由本發明合成之銅銦硒化物(CuInSe2)奈米粒子之穿隧式電子顯微鏡(TEM)照相圖及其電子選區繞射(SEAD)照相圖,其中經由穿隧式電子顯微鏡(TEM)觀測各種奈米粒子的晶粒大小,得知上述3種奈米粒子之粒徑尺寸係介於35至47奈米(nm)之間。在本發明中,依欲合成之奈米粒子種類,其粒徑大多介於20至50奈米之間。另外,請參照第7及8圖所示,其揭示由本發明合成之各種銅銦鎵硒化物(a)CuIn0.7Ga0.3Se2、(b)CuIn0.6Ga0.4Se2、(c)CuIn0.5Ga0.5Se2及(d)CuIn0.4Ga0.6Se2等奈米粒子之X-光繞射圖及其局部放大圖,其中由各種銅銦鎵硒化物(CuIn1-yGaySe2)奈米複合材料於不同鎵(Ga)元素取代量(y=0.3~0.6)下的X-光繞射結果可以明顯得知其奈米粒子的結晶面峰值(如第8圖所示)會隨著鎵(Ga)的取代量不同而產生平移現象。Please refer to FIG. 5, which discloses (a) copper indium sulfide (CuInS 2 ), (b) copper indium selenide (CuInSe 2 ) and (c) copper indium synthesized by the first to third embodiments of the present invention. X-ray diffraction pattern of nano particles such as telluride (CuInTe 2 ). As shown in Fig. 5, the diffraction peaks of the respective nanoparticles are via the Joint Committee of Powder Diffraction Standards (JCPDS) Nos. 27-0159, 40-1487, and 34-1498. The powder standard is fully matched after the comparison. Furthermore, please refer to FIG. 6, which discloses a tunneling electron microscope (TEM) photographic image of a copper indium selenide (CuInSe 2 ) nanoparticle synthesized by the present invention and an electronic selective area diffraction (SEAD) photographic image. The grain size of each of the nano particles was observed by a tunneling electron microscope (TEM), and the particle size of the three kinds of nano particles was found to be between 35 and 47 nanometers (nm). In the present invention, depending on the type of the nanoparticle to be synthesized, the particle diameter is mostly between 20 and 50 nm. Further, please refer to Figures 7 and 8, which disclose various copper indium gallium selenide synthesized by the present invention (a) CuIn 0.7 Ga 0.3 Se 2 , (b) CuIn 0.6 Ga 0.4 Se 2 , (c) CuIn 0.5 Ga X-ray diffraction pattern of 0.5 Se 2 and (d) CuIn 0.4 Ga 0.6 Se 2 and other nano particles and a partial enlarged view thereof, wherein various copper indium gallium selenide (CuIn 1-y Ga y Se 2 ) nanoparticles The X-ray diffraction results of the composite materials under different gallium (Ga) element substitutions (y=0.3~0.6) can clearly show that the crystal surface peak of the nano particles (as shown in Fig. 8) will follow the gallium. The substitution amount of (Ga) is different to cause a translation phenomenon.

