TWI644467B - Control method for energy storage system - Google Patents

Control method for energy storage system Download PDF

Info

Publication number
TWI644467B
TWI644467B TW106146371A TW106146371A TWI644467B TW I644467 B TWI644467 B TW I644467B TW 106146371 A TW106146371 A TW 106146371A TW 106146371 A TW106146371 A TW 106146371A TW I644467 B TWI644467 B TW I644467B
Authority
TW
Taiwan
Prior art keywords
battery
battery module
voltage
offline
storage system
Prior art date
Application number
TW106146371A
Other languages
Chinese (zh)
Other versions
TW201931662A (en
Inventor
孫建中
周俊宏
陳麒化
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW106146371A priority Critical patent/TWI644467B/en
Priority to CN202110917860.1A priority patent/CN113612311A/en
Priority to CN201810120119.0A priority patent/CN109995146B/en
Application granted granted Critical
Publication of TWI644467B publication Critical patent/TWI644467B/en
Publication of TW201931662A publication Critical patent/TW201931662A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

儲能系統的控制方法,該儲能系統包括複數個電池模組。該控制方法包括:各該些電池模組回報個別通訊狀態與個別最大充/放電電流給該些電池模組之一主控電池模組;該主控電池模組據以通知一能源轉換器,以讓該能源轉換器據以設定一最大充/放電電流;當處於上線狀態的該些電池模組之一第一電池模組判斷本身準備離線時,該第一電池模組通知該主控電池模組,以讓該主控電池模組通報該能源轉換器來調降該最大充/放電電流;以及準備離線的該第一電池模組進行離線。 A control method for an energy storage system. The energy storage system includes a plurality of battery modules. The control method includes: each of the battery modules reporting an individual communication state and an individual maximum charge / discharge current to a master control battery module of one of the battery modules; the master control battery module notifies an energy converter accordingly, To allow the energy converter to set a maximum charge / discharge current; when one of the battery modules in the online state determines that the first battery module is ready to go offline, the first battery module notifies the main control battery A module to allow the main control battery module to notify the energy converter to reduce the maximum charge / discharge current; and the first battery module to be taken offline for offline operation.

Description

儲能系統的控制方法 Control method of energy storage system

本發明是有關於一種儲能系統的控制方法。 The invention relates to a control method of an energy storage system.

由於環保意識抬頭,近年來全球電動車與儲能產業的需求逐漸爆發。在家用/商用/工業用的儲能系統中,用電量多寡可能隨著季節(淡季、旺季)影響而需要動態配置。此動態配置可透過將電池組並聯實現。 Due to the rising awareness of environmental protection, the global electric vehicle and energy storage industry's demand has gradually exploded in recent years. In home / commercial / industrial energy storage systems, the amount of power consumption may need to be dynamically configured as the season (low season, peak season) affects. This dynamic configuration can be achieved by connecting the battery packs in parallel.

現有的電池組並聯方式例如有隔離式並聯與直接式並聯等。在隔離式並聯中,電池組輸出側經過DC/DC轉換器的隔離後,來調節輸入與輸出的能量。隔離式並聯架構的優點在於可以應用各種特性差異大的電池組,且不會有內迴路電流的產生。但隔離式並聯架構的主要缺點是體積大、重量重跟成本高。 Existing battery pack parallel methods include, for example, isolated parallel and direct parallel. In isolated parallel, the output side of the battery pack is isolated by the DC / DC converter to adjust the input and output energy. The advantage of the isolated parallel architecture is that various battery packs with widely different characteristics can be applied without the generation of internal loop current. However, the main disadvantages of the isolated parallel architecture are large size, high weight and high cost.

直接式並聯架構受限於只適用特性高度相似的電池組,但一旦發生電池組跳脫離線後,需要人工處理才能夠回復到連線狀態。 The direct parallel architecture is limited to only battery packs with similar characteristics, but once the battery pack jumps off the wire, it needs to be processed manually to be able to return to the connected state.

故而,需要有一種電儲能系統的控制方法,其可滿足儲能系統對於容量擴充的彈性需求,也實現熱插拔的特性。 Therefore, there is a need for a control method of an electric energy storage system, which can meet the elastic demand of the energy storage system for capacity expansion, and also realize the characteristics of hot plugging.

本案一實施例提出一種儲能系統的控制方法,該儲能系統包括複數個電池模組,該控制方法包括:各該些電池模組回報個別通訊狀態與個別最大充/放電電流給該些電池模組之一主控電池模組;該主控電池模組據以通知一能源轉換器,以讓該能源轉換器據以設定一最大充/放電電流;當處於上線狀態的該些電池模組之一第一電池模組判斷本身準備離線時,該第一電池模組通知該主控電池模組,以讓該主控電池模組通報該能源轉換器來調降該最大充/放電電流;以及準備離線的該第一電池模組進行離線。 An embodiment of the present invention proposes a method for controlling an energy storage system. The energy storage system includes a plurality of battery modules. The control method includes: each of the battery modules reporting an individual communication state and an individual maximum charge / discharge current to the batteries. One of the modules is a main control battery module; the main control battery module notifies an energy converter according to which the energy converter sets a maximum charge / discharge current; when the battery modules are online, When one of the first battery modules determines that it is ready to go offline, the first battery module notifies the main control battery module so that the main control battery module notifies the energy converter to reduce the maximum charge / discharge current; And the first battery module ready to be taken offline is taken offline.

本案另一實施例提出一種儲能系統的控制方法,該儲能系統包括複數個電池模組,該控制方法包括:根據已離線的該些電池模組的個別電池電壓,由該些電池模組之一主控電池模組通報一能源轉換器,以讓該能源轉換器設定一直流匯流排上的一充電電壓或一充電電流;以及當該些電池模組的一電池模組偵測到本身電池電壓與該直流匯流排上的該充電電壓間之一電壓差小於一設定值時,該電池模組掛載至該直流匯流排。 Another embodiment of the present invention provides a method for controlling an energy storage system. The energy storage system includes a plurality of battery modules. The control method includes: according to the individual battery voltage of the battery modules that are offline, the battery modules One of the main control battery modules notifies an energy converter to allow the energy converter to set a charging voltage or a charging current on the DC bus; and when a battery module of the battery modules detects itself When a voltage difference between a battery voltage and the charging voltage on the DC bus is less than a set value, the battery module is mounted on the DC bus.

本案又一實施例提出一種儲能系統的控制方法,該儲能系統包括複數個電池模組,該控制方法包括:根據已離線的該些電池模組的個別電池電壓,由該些電池模組之一主控電池模組從該些電池模組中選定一目標放電電池模組與一目標充電電池模組;當該目標放電電池模組與該目標充電電池模組間之一電壓差大於一設定值時,該目標放電電池模組對該目標充電電池模組進行限流充電;以及當所有 電池模組任二者間之個別電壓差小於該設定值時,將所有電池模組掛載至一直流匯流排。 Another embodiment of the present invention provides a method for controlling an energy storage system. The energy storage system includes a plurality of battery modules. The control method includes: according to the individual battery voltages of the battery modules that are offline. A main control battery module selects a target discharge battery module and a target rechargeable battery module from the battery modules; when a voltage difference between the target discharge battery module and the target rechargeable battery module is greater than one When the value is set, the target discharge battery module performs current-limit charging on the target rechargeable battery module; and when all When the individual voltage difference between any two of the battery modules is less than the set value, mount all battery modules to the DC bus.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above and other aspects of the present invention, the following specific examples are described in detail below in conjunction with the accompanying drawings:

100‧‧‧儲能系統 100‧‧‧ Energy Storage System

50‧‧‧能源轉換器 50‧‧‧ Energy Converter

10-30、10B-30B‧‧‧電池模組 10-30, 10B-30B‧‧‧ Battery Module

60‧‧‧直流匯流排 60‧‧‧DC bus

70‧‧‧通訊信號線 70‧‧‧ communication signal cable

11、21、31‧‧‧電池組 11, 21, 31‧‧‧ battery pack

12、22、32‧‧‧電池管理系統 12, 22, 32‧‧‧ Battery Management System

13、23、33、14、24、34‧‧‧開關 13, 23, 33, 14, 24, 34‧‧‧ switches

T21-T23、T51-T54‧‧‧時序 T21-T23, T51-T54‧‧‧ timing

305-355、805-870‧‧‧步驟 305-355, 805-870‧‧‧ steps

80‧‧‧DC/DC轉換器 80‧‧‧DC / DC converter

90‧‧‧放電匯流排 90‧‧‧discharge bus

第1圖顯示根據本案第一實施例的儲能系統的功能方塊圖。 FIG. 1 is a functional block diagram of an energy storage system according to a first embodiment of the present invention.

第2圖顯示根據本案第一實施例的放電階段離線的波形圖。 FIG. 2 is a waveform diagram showing that the discharge phase is offline according to the first embodiment of the present invention.

第3A圖與第3B圖顯示根據本案第一實施例的離線控制流程圖。 3A and 3B are flowcharts of offline control according to the first embodiment of the present invention.

第4圖顯示根據本案第二實施例的儲能系統在充電平衡復歸的示意圖。 FIG. 4 is a schematic diagram showing the return of the energy storage system in charge balance according to the second embodiment of the present invention.

第5圖顯示根據本案第二實施例的充電平衡復歸的波形圖。 FIG. 5 shows a waveform diagram of the charge balance reset according to the second embodiment of the present invention.

第6圖顯示根據本案第三實施例的儲能系統在靜置限流平衡復歸的示意圖。 FIG. 6 is a schematic diagram showing the return of the energy storage system to a static current-limiting equilibrium according to the third embodiment of the present case.

第7圖顯示根據本案第四實施例的儲能系統在靜置限流平衡復歸的示意圖。 FIG. 7 is a schematic diagram showing the return of the energy storage system to a static current-limiting equilibrium according to the fourth embodiment of the present invention.

第8A圖至第8C圖顯示根據本案另一實施例的連接控制流程圖,以將離線的電池模組復歸(掛載)。 8A to 8C show a connection control flowchart according to another embodiment of the present invention to restore (mount) an offline battery module.