再者,在本發明中,本發明所指之多元醇除了使用二甘醇(DEG,沸點245℃)或四甘醇(TEG,沸點327℃)之外,亦可依欲合成的奈米粒子種類的結晶溫度來選擇使用其他多元醇,例如三甘醇(triethylene glycol,沸點288℃),或者亦可選自乙二醇(ethylene glycol,沸點197℃)或聚乙二醇(poly-ethylene glycol,分子量200~6000,沸點依分子量而定,約在250℃上下)。上述多元醇之沸點必需高於該銅銦化物的結晶溫度,以免在尚未完成結晶反應時就蒸發過多溶劑。再者,X元素化合物之醇類溶液中使用的醇類可選自多元醇或單元醇,其中多元醇可選自上述種類,而單元醇則可選自以CnH2n+1OH表示之醇類,其中n為正整數,例如乙醇、丙醇類或丁醇類。如第2或4圖所示,當X元素化合物之醇類溶液中的醇類選自單元醇(如乙醇)時,在混合成該多元醇混合液之後,必需先初步加熱去除該多元醇混合液內之單元醇,接著再將該多元醇混合液之溫度提高至該奈米粒子之結晶溫度。另一方面,如第4圖所示,在調配溶液的最初步驟中,亦可選擇性另外調配鎵元素化合物之多元醇溶液;接著,在混合溶液的步驟中,另加入鎵元素化合物之多元醇溶液,以共同混合成該多元醇混合液;如此,在加熱該多元醇混合液至溫度高於一結晶溫度的步驟中,即可得到銅銦鎵化物(CuIn1-yGayX2)的奈米粒子,其中y介於0.3至0.6之間;以及最後,藉由過濾即可獲得銅銦鎵化物的奈米粒子,其中銅銦鎵化物(CuIn1-yGayX2)的X元素較佳選自硒(Se)。Furthermore, in the present invention, the polyol referred to in the present invention may be a nanoparticle to be synthesized in addition to diethylene glycol (DEG, boiling point 245 ° C) or tetraethylene glycol (TEG, boiling point 327 ° C). The type of crystallization temperature is selected to use other polyols, such as triethylene glycol (boiling point 288 ° C), or may be selected from ethylene glycol (ethylene glycol, boiling point 197 ° C) or polyethylene glycol (poly-ethylene glycol) The molecular weight is 200~6000, and the boiling point depends on the molecular weight, about 250 °C. The boiling point of the above polyol must be higher than the crystallization temperature of the copper indium compound so as not to evaporate excess solvent when the crystallization reaction has not been completed. Further, the alcohol used in the alcohol solution of the X element compound may be selected from a polyhydric alcohol or a unit alcohol, wherein the polyhydric alcohol may be selected from the above species, and the unit alcohol may be selected from C n H 2n+1 OH. Alcohols, wherein n is a positive integer such as ethanol, propanol or butanol. As shown in FIG. 2 or 4, when the alcohol in the alcohol solution of the X element compound is selected from a unit alcohol (such as ethanol), after mixing into the polyol mixture, it is necessary to initially heat and remove the polyol mixture. The unit alcohol in the liquid is then raised to the crystallization temperature of the nanoparticle. On the other hand, as shown in FIG. 4, in the initial step of formulating the solution, a polyhydric alcohol solution of a gallium element compound may be additionally additionally prepared; and then, in the step of mixing the solution, a polyhydric alcohol of a gallium element compound is further added. a solution to be mixed together to form the polyol mixture; thus, in the step of heating the polyol mixture to a temperature higher than a crystallization temperature, copper indium gallium (CuIn 1-y Ga y X 2 ) can be obtained. a nanoparticle, wherein y is between 0.3 and 0.6; and finally, a copper indium gallium nitride nanoparticle is obtained by filtration, wherein the X element of the copper indium gallium compound (CuIn 1-y Ga y X 2 ) It is preferably selected from selenium (Se).

在本發明依第1至4圖之第一至第四實施例的任一方式或類似方式製備某一銅銦化物或其衍生物的奈米粒子後,本發明可對該些奈米粒子另外選擇性進行下列步驟:首先,將銅銦化物(或銅銦鎵化物)的奈米粒子與有機印刷油墨填料混合調配成一印刷油墨;接著,將該印刷油墨網版印刷至一基板的表面上;隨後,利用高溫去除該印刷油墨中的有機印刷油墨填料,僅留下由銅銦化物(或銅銦鎵化物)形成的一吸收層於該基板上,如此該基板即成為具有半導體特性薄膜之基板,並可應用於製造各種薄膜式太陽能電池或其他半導體電子元件。在上述高溫去除該印刷油墨的步驟中,本發明較佳利用快速熱退火(rapid thermal annealing,RTA)或烘烤(curing)的方式來進行高溫去除該有機印刷油墨填料。再者,該基板可選自透明硬式基板(如玻璃基板等)或透明可撓性軟式基板(如聚甲基丙烯酸甲酯PMMA或聚碳酸酯PC等)。After the nanoparticle of a certain copper indium compound or a derivative thereof is prepared according to any one of the first to fourth embodiments of the first to fourth embodiments of the present invention or the like, the present invention may additionally Selectively performing the following steps: first, mixing copper indium (or copper indium gallium) nanoparticle with an organic printing ink filler to form a printing ink; and then printing the printing ink onto a surface of a substrate; Subsequently, the organic printing ink filler in the printing ink is removed by high temperature, leaving only an absorbing layer formed of copper indium (or copper indium gallium) on the substrate, so that the substrate becomes a substrate having a semiconductor characteristic film. And can be applied to the manufacture of various thin film solar cells or other semiconductor electronic components. In the above step of removing the printing ink at a high temperature, the present invention preferably utilizes rapid thermal annealing (RTA) or curing to remove the organic printing ink filler at a high temperature. Furthermore, the substrate may be selected from a transparent hard substrate (such as a glass substrate or the like) or a transparent flexible flexible substrate (such as polymethyl methacrylate PMMA or polycarbonate PC, etc.).