本說明書的技術用語係參照本技術領域之習慣用語,如本說明書對部分用語有加以說明或定義,該部分用語之解釋係以本說明書之說明或定義為準。本揭露之各個實施例分別具有一或多個技術 特徵。在可能實施的前提下,本技術領域具有通常知識者可選擇性地實施任一實施例中部分或全部的技術特徵,或者選擇性地將這些實施例中部分或全部的技術特徵加以組合。 The technical terms in this specification refer to the customary terms in the technical field. If some terms are described or defined in this specification, the interpretation of these terms is subject to the description or definition in this specification. Each embodiment of this disclosure has one or more technologies. feature. Under the premise of possible implementation, those with ordinary knowledge in the technical field may selectively implement part or all of the technical features in any embodiment, or selectively combine part or all of the technical features in these embodiments.

第一實施例-離線控制 First embodiment-offline control

現請參考第1圖與第2圖,第1圖顯示根據本案第一實施例的儲能系統的功能方塊圖,第2圖顯示根據本案第一實施例的放電階段離線的波形圖。 Please refer to FIG. 1 and FIG. 2. FIG. 1 shows a functional block diagram of the energy storage system according to the first embodiment of the present invention, and FIG. 2 shows waveform diagrams of the discharge phase offline according to the first embodiment of the present invention.

如第1圖所示,根據本案第一實施例的儲能系統100包括:複數個電池模組。在第1圖中,以儲能系統100包括3個電池模組10、20、30為例做說明,但當知本案並不受限於此。 As shown in FIG. 1, the energy storage system 100 according to the first embodiment of the present application includes a plurality of battery modules. In the first figure, the energy storage system 100 includes three battery modules 10, 20, and 30 as an example, but it is understood that this case is not limited to this.

能源轉換器50可將AC市電或DC再生能源等轉換成直流電,以透過直流匯流排60對電池模組10、20、30充電。或者是,能源轉換器50可將儲存系統100的電池模組10、20、30所輸出的直流電轉換成交流電,以提供給AC家用電網。能源轉換器50的詳細架構與操作在此可不特別限定之。 The energy converter 50 can convert AC mains power or DC renewable energy into direct current to charge the battery modules 10, 20, and 30 through the DC bus 60. Alternatively, the energy converter 50 may convert the DC power output from the battery modules 10, 20, and 30 of the storage system 100 into AC power to provide the AC power to the AC household power grid. The detailed structure and operation of the energy converter 50 are not particularly limited herein.

透過通訊信號線70,電池模組10、20、30之間可彼此通訊,或者電池模組10、20、30之一(主控電池模組)可通訊於能源轉換器50。 Through the communication signal line 70, the battery modules 10, 20, and 30 can communicate with each other, or one of the battery modules 10, 20, and 30 (the main control battery module) can communicate with the energy converter 50.

電池模組10包括:電池組11、電池管理系統(battery management system,BMS)12與開關13。相同地,電池模組20包括:電池組21、電池管理系統22與開關23。電池模組30包括:電池組31、電池管理系統32與開關33。 The battery module 10 includes a battery pack 11, a battery management system (BMS) 12, and a switch 13. Similarly, the battery module 20 includes a battery pack 21, a battery management system 22 and a switch 23. The battery module 30 includes a battery pack 31, a battery management system 32 and a switch 33.

在本案第一實施例中,於儲存系統100處於放電狀態下時,當有任一電池組(11、21或31)電量用盡時、或是任一電池模組的電壓與其他電池模組之間的電壓差過大時,可將電量用盡的電池模組或電壓過低的電池模組從上線狀態跳脫成離線狀態,避免電量用盡的電池模組或電壓過低的電池模組過度放電或是在放電結束時吸收大量內迴路回充電流。 In the first embodiment of the present invention, when the storage system 100 is in a discharged state, when any one of the battery packs (11, 21, or 31) runs out of power, or the voltage of any battery module and other battery modules When the voltage difference between them is too large, you can jump out of the battery module or the battery module with too low voltage from the online state to the offline state to avoid the battery module with exhausted power or the battery module with too low voltage Excessive discharge or absorption of a large amount of internal circuit recharge current at the end of discharge.

在本案實施例中,「上線狀態」是指電池模組10、20、30的開關(如開關13、23、33)導通,使得電池模組10、20、30跨接到直流匯流排60,此狀態稱為「上線狀態」。反之,如果電池模組10、20、30的開關(如開關13、23、33)處於斷開狀態,使得電池模組10、20、30未跨接到直流匯流排60,則此狀態稱為「離線狀態」。 In the embodiment of the present case, the “online state” means that the switches (such as switches 13, 23, and 33) of the battery modules 10, 20, and 30 are turned on, so that the battery modules 10, 20, and 30 are connected to the DC bus 60, This status is called "online status". Conversely, if the switches (such as switches 13, 23, and 33) of the battery modules 10, 20, and 30 are in an open state, so that the battery modules 10, 20, and 30 are not connected to the DC bus 60, this state is called "Offline".

在本案第一實施例中,編號最低的電池模組(以電池模組10為例做說明)可當做儲能系統100的預設主控電池模組,以負責對外或者是對能源轉換器50之間的通訊。即使主控電池模組處於離線狀態,仍可由主控電池模組負責通訊。 In the first embodiment of the present case, the battery module with the lowest number (taking the battery module 10 as an example) can be used as the preset main control battery module of the energy storage system 100 to take charge of the external or energy converter 50 Communication. Even if the main control battery module is offline, the main control battery module can still communicate.

假設電池模組10、20、30的電池編號分別為1、2與3。編號1(電池模組10,預設為主控電池模組)蒐集並彙整本身與編號2(電池模組20)、編號3(電池模組30)的模組資訊(如電池電壓、電池溫度、最大可允許充/放電電流等)。主控電池模組10透過通訊信號線70,將所有電池模組的模組資訊發送給能源轉換器50,以讓能源轉換器50用以調整充電電流或放電電流。 It is assumed that the battery numbers of the battery modules 10, 20, and 30 are 1, 2, and 3, respectively. Number 1 (battery module 10, preset as master battery module) collects and compiles module information (such as battery voltage, battery temperature) and number 2 (battery module 20) and number 3 (battery module 30) , The maximum allowable charge / discharge current, etc.). The main control battery module 10 sends the module information of all battery modules to the energy converter 50 through the communication signal line 70, so that the energy converter 50 can be used to adjust the charging current or the discharging current.

萬一編號1的電池模組10的通訊功能失效時,亦即,當其餘電池模組20與30無法透過通訊信號線70來偵測編號1(電池模組10)的存在時,則由編號次低的電池模組(編號2的電池模組20)當成新的主控電池模組,其餘可依此類推。 In case the communication function of the battery module 10 of the number 1 fails, that is, when the remaining battery modules 20 and 30 cannot detect the existence of the number 1 (the battery module 10) through the communication signal line 70, the number is The next lowest battery module (battery module 20 with number 2) is taken as the new main control battery module, and the rest can be deduced by analogy.

現將說明本案第一實施例的離線控制。請參照第2圖。假設剛開始時,電池模組10、20、30皆處於正常放電,且各電池模組10、20、30正常輸出40A的電流給能源轉換器50。 The offline control of the first embodiment of the present case will now be described. Please refer to Figure 2. It is assumed that at the beginning, the battery modules 10, 20, and 30 are all discharged normally, and each of the battery modules 10, 20, and 30 normally outputs a current of 40 A to the energy converter 50.

於時序T21時,當電池模組10、20、30在直流匯流排60的電壓放電到52V附近時,電池模組10因為過溫保護,而準備轉換成離線狀態。但在電池模組10離線之前,電池模組10中的電池管理系統12經由通訊信號線70通報能源轉換器50,以讓能源轉換器50將儲存系統100的放電電流上限從120A調降到80A(亦即,能源轉換器50改成從儲存系統100抽取80A的輸出電流)。這是因為,如果欲離線的電池模組10不通報能源轉換器50的話,則剩餘的電池模組20、30要輸出共120A的電流(各輸出60A的電流),可能造成電池模組20與30的放電電流超載而觸發電池模組20/30的過電流斷電保護措施。 At time T21, when the battery modules 10, 20, and 30 are discharged to a voltage of about 52 V at the DC bus 60, the battery module 10 is ready to switch to an offline state due to over-temperature protection. Before the battery module 10 goes offline, the battery management system 12 in the battery module 10 notifies the energy converter 50 via the communication signal line 70, so that the energy converter 50 reduces the upper limit of the discharge current of the storage system 100 from 120A to 80A. (That is, the energy converter 50 is changed to draw an output current of 80 A from the storage system 100). This is because if the battery module 10 to be taken offline does not report the energy converter 50, the remaining battery modules 20 and 30 will output a total of 120A (each output 60A), which may cause the battery module 20 and the The discharge current of 30 is overloaded and triggers the over-current power-off protection measures of the battery module 20/30.

當直流匯流排60的電壓放電到46V左右時(時序T22),假設電池模組20的電量已經用光,電池模組20準備切換成離線狀態,且電池模組20的電池管理系統22經由通訊信號線70通知主控電池模組10。同樣地,在電池模組20離線之前,由電池模組10經由通訊信號線70通報能源轉換器50,以讓能源轉換器50將儲存系統100的放電電流上限從80A調降到40A。 When the voltage of the DC bus 60 is discharged to about 46V (timing T22), it is assumed that the battery module 20 has run out of power, the battery module 20 is ready to switch to an offline state, and the battery management system 22 of the battery module 20 communicates via communication. The signal line 70 notifies the main control battery module 10. Similarly, before the battery module 20 goes offline, the battery module 10 notifies the energy converter 50 via the communication signal line 70, so that the energy converter 50 reduces the upper limit of the discharge current of the storage system 100 from 80A to 40A.

於時序T22之後,只剩下電池模組30繼續供電,在時序T23時,直流匯流排60的電壓降為44V。 After the timing T22, only the battery module 30 is left to continue to supply power. At the timing T23, the voltage drop of the DC bus 60 is 44V.