如上所述,相較於習用黃銅礦型半導體Cu-III-VI2大多在真空環境下利用蒸鍍或濺鍍形成在基板上;或者在無真空環境下先將前驅物塗佈在基板上,接著再藉由高溫熱處理方式將前驅物還原成銅銦硫CIS等材料,但上述真空製程具有設備昂貴及必需使用有,毒硒化氫氣體等缺點;及上述高溫熱處理製程僅能得到大粒徑的低效率之均一吸收層,第1至4圖之本發明藉由在常壓下利用多元醇(polyol)溶解各種元素原料,並在多元醇提供的液相環境下加熱至適當結晶溫度以使元素原料進行合成反應並結晶成銅銦化物(CuInX2)或銅銦鎵硒化物(CuIn1-yGaySe2)之奈米粒子,在合成期間不需使用昂貴製程設備或具毒性的氫化硒氣體,進而有利於降低製造成本及提高製程安全性。再者,本發明在藉由適當控制多元醇液相環境的加熱溫度及時間等參數,以合成具有奈米級粒徑的銅銦化物或銅銦鎵硒化物之奈米粒子後,可進一步利用網版印刷搭配快速熱退火或烘烤的方式在基板上形成銅銦化物或銅銦鎵硒化物之吸收層,其亦有利於降低材料粒徑及提高發電效率。As described above, Cu-III-VI 2 is mostly formed on a substrate by vapor deposition or sputtering in a vacuum environment; or the precursor is coated on a substrate in a vacuum-free environment. Then, the precursor is reduced to a material such as copper indium sulfide CIS by a high-temperature heat treatment method, but the above vacuum process has disadvantages such as expensive equipment and necessary use of poisoned hydrogen selenide gas; and the above high-temperature heat treatment process can only obtain large particles. The low-efficiency uniform absorption layer of the diameter, the invention of Figures 1 to 4 dissolves various elemental raw materials by using a polyol under normal pressure, and is heated to a suitable crystallization temperature in a liquid phase environment provided by the polyol. The elemental material is subjected to a synthesis reaction and crystallized into a copper indium (CuInX 2 ) or copper indium gallium selenide (CuIn 1-y Ga y Se 2 ) nanoparticle, which does not require expensive process equipment or is toxic during the synthesis. The selenium gas is hydrogenated, which in turn helps to reduce manufacturing costs and improve process safety. Furthermore, the present invention can further utilize a copper indium compound or a copper indium gallium selenide nanoparticle having a nanometer particle diameter by appropriately controlling parameters such as heating temperature and time of a liquid phase environment of a polyol. Screen printing is combined with rapid thermal annealing or baking to form an absorption layer of copper indium or copper indium gallium selenide on the substrate, which is also advantageous for reducing the particle size of the material and improving the power generation efficiency.

雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The present invention has been disclosed in its preferred embodiments, and is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

第1圖:本發明第一實施例利用二甘醇合成銅銦硫化物(CuInS2)奈米粒子之反應流程圖。Fig. 1 is a flow chart showing the reaction of synthesizing copper indium sulfide (CuInS 2 ) nanoparticles using diethylene glycol in the first embodiment of the present invention.

第2圖:本發明第二實施例利用二甘醇合成銅銦硒化物(CuInSe2)奈米粒子之反應流程圖。Fig. 2 is a flow chart showing the reaction of synthesizing copper indium selenide (CuInSe 2 ) nanoparticles using diethylene glycol in the second embodiment of the present invention.

第3圖:本發明第三實施例利用四甘醇合成銅銦碲化物(CuInTe2)奈米粒子之反應流程圖。Fig. 3 is a flow chart showing the reaction of synthesizing copper indium telluride (CuInTe 2 ) nanoparticles using tetraethylene glycol in the third embodiment of the present invention.

第4圖:本發明第四實施例利用四甘醇合成銅銦鎵硒化物(CuIn1-yGaySe2)奈米粒子之反應流程圖。Fig. 4 is a flow chart showing the reaction of synthesizing copper indium gallium selenide (CuIn 1-y Ga y Se 2 ) nanoparticles using tetraethylene glycol in the fourth embodiment of the present invention.

第5圖:由本發明合成之(a)銅銦硫化物(CuInS2)、(b)銅銦硒化物(CuInSe2)及(c)銅銦碲化物(CuInTe2)等奈米粒子之X-光繞射圖。Figure 5: X- of nanoparticles of (a) copper indium sulfide (CuInS 2 ), (b) copper indium selenide (CuInSe 2 ) and (c) copper indium telluride (CuInTe 2 ) synthesized by the present invention Light diffraction pattern.

第6圖:由本發明合成之銅銦硒化物(CuInSe2)奈米粒子之穿隧式電子顯微鏡(TEM)照相圖及其電子選區繞射(SEAD)照相圖。Figure 6: Tunneling electron microscope (TEM) photographic image of a copper indium selenide (CuInSe 2 ) nanoparticle synthesized by the present invention and its electronic selective area diffraction (SEAD) photographic image.

第7圖:由本發明合成之銅銦鎵硒化物(a)CuIn0.7Ga0.3Se2、(b)CuIn0.6Ga0.4Se2、(c)CuIn0.5Ga0.5Se2及(d)CuIn0.4Ga0.6Se2等奈米粒子之X-光繞射圖。Figure 7: Copper indium gallium selenide synthesized by the present invention (a) CuIn 0.7 Ga 0.3 Se 2 , (b) CuIn 0.6 Ga 0.4 Se 2 , (c) CuIn 0.5 Ga 0.5 Se 2 and (d) CuIn 0.4 Ga 0.6 X-ray diffraction pattern of nano particles such as Se 2 .

第8圖:本發明第7圖之局部放大X-光繞射圖。Figure 8 is a partial enlarged X-ray diffraction pattern of Figure 7 of the present invention.

Claims (15)