當然,如果電池模組30準備離線並切斷輸出(第2圖未示出此情況),則電池模組30的電池管理系統32經由通訊信號線70通知主控電池模組10;在電池模組30離線之前,由電池模組10經由通訊信號線70通報能源轉換器50,以讓能源轉換器50將儲存系統100的放電電流上限從40A調降到0A。 Of course, if the battery module 30 is ready to go offline and cut off the output (this situation is not shown in FIG. 2), the battery management system 32 of the battery module 30 notifies the main control battery module 10 via the communication signal line 70; Before the group 30 goes offline, the battery module 10 notifies the energy converter 50 via the communication signal line 70, so that the energy converter 50 reduces the upper limit of the discharge current of the storage system 100 from 40A to 0A.

也就是說,原本掛載在直流匯流排60的兩個電池模組10、20,在放電過程中逐一離線。 That is, the two battery modules 10 and 20 originally mounted on the DC bus 60 are taken offline one by one during the discharging process.

另外,如果任一電池模組發生過熱等異常保護時,則該異常電池模組可隨時從上線並聯狀態跳脫成離線狀態。當然,於離線前,異常電池模組要通知主控電池模組,以進一步讓能源轉換器調整儲能系統的充/放電電流上限。 In addition, if any battery module has abnormal protection such as overheating, the abnormal battery module can be switched from the online parallel state to the offline state at any time. Of course, before going offline, the abnormal battery module must notify the main control battery module to further allow the energy converter to adjust the upper limit of the charge / discharge current of the energy storage system.

要注意的是,雖然上述實施例是以放電過程的離線控制做說明,但並不以此為限。在充電過程中,亦有可能發生電池模組異常或過熱的情形而需要跳脫離線,其離線控制的方法與上述描述相似,於此不再贅述。 It should be noted that although the above-mentioned embodiment is described with the offline control of the discharging process, it is not limited thereto. During the charging process, the battery module may also be abnormal or overheated and need to be disconnected. The offline control method is similar to the above description, and will not be repeated here.

現請參考第3A圖與第3B圖,其顯示根據本案第一實施例的離線控制流程圖。在步驟305中,各電池模組定期回報(例如但不受限於,每秒回報)個別通訊狀態與本身最大充/放電電流給主控電池模組,其中,通訊狀態是指該電池模組處於上線或離線。在步驟310中,由主控電池模組整理所有電池模組的回報資訊後,據以通知能源 轉換器50,以讓能源轉換器50據以設定最大充/放電電流。於步驟315中,由主控電池模組判斷儲能系統100的所有電池模組是否皆處於靜置狀態(亦即,靜置狀態是指,電池模組不處於充電狀態也不處於放電狀態)。如果步驟315為是,則流程回至步驟305。如果步驟315為否,則由處於上線狀態的各電池模組判斷本身是否要啟動保護,亦即,由處於上線狀態的各電池模組判斷本身是否要準備離線,如步驟320。如步驟320為是,準備離線的電池模組通知主控電池模組。於步驟325中,在接獲準備離線的電池模組的通報後,主控電池模組通報能源轉換器,來調降最大充/放電電流。步驟330中,準備離線的電池模組進行離線,亦即,將開關13、23、33斷開於直流匯流排60,以完成離線。步驟335中,由已離線的電池模組將本身編號通知主控電池模組,以讓主控電池模組得知目前仍有哪些電池模組處於上線狀態,流程回至步驟305。 Please refer to FIG. 3A and FIG. 3B, which show an offline control flowchart according to the first embodiment of the present invention. In step 305, each battery module periodically reports (such as, but not limited to, reporting per second) the individual communication status and its own maximum charge / discharge current to the main control battery module, where the communication status refers to the battery module Online or offline. In step 310, the main control battery module organizes the report information of all battery modules, and then informs the energy accordingly. The converter 50 allows the energy converter 50 to set a maximum charge / discharge current. In step 315, the main control battery module determines whether all the battery modules of the energy storage system 100 are in a resting state (that is, the resting state means that the battery module is not in a charging state or a discharging state). . If yes in step 315, the flow returns to step 305. If step 315 is no, each battery module in the online state determines whether protection is to be activated, that is, each battery module in the online state determines whether it is ready to go offline, as in step 320. If yes in step 320, the offline battery module is prepared to notify the main control battery module. In step 325, after receiving the notification of the battery module to be offline, the main control battery module notifies the energy converter to reduce the maximum charge / discharge current. In step 330, the offline battery module is prepared for offline, that is, the switches 13, 23, and 33 are disconnected from the DC bus 60 to complete offline. In step 335, the offline battery module notifies the main control battery module of its own number so that the main control battery module can know which battery modules are still online at present, and the flow returns to step 305.

此外,如果步驟320則否,則於步驟340中,由主控電池模組判斷仍處於上線狀態的電池模組的數量是否為0,或者是,由主控電池模組判斷仍處於上線狀態的電池模組是否已全部都沒電能。如果步驟340為是(即二者符合其中之一),則主控電池模組通知能源轉換器,以讓能源轉換器停止對該些電池模組的電能抽取,如步驟345。 In addition, if it is not in step 320, then in step 340, the main control battery module determines whether the number of battery modules that are still online is 0, or if the main control battery module judges that the battery modules are still online. Are all battery modules empty? If YES in step 340 (that is, the two match one of the two), the main control battery module notifies the energy converter so that the energy converter stops drawing power to the battery modules, such as step 345.

如果步驟340為否,則主控電池模組判斷所有處於上線狀態的電池模組是否都已達到充飽狀態,如步驟350。如果步驟350為 是,則主控電池模組通知能源轉換器,以讓能源轉換器停止對該些電池模組的充電,如步驟355。如果步驟350為否,則流程回至步驟315。 If the answer in step 340 is no, the main control battery module determines whether all the battery modules in the online state have reached the full state, as in step 350. If step 350 is If yes, the main control battery module notifies the energy converter so that the energy converter stops charging the battery modules, as shown in step 355. If NO in step 350, the flow returns to step 315.

由上述可知,在本案第一實施例中,在儲能系統100供電時,於電池模組離線前,由即將離線的電池模組通報主控電池模組,再由主控電池模組通報能源轉換器50,以避免剩餘的上線電池模組負擔太大的充/放電電流。 From the above, in the first embodiment of the present case, when the energy storage system 100 is powered, before the battery module goes offline, the main control battery module is notified by the off-line battery module, and the main control battery module reports energy The converter 50 to prevent the remaining online battery modules from burdening the charging / discharging current too much.

第二實施例-充電平衡復歸 Second embodiment-charge balance reset

現請參考第4圖與第5圖。第4圖顯示根據本案第二實施例的儲能系統在充電平衡復歸的示意圖,第5圖顯示根據本案第二實施例的充電平衡復歸的波形圖。 Please refer to Figure 4 and Figure 5. FIG. 4 shows a schematic diagram of the charging balance restoration of the energy storage system according to the second embodiment of the present case, and FIG. 5 shows a waveform diagram of the charging balance restoration according to the second embodiment of the present case.

於本案第二實施例中,電池管理系統12、22、32之間透過通訊信號線70而彼此通訊,因此電池管理系統12、22、32可以知道彼此的電池電壓。在此,假設,電池電壓由低至高分別為電池模組30、電池模組20與電池模組10,其中,電池模組30的電池組31的電壓為44V,電池模組20的電池組21的電壓為48V,而電池模組10的電池組11的電壓為52V。電池模組10、20、30皆為離線狀態。底下將說明,當處於離線狀態的電池模組10、20、30皆回復正常之後(例如,溫度回復正常),如何將這些電池模組10、20、30復歸。 In the second embodiment of the present case, the battery management systems 12, 22, and 32 communicate with each other through the communication signal line 70, so the battery management systems 12, 22, and 32 can know each other's battery voltage. Here, it is assumed that the battery voltage from low to high is the battery module 30, the battery module 20, and the battery module 10, wherein the voltage of the battery pack 31 of the battery module 30 is 44V, and the battery pack 21 of the battery module 20 And the voltage of the battery pack 11 of the battery module 10 is 52V. The battery modules 10, 20, and 30 are all offline. The following will explain how to reset these battery modules 10, 20, and 30 after the offline battery modules 10, 20, and 30 have returned to normal (for example, the temperature has returned to normal).

於開始復歸之前,由於主控電池模組已知所有電池模組10、20、30的電壓,故而,主控電池模組可根據該些電池模組中的所有電池組的電壓,來通報能源轉換器50,以讓能源轉換器50設定其充電電壓的曲線,如第5圖所示。直流匯流排60上的電壓即為能源轉換器50的充電電壓或充電電流,且在本案第二實施例中,直流匯流排60 上的電壓(即為能源轉換器50的充電電壓)為遞增。在復歸的過程中,當所有電池模組的其中之一偵測到本身電池電壓與直流匯流排上的充電電壓間之電壓差小於設定值時,該電池模組掛載至直流匯流排,以進行充電。由於直流匯流排上的充電電壓為遞增,故電池模組會以最低電池電壓至最高電池電壓依序掛載於直流匯流排。 Before the reset, the main control battery module knows the voltage of all battery modules 10, 20, and 30. Therefore, the main control battery module can report energy according to the voltage of all battery packs in those battery modules. The converter 50 allows the energy converter 50 to set a curve of its charging voltage, as shown in FIG. 5. The voltage on the DC bus 60 is the charging voltage or charging current of the energy converter 50, and in the second embodiment of the present case, the DC bus 60 The voltage (ie, the charging voltage of the energy converter 50) is increasing. During the reset process, when one of all battery modules detects that the voltage difference between the battery voltage and the charging voltage on the DC bus is less than the set value, the battery module is mounted on the DC bus to Charge it. Because the charging voltage on the DC bus is increasing, the battery module will be mounted on the DC bus in order from the lowest battery voltage to the highest battery voltage.