一種利用多元醇合成銅銦化物奈米粒子的方法,其包含:分別調配銅(Cu)元素化合物之多元醇溶液、銦(In)元素化合物之多元醇溶液及X元素化合物之醇類溶液,其中X元素選自硫(S)、硒(Se)或碲(Te),其中當X元素為硫(S)時,該銅(Cu)元素化合物之多元醇溶液之莫爾濃度為0.045M,該銦(In)元素化合物之多元醇溶液之莫爾濃度為0.09M,且該硫(S)元素化合物之醇類溶液之莫爾濃度為0.1M;或者當X元素為硒(Se)且該銅(Cu)元素化合物之多元醇溶液之莫爾濃度為0.023M時,該銦(In)元素化合物之多元醇溶液之莫爾濃度為0.09M,且該硒(Se)元素化合物之醇類溶液之莫爾濃度為0.437M;或者當X元素為硒(Se)且該銅(Cu)元素化合物之多元醇溶液之莫爾濃度為0.018M時,該銦(In)元素化合物之多元醇溶液之莫爾濃度為0.0712M,且該硒(Se)元素化合物之醇類溶液之莫爾濃度為0.343M;或者當X元素為碲(Te)時,該銅(Cu)元素化合物之多元醇溶液之莫爾濃度為0.018M,該銦(In)元素化合物之多元醇溶液之莫爾濃度為0.09M,且該碲(Te)元素化合物之醇類溶液之莫爾濃度為0.2M;混合銅元素化合物之多元醇溶液、銦元素化合物之多元醇溶液及X元素化合物之醇類溶液成為一多元醇 混合液;加熱含有銅元素、銦元素及X元素的多元醇混合液至溫度高於一結晶溫度,以得到銅銦化物(CuInX2)的奈米粒子,其中該多元醇之沸點高於該銅銦化物的結晶溫度,且當X元素選自硫(S)時,加熱溫度介於200度至240度之間,且加熱時間至少2小時;當X元素選自硒(Se)時,加熱溫度介於210度至240度之間,加熱時間介於4至6小時,或者加熱溫度介於280度至310度之間,且加熱時間至少6小時;當X元素選自碲(Te)時,加熱溫度介於280度至310度之間,且加熱時間至少6小時;以及過濾獲得銅銦化物的奈米粒子。 A method for synthesizing copper indium nitride nanoparticles by using a polyol, comprising: separately preparing a polyol solution of a copper (Cu) element compound, a polyol solution of an indium (In) element compound, and an alcohol solution of an X element compound, wherein The X element is selected from the group consisting of sulfur (S), selenium (Se) or tellurium (Te), wherein when the X element is sulfur (S), the molar concentration of the copper (Cu) element compound polyol solution is 0.045 M, which The molar concentration of the polyol solution of the indium (In) element compound is 0.09 M, and the molar concentration of the alcohol solution of the sulfur (S) element compound is 0.1 M; or when the X element is selenium (Se) and the copper When the Mohr concentration of the polyol solution of the (Cu) element compound is 0.023 M, the molar concentration of the polyol solution of the indium (In) element compound is 0.09 M, and the alcohol solution of the selenium (Se) element compound The Mohr concentration is 0.437 M; or when the X element is selenium (Se) and the Moor concentration of the copper (Cu) element compound polyol solution is 0.018 M, the indium (In) element compound polyol solution is not The concentration is 0.0712M, and the molar concentration of the alcohol solution of the selenium (Se) element compound is 0.343M; or when the X element is 碲 (T e), the molar concentration of the copper (Cu) element compound polyol solution is 0.018 M, the molar concentration of the indium (In) element compound polyol solution is 0.09 M, and the cerium (Te) element compound The alcohol solution has a Mohr concentration of 0.2 M; the polyol solution of the copper element compound, the polyol solution of the indium element compound, and the alcohol solution of the X element compound become a polyol mixture; the heating contains copper element, indium a polyol mixture of an element and an X element to a temperature higher than a crystallization temperature to obtain a copper indium compound (CuInX 2 ) nanoparticle, wherein the boiling point of the polyol is higher than a crystallization temperature of the copper indium compound, and when X When the element is selected from sulfur (S), the heating temperature is between 200 and 240 degrees, and the heating time is at least 2 hours; when the X element is selected from selenium (Se), the heating temperature is between 210 and 240 degrees. The heating time is between 4 and 6 hours, or the heating temperature is between 280 and 310 degrees, and the heating time is at least 6 hours; when the X element is selected from the group consisting of cerium (Te), the heating temperature is between 280 and 310 degrees. Between and at least 6 hours of heating; and filtration to obtain copper indium nitride Child. 如申請專利範圍第1項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中銅元素化合物之多元醇溶液中的多元醇選自二甘醇、三甘醇、四甘醇、乙二醇或聚乙二醇。 The method for synthesizing copper indium nitride nanoparticles by using a polyol according to claim 1, wherein the polyol in the polyol solution of the copper element compound is selected from the group consisting of diethylene glycol, triethylene glycol, tetraethylene glycol, and B. Glycol or polyethylene glycol. 如申請專利範圍第1項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中銦元素化合物之多元醇溶液中的多元醇選自二甘醇、三甘醇、四甘醇、乙二醇或聚乙二醇。 The method for synthesizing copper indium nitride nanoparticles by using a polyol according to claim 1, wherein the polyol in the polyol solution of the indium element compound is selected from the group consisting of diethylene glycol, triethylene glycol, tetraethylene glycol, and B. Glycol or polyethylene glycol. 如申請專利範圍第1項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中X元素化合物之醇類溶液中的醇類選自多元醇或單元醇。 The method for synthesizing copper indium nitride nanoparticles by using a polyol according to the first aspect of the invention, wherein the alcohol in the alcohol solution of the X element compound is selected from the group consisting of a polyol or a unit alcohol. 如申請專利範圍第4項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中多元醇選自二甘醇、三甘醇、四甘醇、乙二醇或聚乙二醇;及單元醇選自乙醇、丙醇類或丁醇類。 