詳細來說,於時序T51時,最低電池電壓的電池模組30的電池管理系統32偵測到直流匯流排60的目前電壓約為44V左右,所以,電池模組30的電池管理系統32判斷本身的電池電壓44V與直流匯流排60的目前電壓約為44V之間的電壓差小於一設定值,設定值可例如但不受限於3V,故而,最低電池電壓的電池模組30的電池管理系統32判斷本身可掛載至直流匯流排60。或者是,於時序T51時,最低電池電壓的電池模組30的電池管理系統32偵測到直流匯流排60的電壓值為0,代表目前直流匯流排60處於淨空狀態,亦即,沒有任何一個電池模組跨接到直流匯流排60,故而,最低電池電壓的電池模組30的電池管理系統32判斷本身可掛載至直流匯流排60。 In detail, at time T51, the battery management system 32 of the battery module 30 with the lowest battery voltage detects that the current voltage of the DC bus 60 is about 44V. Therefore, the battery management system 32 of the battery module 30 judges itself The voltage difference between the battery voltage of 44V and the current voltage of the DC bus 60 is about 44V is less than a set value, and the set value may be, for example, but not limited to 3V. Therefore, the battery management system of the battery module 30 having the lowest battery voltage 32 judges that it can be mounted to the DC bus 60. Or, at timing T51, the battery management system 32 of the battery module 30 with the lowest battery voltage detects that the voltage value of the DC bus 60 is 0, which means that the DC bus 60 is currently in a clear state, that is, there is no one The battery module is connected to the DC bus 60. Therefore, the battery management system 32 of the battery module 30 having the lowest battery voltage determines that the battery module 30 can be mounted on the DC bus 60.

為完成掛載,最低電池電壓的電池模組30的電池管理系統32控制開關33為導通,以掛載至直流匯流排60。當電池模組30掛載至直流匯流排60之後,於時序T51時,電池模組30完成復歸。之後,能源轉換器50透過直流匯流排60對電池模組30充電。同樣地,由主控電池模組的電池管理系統通知能源轉換器50調控充電電流值,例如是調整為20A。 In order to complete the mounting, the battery management system 32 of the battery module 30 with the lowest battery voltage controls the switch 33 to be turned on to mount to the DC bus 60. After the battery module 30 is mounted on the DC bus 60, the battery module 30 is reset at time T51. After that, the energy converter 50 charges the battery module 30 through the DC bus 60. Similarly, the battery management system of the main control battery module notifies the energy converter 50 to regulate the charging current value, for example, it is adjusted to 20A.

相似地,於時序T52時,次低電池電壓的電池模組20的電池管理系統22偵測到直流匯流排60的目前電壓(即電池模組30的電壓)與本身的電池電壓之間的電壓皆約為48V左右,兩者電壓差小於 設定值。故而,次低電池電壓的電池模組20的電池管理系統22判斷本身可掛載至直流匯流排60。 Similarly, at timing T52, the battery management system 22 of the battery module 20 with the next lowest battery voltage detects the voltage between the current voltage of the DC bus 60 (that is, the voltage of the battery module 30) and its own battery voltage Both are about 48V, and the voltage difference between the two is less than Set value. Therefore, the battery management system 22 of the battery module 20 with the second lowest battery voltage determines that it can be mounted on the DC bus 60 itself.

為完成掛載,次低電池電壓的電池模組20的電池管理系統22控制開關23為導通,以掛載至直流匯流排60,於時序T52時,電池模組20完成復歸。當電池模組20掛載至直流匯流排60之後,能源轉換器50透過直流匯流排60對電池模組20、30充電。此時,電池模組20與30並聯。同樣地,由主控電池模組的電池管理系統通知能源轉換器50調控充電電流值,例如是調整增加為40A。 In order to complete the mounting, the battery management system 22 of the battery module 20 with the second lowest battery voltage controls the switch 23 to be turned on to mount to the DC bus 60. At the timing T52, the battery module 20 is reset. After the battery module 20 is mounted on the DC bus 60, the energy converter 50 charges the battery modules 20 and 30 through the DC bus 60. At this time, the battery modules 20 and 30 are connected in parallel. Similarly, the battery management system of the main control battery module notifies the energy converter 50 to regulate the charging current value, for example, it is adjusted to increase to 40A.

相似地,於時序T53時,最高電池電壓的電池模組10的電池管理系統12偵測到直流匯流排60的目前電壓與本身的電池電壓皆約在52V左右,兩者電壓差小於該設定值。故而,最高電池電壓的電池模組10的電池管理系統12判斷本身可掛載至直流匯流排60。 Similarly, at timing T53, the battery management system 12 of the battery module 10 with the highest battery voltage detects that the current voltage of the DC bus 60 and its own battery voltage are about 52V, and the voltage difference between the two is less than the set value. . Therefore, the battery management system 12 of the battery module 10 with the highest battery voltage determines that it can be mounted on the DC bus 60 itself.

為完成掛載,最高電池電壓的電池模組10的電池管理系統12控制開關13為導通,以掛載至直流匯流排60,於時序T53時,電池模組10完成復歸。當電池模組10掛載至直流匯流排60之後,能源轉換器50透過直流匯流排60對電池模組10、20、30充電。此時,電池模組10、20、30並聯。同樣地,由主控電池模組的電池管理系統通知能源轉換器50調控充電電流值,例如是調整增加為60A。 In order to complete the mounting, the battery management system 12 of the battery module 10 with the highest battery voltage controls the switch 13 to be turned on to mount to the DC bus 60. At the timing T53, the battery module 10 is reset. After the battery module 10 is mounted on the DC bus 60, the energy converter 50 charges the battery modules 10, 20, and 30 through the DC bus 60. At this time, the battery modules 10, 20, and 30 are connected in parallel. Similarly, the battery management system of the main control battery module notifies the energy converter 50 to regulate the charging current value, for example, it is adjusted to increase to 60A.

於時序T54時,由於所有電池電壓已接近滿充狀態,故而,能源轉換器50由定電流(CC)模式切換成定電壓(CV)模式進行充電。 At time T54, since all battery voltages are close to a full charge state, the energy converter 50 is switched from a constant current (CC) mode to a constant voltage (CV) mode for charging.

亦即,在本案第二實施例中,於離線之電池模組恢復正常之後,如果離線之電池模組判斷本身電池電壓與直流匯流排60的目前電壓之間的電壓差小於設定值的話,則該電池模組可掛載至直流匯 流排60,以完成該電池模組的復歸。所以,該些電池模組依本身電壓的高低依次完成復歸,最低電壓的電池模組最先復歸,以使能源轉換器持續對最低電壓的電池模組充電,接著是次低電壓的電池模組第二復歸,以使能源轉換器持續對最低及次低電壓的電池模組充電,而最高電壓的電池模組最後復歸。依此類推,直到所有正常的電池模組掛載上線。 That is, in the second embodiment of the present case, after the offline battery module returns to normal, if the offline battery module determines that the voltage difference between its own battery voltage and the current voltage of the DC bus 60 is less than a set value, then The battery module can be mounted to a DC bus The flow row 60 completes the return of the battery module. Therefore, these battery modules are reset in accordance with their own voltage levels. The lowest voltage battery module is reset first, so that the energy converter continues to charge the lowest voltage battery module, followed by the next lower voltage battery module. The second reset is to enable the energy converter to continuously charge the lowest and second lowest voltage battery modules, and the highest voltage battery module is finally reset. And so on, until all normal battery modules are mounted online.

第三實施例-靜置限流平衡 Third Embodiment-Resting Current Limiting Balance

第6圖顯示根據本案第三實施例的儲能系統在靜置限流平衡復歸的示意圖。電池管理系統12、22、32之間彼此通訊,因此所有的電池管理系統12、22、32可以知道彼此的電池電壓。在此,假設,電池電壓由低至高分別為電池模組30、電池模組20與電池模組10,其中,電池模組30的電池組31的電壓為44V,電池模組20的電池組21的電壓為48V,而電池模組10的電池組11的電壓為52V。電池模組10、20、30皆為離線狀態。底下將說明,當處於離線狀態的電池模組10、20、30皆回復正常之後(例如,溫度回復正常),如何將這些電池模組10、20、30復歸。要注意的是,在本實施例中,在進行復歸時,並非由能源轉換器50提供電流來讓離線狀態的電池模組10、20、30進行充電,而是以電池模組10、20、30之間相互進行充/放電來達到電池模組10、20、30間的電壓平衡。此外,主控電池模組可根據已離線的多個電池模組的個別電池電壓,於其中選定一目標放電電池模組與一目標充電電池模組來進行靜置限流平衡,在此以儲能系統中,具有最高電池電壓的電池模組作為目標放電電池模組,具有最低電池電壓的電池模組作為目標充電電池模組來做說明,但並不以此為限。 FIG. 6 is a schematic diagram showing the return of the energy storage system to a static current-limiting equilibrium according to the third embodiment of the present case. The battery management systems 12, 22, 32 communicate with each other, so all battery management systems 12, 22, 32 can know each other's battery voltage. Here, it is assumed that the battery voltage from low to high is the battery module 30, the battery module 20, and the battery module 10, wherein the voltage of the battery pack 31 of the battery module 30 is 44V and the battery pack 21 of the battery module 20 And the voltage of the battery pack 11 of the battery module 10 is 52V. The battery modules 10, 20, and 30 are all offline. The following will explain how to reset these battery modules 10, 20, and 30 after the offline battery modules 10, 20, and 30 have returned to normal (for example, the temperature has returned to normal). It should be noted that, in the present embodiment, during the reset, the current is not provided by the energy converter 50 to charge the offline battery modules 10, 20, 30, but the battery modules 10, 20, 30 30 charge / discharge each other to achieve the voltage balance between the battery modules 10, 20, and 30. In addition, the main control battery module can select a target discharge battery module and a target rechargeable battery module for static current-limiting balance according to the individual battery voltage of the multiple battery modules that have been offline. In the energy system, the battery module with the highest battery voltage is used as the target discharge battery module, and the battery module with the lowest battery voltage is used as the target rechargeable battery module, but it is not limited to this.

在本案第三實施例,依據各電池電壓與最高電池電壓之間的電壓差是否小於設定值,來決定操作狀態。 In the third embodiment of the present case, the operating state is determined based on whether the voltage difference between each battery voltage and the highest battery voltage is less than a set value.

情境1:目前最低電池電壓與最高電池電壓之間的電壓差小於設定值:在此情況下,開啟開關13或23或33,以讓這兩個電池模組能快速平衡。 Scenario 1: The current voltage difference between the lowest battery voltage and the highest battery voltage is less than the set value: In this case, turn on the switch 13 or 23 or 33 to allow the two battery modules to quickly balance.

情境2:目前最低電池電壓與最高電池電壓之間的電壓差大於設定值,最高電池電壓之電池模組對最低電池電壓之電池模組進行限流充電,此時,最高電池電壓的電池模組開啟開關。在一實施例中,開關由金屬氧化物半導體場效電晶體(MOSFET)所實現,最高電池電壓的電池模組則將開關操作於全開的飽和區狀態,以準備對選定的電池模組充電。而最低電池電壓的電池模組開啟開關,將開關操作於線性區,以兼具限流作用,來接受最高電壓的電池模組的充電。 Scenario 2: The current voltage difference between the lowest battery voltage and the highest battery voltage is greater than the set value. The battery module with the highest battery voltage performs current-limit charging on the battery module with the lowest battery voltage. At this time, the battery module with the highest battery voltage Turn on the switch. In one embodiment, the switch is implemented by a metal-oxide-semiconductor field-effect transistor (MOSFET), and the battery module with the highest battery voltage operates the switch in a fully open saturation region state to prepare to charge the selected battery module. The battery module with the lowest battery voltage turns on the switch and operates the switch in the linear region to have the current limiting function to accept the charging of the battery module with the highest voltage.

以上例來說,電池電壓由低至高分別為電池模組30、電池模組20與電池模組10。由最高電池電壓的電池模組10對最低電池電壓的電池模組30進行充電。故而,電池模組30的開關33被操作於線性區,而電池模組10的開關13被操作於飽和區。藉此,電池模組10可透過直流匯流排60而對電池模組30進行限流充電。在本實施例中,最高電池電壓的電池模組10以小電流對最低電池電壓的電池模組30進行充電,充電電流可以是但並不限於2A。在其他實施例中,最高電池電壓的電池模組亦可以大電流對最低電池電壓的電池模組充電,以節省充電時間。隨著充電操作的進行,電池模組10的電壓逐漸下降,而電池模組30的電壓則逐漸上升。 In the above example, the battery voltages from low to high are the battery module 30, the battery module 20, and the battery module 10, respectively. The battery module 30 having the lowest battery voltage is charged by the battery module 10 having the highest battery voltage. Therefore, the switch 33 of the battery module 30 is operated in the linear region, and the switch 13 of the battery module 10 is operated in the saturation region. As a result, the battery module 10 can charge the battery module 30 through the DC bus 60 in a current-limiting manner. In this embodiment, the battery module 10 having the highest battery voltage charges the battery module 30 having the lowest battery voltage with a small current, and the charging current may be, but is not limited to, 2A. In other embodiments, the battery module with the highest battery voltage can also charge the battery module with the lowest battery voltage with a large current to save charging time. As the charging operation proceeds, the voltage of the battery module 10 gradually decreases, and the voltage of the battery module 30 gradually increases.

當電池模組30的電壓與電池模組10的電壓之間的電壓差小於設定值時,電池模組30的開關33可操作在全開的飽和區狀態,以讓電池模組30與電池模組10能快速達到電壓平衡。 When the voltage difference between the voltage of the battery module 30 and the voltage of the battery module 10 is less than the set value, the switch 33 of the battery module 30 can be operated in a fully-opened saturation region state, so that the battery module 30 and the battery module 10 can reach voltage balance quickly.

當完成對最高電池電壓之電池模組10與最低電池電壓之電池模組30的平衡後,可依上述方式重新再對儲能系統100中的目前最高電池電壓的電池模組與目前最低電池電壓的電池模組進行平衡,其細節於此不重述。 After the balance between the battery module 10 with the highest battery voltage and the battery module 30 with the lowest battery voltage is completed, the battery module with the highest current battery voltage and the current lowest battery voltage in the energy storage system 100 can be re-revised in the manner described above. The battery module is balanced, and its details are not repeated here.

故而,於所有電池模組10、20、30都達平衡或是所有電池模組10、20、30任二者間的電壓差皆小於設定值時,即可將所有電池模組10、20、30中的開關13、23、33開啟,以將所有電池模組10、20、30掛載至直流匯流排60上,來完成上線的復歸。 Therefore, when all the battery modules 10, 20, and 30 are in balance or the voltage difference between any of the battery modules 10, 20, and 30 is less than the set value, all battery modules 10, 20, and The switches 13, 23, and 33 in 30 are turned on to mount all the battery modules 10, 20, and 30 on the DC bus 60 to complete the online return.

請注意,在本案第三實施例中,在所有電池模組10、20、30完成掛載(復歸)之後,可由能源轉換器50對儲能系統100的所有上線電池模組10、20、30進行充電。 Please note that in the third embodiment of the present case, after all the battery modules 10, 20, and 30 are mounted (returned), the energy converter 50 can be used to connect all the battery modules 10, 20, and 30 to the energy storage system 100 online. Charge it.

也就是說,在本案第三實施例中,於儲能系統100處於充電狀態下,若沒有即時接受能源轉換器50的充電時,在靜置狀態下,可以讓最高電壓之電池模組以限流方式對最低電壓之電池模組進行充電,以讓兩個電池模組能達到平衡。 That is to say, in the third embodiment of the present case, when the energy storage system 100 is in a charging state, if the energy converter 50 is not immediately charged, in a static state, the battery module with the highest voltage can be limited. The current mode charges the battery module with the lowest voltage so that the two battery modules can reach equilibrium.

第四實施例-靜置限流平衡 Fourth Embodiment-Resting Current Limiting Balance

現請參考第7圖,第7圖顯示根據本案第四實施例的儲能系統在靜置限流平衡復歸的示意圖。如第7圖所示,根據本案第四實施例的儲能系統100A包括:電池模組10B、20B、30B。 Please refer to FIG. 7, which shows a schematic diagram of the energy storage system according to the fourth embodiment of the present invention at the standstill current-limiting equilibrium. As shown in FIG. 7, the energy storage system 100A according to the fourth embodiment of the present case includes: battery modules 10B, 20B, and 30B.

要注意的是,於儲能系統100A中,電池模組10B、20B、30B透過放電匯流排90而耦接至DC/DC轉換器80,在一實施例中,DC/DC轉換器80例如是但不受限於48V/2A的DC/DC轉換器,且DC/DC轉換器80耦接至直流匯流排60。 It should be noted that, in the energy storage system 100A, the battery modules 10B, 20B, and 30B are coupled to the DC / DC converter 80 through the discharge bus 90. In one embodiment, the DC / DC converter 80 is, for example, However, the DC / DC converter is not limited to 48V / 2A, and the DC / DC converter 80 is coupled to the DC bus 60.

電池模組10B包括:電池組11、電池管理系統12、開關13與14。相同地,電池模組20B包括:電池組21、電池管理系統22、開關23與24。電池模組30B包括:電池組31、電池管理系統32、開關33與34。開關14、24與34耦接至放電匯流排90。DC/DC轉換器80的輸入端耦接至放電匯流排90,而DC/DC轉換器80的輸出端耦接至直流匯流排60。其中,開關13、23與33屬於小電流開關,用於控制電池模組10B、20B、30B是否跨接至直流匯流排60;而開關14、24與34屬於大電流開關,用以控制電池模組10B、20B、30B是否跨接至放電匯流排90。 The battery module 10B includes a battery pack 11, a battery management system 12, and switches 13 and 14. Similarly, the battery module 20B includes a battery pack 21, a battery management system 22, and switches 23 and 24. The battery module 30B includes a battery pack 31, a battery management system 32, and switches 33 and 34. The switches 14, 24, and 34 are coupled to the discharge bus 90. An input terminal of the DC / DC converter 80 is coupled to the discharge bus 90, and an output terminal of the DC / DC converter 80 is coupled to the DC bus 60. Among them, switches 13, 23, and 33 are low-current switches for controlling whether the battery modules 10B, 20B, and 30B are connected to the DC bus 60; and switches 14, 24, and 34 are high-current switches for controlling the battery mode. Whether the groups 10B, 20B, 30B are connected to the discharge bus 90.

電池管理系統12、22、32之間彼此通訊,因此所有的電池管理系統12、22、32可以知道彼此的電池電壓。在此,假設,電池電壓由低至高分別為電池模組30B、電池模組20B與電池模組10B,其中,假設,電池模組30B的電池組31的電壓為44V、電池模組20B的電池組21的電壓為48V而電池模組10B的電池組11的電壓為52V。電池模組10B、20B、30B目前皆為離線狀態。底下將說明,當處於離線狀態的電池模組10B、20B、30B皆回復正常之後(例如,溫度回復正常),如何將這些電池模組10B、20B、30B復歸。要注意的是,在本實施例中,在進行復歸時,並非由能源轉換器50提供電流來讓離線狀態的電池模組10、20、30進行充電,而是以電池模組10、20、30 之間相互進行充/放電來達到電池模組10、20、30間的電壓平衡。此外,主控電池模組可根據已離線的多個電池模組的個別電池電壓,於其中選定一目標放電電池模組與一目標充電電池模組來進行靜置限流平衡,在此以儲能系統中,具有最高電池電壓的電池模組作為目標放電電池模組,具有最低電池電壓的電池模組作為目標充電電池模組來做說明,但並不以此為限。 The battery management systems 12, 22, 32 communicate with each other, so all battery management systems 12, 22, 32 can know each other's battery voltage. Here, it is assumed that the battery voltage from low to high is the battery module 30B, the battery module 20B, and the battery module 10B. It is assumed that the voltage of the battery pack 31 of the battery module 30B is 44V, and the battery of the battery module 20B is a battery. The voltage of the group 21 is 48V and the voltage of the battery group 11 of the battery module 10B is 52V. The battery modules 10B, 20B, and 30B are currently offline. The following will explain how to restore these battery modules 10B, 20B, 30B after the offline battery modules 10B, 20B, 30B have returned to normal (for example, the temperature has returned to normal). It should be noted that, in the present embodiment, during the reset, the current is not provided by the energy converter 50 to charge the offline battery modules 10, 20, and 30, but the battery modules 10, 20, and 30 are used for charging. 30 Charge / discharge each other to achieve the voltage balance between the battery modules 10, 20, and 30. In addition, the main control battery module can select a target discharge battery module and a target rechargeable battery module for static current-limiting balance according to the individual battery voltage of the multiple battery modules that have been offline. In the energy system, the battery module with the highest battery voltage is used as the target discharge battery module, and the battery module with the lowest battery voltage is used as the target rechargeable battery module, but it is not limited to this.