The method for synthesizing copper indium nitride nanoparticles by using a polyol according to claim 4, wherein the polyol is selected from the group consisting of diethylene glycol, triethylene glycol, tetraethylene glycol, ethylene glycol or polyethylene glycol; The unit alcohol is selected from the group consisting of ethanol, propanol or butanol. 如申請專利範圍第1項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中當X元素化合物之醇類溶液中的醇類選自單元醇時,在混合成該多元醇混合液之後,先加熱去除該多元醇混合液內之單元醇,接著再將該多元醇混合液之溫度提高至該結晶溫度。 The method for synthesizing copper indium nitride nanoparticles by using a polyol according to claim 1, wherein when the alcohol in the alcohol solution of the X element compound is selected from a unit alcohol, the polyol mixture is mixed. Thereafter, the unit alcohol in the polyol mixture is first heated and then the temperature of the polyol mixture is raised to the crystallization temperature. 如申請專利範圍第1項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中該銅銦化物的奈米粒子之粒徑介於20至50奈米之間。 The method for synthesizing copper indium nitride nanoparticles by using a polyol according to claim 1, wherein the copper indium halide has a particle diameter of between 20 and 50 nm. 如申請專利範圍第1項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中在過濾後另包含:將銅銦化物的奈米粒子與有機印刷油墨填料混合調配成一印刷油墨;將該印刷油墨網版印刷至一基板的表面上;高溫去除該印刷油墨中的有機印刷油墨填料,僅留下由銅銦化物形成的一吸收層於該基板上。 The method for synthesizing copper indium hydride nanoparticles by using a polyol according to claim 1, wherein after filtering, the copper indium sulphide particles are mixed with an organic printing ink filler to form a printing ink; The printing ink screen is printed onto the surface of a substrate; the organic printing ink filler in the printing ink is removed at a high temperature, leaving only an absorbing layer formed of copper indium compound on the substrate. 如申請專利範圍第8項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中利用快速熱退火或烘烤進行高溫去除該有機印刷油墨填料。 A method of synthesizing copper indium nitride nanoparticles using a polyol as described in claim 8, wherein the organic printing ink filler is removed at a high temperature by rapid thermal annealing or baking. 如申請專利範圍第8項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中該基板為透明硬式基板或 透明可撓性軟式基板。 The method for synthesizing copper indium nitride nanoparticles by using a polyol according to claim 8, wherein the substrate is a transparent hard substrate or Transparent flexible flexible substrate. 如申請專利範圍第1項所述之利用多元醇合成銅銦化物奈米粒子的方法,另包含:在調配溶液時,另調配鎵元素化合物之多元醇溶液;在混合溶液時,另加入鎵元素化合物之多元醇溶液,以共同混合成該多元醇混合液;在加熱該多元醇混合液至溫度高於一結晶溫度時,得到銅銦鎵化物(CuIn1-yGayX2)的奈米粒子,其中y介於0.3至0.6之間;以及過濾獲得銅銦鎵化物的奈米粒子。 The method for synthesizing copper indium nitride nanoparticles by using a polyol according to claim 1, further comprising: adjusting a polyol solution of a gallium element compound when preparing the solution; and adding a gallium element when mixing the solution; a polyol solution of the compound to be mixed together to form the polyol mixture; and when the polyol mixture is heated to a temperature higher than a crystallization temperature, a copper indium gallium hydride (CuIn 1-y Ga y X 2 ) is obtained. Particles, wherein y is between 0.3 and 0.6; and nanoparticle particles obtained by copper indium gallium hydride are obtained by filtration. 如申請專利範圍第11項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中銅銦鎵化物的X元素選自硒(Se)。 The method for synthesizing copper indium nitride nanoparticles using a polyol according to claim 11, wherein the X element of the copper indium gallium compound is selected from the group consisting of selenium (Se). 如申請專利範圍第11項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中在過濾後另包含:將銅銦化物的奈米粒子與有機印刷油墨填料混合調配成一印刷油墨;將該印刷油墨網版印刷至一基板的表面上;高溫去除該印刷油墨中的有機印刷油墨填料,僅留下由銅銦化物形成的一吸收層於該基板上。 The method for synthesizing copper indium hydride nanoparticles by using a polyol according to claim 11, wherein after filtering, the copper indium sulphide particles are mixed with an organic printing ink filler to form a printing ink; The printing ink screen is printed onto the surface of a substrate; the organic printing ink filler in the printing ink is removed at a high temperature, leaving only an absorbing layer formed of copper indium compound on the substrate. 如申請專利範圍第13項所述之利用多元醇合成銅銦化物奈米粒子的方法,其中利用快速熱退火或烘烤進行高溫去除該有機印刷油墨填料。 A method of synthesizing copper indium nitride nanoparticles using a polyol as described in claim 13, wherein the organic printing ink filler is removed at a high temperature by rapid thermal annealing or baking. 如申請專利範圍第13項所述之利用多元醇合成銅銦 化物奈米粒子的方法,其中該基板為透明硬式基板或透明可撓性軟式基板。Synthesis of copper indium using polyols as described in claim 13 A method of forming a nanoparticle, wherein the substrate is a transparent hard substrate or a transparent flexible flexible substrate.
TW098121924A 2009-06-29 2009-06-29 Method for preparing cuinx2 compound nano-particles using polyol TWI644865B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098121924A TWI644865B (en) 2009-06-29 2009-06-29 Method for preparing cuinx2 compound nano-particles using polyol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098121924A TWI644865B (en) 2009-06-29 2009-06-29 Method for preparing cuinx2 compound nano-particles using polyol