在本案第四實施例,依據各電池電壓與最高電池電壓之間的電壓差是否小於設定值,來決定操作狀態。 In the fourth embodiment of the present case, the operating state is determined based on whether the voltage difference between each battery voltage and the highest battery voltage is less than a set value.

情境1:目前最低電池電壓與最高電池電壓之間的電壓差小於設定值:在此情況下,開啟開關13或23或33,以透過直流匯流排60讓這兩個電池模組能快速平衡。 Scenario 1: The current voltage difference between the lowest battery voltage and the highest battery voltage is less than the set value: In this case, turn on the switch 13 or 23 or 33 to allow the two battery modules to quickly balance through the DC bus 60.

情境2:目前最低電池電壓與最高電池電壓之間的電壓差大於設定值,則最高電池電壓之電池模組對最低電池電壓之電池模組進行限流充電,此時,最高電池電壓的電池模組10B開啟開關14,以透過放電匯流排90而輸出電能給DC/DC轉換器80。經DC/DC轉換器80的電壓轉換後,DC/DC轉換器80透過直流匯流排60而對最低電池電壓的電池模組30B充電。此時,最低電池電壓的電池模組30B的開關33處於導通狀態,而最高電池電壓的電池模組10B的開關13、電池模組20B的開關23、24並未導通。 Scenario 2: The current voltage difference between the lowest battery voltage and the highest battery voltage is greater than the set value. Then the battery module with the highest battery voltage performs current-limit charging on the battery module with the lowest battery voltage. At this time, the battery module with the highest battery voltage The group 10B turns on the switch 14 to output electric energy to the DC / DC converter 80 through the discharge bus 90. After the voltage conversion by the DC / DC converter 80, the DC / DC converter 80 charges the battery module 30B having the lowest battery voltage through the DC bus 60. At this time, the switch 33 of the battery module 30B with the lowest battery voltage is on, while the switch 13 of the battery module 10B with the highest battery voltage and the switches 23 and 24 of the battery module 20B are not turned on.

亦即,在本案第四實施例中,限流作用由DC/DC轉換器80來實現,因為DC/DC轉換器80的輸出電流可有上限(如2A),以避免電池模組突然被大電流充電而損毀。 That is, in the fourth embodiment of the present case, the current limiting effect is realized by the DC / DC converter 80, because the output current of the DC / DC converter 80 can have an upper limit (such as 2A) to prevent the battery module from being suddenly large. Damaged by current charging.

以上例來說,電池電壓由低至高分別為電池模組30B、電池模組20B與電池模組10B。最先由最高電壓電池模組10B(被選定 要放電的電池模組亦可稱為目標放電電池模組)對最低電壓電池模組30B(被選定要被充電的電池模組亦可稱為目標充電電池模組)進行充電。電池模組30B的開關33導通,且電池模組10B的開關14也導通。藉此,電池模組10B可透過放電匯流排90放電至DC/DC轉換器80,進而耦接至直流匯流排60而對電池模組30B充電。也就是說,電池模組10B的電能透過開關14而經由放電匯流排90送至DC/DC轉換器80,接著,DC/DC轉換器80進行DC/DC轉換後,將電能送至直流匯流排60,並透過電池模組30B處於導通狀態的開關33以對電池模組30B充電。要注意的是,雖然在本實施例中,目標放電電池模組對單一的目標充電電池模組進行充電,然而在其他實施例中,目標充電電池模組可為多個,只要各目標充電電池模組間的電池特性、電壓等相似,目標放電電池模組可同時對多個目標充電電池模組進行充電,並不以所列舉者為限。 In the above example, the battery voltage from low to high is the battery module 30B, the battery module 20B, and the battery module 10B. First selected by the highest voltage battery module 10B (selected The battery module to be discharged may also be referred to as a target discharge battery module) to charge the lowest voltage battery module 30B (the battery module selected to be charged may also be referred to as a target rechargeable battery module). The switch 33 of the battery module 30B is turned on, and the switch 14 of the battery module 10B is also turned on. Thereby, the battery module 10B can be discharged to the DC / DC converter 80 through the discharge bus 90, and then coupled to the DC bus 60 to charge the battery module 30B. In other words, the electric energy of the battery module 10B is transmitted to the DC / DC converter 80 through the discharge bus 90 through the switch 14. Then, the DC / DC converter 80 performs DC / DC conversion and then transmits the electric energy to the DC bus. 60, and the battery module 30B is charged through the switch 33 in a conducting state of the battery module 30B. It should be noted that although in this embodiment, the target discharge battery module charges a single target rechargeable battery module, in other embodiments, there may be multiple target rechargeable battery modules, as long as each target rechargeable battery The battery characteristics and voltages among the modules are similar. The target discharge battery module can charge multiple target rechargeable battery modules at the same time, and it is not limited to the list.

隨著充電操作的進行,電池模組10B的電壓逐漸下降,而電池模組30B的電壓則逐漸上升。 As the charging operation progresses, the voltage of the battery module 10B gradually decreases, and the voltage of the battery module 30B gradually increases.

當電池模組30B的電壓與電池模組10B的電壓之間的電壓差小於設定值時,電池模組30B的開關33可繼續保持導通。同時,關閉電池模組10B的開關14,斷開電池模組10B與DC/DC轉換器80的導通,使電能不再流向DC/DC轉換器80(亦即關閉限流功能),接著讓電池模組10B的開關13導通,以耦接到直流匯流排60並直接快速對電池模組30B充電,以讓電池模組10B與電池模組30B之間可快速平衡。 When the voltage difference between the voltage of the battery module 30B and the voltage of the battery module 10B is less than a set value, the switch 33 of the battery module 30B can continue to be turned on. At the same time, turn off the switch 14 of the battery module 10B, disconnect the conduction between the battery module 10B and the DC / DC converter 80, so that the power no longer flows to the DC / DC converter 80 (that is, the current limiting function is turned off), and then let the battery The switch 13 of the module 10B is turned on to be coupled to the DC bus 60 and directly and quickly charge the battery module 30B, so that the battery module 10B and the battery module 30B can be quickly balanced.

同樣地,當完成對最高電池電壓之電池模組10B與最低電池電壓之電池模組30B的平衡後,可依上述方式重新再對儲能系統 100A中的目前最高電池電壓的電池模組與目前最低電池電壓的電池模組進行平衡,其細節於此不重述。 Similarly, after the balance between the battery module 10B with the highest battery voltage and the battery module 30B with the lowest battery voltage is completed, the energy storage system can be re-adjusted in the above manner. The battery module with the highest battery voltage in 100A is currently balanced with the battery module with the lowest battery voltage at present. The details are not repeated here.

透過本案第四實施例,於所有電池模組10B、20B、30B都達平衡或是所有電池模組10B、20B、30B任二者的電壓差皆小於設定值時,即可將所有電池模組10B、20B、30B中的開關13、23、33開啟,以將所有電池模組10B、20B、30B掛載至直流匯流排60上,來完成上線的復歸。 Through the fourth embodiment of the present case, when all the battery modules 10B, 20B, and 30B are balanced or the voltage difference between any of the battery modules 10B, 20B, and 30B is less than the set value, all battery modules can be changed. The switches 13, 23, and 33 in 10B, 20B, and 30B are turned on to mount all the battery modules 10B, 20B, and 30B to the DC bus 60 to complete the return to online.

請注意,在本案第四實施例中,在所有電池模組10B、20、30B完成掛載(復歸)之後,可由能源轉換器50對儲能系統100的所有上線電池模組10B、20B、30B進行充電。 Please note that in the fourth embodiment of the present case, after all the battery modules 10B, 20, and 30B are mounted (returned), the energy converter 50 can connect all the online battery modules 10B, 20B, and 30B of the energy storage system 100. Charge it.

也就是說,在本案第四實施例中,於儲能系統100A處於充電狀態下,若沒有即時接受能源轉換器50的充電時,在靜置狀態下,可以讓最高電壓之電池模組以限流方式對最低電壓之電池模組進行充電,以讓兩個電池模組能達到平衡。 That is to say, in the fourth embodiment of the present case, when the energy storage system 100A is in the charging state, if the energy converter 50 is not immediately charged, in the static state, the battery module with the highest voltage can be limited. The current mode charges the battery module with the lowest voltage so that the two battery modules can reach equilibrium.

現請參考第8A圖至第8C圖,其顯示根據本案另一實施例的連接控制流程圖,以將離線的電池模組復歸(掛載)。原則上,第8A圖至第8C圖的流程圖可包括上述的充電平衡法(第二實施例)與靜置限流平衡法(第三與第四實施例)。 Please refer to FIG. 8A to FIG. 8C, which show a connection control flowchart according to another embodiment of the present invention to restore (mount) the offline battery module. In principle, the flowcharts of FIGS. 8A to 8C may include the above-mentioned charge balance method (second embodiment) and the stationary current-limiting balance method (third and fourth embodiments).

在步驟805中,各電池模組定期回報(例如但不受限於,每秒回報)個別通訊狀態與本身最大充/放電電流給主控電池模組,其中,通訊狀態是指該電池模組處於上線或離線。在步驟810中,主控電池模組整理所有電池模組的回報資訊後,主控電池模組判斷處於通訊狀態中的所有電池模組的最大電壓差,亦即該些電池模組中的一最 高電池電壓值減去該些電池模組中的一最低電池電壓值是否超過設定值。在此,「處於通訊狀態」是指,該電池模組仍可通訊於主控電池模組。亦即,如果,該電池模組與主控電池模組之間的通訊已斷訊,則稱該電池模組處於斷訊狀態。 In step 805, each battery module periodically reports (such as, but not limited to, reporting per second) the individual communication status and its own maximum charge / discharge current to the main control battery module, where the communication status refers to the battery module Online or offline. In step 810, after the main control battery module sorts the report information of all battery modules, the main control battery module determines the maximum voltage difference of all battery modules in the communication state, that is, one of the battery modules. most Whether the high battery voltage value minus a minimum battery voltage value of the battery modules exceeds a set value. Here, "in communication state" means that the battery module can still communicate with the main control battery module. That is, if the communication between the battery module and the main control battery module is interrupted, the battery module is said to be in an interrupted state.

如果處於通訊連線狀態中的所有電池模組之最大電壓差超過設定值,則流程接續至步驟815;反之,流程接續至步驟820。 If the maximum voltage difference of all battery modules in the communication connection state exceeds the set value, the flow continues to step 815; otherwise, the flow continues to step 820.

於步驟815中,如果目前已連線至直流匯流排的電池模組不具有最低電池電壓,也就是說,如果目前上線至直流匯流排的電池模組中,不包含有處於通訊狀態中最低電池電壓電池模組,此時先將所有電池模組離線,再把具有最低電池電壓之電池模組掛載到直流匯流排60。於步驟820中,主控電池模組控制將所有電池模組並聯且掛載至直流匯流排60。 In step 815, if the battery module currently connected to the DC bus does not have the lowest battery voltage, that is, if the battery module currently online to the DC bus does not include the lowest battery in the communication state Voltage battery modules. At this time, all battery modules are taken offline first, and then the battery module with the lowest battery voltage is mounted on the DC bus 60. In step 820, the main control battery module controls all battery modules to be connected in parallel and mounted on the DC bus 60.

步驟817有關於第二實施例的充電平衡法,而步驟847有關於第三與第四實施例的靜置限流平衡法。步驟817包括步驟825-845,而步驟847包括步驟850-867。 Step 817 is related to the charge balancing method of the second embodiment, and step 847 is related to the static current limiting balance method of the third and fourth embodiments. Step 817 includes steps 825-845, and step 847 includes steps 850-867.

在步驟825中,由主控電池模組整理所有電池模組的回報資訊後,通知能源轉換器50,以讓能源轉換器50據以設定充電電流或充電電壓。 In step 825, after the report information of all battery modules is arranged by the main control battery module, the energy converter 50 is notified, so that the energy converter 50 can set the charging current or the charging voltage accordingly.

在步驟830中,由主控電池模組判斷是否利用能源轉換器對儲能系統進行充電,此即充電平衡法。如果步驟830為是,則流程接續至步驟835;如果步驟830為否,則流程接續至步驟847中的步驟850。 In step 830, the main control battery module determines whether to use the energy converter to charge the energy storage system, which is the charging balance method. If step 830 is YES, the flow continues to step 835; if step 830 is No, the flow continues to step 850 in step 847.

在步驟835中,由主控電池模組判斷是否所有離線的電池模組已完成掛載。如果步驟835為是,則結束步驟817,進入到後續的步驟870;如果步驟835為否,則流程接續至步驟840。 In step 835, the main control battery module determines whether all offline battery modules have been mounted. If step 835 is YES, end step 817 and proceed to subsequent step 870; if step 835 is no, flow continues to step 840.

在步驟840中,離線的各電池模組判斷本身的電池電壓與直流匯流排的電壓之間的電壓差是否於小於設定值。如果步驟840為是,則流程執行步驟845,將本身電池電壓與直流匯流排電壓之間的電壓差於小於設定值的該電池模組掛載至直流匯流排上。如果步驟840為否,則流程執行步驟842,能源轉換器對掛載到直流匯流排的電池模組充電。在進行完步驟842之後,流程回至步驟830,由主控電池模組判斷是否利用能源轉換器對儲能系統進行充電。 In step 840, the offline battery modules determine whether the voltage difference between the battery voltage of the battery module and the voltage of the DC bus is less than a set value. If YES in step 840, the flow proceeds to step 845, and the battery module whose voltage difference between the battery voltage and the DC bus voltage is less than a set value is mounted on the DC bus. If no in step 840, the flow proceeds to step 842, and the energy converter charges the battery module mounted on the DC bus. After performing step 842, the flow returns to step 830, and the main control battery module determines whether to use the energy converter to charge the energy storage system.

另一方面,如果步驟830為否,亦即,在進行掛載時,不利用能源轉換器對儲能系統進行充電,而是進行靜置限流平衡法,則流程接續至步驟850,以限流方式由最高電池電壓的電池模組對最低電池電壓的電池模組進行充電。步驟850包括第三實施例中,由最高電池電壓的電池模組直接對最低電池電壓的電池模組充電。此外,步驟850也可包括第四實施例中,由最高電池電壓的電池模組透過DC/DC轉換器來對最低電池電壓的電池模組充電。 On the other hand, if step 830 is no, that is, during mounting, instead of using the energy converter to charge the energy storage system, but using the static current-limiting balancing method, the process continues to step 850 to limit In the current mode, the battery module with the highest battery voltage charges the battery module with the lowest battery voltage. Step 850 includes in the third embodiment, the battery module with the highest battery voltage directly charges the battery module with the lowest battery voltage. In addition, step 850 may also include charging the battery module with the lowest battery voltage by the battery module with the highest battery voltage through the DC / DC converter in the fourth embodiment.

於步驟855中,判斷最高電池電壓與最低電池電壓之間的電壓差是否小於設定值。如果步驟855為否的話,則繼續執行步驟850,由最高電池電壓的電池模組對最低電池電壓的電池模組進行充電,直到兩者的電壓差小於設定值為止。 In step 855, it is determined whether the voltage difference between the highest battery voltage and the lowest battery voltage is less than a set value. If the answer of step 855 is no, then proceed to step 850, and the battery module with the lowest battery voltage is charged by the battery module with the highest battery voltage until the voltage difference between the two is less than the set value.

如果步驟855為是的話,則於步驟860中,關閉限流功能,讓兩個電池模組耦接到直流匯流排(例如,導通開關13、23與33等),以達快速平衡。 If YES in step 855, then in step 860, the current limiting function is turned off, and the two battery modules are coupled to the DC bus (for example, the on-switches 13, 23, and 33, etc.) to achieve rapid balance.

接著,在步驟865中,由主控電池模組判斷是否所有離線的電池模組已完成離線平衡,亦即所有離線的電池模組之中任二者的電壓差小於設定值。如果步驟865為是,則代表於所有電池模組皆已完成離線平衡,此時進入到步驟867,將完成離線平衡的所有電池模組掛載,使流程回到步驟817中的步驟835。於所有電池模組皆已完成離線平衡及所有電池模組掛載到直流匯流排之後,對掛載到直流匯流排的所有電池模組充電,在一實施例中,由主控電池模組整理所有電池模組的回報資訊後,通知能源轉換器50,以讓能源轉換器50據以設定充電電流或充電電壓,如步驟870所示。如果步驟865為否,則流程回至步驟850。 Next, in step 865, the main control battery module determines whether all offline battery modules have completed offline balancing, that is, the voltage difference between any two of the offline battery modules is less than a set value. If YES in step 865, it means that all the battery modules have completed off-line balancing. At this time, it proceeds to step 867, and mounts all the battery modules on which off-line balancing is completed, so that the flow returns to step 835 in step 817. After all battery modules have been offline-balanced and all battery modules are mounted on the DC bus, all battery modules mounted on the DC bus are charged. In one embodiment, it is organized by the main control battery module After reporting the information of all battery modules, the energy converter 50 is notified, so that the energy converter 50 can set the charging current or the charging voltage accordingly, as shown in step 870. If NO in step 865, the flow returns to step 850.

由上述實施例可知,如果儲能系統需要擴充容量,來掛載更多電池模組的話,可透過上述第二至第四實施例,自動地將要擴充的電池模組掛載,可以減少人工掛載的麻煩。 It can be known from the above embodiments that if the energy storage system needs to expand the capacity to mount more battery modules, the second to fourth embodiments can be used to automatically mount the battery modules to be expanded, which can reduce manual hanging. Contained trouble.

當然,如果發現有電池模組已故障,需要替換的話,透過本案上述第一實施例,亦可實現對故障電池模組的熱插拔。 Of course, if a battery module is found to be faulty and needs to be replaced, hot swapping of the faulty battery module can also be achieved through the first embodiment described above.

另外,在本案其他可能實施例中,電池模組更可以選擇性設置「開關機按鈕」。回應於使用者操作,該開關機按鈕可以讓電池模組開機。或者是,回應於使用者操作,該開關機按鈕可以強制將 處於上線狀態的電池模組切換到離線狀態,以方便進行例行性的檢修保養工作等。 In addition, in other possible embodiments of the present case, the battery module may further be provided with a "switch button". In response to a user operation, the power on / off button allows the battery module to be turned on. Or, in response to a user operation, the on / off button can force the The battery module in the online state is switched to the offline state to facilitate routine inspection and maintenance work.

在本案上述實施例中,透過電池管理系統的軟體控制技術,搭配硬體電路的設計,以直接並聯式的低成本架構,可滿足儲能系統對於容量擴充的彈性需求。 In the above-mentioned embodiment of the present case, through the software control technology of the battery management system and the design of the hardware circuit, the direct-connected low-cost architecture can meet the elastic demand of the energy storage system for capacity expansion.

更甚者,本案上述該些實施例可實現離線/上線自動偵測與控制。而且,本案上述該些實施例透過利用自動離線/連線,可以避免電池模組異常使用(過放、過充、過熱等)。而且,等異常電池模組狀態恢復正常後,本案上述該些實施例可將之自動復歸回上線模式。 What's more, the above-mentioned embodiments in this case can realize offline / online automatic detection and control. Moreover, the above-mentioned embodiments of the present case can avoid abnormal use of the battery module (overdischarge, overcharge, overheat, etc.) by using automatic offline / connection. Moreover, after the abnormal battery module status returns to normal, the above-mentioned embodiments in this case may automatically return to the online mode.

另外,本案上述該些實施例中,不同特性之電池模組也可使用於同一儲能系統中。如此更有助於降低儲能系統的潛在成本。 In addition, in the embodiments described above, battery modules with different characteristics can also be used in the same energy storage system. This will help reduce the potential cost of energy storage systems.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the attached patent application.

Claims (9)

一種儲能系統的控制方法,該儲能系統包括複數個電池模組,該控制方法包括:各該些電池模組回報個別通訊狀態與個別最大充/放電電流給該些電池模組之一主控電池模組;該主控電池模組據以通知一能源轉換器,以讓該能源轉換器據以設定一最大充/放電電流;當處於上線狀態的該些電池模組之一第一電池模組判斷本身準備離線時,該第一電池模組通知該主控電池模組,以讓該主控電池模組通報該能源轉換器來調降該最大充/放電電流;以及準備離線的該第一電池模組進行離線。An energy storage system control method. The energy storage system includes a plurality of battery modules. The control method includes: each of the battery modules reports an individual communication state and an individual maximum charge / discharge current to one of the battery modules. Control battery module; the main control battery module notifies an energy converter according to which the energy converter sets a maximum charge / discharge current; when the battery is online, one of the battery modules is the first battery When the module determines that it is ready to go offline, the first battery module notifies the main control battery module so that the main control battery module notifies the energy converter to reduce the maximum charge / discharge current; and the The first battery module is offline. 如申請專利範圍第1項所述之儲能系統的控制方法,其中,更包括:於該第一電池模組離線後,由已離線的該第一電池模組將一本身編號通知該主控電池模組。The method for controlling an energy storage system according to item 1 of the scope of patent application, further comprising: after the first battery module is offline, the first battery module that is offline will notify the main controller of a number of itself Battery module. 如申請專利範圍第1項所述之儲能系統的控制方法,其中,準備離線的該第一電池模組進行離線之該步驟包括:準備離線的該第一電池模組將一開關斷開於一直流匯流排,以完成離線。The method for controlling an energy storage system according to item 1 of the scope of the patent application, wherein the step of preparing the first battery module to be offline for offline includes: preparing the first battery module to be offline to disconnect a switch from A DC bus to complete offline. 如申請專利範圍第1項所述之儲能系統的控制方法,更包括:由該主控電池模組判斷仍處於上線狀態的該些電池模組的數量是否為0,或者是,由該主控電池模組判斷仍處於上線狀態的該些電池模組是否已全部沒電能;以及如果判斷為是,則該主控電池模組通知該能源轉換器,以讓該能源轉換器停止對該些電池模組的電能抽取。According to the method for controlling the energy storage system described in item 1 of the scope of the patent application, the method further includes: determining, by the main control battery module, whether the number of the battery modules that are still online is zero, or by the main battery module. The control battery module judges whether all the battery modules that are still online have no power; and if it is determined as yes, the main control battery module notifies the energy converter so that the energy converter stops the energy converter. Power extraction from battery modules. 如申請專利範圍第1項所述之儲能系統的控制方法,更包括:回應於使用者操作,該電池模組的一開關機按鈕讓該電池模組開機;或者是,回應於使用者操作,該開關機按鈕強制將處於上線狀態的該電池模組切換到離線狀態。According to the control method of the energy storage system described in item 1 of the scope of the patent application, the method further includes: in response to a user operation, a switch button of the battery module turns on the battery module; , The on / off button forcibly switches the battery module in an online state to an offline state. 一種儲能系統的控制方法,該儲能系統包括複數個電池模組,該控制方法包括:根據已離線的該些電池模組的個別電池電壓,由該些電池模組之一主控電池模組通報一能源轉換器,以讓該能源轉換器設定一直流匯流排上的一充電電壓或一充電電流;以及當該些電池模組的一電池模組偵測到本身電池電壓與該直流匯流排上的該充電電壓間之一電壓差小於一設定值時,該電池模組掛載至該直流匯流排。An energy storage system control method. The energy storage system includes a plurality of battery modules. The control method includes: according to the individual battery voltage of the battery modules that are offline, one of the battery modules controls the battery mode. The group notifies an energy converter to enable the energy converter to set a charging voltage or a charging current on the DC bus; and when a battery module of the battery modules detects its own battery voltage and the DC bus When a voltage difference between the charging voltages on the bank is less than a set value, the battery module is mounted on the DC bus. 如申請專利範圍第6項所述之儲能系統的控制方法,其中,該直流匯流排上的該充電電壓為遞增。The method for controlling an energy storage system according to item 6 of the scope of patent application, wherein the charging voltage on the DC bus is increasing. 如申請專利範圍第7項所述之儲能系統的控制方法,其中,依照該些電池模組的個別電池電壓,由一最低電池電壓至一最高電池電壓,該些電池模組依序掛載至該直流匯流排。The control method of the energy storage system according to item 7 of the scope of patent application, wherein, according to the individual battery voltage of the battery modules, from a minimum battery voltage to a maximum battery voltage, the battery modules are mounted in order. To the DC bus. 如申請專利範圍第6項所述之儲能系統的控制方法,更包括:回應於使用者操作,該電池模組的一開關機按鈕讓該電池模組開機;或者是,回應於使用者操作,該開關機按鈕強制將處於上線狀態的該電池模組切換到離線狀態。According to the control method of the energy storage system described in item 6 of the scope of the patent application, the method further includes: in response to a user operation, a switch button of the battery module turns on the battery module; or, in response to a user operation , The on / off button forcibly switches the battery module in an online state to an offline state.
TW106146371A 2017-12-29 2017-12-29 Control method for energy storage system TWI644467B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW106146371A TWI644467B (en) 2017-12-29 2017-12-29 Control method for energy storage system
CN202110917860.1A CN113612311A (en) 2017-12-29 2018-02-06 Control method of energy storage system
CN201810120119.0A CN109995146B (en) 2017-12-29 2018-02-06 Control method of energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106146371A TWI644467B (en) 2017-12-29 2017-12-29 Control method for energy storage system

Publications (2)

Publication Number Publication Date
TWI644467B true TWI644467B (en) 2018-12-11
TW201931662A TW201931662A (en) 2019-08-01

Family

ID=65432135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106146371A TWI644467B (en) 2017-12-29 2017-12-29 Control method for energy storage system

Country Status (2)

Country Link
CN (2) CN113612311A (en)
TW (1) TWI644467B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116130813A (en) * 2023-04-03 2023-05-16 深圳市铂纳特斯自动化科技有限公司 Large-scale battery formation control method, device and medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795943B (en) * 2021-10-13 2023-03-11 加百裕工業股份有限公司 Battery management method and battery management system
CN114301130B (en) * 2021-12-29 2023-02-17 青岛瑰宝电子科技有限公司 Forced equalizing charging method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101606299B (en) * 2007-02-09 2012-03-07 Sk新技术株式会社 Charge equalization apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004258144B2 (en) * 2003-07-09 2009-12-03 Largo Clean Energy Corp. Device for monitoring and charging of a selected group of battery cells
WO2009128080A1 (en) * 2008-04-17 2009-10-22 Eran Ofek Method and apparatus for rapidly charging a battery
TWI433427B (en) * 2010-11-25 2014-04-01 Ind Tech Res Inst Battery power system
JP6004350B2 (en) * 2011-07-29 2016-10-05 パナソニックIpマネジメント株式会社 Charge / discharge control system for storage battery assembly
US8872479B2 (en) * 2011-09-28 2014-10-28 International Rectifier Corporation System for actively managing energy banks during energy transfer and related method
JP5821619B2 (en) * 2011-12-26 2015-11-24 ソニー株式会社 Power storage device, power system, and electric vehicle
KR20150081731A (en) * 2014-01-06 2015-07-15 삼성에스디아이 주식회사 Battery pack, energy storage system including the battery pack, and method of operating the battery pack
US10126723B2 (en) * 2015-01-30 2018-11-13 General Electric Company Performing passive maintenance on an energy storage farm
TWM519347U (en) * 2015-09-01 2016-03-21 Controlnet Internat Inc Large-capacity energy-storage power supply system capable of replacing battery module at site and comprising buffer battery and battery set
TWI568122B (en) * 2015-11-09 2017-01-21 財團法人工業技術研究院 Battery system and control method thereof
CN107394840A (en) * 2017-07-25 2017-11-24 山东大学 A kind of battery balanced management circuit topology adaptively switched and control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101606299B (en) * 2007-02-09 2012-03-07 Sk新技术株式会社 Charge equalization apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116130813A (en) * 2023-04-03 2023-05-16 深圳市铂纳特斯自动化科技有限公司 Large-scale battery formation control method, device and medium
CN116130813B (en) * 2023-04-03 2023-06-20 深圳市铂纳特斯自动化科技有限公司 Large-scale battery formation control method, device and medium

Also Published As

Publication number Publication date
CN109995146A (en) 2019-07-09
CN109995146B (en) 2021-12-28
TW201931662A (en) 2019-08-01
CN113612311A (en) 2021-11-05

Similar Documents

Publication Publication Date Title
US10637283B2 (en) Power supply system and method
KR102415122B1 (en) Battery system
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
US8294421B2 (en) Cell balancing systems employing transformers
US8963499B2 (en) Battery pack, method of controlling the same, and energy storage system including the battery pack
US10763682B2 (en) Energy storage system and controlling method thereof
US20150194707A1 (en) Battery pack, energy storage system including the battery pack, and method of operating the battery pack
US20150222117A1 (en) Battery tray, battery rack, energy system, and method of operating the battery tray
KR102234290B1 (en) Energy storage system and controlling method the same
KR102415123B1 (en) Battery Pack and Energy Storage System Including Thereof
RU2546978C2 (en) Battery and battery control system
JP2014511095A (en) Rechargeable battery system and method of operating the same
KR102273770B1 (en) battery system
KR20150085383A (en) Battery system, energy storage system including the battery system
JP2013078242A (en) Electric power supply device
TWI644467B (en) Control method for energy storage system
JP6675102B2 (en) Management device and power storage system
WO2020080543A1 (en) Power storage system
KR102164439B1 (en) Balancing device of convergence cell connected super-capacity module and battery
CN115663978B (en) Battery energy storage power supply system, and voltage balancing method and device of battery pack
US10916946B2 (en) Energy storage apparatus
CN111937269A (en) Power storage system and charge control method
TW202337104A (en) Energy storage device
CN114667659A (en) Electricity storage system
CN218958575U (en) Food processor comprising multi-cell equalizing charge system