Publications (2)

Publication Number Publication Date
TW201100331A TW201100331A (en) 2011-01-01
TWI644865B true TWI644865B (en) 2018-12-21

Family

ID=44836583

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098121924A TWI644865B (en) 2009-06-29 2009-06-29 Method for preparing cuinx2 compound nano-particles using polyol

Country Status (1)

Country Link
TW (1) TWI644865B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006050251A2 (en) * 2004-10-29 2006-05-11 Nanodynamics, Inc. Polyol-based method for producing ultra-fine metal powders
CN1933190A (en) * 2005-09-15 2007-03-21 允瞻通讯有限公司 Metal alloy film forming method and solar battery forming method
TW200908359A (en) * 2007-04-18 2009-02-16 Nanoco Technologies Co Ltd Fabrication of electrically active films based on multiple layers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006050251A2 (en) * 2004-10-29 2006-05-11 Nanodynamics, Inc. Polyol-based method for producing ultra-fine metal powders
CN1933190A (en) * 2005-09-15 2007-03-21 允瞻通讯有限公司 Metal alloy film forming method and solar battery forming method
TW200908359A (en) * 2007-04-18 2009-02-16 Nanoco Technologies Co Ltd Fabrication of electrically active films based on multiple layers

Also Published As

Publication number Publication date
TW201100331A (en) 2011-01-01

Similar Documents

Publication Publication Date Title
TWI382095B (en) Method for manufacturing multi-element metal chalcogenide synthesis
Fan et al. Energetic I–III–VI 2 and I 2–II–IV–VI 4 nanocrystals: synthesis, photovoltaic and thermoelectric applications
KR101633388B1 (en) A Method for Preparing Light Absorption Layer of copper-indium-gallium-sulfur-selenium Thin Film Solar Cells
US8563348B2 (en) Fabrication of electrically active films based on multiple layers
CN101040390A (en) Method for producing a thin-film chalcopyrite compound
KR102037130B1 (en) Inorganic Salt-Nanoparticle Ink for Thin Film Photovoltaic Devices and Related Methods
EP2212916A2 (en) Preparation of nanoparticle material
Ma et al. Fabrication of Cu2ZnSn (S, Se) 4 (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes
TW201946867A (en) Core-shell nanoparticles for photovoltaic absorber films
Long et al. Solvothermal synthesis, nanocrystal print and photoelectrochemical properties of CuInS2 thin film
JP6330051B2 (en) Method for doping Cu (In, Ga) (S, Se) 2 nanoparticles with sodium or antimony
TWI421214B (en) Fabrication method for ibiiiavia-group amorphous compound and ibiiiavia-group amorphous precursor for thin-film solar cell
JP2011129564A (en) Coating film forming photoelectric conversion semiconductor film, method of manufacturing the same, photoelectric conversion semiconductor film, photoelectric conversion device, and solar cell
JP6302546B2 (en) CIGS nanoparticle ink preparation with high crack-free limit
WO2012090339A1 (en) Process for production of compound having chalcopyrite structure
US20110023750A1 (en) Ink composition for forming absorbers of thin film cells and producing method thereof
Zhang et al. Phase-selective synthesis of CIGS nanoparticles with metastable phases through tuning solvent composition
TWI644865B (en) Method for preparing cuinx2 compound nano-particles using polyol
JP2019024106A (en) Preparation of copper-rich copper indium (gallium) diselenide/disulphide
Zhao et al. Solution-based synthesis of dense, large grained CuIn (S, Se) 2 thin films using elemental precursor
Xue et al. Fabrication of Cu2ZnSn (SxSe1− x) 4 solar cells by ethanol-ammonium solution process
WO2013180137A1 (en) Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
Chen et al. Preparation of Cu (In, Ga) Se2 films via direct heating the selenium-containing precursors without selenization
JP5782672B2 (en) COMPOUND SEMICONDUCTOR THIN FILM INK
JP2011091306A (en) Photoelectric conversion semiconductor layer and method of manufacturing the same, photoelectric conversion element, and solar cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees