TWI643455B - Apparatus and methods for controlling radio frequency switches - Google Patents

Apparatus and methods for controlling radio frequency switches Download PDF

Info

Publication number
TWI643455B
TWI643455B TW106109134A TW106109134A TWI643455B TW I643455 B TWI643455 B TW I643455B TW 106109134 A TW106109134 A TW 106109134A TW 106109134 A TW106109134 A TW 106109134A TW I643455 B TWI643455 B TW I643455B
Authority
TW
Taiwan
Prior art keywords
voltage
charge pump
level shifter
state
mode signal
Prior art date
Application number
TW106109134A
Other languages
Chinese (zh)
Other versions
TW201722081A (en
Inventor
克利斯丁 肯道爾強納森
諾曼 華倫肯尼斯
H 湯普森菲利普
Original Assignee
西凱渥資訊處理科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/745,818 external-priority patent/US9577626B2/en
Application filed by 西凱渥資訊處理科技公司 filed Critical 西凱渥資訊處理科技公司
Publication of TW201722081A publication Critical patent/TW201722081A/en
Application granted granted Critical
Publication of TWI643455B publication Critical patent/TWI643455B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)

Abstract

本發明揭示用於控制射頻(RF)開關之設備及方法。本文中提供用於控制RF開關之設備及方法。在某些組態中,一RF系統包含:一電荷泵,用於產生一電荷泵電壓;一RF開關;一位準移位器,用於開啟或關閉該RF開關;及一位準移位器控制電路,用於控制該位準移位器。該電荷泵接收用於啟用或停用該電荷泵之一模式信號。另外,該位準移位器部分自該電荷泵電壓接收電力,且基於一開關啟用信號來控制該RF開關。該位準移位器控制電路接收該模式信號,且以基於該模式信號之一狀態改變之一偏壓電壓加偏壓於該位準移位器。Apparatus and methods for controlling radio frequency (RF) switches are disclosed. Apparatus and methods for controlling an RF switch are provided herein. In some configurations, an RF system includes: a charge pump for generating a charge pump voltage; an RF switch; a quasi-shifter for turning the RF switch on or off; and a quasi-shift Control circuit for controlling the level shifter. The charge pump receives a mode signal for enabling or disabling the charge pump. Additionally, the level shifter portion receives power from the charge pump voltage and controls the RF switch based on a switch enable signal. The level shifter control circuit receives the mode signal and biases the bias voltage to the level shifter based on a state change based on a state of the mode signal.

Description

用於控制射頻開關之設備與方法Apparatus and method for controlling an RF switch

本發明之實施例係關於電子系統,且特定言之係關於用於射頻開關之開關控制器。Embodiments of the invention relate to electronic systems, and in particular to switch controllers for radio frequency switches.

射頻(RF)開關可包含於多種電子系統中。 在一實例中,一RF系統可包含用於接收及/或傳輸RF信號之一天線。然而,RF系統中可存在可需要對天線之接取之若干組件。舉例而言,RF系統可包含與不同頻帶、不同通信標準及/或不同功率模式相關聯之不同傳輸或接收路徑,且各個路徑可需要在時間之某些例項處對天線之接取。因此,RF系統可包含RF開關,該等RF開關可用於將天線電連接至RF系統之一特定傳輸或接收路徑,藉此容許多個組件接取天線。 RF開關之效能可係重要的,此係因為RF開關可引入雜訊及/或插入損耗。Radio frequency (RF) switches can be included in a variety of electronic systems. In an example, an RF system can include an antenna for receiving and/or transmitting RF signals. However, there may be several components in the RF system that may require access to the antenna. For example, an RF system may include different transmission or reception paths associated with different frequency bands, different communication standards, and/or different power modes, and each path may require access to the antenna at certain instances of time. Thus, the RF system can include RF switches that can be used to electrically connect the antenna to a particular transmission or reception path of the RF system, thereby allowing multiple components to access the antenna. The performance of the RF switch can be important because the RF switch can introduce noise and/or insertion loss.

在某些實施例中,本發明係關於一種射頻(RF)系統。RF系統包含:一電荷泵,其經組態以產生一電荷泵電壓;一第一RF開關;一第一位準移位器,其經組態以基於一第一開關啟用信號來控制該第一RF開關;及一位準移位器控制電路。該電荷泵經組態以接收可操作以在一第一狀態中啟用該電荷泵且在一第二狀態中停用該電荷泵之一模式信號。該第一位準移位器經組態以部分自該電荷泵電壓接收電力。該位準移位器控制電路經組態以接收該模式信號且使用一偏壓電壓加偏壓於該第一位準移位器。該位準移位器控制電路進一步經組態以基於該模式信號之一狀態來控制該偏壓電壓之一電壓位準。 在一些實施例中,位準移位器控制電路進一步經組態以當模式信號在第一狀態中時控制偏壓電壓之電壓位準以追蹤電荷泵電壓。在若干實施例中,位準移位器控制電路進一步經組態以當模式信號在第二狀態中時控制偏壓電壓之電壓位準至一DC電壓。 在若干實施例中,位準移位器包含複數個n型金屬氧化物半導體(NMOS)疊接電晶體,該複數個NMOS疊接電晶體包含由偏壓電壓加偏壓之閘極。根據若干實施例,位準移位器進一步包含複數個p型金屬氧化物半導體(PMOS)疊接電晶體,該複數個PMOS疊接電晶體包含由一低電力供應電壓加偏壓之閘極,複數個PMOS疊接電晶體之一第一PMOS疊接電晶體及複數個NMOS疊接電晶體之一第一NMOS疊接電晶體串聯電連接於一高電力供應電壓與電荷泵電壓之間。 根據多種實施例,位準移位器控制電路包含經組態以產生相對於電荷泵電壓改變之一疊接參考電壓之一疊接參考電路,位準移位器控制電路經組態以當模式信號在第一狀態中時控制偏壓電壓之一電壓位準至疊接參考電壓。 在一些實施例中,位準移位器控制電路包含當模式信號在第一狀態中時並聯操作以將疊接參考電壓電連接至偏壓電壓之一NMOS電晶體及一PMOS電晶體。根據多種實施例,疊接參考電路包含電連接於一高電力供應電壓與電荷泵電壓之間之一分壓器,該分壓器經組態以產生疊接參考電壓。根據某些實施例,分壓器包含經串聯電連接之複數個二極體連接之電晶體。 在若干實施例中,位準移位器控制電路包含經組態以當模式信號在第二狀態中時控制電荷泵電壓之一電壓位準至一低電力供應電壓之一待命控制電路。根據若干實施例,待命控制電路進一步經組態以當模式信號在第二狀態中時控制第一開關控制信號之一電壓位準至低電力供應電壓。 在一些實施例中,RF系統進一步包含一第二RF開關及經組態以基於一第二開關啟用信號來控制第二RF開關之一第二位準移位器,位準移位器控制電路進一步經組態以使用偏壓電壓加偏壓於第二位準移位器。 在某些實施例中,本發明係關於一種射頻開關控制之方法。該方法包含:使用一電荷泵產生一電荷泵電壓;當一模式信號在一第一狀態中時啟用該電荷泵且當該模式信號在一第二狀態中時停用該電荷泵;部分使用該電荷泵電壓供電給一第一位準移位器;基於使用一第一位準移位器位準移位一第一開關啟用信號來控制一第一RF開關;使用一偏壓電壓加偏壓於第一位準移位器;及基於模式信號之一狀態來控制偏壓電壓之一電壓位準。 在一些實施例中,基於模式信號之狀態來控制偏壓電壓之電壓位準包含當模式信號在第一狀態中時控制偏壓電壓之電壓位準以追蹤電荷泵電壓。根據若干實施例,基於模式信號之狀態進一步控制偏壓電壓之電壓位準之方法進一步包含當模式信號在第二狀態中時控制偏壓電壓之電壓位準至一DC電壓。 在多種實施例中,使用偏壓電壓加偏壓於位準移位器包含使用偏壓電壓加偏壓於位準移位器之複數個電晶體閘極。 在若干實施例中,該方法進一步包含當模式信號在第二狀態中時控制電壓泵電壓之一電壓位準至一低電力供應電壓。 在一些實施例中,該方法進一步包含:部分使用電荷泵電壓供電給一第二位準移位器;基於使用一第二位準移位器位準移位一第二開關啟用信號來控制一第二RF開關;及使用偏壓電壓加偏壓於第二位準移位器。 在某些實施例中,本發明係關於一種功率放大器系統。該功率放大器系統包含:一電荷泵,其經組態以產生一電荷泵電壓;一功率放大器,其經組態以產生一放大射頻信號;一天線;一RF開關,其電連接於該功率放大器之一輸出與該天線之間;及一開關控制器,其包含經組態以基於一開關啟用信號來控制該RF開關之一位準移位器。該功率泵進一步經組態以接收可操作以在一第一狀態中啟用該電荷泵且在一第二狀態中停用該電荷泵之一模式信號。該位準移位器進一步經組態以部分自該電荷泵電壓接收電力。該開關控制器進一步包含經組態以接收該模式信號且使用一偏壓電壓加偏壓於該位準移位器之一位準移位器控制電路。該位準移位器控制電路進一步經組態以基於該模式信號之一狀態來控制該偏壓電壓之一電壓位準。 在若干實施例中,該位準移位器控制電路進一步經組態以當模式信號在第一狀態中時控制偏壓電壓之電壓位準以追蹤電荷泵電壓。 在某些實施例中,本發明係關於一種RF切換系統。該RF切換系統包含:一第一RF開關,其經組態以基於一第一開關控制信號而開啟或關閉;一位準移位器控制電路,其經組態以接收一模式信號且產生一偏壓電壓;及一位準移位器,其由一高電力供應電壓及由一電荷泵電壓供電。該位準移位器控制電路經組態以基於該模式信號之一狀態來控制該偏壓電壓之一電壓位準。由一高電力供應電壓及由一電荷泵電壓供電給該位準移位器,且該功率移位器經組態以接收一開關啟用信號及該偏壓電壓。該位準移位器經組態以當該模式信號在該第一狀態中時,位準移位該開關啟用信號以產生該第一開關控制信號。 在一些實施例中,當模式信號在第一狀態中時,位準移位器控制電路控制偏壓電壓之電壓位準以追蹤電荷泵電壓。在若干實施例中,當模式信號在第二狀態中時,位準移位器控制電路控制偏壓電壓之電壓位準至高電力供應電壓。 在多種實施例中,位準移位器包含複數個NMOS疊接電晶體,該複數個NMOS疊接電晶體包含由偏壓電壓加偏壓之閘極。根據若干實施例,位準移位器進一步包含複數個PMOS疊接電晶體,該複數個PMOS疊接電晶體包含由一低電力供應電壓加偏壓之閘極,且複數個PMOS疊接電晶體之一第一PMOS疊接電晶體及複數個NMOS疊接電晶體之一第一NMOS疊接電晶體經串聯電連接於高電力供應電壓與電荷泵電壓之間。 在若干實施例中,位準移位器控制電路包含經組態以產生相對於電荷泵電壓改變之一疊接參考電壓之一疊接參考電路,位準移位器控制電路經組態以當模式信號在第一狀態中時,控制偏壓電壓之一電壓位準至疊接參考電壓。 在多種實施例中,位準移位器控制電路包含當模式信號在第一狀態中時並聯操作以將疊接參考電壓電連接至偏壓電壓之一NMOS電晶體及一PMOS電晶體。 在一些實施例中,疊接參考電路包含經電連接於高電力供應電壓與電荷泵電壓之間之一分壓器,該分壓器經組態以產生疊接參考電壓。根據若干實施例,分壓器包含經串聯電連接之複數個經二極體連接的電晶體。 在若干實施例中,RF切換系統進一步包含經組態以產生電荷泵電壓之一電荷泵,該電荷泵經組態以當模式信號在第二狀態中時關閉。 在多種實施例中,位準移位器控制電路包含一待命控制電路,其經組態以當模式信號在第二狀態中時控制電荷泵電壓之一電壓位準至一低電力供應電壓。根據若干實施例,待命控制電路進一步經組態以當模式信號在第二狀態中時,控制第一開關控制信號之一電壓位準至低電力供應電壓。 在一些實施例中,RF切換進一步包含一第二RF開關,其基於一第二開關控制信號而開啟或關閉。第一RF開關經組態作為一串聯式開關,且第二RF開關經組態作為一並聯式開關。位準移位器進一步經組態以當模式信號在第一狀態中時,位準移位開關啟用信號以產生第二開關控制信號。 在某些實施例中,本發明係關於一種射頻開關控制之方法。該方法包含:使用一電荷泵來產生一電荷泵電壓,該電荷泵電壓具有小於一低電力供應電壓之電壓位準之一電壓位準。該方法進一步包含:使用一高電力供應電壓及電荷泵電壓來供電給一位準移位器;使用一位準移位器控制電路來產生一偏壓電壓;使用該位準移位器控制電路,基於一模式信號之一狀態來控制該偏壓電壓之一電壓位準;使用該偏壓電壓來加偏壓於該位準移位器;當該模式信號在一第一狀態中時,使用該位準移位器來位準移位一開關啟用信號以產生一第一開關控制信號;及使用該第一開關控制信號來控制一第一RF開關。 在一些實施例中,基於模式信號之狀態來控制偏壓電壓之電壓位準包含當模式信號在第一狀態中時控制偏壓電壓之電壓位準以追蹤電荷泵電壓。在多種實施例中,基於模式信號之狀態來控制偏壓電壓之電壓位準進一步包含當模式信號在第二狀態中時控制偏壓電壓之電壓位準至高電力供應電壓。 在若干實施例中,使用偏壓電壓加偏壓於位準移位器包含使用偏壓電壓加偏壓於位準移位器之NMOS疊接電晶體之複數個閘極。根據若干實施例,該方法進一步包含產生相對於電荷泵電壓改變之一疊接參考電壓,且當模式信號在第一狀態中時控制偏壓電壓之一電壓位準至疊接參考電壓。 在多種實施例中,該方法進一步包含當模式信號在第二狀態中時關閉電荷泵。在若干實施例中,該方法進一步包含當模式信號在第一狀態中時將電荷泵電壓電連接至低電力供應電壓。在一些實施例中,該方法進一步包含當模式信號在第二狀態中時控制第一開關控制信號之一電壓位準至低電力供應電壓。 在某些實施例中,本發明係關於一種無線裝置。該無線裝置包含:一功率放大器,其經組態以產生一放大射頻信號;一天線;一第一NMOS開關電晶體,其電連接於該功率放大器之一輸出與該天線之間,該第一NMOS開關電晶體之一閘極經組態以接收一第一開關控制信號;一電荷泵,其經組態以產生一電荷泵電壓;一位準移位器控制電路,其經組態以接收一模式信號且產生一偏壓電壓,該位準移位器控制電路經組態以基於該模式信號之一狀態來控制該偏壓電壓之一電壓位準;及一位準移位器,其由一高電力供應電壓及該電荷泵電壓供電。該位準移位器經組態以接收一開關啟用信號及該偏壓電壓,且該位準移位器經組態以當該模式信號在該第一狀態中時位準移位該開關啟用信號以產生該第一開關控制信號。 在一些實施例中,當模式信號在第一狀態中時,位準移位器控制電路控制偏壓電壓之電壓位準以追蹤電荷泵電壓。 在多種實施例中,當模式信號在第二狀態中時,位準移位器控制偏壓電壓之電壓位準至高電力供應電壓。 在若干實施例中,位準移位器控制電路包含一待命控制電路,其經組態以當模式信號在第一狀態中時控制電荷泵電壓之一電壓位準至一低電力供應電壓。在若干實施例中,待命控制電路進一步經組態以當模式信號在第二狀態中時控制第一開關控制信號之一電壓位準至低電力供應電壓。 在一些實施例中,無線裝置進一步包含一第二NMOS開關電晶體,其電連接於功率放大器之輸出與一低電力供應電壓之間。第二NMOS開關電晶體之一閘極經組態以接收一第二開關控制信號,位準移位器進一步經組態以當模式信號在第一狀態中時位準移位開關啟用信號以產生第二開關控制信號。In certain embodiments, the present invention is directed to a radio frequency (RF) system. The RF system includes: a charge pump configured to generate a charge pump voltage; a first RF switch; a first level shifter configured to control the first based on a first switch enable signal An RF switch; and a quasi-shifter control circuit. The charge pump is configured to receive an operational mode to enable the charge pump in a first state and to disable one of the charge pump mode signals in a second state. The first level shifter is configured to receive power in part from the charge pump voltage. The level shifter control circuit is configured to receive the mode signal and to bias the first level shifter with a bias voltage. The level shifter control circuit is further configured to control a voltage level of the bias voltage based on a state of the one of the mode signals. In some embodiments, the level shifter control circuit is further configured to control the voltage level of the bias voltage to track the charge pump voltage when the mode signal is in the first state. In several embodiments, the level shifter control circuit is further configured to control the voltage level of the bias voltage to a DC voltage when the mode signal is in the second state. In some embodiments, the level shifter comprises a plurality of n-type metal oxide semiconductor (NMOS) stacked transistors, the plurality of NMOS stacked transistors comprising a gate biased by a bias voltage. According to several embodiments, the level shifter further includes a plurality of p-type metal oxide semiconductor (PMOS) stacked transistors, the plurality of PMOS stacked transistors including a gate biased by a low power supply voltage, One of the plurality of PMOS-stacked transistors, the first PMOS-stacked transistor and one of the plurality of NMOS-stacked transistors, are electrically connected in series between a high power supply voltage and a charge pump voltage. According to various embodiments, the level shifter control circuit includes a stacked reference circuit configured to generate one of the stacked reference voltages relative to the charge pump voltage change, the level shifter control circuit configured to be in the mode The signal controls one of the voltage levels of the bias voltage to the spliced reference voltage when in the first state. In some embodiments, the level shifter control circuit includes a parallel operation when the mode signal is in the first state to electrically connect the spliced reference voltage to one of the bias voltage NMOS transistors and a PMOS transistor. According to various embodiments, the splicing reference circuit includes a voltage divider electrically coupled between a high power supply voltage and a charge pump voltage, the voltage divider being configured to generate a spliced reference voltage. According to some embodiments, the voltage divider comprises a plurality of diode-connected transistors electrically connected in series. In several embodiments, the level shifter control circuit includes a standby control circuit configured to control one of the charge pump voltage levels to a low power supply voltage when the mode signal is in the second state. According to several embodiments, the standby control circuit is further configured to control a voltage level of one of the first switch control signals to a low power supply voltage when the mode signal is in the second state. In some embodiments, the RF system further includes a second RF switch and is configured to control a second level shifter of the second RF switch based on a second switch enable signal, the level shifter control circuit Further configured to bias the second level shifter with a bias voltage. In certain embodiments, the present invention is directed to a method of radio frequency switch control. The method includes: generating a charge pump voltage using a charge pump; enabling the charge pump when a mode signal is in a first state; and deactivating the charge pump when the mode signal is in a second state; The charge pump voltage is supplied to a first level shifter; a first RF switch is controlled based on shifting a first switch enable signal using a first level shifter level; biasing is applied using a bias voltage And a voltage level of one of the bias voltages based on a state of the mode signal; In some embodiments, controlling the voltage level of the bias voltage based on the state of the mode signal includes controlling the voltage level of the bias voltage to track the charge pump voltage when the mode signal is in the first state. According to several embodiments, the method of further controlling the voltage level of the bias voltage based on the state of the mode signal further comprises controlling the voltage level of the bias voltage to a DC voltage when the mode signal is in the second state. In various embodiments, applying a bias voltage to the level shifter using a bias voltage includes biasing a plurality of transistor gates of the level shifter with a bias voltage. In several embodiments, the method further includes controlling one of the voltage pump voltage levels to a low power supply voltage when the mode signal is in the second state. In some embodiments, the method further includes: partially supplying power to the second level shifter using the charge pump voltage; controlling one based on shifting a second switch enable signal using a second level shifter level a second RF switch; and biasing the second level shifter with a bias voltage. In certain embodiments, the present invention is directed to a power amplifier system. The power amplifier system includes: a charge pump configured to generate a charge pump voltage; a power amplifier configured to generate an amplified RF signal; an antenna; an RF switch electrically coupled to the power amplifier One of the outputs is coupled to the antenna; and a switch controller includes a level shifter configured to control the RF switch based on a switch enable signal. The power pump is further configured to receive operable to activate the charge pump in a first state and to deactivate one of the charge pump mode signals in a second state. The level shifter is further configured to receive power in part from the charge pump voltage. The switch controller further includes a level shifter control circuit configured to receive the mode signal and biased to the level shifter using a bias voltage. The level shifter control circuit is further configured to control a voltage level of the bias voltage based on a state of the one of the mode signals. In several embodiments, the level shifter control circuit is further configured to control the voltage level of the bias voltage to track the charge pump voltage when the mode signal is in the first state. In certain embodiments, the present invention is directed to an RF switching system. The RF switching system includes: a first RF switch configured to turn on or off based on a first switch control signal; a one-bit shifter control circuit configured to receive a mode signal and generate a a bias voltage; and a quasi-shifter that is powered by a high power supply voltage and by a charge pump voltage. The level shifter control circuit is configured to control a voltage level of the bias voltage based on a state of the one of the mode signals. The level shifter is powered by a high power supply voltage and by a charge pump voltage, and the power shifter is configured to receive a switch enable signal and the bias voltage. The level shifter is configured to shift the switch enable signal to generate the first switch control signal when the mode signal is in the first state. In some embodiments, the level shifter control circuit controls the voltage level of the bias voltage to track the charge pump voltage when the mode signal is in the first state. In several embodiments, the level shifter control circuit controls the voltage level of the bias voltage to a high power supply voltage when the mode signal is in the second state. In various embodiments, the level shifter includes a plurality of NMOS stacked transistors, the plurality of NMOS stacked transistors including a gate biased by a bias voltage. According to several embodiments, the level shifter further includes a plurality of PMOS stacked transistors, the plurality of PMOS stacked transistors including a gate biased by a low power supply voltage, and the plurality of PMOS stacked transistors One of the first PMOS stacked transistor and one of the plurality of NMOS stacked transistors is electrically coupled in series between the high power supply voltage and the charge pump voltage. In some embodiments, the level shifter control circuit includes a splicing reference circuit configured to generate one of the spliced reference voltages relative to the charge pump voltage change, the level shifter control circuit configured to When the mode signal is in the first state, one of the voltage levels of the bias voltage is controlled to the overlap reference voltage. In various embodiments, the level shifter control circuit includes parallel operation to electrically connect the spliced reference voltage to one of the bias voltage NMOS transistors and a PMOS transistor when the mode signal is in the first state. In some embodiments, the splicing reference circuit includes a voltage divider electrically coupled between the high power supply voltage and the charge pump voltage, the voltage divider being configured to generate a spliced reference voltage. According to several embodiments, the voltage divider comprises a plurality of diode-connected transistors electrically connected in series. In several embodiments, the RF switching system further includes a charge pump configured to generate a charge pump voltage, the charge pump configured to turn off when the mode signal is in the second state. In various embodiments, the level shifter control circuit includes a standby control circuit configured to control a voltage level of one of the charge pump voltages to a low power supply voltage when the mode signal is in the second state. According to several embodiments, the standby control circuit is further configured to control a voltage level of one of the first switch control signals to a low power supply voltage when the mode signal is in the second state. In some embodiments, the RF switching further includes a second RF switch that is turned "on" or "off" based on a second switch control signal. The first RF switch is configured as a series switch and the second RF switch is configured as a parallel switch. The level shifter is further configured to shift the switch enable signal to generate a second switch control signal when the mode signal is in the first state. In certain embodiments, the present invention is directed to a method of radio frequency switch control. The method includes using a charge pump to generate a charge pump voltage having a voltage level that is less than a voltage level of a low power supply voltage. The method further includes: supplying a quasi-shifter using a high power supply voltage and a charge pump voltage; using a quasi-shifter control circuit to generate a bias voltage; using the level shifter control circuit Controlling a voltage level of the bias voltage based on a state of a mode signal; using the bias voltage to bias the level shifter; when the mode signal is in a first state, using The level shifter shifts a switch enable signal to generate a first switch control signal; and uses the first switch control signal to control a first RF switch. In some embodiments, controlling the voltage level of the bias voltage based on the state of the mode signal includes controlling the voltage level of the bias voltage to track the charge pump voltage when the mode signal is in the first state. In various embodiments, controlling the voltage level of the bias voltage based on the state of the mode signal further includes controlling the voltage level of the bias voltage to a high power supply voltage when the mode signal is in the second state. In several embodiments, biasing the bias level to the level shifter using a bias voltage comprises applying a plurality of gates of the NMOS stacked transistor biased to the level shifter using a bias voltage. According to several embodiments, the method further includes generating a splicing reference voltage relative to one of the charge pump voltage changes, and controlling one of the voltage levels of the bias voltage to the splicing reference voltage when the mode signal is in the first state. In various embodiments, the method further includes turning off the charge pump when the mode signal is in the second state. In several embodiments, the method further includes electrically connecting the charge pump voltage to the low power supply voltage when the mode signal is in the first state. In some embodiments, the method further includes controlling a voltage level of the first switch control signal to a low power supply voltage when the mode signal is in the second state. In certain embodiments, the present invention is directed to a wireless device. The wireless device includes: a power amplifier configured to generate an amplified RF signal; an antenna; a first NMOS switch transistor electrically coupled between the output of the power amplifier and the antenna, the first One gate of the NMOS switch transistor is configured to receive a first switch control signal; a charge pump configured to generate a charge pump voltage; and a quasi-shifter control circuit configured to receive a mode signal and generating a bias voltage, the level shifter control circuit configured to control a voltage level of the bias voltage based on a state of the mode signal; and a quasi-shifter Powered by a high power supply voltage and the charge pump voltage. The level shifter is configured to receive a switch enable signal and the bias voltage, and the level shifter is configured to shift the switch enable when the mode signal is in the first state A signal is generated to generate the first switch control signal. In some embodiments, the level shifter control circuit controls the voltage level of the bias voltage to track the charge pump voltage when the mode signal is in the first state. In various embodiments, the level shifter controls the voltage level of the bias voltage to a high power supply voltage when the mode signal is in the second state. In several embodiments, the level shifter control circuit includes a standby control circuit configured to control a voltage level of one of the charge pump voltages to a low power supply voltage when the mode signal is in the first state. In several embodiments, the standby control circuit is further configured to control a voltage level of one of the first switch control signals to a low power supply voltage when the mode signal is in the second state. In some embodiments, the wireless device further includes a second NMOS switch transistor electrically coupled between the output of the power amplifier and a low power supply voltage. One of the gates of the second NMOS switch transistor is configured to receive a second switch control signal, the level shifter being further configured to shift the switch enable signal to generate a signal when the mode signal is in the first state The second switch control signal.

本文中提供之標題(若有)僅係為了方便且不必須影響本發明之範疇或意義。 一射頻(RF)切換電路可包含RF切換電路之輸入與輸出之間之一串聯式開關及該輸入與一低電力供應電壓(諸如接地)之間之一並聯式開關。另外,可依一互補方式開啟或關閉串聯式開關及並聯式開關。當開啟或閉合串聯式開關且關閉或斷開並聯電路時,提供自RF切換電路之輸入至輸出之一低阻抗路徑。另外,當關閉串聯式開關且開啟並聯式開關時,串聯式開關在高阻抗之情況下操作以阻擋輸入與輸出之間之傳導且並聯式開關在低阻抗之情況下操作以提供輸入終端。 可部分使用諸如一電荷泵之一負電壓產生器供電給一RF切換電路。舉例而言,一電荷泵可用於產生用於加偏壓於一或多個n型金屬氧化物半導體(NMOS)開關電晶體(當操作於一關閉狀態中時)之閘極電壓之一負電荷泵電壓。控制一NMOS開關電晶體之閘極電壓至低於一低電力供應電壓之一電壓可增加關閉狀態阻抗,此可增強隔離及/或改良多頻帶應用中之諧波效能。 在某些組態中,可在一待命模式中停用或關閉一負電壓產生器。舉例而言,一電荷泵可使用由可消散靜態電流及/或產生雜訊之一振盪器產生之一時脈信號操作。為了防止電荷泵在待命期間使系統效能降級,可在待命模式中停用電荷泵。雖然在待命期間停用電荷泵可減少功率消耗及/或雜訊,但在待命期間停用電荷泵亦可非所要地導致電荷泵之輸出電壓電浮,藉此使某些RF開關之閘極電壓經不可預知地控制。 可期望即使當操作於待命模式中時仍控制RF開關之閘極電壓。舉例而言,在待命期間控制RF開關之閘極電壓可幫助維持多種RF頻帶及/或電路之間之隔離。 本文中提供用於控制RF開關之設備及方法。在某些組態中,一RF系統包含:一電荷泵,其用於產生一電荷泵電壓;一RF開關;一位準移位器,其用於開啟或關閉RF開關;及一位準移位器控制電路,其用於控制位準移位器。電荷泵接收用於啟用或停用電荷泵之一模式信號。另外,位準移位器部分自電荷泵電壓接收電力且基於一開關啟用信號來控制RF開關。位準移位器控制電路接收模式信號且使用基於模式信號之一狀態改變之一偏壓電壓加偏壓於位準移位器。 在模式信號之一第一狀態中啟用電荷泵且在模式信號之一第二狀態中停用電荷泵。舉例而言,第一狀態可指示一正常操作模式且第二狀態可指示一待命模式。在某些組態中,位準移位器控制電路控制偏壓電壓之電壓位準,使得當模式信號在第一狀態中時偏壓電壓追蹤電荷泵電壓,且使得當模式信號在第二狀態中時偏壓電壓具有一實質上固定或恆定電壓。依此方式組態位準移位器控制電路以產生偏壓電壓可幫助位準移位器之位準移位操作。 舉例而言,在某些組態中,使用一高電力供應電壓及電荷泵電壓供電給位準移位器。另外,位準移位器包含複數個疊接電晶體,該複數個疊接電晶體具有藉由由位準移位器控制電路產生之偏壓電壓而加偏壓之閘極。當模式信號在一第一狀態中時,位準移位器控制電路產生偏壓電壓以具有追蹤電荷泵電壓以幫助位準移位器位準移位開關啟用信號至與高電力供應電壓及電荷泵電壓相關聯之一電壓域之一電壓位準。然而,當模式信號在一第二狀態中時,位準移位器控制電路控制偏壓電壓至一固定電壓。在某些實施方案中,位準移位器控制電路亦在第二模式期間控制電荷泵電壓至一低電力供應電壓(例如,接地),藉此幫助位準移位器在第二模式中關閉RF開關。 因此,當RF系統操作於與模式信號之第一狀態相關聯之一主或正常操作模式中時,位準移位器使用一高電力供應電壓及一電荷泵電壓操作。在一實例中,當模式信號在第一狀態中時,位準移位器操作於約+2.5 V之一高電力供應電壓與約-2.0 V之一負電荷泵電壓之間。另外,當RF系統操作於與模式信號之第二狀態相關聯之一待命模式中時,位準移位器控制電路控制電荷泵電壓及偏壓電壓使得位準移位器關閉RF開關。在一實例中,當模式信號在第二狀態中時,位準移位器控制電路控制電荷泵電壓至約0 V之一低電力供應電壓。雖然已提供多種例示性電壓位準,但可使用任何適合電壓位準。 本文中所描述之位準移位器可用於產生當啟用一電荷泵且當停用電荷泵時都具有所要電壓位準之開關控制信號。因此,在主模式及待命模式中都可適當控制RF開關之閘極電壓。依此方式控制RF開關可增強RF隔離及/或以其他方式增強效能。 圖1係一積體電路(IC) 10之一實施例之一示意圖。所繪示之IC 10包含接收一第一或低電力供應電壓V1 之一第一接腳5a及接收一第二或高電力供應電壓V2 之一第二接腳5b。另外,所繪示之IC 10進一步包含開關12、一電荷泵22及一開關控制器23。雖然為了圖式之清楚未在圖1中繪示,但IC 10通常包含額外接腳及電路。 電荷泵22可用以產生具有小於低電力供應電壓V1 之電壓位準之一電壓位準之一電荷泵電壓。開關控制器23接收可部分用於控制開關12之電荷泵電壓。 舉例而言,所繪示之IC 10可表示一前端模組(FEM)及/或天線開關模組(ASM),且開關12可包含n型金屬氧化物半導體(NMOS)開關電晶體,該等NMOS開關電晶體包含閘極,該等閘極經加偏壓至關閉狀態時電荷泵電壓之一電壓位準。控制一NMOS開關電晶體之閘極電壓至低於關閉狀態中之一低電力供應電壓之一電壓可增加關閉狀態阻抗,此可增強多頻帶應用中之隔離。 當NMOS開關電晶體操作於開啟狀態中時,NMOS開關電晶體可經加偏壓至諸如高電力供應電壓V2 之電壓位準的任何適合電壓位準。在某些組態中,高電力供應電壓V2 可對應於由一晶片上或晶片外調節器產生之一經調節電壓。使用一調節器來產生高電力供應電壓V2 可幫助控制NMOS開關電晶體操作於具有相對於溫度、電壓電壓位準及/或電流負載相對恆定之一電壓位準的開啟狀態中。 在某些組態中,使用一絕緣體上矽(SOI)程序來製造IC 10,且開關12可包含SOI電晶體。然而,可有其他組態。 圖2係一無線裝置11之一實施例之一示意性方塊圖。 圖2中描述之例示性無線裝置11可表示諸如一多頻帶/多模式行動電話之一多頻帶及/或多模式裝置。在所繪示之組態中,無線裝置11包含開關12、一收發器13、一天線14、功率放大器17、一控制組件18、一電腦可讀媒體19、一處理器20、一電池21、一電荷泵22及一開關控制器23。 收發器13可產生用於經由天線14傳輸之RF信號。此外,收發器13可接收來自天線14之輸入RF信號。 應理解,可由在圖2中統一表示為收發器13的一或多個組件來達成與RF信號之傳輸及接收相關聯的多種功能。舉例而言,一單一組件可經組態以提供傳輸及接收功能兩者。在另一實例中,可由單獨組件提供傳輸及接收功能。 類似地,應理解,可由在圖2中統一表示為天線14的一或多個組件來達成與RF信號之傳輸及接收相關聯的多種天線功能。舉例而言,一單一天線可經組態以提供傳輸及接收功能兩者。在另一實例中,可由單獨天線提供傳輸及接收功能。在又一實例中,可運用不同天線來提供與無線裝置11相關聯之不同頻帶。 在圖2中,將來自收發器13之一或多個輸出信號描繪為經由一或多個傳輸路徑15而提供至天線14。在所展示之實例中,不同傳輸路徑15可表示與不同頻帶及/或不同功率輸出相關聯的輸出路徑。舉例而言,所展示之兩個例示性功率放大器17可表示與不同功率輸出組態(例如,低功率輸出及高功率輸出)相關聯之放大及/或與不同頻帶相關聯之放大。雖然圖2繪示使用兩個傳輸路徑15之一組態,但無線裝置11可經調適以包含更多或更少傳輸路徑15。 功率放大器17可用於放大包含(例如)全球行動系統(GSM)信號、分碼多重接取(CDMA)信號、W-CDMA信號、無線區域網路(WLAN)信號、長期演進(LTE)信號及/或EDGE信號之多種RF信號。 在圖2中,將來自天線14之一或多個經偵測信號描繪為經由一或多個接收路徑16而提供至收發器13。在所展示之實例中,不同接收路徑16可表示與不同頻帶相關聯之路徑。雖然圖2繪示使用四個接收路徑16之一組態,但無線裝置11可經調適以包含更多或更少接收路徑16。 為了促進接收路徑與傳輸路徑之間之切換,開關12可經組態以將天線14電連接至一經選擇之傳輸或接收路徑。因此,開關12可提供與無線裝置11之一操作相關聯之若干切換功能。在某些組態中,開關12可包含提供與(例如)在不同頻帶之間切換、在不同功率模式之間切換、在傳輸模式與接收模式之間切換或其等之某個組合相關聯之功能之若干開關。開關12亦可提供包含信號之濾波及/或雙工之額外功能。 電荷泵22可用於產生可在無線裝置11中用於多種目的之一電荷泵電壓。舉例而言,在某些組態中,由電荷泵22產生之電荷泵電壓可提供至開關控制器23且部分用於加偏壓於開關12。 圖2展示在某些組態中,可提供一控制組件18用於控制與開關12、功率放大器17、電荷泵22、開關控制器23及/或(若干)其他操作組件之操作相關聯之多種控制功能。在某些組態中,控制組件18產生經提供至開關控制器23之一模式信號及/或一或多個開關啟用信號。因此,控制組件18可用於在某些時刻於一待命模式中操作開關控制器23。當操作於待命模式中時,控制組件18可使用模式信號停用或關閉電荷泵22。 在某些組態中,一處理器20可經組態以促進本文中所描述之多種程序之實施。處理器20可使用電腦程式指令操作。可將此等電腦程式指令提供至處理器20。 在某些組態中,此等電腦程式指令亦可儲存於一電腦可讀記憶體19中,其可引導處理器20或其他可程式化資料處理設備以依一特定方式操作。 電池21可係用於無線裝置11中之任何適合電池,其包含(例如)一鋰離子電池。在某些組態中,由電池21產生之一電池電壓經調節以產生部分用於控制開關12之一高電力供應電壓。 圖3係一功率放大器系統40之一實施例之一示意性方塊圖。所繪示之功率放大器系統40包含一RF切換電路27,該RF切換電路27包含一串聯式開關電晶體25及一並聯式開關電晶體26。所繪示之功率放大器系統40進一步包含一電荷泵22、一開關控制器23、一定向耦合器24、一功率放大器偏壓電路30、一功率放大器32及一收發器33。所繪示之收發器33包含一基頻處理器34、一I/Q調變器37、一混合器38及一類比轉數位轉換器(ADC) 39。雖然為了清楚未在圖3中繪示,但收發器33可包含與經由一或多個接收路徑接收信號相關聯之電路。 基頻信號處理器34可用於產生可用於表示一正弦波或具有一所要振幅、頻率及相位之信號之一同相位(I)信號及一正交相位(Q)信號。舉例而言,I信號可用於表示正弦波之一同相位分量且Q信號可用於表示可係正弦波之一等效表示之正弦波之一正交分量。在某些實施方案中,可將I及Q信號呈一數位格式提供至I/Q調變器37。基頻處理器34可係經組態以處理一基頻信號之任何適合處理器。舉例而言,基頻處理器34可包含一數位信號處理器、一微處理器、一可程式化碼或其等之任何組合。此外,在一些實施方案中,在功率放大器系統40中可包含兩個或兩個以上基頻處理器34。 I/Q調變器37可經組態以自基頻處理器34接收I及Q信號且處理I及Q信號以產生一RF信號。舉例而言,I/Q調變器37可包含:DAC,其等經組態以將I及Q信號轉換成一類比格式;混合器,其等用於將I及Q信號升頻轉換至射頻;及一信號組合器,其用於將經升頻之I及Q信號組合成適合於由功率放大器32放大之一RF信號。在某些實施方案中,I/Q調變器37可包含經組態以濾波在其中處理之信號之頻率內容之一或多個濾波器。 功率放大器偏壓電路30可自基頻處理器34接收一啟用信號ENABLE且可使用該啟用信號ENABLE以產生用於功率放大器32之一或多個偏壓信號。功率放大器32可自收發器33之I/Q調變器37接收RF信號。 開關控制器23可依一互補方式開啟且關閉串聯式開關電晶體25及並聯式開關電晶體26。舉例而言,開關控制器23可用於開啟串聯式開關電晶體25且關閉並聯式開關電晶體26,使得功率放大器32透過串聯式開關電晶體25而將一經放大RF信號提供至天線14。另外,開關控制器23可用於關閉串聯式開關電晶體25且開啟並聯式開關電晶體26,以提供功率放大器32之輸出與天線14之間之一高阻抗路徑,同時將終端提供至功率放大器之輸出。為了控制RF切換電路27之一狀態,開關控制器23可自諸如圖2之控制組件18之任何適合電路接收一開關啟用信號(圖3中未繪示)。 定向耦合器24可定位於功率放大器32之輸出與串聯式開關電晶體25之源極之間,藉此容許不包含串聯式開關電晶體25之插入損耗之功率放大器32之一輸出功率量測。可將來自定向耦合器24之經感測之輸出信號提供至混合器38,該混合器38可使經感測之輸出信號乘以具有一經控制頻率之一參考信號,以便下頻移經感測輸出信號之頻率內容以產生一經下頻移之信號。可將經下頻移之信號提供至ADC 39,該ADC 39可將經下頻移之信號轉換成適合於由基頻處理器34處理之一數位格式。 藉由包含功率放大器32之輸出與基頻處理器34之間之一回饋路徑,基頻處理器34可經組態以動態調整I及Q信號以最佳化功率放大器40之操作。舉例而言,依此方式組態功率放大器系統40可幫助控制功率放大器32之功率附加效率(PAE)及/或線性度。 在所繪示之組態中,功率泵22將一電荷泵電壓提供至用於控制串聯式開關電晶體25及並聯式開關電晶體26之開關控制器23。在某些組態中,電荷泵電壓用於當串聯式開關電晶體25及/或並聯式開關電晶體26關閉時加偏壓於串聯式開關電晶體25及/或並聯式開關電晶體26之閘極電壓。舉例而言,電荷泵22可產生用於關閉串聯式開關電晶體25及/或並聯式開關電晶體26之一負電荷泵電壓。 雖然將開關控制器23繪示為產生用於兩個電晶體之開關控制信號,但開關控制器23可經調適以控制更多或更少開關控制電晶體。舉例而言,一開關控制器可接收多個開關啟用信號且產生用於控制不同RF切換電路之多個開關控制信號。開關控制器之實例之概述 本發明揭示用於控制射頻(RF)開關之設備及方法。在某些組態中,一開關控制器包含一位準移位器控制電路及一位準移位器。位準移位器控制電路產生用於加偏壓於位準移位器之一偏壓電壓,且基於一模式信號之一狀態來控制偏壓電壓至不同電壓位準。由一高電力供應電壓及一電荷泵電壓供電給位準移位器。當模式信號在一第一狀態中時,位準移位器位準移位一開關啟用信號以產生用於一或多個RF開關之一或多個開關控制信號。另外,位準移位器控制電路產生偏壓電壓以具有追蹤電荷泵電壓以幫助位準移位器位準移位開關啟用信號之一電壓位準。然而,當模式信號在一第二狀態中時,可停用產生電荷泵電壓之一電荷泵。因此,位準移位器控制電路可控制偏壓電壓至一固定電壓位準,且可控制電荷泵電壓及一或多個開關控制信號以關閉RF開關。 因此,當模式信號在一第一狀態中時,位準移位器位準移位開關啟用信號以產生具有與一高電力供應電壓及/或一電荷泵電壓相關聯之電壓位準之一或多個開關控制信號。另外,當模式信號在一第二狀態中時,位準移位器控制電路可控制電荷泵電壓及一或多個位準移位器至一低電力供應電壓之一電壓位準以關閉RF開關。因此,開關控制器可用於控制RF開關至所要電壓位準,甚至當操作於第二狀態中時。 圖4係一開關控制器50之一實施例之一示意性方塊圖。開關控制器50包含一位準移位器51及一位準移位器控制電路52。 如圖4中所展示,位準移位器51接收一開關啟用信號SWEN 且產生可用於開啟或關閉一RF開關(例如,一NMOS電晶體)之一開關控制信號SWCTL 。在某些組態中,位準移位器51產生兩個或兩個以上開關控制信號。舉例而言,在某些組態中,位準移位器51可產生用於控制一串聯RF開關(例如,圖3之串聯式開關電晶體25)之一非反相開關控制信號及用於控制一並聯RF開關(例如,圖3之並聯式開關電晶體26)之一反相開關控制信號。然而,可有其他組態。 所繪示之位準移位器51包含NMOS疊接電晶體56及PMOS疊接電晶體57。在某些組態中,NMOS疊接電晶體56之各者與PMOS疊接電晶體57之一對應者配對,且電晶體之各個對串聯堆疊或配置於一高電力供應電壓V2 與一電荷泵電壓VCP 之間。如圖4中所展示,使用由位準移位器控制電路52產生之一偏壓電壓VBIAS 加偏壓於NMOS疊接電晶體56,且使用一低電力供應電壓V1 加偏壓於PMOS疊接電晶體57。 位準移位器控制電路52接收可操作於包含一第一狀態及一第二狀態之多個狀態之一者中之一模式信號MODE。另外,位準移位器控制電路52基於模式信號MODE之狀態來控制偏壓電壓VBIAS 之一電壓位準。 所繪示之位準移位器控制電路52包含產生與電荷泵電壓VCP 之一電壓位準一起改變之一疊接參考電壓之一疊接參考電路61。在某些組態中,當模式信號MODE在第一狀態中時,位準移位器控制電路52可控制偏壓電壓VBIAS 至疊接參考電壓。另外,當模式信號MODE在第二狀態中時,位準移位器控制電路52可控制偏壓電壓VBIAS 至諸如高電力供應電壓V2 之一電壓位準或任何其他適合DC電壓之一實質上固定電壓。 位準移位器控制電路52進一步包含當模式信號MODE在第二狀態中時幫助提供控制之一待命控制電路62。在某些組態中,當模式信號MODE在第二狀態中時,位準移位器控制電路52可控制電荷泵電壓VCP 之一電壓位準。舉例而言,當操作於待命模式中時,可停用產生電荷泵電壓VCP 之電荷泵,且可電浮電荷泵電壓VCP 。在某些實施方案中,當模式信號MODE在第二狀態中時,待命控制電路62可使用低電力供應電壓V1 控制電荷泵電壓VCP 。 在某些組態中,待命控制電路62亦可用於在待命期間控制一或多個開關控制信號之電壓位準。舉例而言,待命控制電路62可用於在待命期間控制開關控制信號SWC TL 之電壓位準至低電力供應電壓V1 。 雖然圖4繪示其中開關控制器50包含一位準移位器之一組態,但開關控制器50可經調適以包含額外位準移位器。在此等組態中,可由位準移位器之全部或部分共用一位準移位器控制電路。 圖5係一位準移位器70之一實施例之一電路圖。位準移位器70包含第一至第四NMOS位準移位電晶體71至74、第一至第一NMOS疊接電晶體81至84、第一至第四PMOS疊接電晶體91至94、第一至第四PMOS位準移位電晶體101至104、一第一反相器107及一第二反相器108。位準移位器70接收一開關啟用信號SWEN 及一偏壓電壓VBIAS 且產生一非反相開關控制信號SWCTL 及一反相開關控制信號SWCTLB 。 如圖5中所展示,第一NMOS位準移位電晶體71、第一NMOS疊接電晶體81、第一PMOS疊接電晶體91及第一PMOS位準移位電晶體101串聯堆疊或配置於高電力供應電壓V2 與電荷泵電壓VCP 之間。另外,第二NMOS位準移位電晶體72、第二NMOS疊接電晶體82、第二PMOS疊接電晶體92及第二PMOS位準移位電晶體102堆疊於高電力供應電壓V2 與電荷泵電壓VCP 之間。此外,第三NMOS位準移位電晶體73、第三NMOS疊接電晶體83、第三PMOS疊接電晶體93及第三PMOS位準移位電晶體103堆疊於高電力供應電壓V2 與電荷泵電壓VCP 之間。另外,第四NMOS位準移位電晶體74、第四NMOS疊接電晶體84、第四PMOS疊接電晶體94及第四PMOS位準移位電晶體104堆疊於高電力供應電壓V2 與電荷泵電壓VCP 之間。 使用偏壓電壓VBIAS 加偏壓於第一至第四NMOS疊接電晶體81至84之閘極,且使用低電力供應電壓V1 加偏壓於第一至第四PMOS疊接電晶體91至94之閘極。第一NMOS位準移位電晶體71之閘極及第三NMOS位準移位電晶體73之閘極電連接至第二NMOS位準移位電晶體72之汲極。另外,第二NMOS位準移位電晶體72之閘極及第四NMOS位準移位電晶體74之閘極電連接至第三NMOS位準移位電晶體73之汲極。 使用高電力供應電壓V2 及低電力供應電壓V1 供電給第一反相器107及第二反相器108。另外,第一反相器107包含接收開關啟用信號SWEN 之一輸入及將開關啟用信號SWEN 之一反相版本提供至第二反相器108之輸入、至第二PMOS位準移位電晶體102之閘極且至第四PMOS位準移位電晶體104之閘極之一輸出。第二反相器108包含將開關啟用信號SWEN 之一非反相版本提供至第一位準移位PMOS電晶體101之閘極且至第三位準移位PMOS電晶體103之閘極之一輸出。 圖5之位準移位器70繪示可用於圖4之開關控制器50中之一位準移位器之一實施例。然而,可根據本文中之教示使用位準移位器之其他組態。 參考圖4及圖5,當模式信號MODE在第一狀態中時,圖5之所繪示之位準移位器70可將開關啟用信號SWEN 自與高電力供應電壓V2 及低電力供應電壓V1 相關聯之一電壓域位準移位至與高電力供應電壓V2 及電荷泵電壓VCP 相關聯之一電壓域。舉例而言,當開關啟用信號SWEN 邏輯高時,非反相開關控制信號SWCTL 可具有約等於高電力供應電壓V2 之電壓位準之一電壓位準且反相開關控制信號SWCTLB 可具有約等於電荷泵電壓VCP 之電壓位準之一電壓位準。另外,當開關啟用信號SWEN 邏輯低時,非反相開關控制信號SWCTL 可具有約等於電荷泵電壓VCP 之電壓位準之一電壓位準且反相開關控制信號SWCTLB 可具有約等於高電力供應電壓V2 之電壓位準之一電壓位準。 偏壓電壓VBIAS 具有基於模式信號MODE之一狀態改變之一電壓位準。舉例而言,當模式信號MODE在第一狀態中時,偏壓電壓VBIAS 之電壓位準可由一疊接參考電路產生且可動態追蹤電荷泵電壓VCP 。依此方式組態偏壓電壓VBIAS 可幫助在存在電荷泵電壓VCP 之變動及/或沈降之情況下在位準移位器70之位準移位操作期間加偏壓於NMOS疊接電晶體81至84之閘極。 然而,當模式信號MODE在第二狀態中時,可關閉產生電荷泵電壓VCP 之電荷泵。另外,位準移位器控制電路52可控制偏壓電壓VBIAS 至諸如高電力供應電壓V2 之一電壓之一固定電壓位準。 因此,偏壓電壓VBIAS 之電壓位準可基於模式信號MODE之一狀態改變。 繼續參考圖4及圖5,在某些組態中,位準移位器控制電路52經組態以在待命期間控制電荷泵電壓VCP 之電壓位準及非反相開關控制信號SWCTL 及反相開關控制信號SWCTLB 之電壓位準。舉例而言,當模式信號MODE在第二狀態中時,位準移位器控制電路52經組態以使用低電力供應電壓V1 控制電荷泵電壓VCP 之電壓位準及非反相開關控制信號SWCTL 及反相開關控制信號SWCTLB 之電壓位準。 位準移位器70之額外細節可如先前所描述般。 圖6係一位準移位器控制電路120之一實施例之一電路圖。位準移位器控制電路120包含一疊接參考電路61、一待命控制電路62、一第一反相器135、一第一PMOS位準移位器控制電晶體121、一第二PMOS位準移位器控制電晶體122、一NMOS位準移位器控制電晶體123、第一至第四NMOS本體偏壓電晶體131至134、一第一反相器135及一第二反相器136。位準移位器控制電路120基於模式信號MODE之狀態產生偏壓電壓VBIAS 。 圖6之位準移位器控制電路120繪示可用於圖4之開關控制器50中之一位準移位器控制電路之一實施例。然而,可根據本文中之教示使用位準移位器控制電路之其他組態。 疊接參考電路61接收模式信號MODE及電荷泵電壓VCP 。另外,疊接參考電路61基於模式信號MODE之一狀態產生疊接參考電壓VCASREF 。在某些組態中,當模式信號MODE在第一狀態中時,疊接參考電壓VCASREF 動態追蹤電荷泵電壓VCP 之一電壓位準。另外,當模式信號MODE在第二狀態中時,疊接參考電路61可產生疊接參考電壓VCASREF 以具有約等於低電力供應電壓V1 之一電壓位準。然而,可有其他組態。 使用高電力供應電壓V2 及低電力供應電壓V1 供電給第一反相器135及第二反相器136。第一反相器135包含接收模式信號MODE之一輸入及將模式信號之一反相版本提供至第二反相器136之輸入、至第一PMOS位準移位器控制電晶體121之閘極且至待命控制電路62之一輸出。第二反相器136進一步包含將模式信號MODE之一非反相版本提供至第二PMOS位準移位器控制電晶體122之閘極、至NMOS位準移位器控制電晶體123之閘極且至待命控制電路62之一輸出。 第一PMOS位準移位器控制電晶體121及第二PMOS位準移位器控制電晶體122以及NMOS位準移位器控制電晶體123可用於控制偏壓電壓VBIAS 之電壓位準。舉例而言,當模式信號MODE邏輯高時,可開啟第一PMOS位準移位器控制電晶體121及NMOS位準移位器控制電晶體123以控制偏壓電壓VBIAS 之電壓位準至約等於疊接參考電壓VCASREF 。組態位準移位器控制電路120以包含並聯操作以控制偏壓電壓VBIAS 之一PMOS電晶體及一NMOS電晶體可幫助提供跨程序、供應電壓及/或溫度中之變動之一穩健電連接。另外,當模式信號MODE邏輯低時,第二PMOS位準移位器控制電晶體122可控制偏壓電壓VBIAS 之電壓位準至約等於高電力供應電壓V2 。 第一至第四NMOS本體偏壓電晶體131至134可用於加偏壓於第一PMOS位準移位器控制電晶體121及第二PMOS位準移位器控制電晶體122之本體。如圖6中所展示,第一NMOS本體偏壓電晶體131及第二NMOS本體偏壓電晶體132串聯電連接於疊接參考電壓VCASREF 與偏壓電壓VBIAS 之間,且第三NMOS本體偏壓電晶體133及第四NMOS本體偏壓電晶體134串聯電連接於偏壓電壓VBIAS 與高電力供應電壓V2 之間。另外,第二NMOS本體偏壓電晶體132之閘極電連接至疊接參考電壓VCASREF ,第三NMOS本體偏壓電晶體133之閘極電連接至高電力供應電壓V2 ,且第一NMOS本體偏壓電晶體131及第四NMOS本體偏壓電晶體134之閘極電連接至偏壓電壓VBIAS 。依此方式組態NMOS本體偏壓電晶體131至134可幫助加偏壓於第一PMOS位準移位器控制電晶體121及第二PMOS位準移位器控制電晶體122之本體以防止寄生汲極至本體及/或源極至本體二極體在多種操作條件期間變得經順向偏壓。 當模式信號MODE在第一狀態(正常操作模式)中時,可使用一電荷泵(圖6中未展示)控制電荷泵電壓VCP 。當模式信號MODE在第二狀態(待命狀態)中時,待命控制電路62可用於控制電荷泵電壓VCP 至約等於低電力供應電壓V1 。在某些組態中,當模式信號MODE在第二狀態中時,待命控制電路62亦可用於控制一或多個開關控制信號(諸如開關控制信號SWCT )之一狀態。 圖7係一疊接參考電路150之一實施例之一電路圖。疊接參考電路150包含第一至第七NMOS分壓器電晶體151至157、一第一NMOS控制電晶體161、一第二NMOS控制電晶體162、一PMOS控制電晶體163、一反相器165及一旁路電容器167。 圖7之疊接參考電路150包含可包含於諸如圖6之位準移位器控制電路120之一位準移位器控制電路中之一疊接參考電路之一實施例。然而,可根據本文中之教示使用疊接參考電路之其他組態。 第一至第七NMOS分壓器電晶體151至157在電荷泵電壓VCP 與高電力供應電壓V2 之間與PMOS控制電晶體163串聯電連接。如圖7中所展示,第一至第七NMOS分壓器電晶體151至157各經二極體連接且在高電力供應電壓V2 與電荷泵電壓VCP 之間經配置為一分壓器。雖然繪示一分壓器之一實例,但可依包含(例如)使用更多或更少電晶體及/或使用諸如電阻器之其他電組件之組態之其他方式實施一分壓器。 使用高電力供應電壓V2 及電力供應電壓V1 供電給反相器165。反相器165包含接收模式信號MODE之一輸入及將模式信號之一反相版本提供至PMOS控制電晶體163及第一NMOS控制電晶體161及第二NMOS控制電晶體162之閘極之一輸出。 當模式信號MODE邏輯高時,可關閉第一NMOS控制電晶體161及第二NMOS控制電晶體162且可開啟PMOS控制電晶體163。另外,第一至第七NMOS分壓器電晶體151至157可操作為產生約等於VCP +4/7*(V2 -VCP )之疊接參考電壓VCASREF 之一分壓器。因此,疊接參考電壓VCASREF 可在模式信號MODE之一第一狀態中動態追蹤電荷泵電壓VCP 。然而,當模式信號MODE邏輯低時,可開啟第一第二NMOS控制電晶體161及第二NMOS控制電晶體162且可關閉PMOS控制電晶體163。在此一組態中,可控制疊接參考電壓VCASREF 至低電力供應電壓V1 之電壓位準。 所繪示之組態包含電連接於PMOS控制電晶體163之汲極與疊接參考電壓VCASREF 之間之旁路電容器167。包含旁路電容器167可幫助減小疊接參考電壓VCASREF 之雜訊。 圖8係一待命控制電路180之一實施例之一電路圖。待命控制電路180包含一NMOS電荷泵電壓控制電晶體183、一第一NMOS待命控制電晶體181、一第二NMOS待命控制電晶體182、一PMOS疊接電晶體191、一NMOS疊接電晶體192、一第一PMOS待命控制電晶體193、一第二待命控制電晶體194、第一至第三NMOS開關控制電晶體201至203及第一至第三NMOS開關控制疊接電晶體211至213。 圖8之待命控制電路180繪示可包含於諸如圖6之位準移位器控制電路120之一位準移位器控制電路中之一待命控制電路之一實施例。然而,可根據本文中之教示使用待命控制電路之其他組態。 第一NMOS待命控制電晶體181、PMOS疊接電晶體191及第一PMOS待命控制電晶體193串聯電連接於電荷泵電壓VCP 與高電力供應電壓V2 之間。另外,第二NMOS待命控制電晶體182、NMOS疊接電晶體192及第二待命控制電晶體194串聯電連接於電荷泵電壓VCP 與高電力供應電壓V2 之間。第一NMOS待命控制電晶體181之閘極電連接至第二NMOS待命控制電晶體182之汲極,且第二NMOS待命控制電晶體182之閘極電連接至第一NMOS待命控制電晶體181之汲極。此外,PMOS疊接電晶體191之閘極電連接至低電力供應電壓V1 ,且NMOS疊接電晶體192之閘極電連接至偏壓電壓VBIAS 。另外,第一PMOS待命控制電晶體193之閘極電連接至模式信號MODE,且第二PMOS待命控制電晶體194之閘極電連接至反相模式信號MODEB。 NMOS電荷泵電壓控制電晶體183包含電連接至電荷泵電壓VCP 之一源極及本體、電連接至低電力供應電壓V1 之一汲極,及電連接至第一NMOS待命控制電晶體181之汲極之一閘極。當模式信號MODE邏輯高時,可關閉NMOS電荷泵電荷控制電晶體183且一電荷泵可產生電荷泵電壓VCP 以具有小於低電力供應電壓V1 之電壓位準之一電壓位準。 然而,當模式信號MODE邏輯低時,可開啟NMOS電荷泵電壓控制電晶體183,且待命控制電路180可控制電荷泵電壓VCP 以具有約等於低電力供應電壓V1 之電壓位準之一電壓位準。因此,待命控制電路180可用於防止電荷泵電壓VCP 在待命模式期間電浮。 在所繪示之組態中,待命控制電路180經繪示為包含與一第一開關控制信號SWCTL1 、一第二開關控制信號SWCTL 2 及一第三開關控制信號SWCTL 3 相關聯之開關控制電晶體。可由與不同開關相關聯之位準移位器產生第一至第三開關控制信號SWCTL1 至SWCTL3 。雖然展示與三個開關控制信號相關聯之一組態,但待命控制電路180可經調適以提供用於更多或更少開關控制信號之待命控制。 第一至第三NMOS開關控制電晶體201至203之閘極電連接至第一NMOS待命控制電晶體181之汲極。另外,第一至第三NMOS開關控制疊接電晶體211至213之閘極電連接至偏壓電壓VBIAS 。第一NMOS開關控制電晶體201及第一NMOS開關控制疊接電晶體211經串聯電連接。類似地,第二NMOS開關控制電晶體202及第二NMOS開關控制疊接電晶體212經串聯電連接,且第三NMOS開關控制電晶體203及第二NMOS開關控制疊接電晶體213經串聯電連接。 當模式信號MODE邏輯高時,可關閉第一至第三NMOS開關控制電晶體201至203且待命控制電路180不應控制第一至第三開關控制信號SWCTL1 至SWCTL3 。依此方式組態待命控制電路180可防止待命控制電路180在正常操作期間干擾控制第一至第三開關控制信號SWCTL1 至SWCTL 3 之電壓位準之位準移位器之操作。然而,當模式信號MODE邏輯低時,開關控制器可操作於一待命模式中,且待命控制電路180可控制第一至第三開關控制信號SWCTL1 至SWCTL3 之各者至約等於低電力供應電壓V1 。 圖9係根據一實施例之一RF系統200之一示意性方塊圖。RF系統200包含一電荷泵22、一第一RF開關201a、一第二RF開關201b、一第三RF開關201c及一開關控制器203。雖然將RF系統200繪示為包含三個RF開關,但RF系統200可經調適以包含更多或更少RF開關。 電荷泵22接收一模式信號MODE且產生一電荷泵電壓VCP 。在模式信號MODE之一第一狀態中啟用電荷泵22且在模式信號MODE之一第二狀態中停用電荷泵22。舉例而言,第一狀態可指示RF系統200之一正常操作模式且第二狀態可指示RF系統200之一待命模式。 開關控制器203接收模式信號MODE、一第一開關啟用信號SWEN1 、一第二開關啟用信號SWEN 2 及一第三開關啟用信號SWEN 3 。另外,開關控制器203產生用於控制第一RF開關201a之一第一開關控制信號SWCTL1 、用於控制第二RF開關201b之一第二開關控制信號SWCTL 2 及用於控制第三RF開關201c之一第三開關控制信號SWCTL 3 。所繪示之開關控制器203包含一位準移位器控制電路252、一第一位準移位器251a、一第二位準移位器251b及一第三位準移位器251c。位準移位器控制電路252可依與圖4之位準移位器控制電路52之方式類似之一方式操作。另外,位準移位器251a至251c可依與圖4之位準移位器51之方式類似之一方式操作。 雖然所繪示之開關控制器包含三個位準移位器,但開關控制器可包含更多或更少位準移位器。 RF系統200之額外細節可如先前所描述般。 圖10A係一封裝模組300之一實施例之一示意圖。圖10B係沿著線10B-10B獲取之圖10A之封裝模組300之一橫截面之一示意圖。 封裝模組300包含一IC或晶粒301、表面安裝組件303、導線接合件308、一封裝基板320及囊封結構340。封裝基板320包含由安置於其中之導體形成之墊306。另外,晶粒301包含墊304,且導線接合件308已用於將晶粒301之墊304電連接至封裝基板301之墊306。 如圖10A及圖10B中所繪示,晶粒301包含一電荷泵22、一開關控制器23及開關12,其等可如先前所描述般。 封裝基板320可經組態以接收諸如晶粒301及表面安裝組件303之複數個組件,表面安裝組件303可包含(例如)表面安裝電容器及/或電感器。 如圖10B中所展示,展示封裝模組300包含經安置於與用於安裝晶粒301之側相對之封裝模組300之側上之複數個接觸墊332。依此方式組態經封裝模組300可幫助將經封裝模組300連接至諸如一無線裝置之一電話板之一電路板。例示性接觸墊332可經組態以將RF信號、偏壓信號、(若干)低電力電壓及/或(若干)高電力電壓提供至晶粒301及/或表面安裝組件303。如圖10B中所展示,接觸墊332與晶粒301之間之電連接可由連接333透過封裝基板320促進。連接333可表示透過封裝基板320形成之電路徑,諸如與一多層層壓封裝基板之通孔及導體相關聯之連接。 在一些實施例中,封裝模組300亦可包含一或多個封裝結構以(例如)提供保護及/或促進封裝模組300之處置。此一封裝結構可包含形成於封裝基板320及安置於其上之組件及(若干)晶粒上方之覆模或囊封結構340。 將理解,雖然針對基於導線接合件之電連接之背景內容描述封裝模組300,但亦可在包含(例如)覆晶組態之其他封裝組態中實施本發明之一或多個特徵。應用 上文中所描述之一些實施例已結合無線裝置或行動電話提供實例。然而,實施例之原理及優勢可用於具有對於用於射頻開關之控制電路之需要之任何其他系統或設備。 可在多種電子裝置中實施此等開關控制器。電子裝置之實例可包含(但不限於)消費者電子產品、消費者電子產品之零件、電子測試設備等。電子裝置之實例亦可包含(但不限於)記憶體晶片、記憶體模組、光學網路或其他通信網路之電路及磁碟驅動器電路。消費者電子產品可包含(但不限於)一行動電話、一電話、一電視、一電腦監視器、一電腦、一手持式電腦、一個人數位助理(PDA)、一微波爐、一冰箱、一汽車、一立體聲系統、一卡帶錄影機或播放器、一DVD播放器、一CD播放器、一VCR、一MP3播放器、一收音機、一攝錄影機、一相機、一數位相機、一攜帶式記憶體晶片、一洗衣器、一乾衣器、一洗衣/乾衣器、一影印機、一傳真器件、一掃描儀、一多功能周邊裝置、一腕錶、一時鐘等。此外,電子裝置可包含未完成產品。 結論 除非內容脈絡清楚另有要求,否則貫穿描述及申請專利範圍,字組「包括(comprise)」、「包含(comprising)」及相同者應理解為一包含性意義而非一排他性或窮舉性意義,即「包含,但不限於」之意義。本文中通常使用之字組「耦合」指兩個或兩個以上元件可直接連接或藉由一或多個中間元件而連接。同樣地,本文中通常使用之字組「連接」指兩個或兩個以上元件可直接連接或藉由一或多個中間元件連接。另外,字組「本文中」、「上文中」、「下文中」及具有類似意思之字組當用於此申請案中時指作為一整體之此申請案且非此申請案之任何特定部分。內容脈絡允許之處,使用單數或負數數目之上文中之實施方式中之字組亦可分別包含負數或單數數目。字組「或」指兩個或兩個以上品項之一清單,該字組涵蓋字組之以下解譯之全部:清單中之品項之任何者、清單中之品項之全部及清單中之品項之任何組合。 另外,除非另外具體陳述或除非如所使用之在本內容脈絡內理解,否則尤其諸如「可(can)」、「可(could)」、「可能(might)」、「可(can)」、「例如(e.g)/(for example)」、「諸如」及相同者之本文中所使用之條件語言通常意欲傳達某些實施例包含(而其他實施例不包含)某些特徵、元件及/或狀態。因此,此條件語言通常不意欲暗示依任何方式需要該等特徵、元件及/或狀態用於一或多個實施例或一或多個實施例必須包含用於在有或無作者輸入或推動之情況下決定之邏輯,不管是否在任何特定實施例中包含或執行此等特徵、元件及/或狀態。 本發明之實施例之上文中之詳細描述不意欲為窮舉性或將本發明限於上文中所揭示之精確形式。雖然為了闡釋性目的在上文中描述本發明之特定實施例及實例,但可有在本發明之範疇內之多種等效修改,如熟習相關技術者將認知。舉例而言,雖然依一給定順序呈現程序或方塊,但替代實施例可依一不同順序執行具有步驟之常式或採用具有方塊之系統,且可刪除、移動、新增、再分、組合及/或修改一些程序或方塊。可依多種不同方式實施此等程序或方塊之各者。另外,雖然有時展示串聯執行程序或方塊,但可代替性地並聯執行,或可在不同時間執行此等程序或方塊。 本文中提供之本發明之教示可應用至其他系統而不必須為上文中所描述之系統。可組合上文中所描述之多種實施例之元件及行為以提供進一步實施例。 雖然已描述本發明之某些實施例,但此等實施例僅藉由實例呈現且不意欲限制本發明之範疇。當然,可呈多種其他形式體現本文中所描述之新穎方法及系統,此外,可做出本文中所描述之方法及系統之形式之多種省略、取代及改變而不脫離本發明之精神。隨附申請專利範圍及其等之等效物意欲涵蓋此等形式或修改,如落於本發明之範疇及精神內。The headings, if any, provided herein are for convenience only and do not necessarily affect the scope or meaning of the invention. A radio frequency (RF) switching circuit can include a series switch between the input and output of the RF switching circuit and a parallel switch between the input and a low power supply voltage (such as ground). In addition, the series switch and the parallel switch can be turned on or off in a complementary manner. A low impedance path from the input to the output of the RF switching circuit is provided when the series switch is turned on or off and the parallel circuit is turned off or off. Additionally, when the series switch is turned off and the parallel switch is turned on, the series switch operates at high impedance to block conduction between the input and output and the parallel switch operates at low impedance to provide an input terminal. A RF switching circuit can be powered in part using a negative voltage generator such as a charge pump. For example, a charge pump can be used to generate a negative charge of a gate voltage for biasing one or more n-type metal oxide semiconductor (NMOS) switching transistors (when operating in a closed state) Pump voltage. Controlling the gate voltage of an NMOS switch transistor to a voltage below a low power supply voltage increases the off-state impedance, which enhances isolation and/or improves harmonic performance in multi-band applications. In some configurations, a negative voltage generator can be disabled or turned off in a standby mode. For example, a charge pump can operate using a clock signal generated by an oscillator that can dissipate quiescent current and/or generate noise. To prevent the charge pump from degrading system performance during standby, the charge pump can be deactivated in standby mode. Although deactivating the charge pump during standby can reduce power consumption and/or noise, deactivating the charge pump during standby can also undesirably cause the output voltage of the charge pump to float, thereby causing the gate of some RF switches. The voltage is controlled unpredictably. It may be desirable to control the gate voltage of the RF switch even when operating in the standby mode. For example, controlling the gate voltage of the RF switch during standby can help maintain isolation between multiple RF bands and/or circuits. Apparatus and methods for controlling an RF switch are provided herein. In some configurations, an RF system includes: a charge pump for generating a charge pump voltage; an RF switch; a quasi-shifter for turning the RF switch on or off; and a bit shift A bit control circuit for controlling the level shifter. The charge pump receives one of the mode signals for enabling or disabling the charge pump. Additionally, the level shifter portion receives power from the charge pump voltage and controls the RF switch based on a switch enable signal. The level shifter control circuit receives the mode signal and biases the voltage to the level shifter using one of the state changes based on one of the mode signals. The charge pump is enabled in one of the first states of the mode signal and is deactivated in one of the mode signals in the second state. For example, the first state can indicate a normal mode of operation and the second state can indicate a standby mode. In some configurations, the level shifter control circuit controls the voltage level of the bias voltage such that when the mode signal is in the first state, the bias voltage tracks the charge pump voltage and causes the mode signal to be in the second state The medium time bias voltage has a substantially constant or constant voltage. Configuring the level shifter control circuit in this manner to generate a bias voltage can assist in the level shifting operation of the level shifter. For example, in some configurations, a high power supply voltage and a charge pump voltage are used to power the level shifter. Additionally, the level shifter includes a plurality of stacked transistors having gates biased by a bias voltage generated by the level shifter control circuit. When the mode signal is in a first state, the level shifter control circuit generates a bias voltage to have a tracking charge pump voltage to assist in the level shifter level shift switch enable signal to a high power supply voltage and charge The pump voltage is associated with one of the voltage domains of one of the voltage domains. However, when the mode signal is in a second state, the level shifter control circuit controls the bias voltage to a fixed voltage. In some embodiments, the level shifter control circuit also controls the charge pump voltage to a low power supply voltage (eg, ground) during the second mode, thereby assisting the level shifter to turn off in the second mode. RF switch. Thus, when the RF system is operating in one of the primary or normal modes of operation associated with the first state of the mode signal, the level shifter operates using a high power supply voltage and a charge pump voltage. In one example, when the mode signal is in the first state, the level shifter operates between a high power supply voltage of about +2.5 V and a negative charge pump voltage of about -2.0 V. Additionally, when the RF system is operating in one of the standby modes associated with the second state of the mode signal, the level shifter control circuit controls the charge pump voltage and the bias voltage such that the level shifter turns off the RF switch. In an example, the level shifter control circuit controls the charge pump voltage to a low power supply voltage of about 0 V when the mode signal is in the second state. While a variety of exemplary voltage levels have been provided, any suitable voltage level can be used. The level shifter described herein can be used to generate a switch control signal that has a desired voltage level when a charge pump is enabled and when the charge pump is deactivated. Therefore, the gate voltage of the RF switch can be appropriately controlled in both the main mode and the standby mode. Controlling the RF switch in this manner enhances RF isolation and/or otherwise enhances performance. 1 is a schematic diagram of one embodiment of an integrated circuit (IC) 10. The IC 10 is shown to receive a first or low power supply voltage V1 One of the first pins 5a and receiving a second or high power supply voltage V2 One of the second pins 5b. In addition, the illustrated IC 10 further includes a switch 12, a charge pump 22, and a switch controller 23. Although not shown in FIG. 1 for clarity of the drawings, the IC 10 typically includes additional pins and circuitry. Charge pump 22 can be used to generate less than a low power supply voltage V1 One of the voltage levels is one of the voltage levels of the charge pump voltage. Switch controller 23 receives a charge pump voltage that can be used in part to control switch 12. For example, the illustrated IC 10 can represent a front end module (FEM) and/or an antenna switch module (ASM), and the switch 12 can include an n-type metal oxide semiconductor (NMOS) switching transistor. The NMOS switch transistor includes a gate that is biased to a voltage level of one of the charge pump voltages when turned off. Controlling the gate voltage of an NMOS switch transistor to a voltage lower than one of the low power supply voltages in the off state increases the off state impedance, which enhances isolation in multi-band applications. When the NMOS switch transistor is operated in an on state, the NMOS switch transistor can be biased to, for example, a high power supply voltage V2 Any suitable voltage level for the voltage level. In some configurations, high power supply voltage V2 One of the regulated voltages may be generated by a wafer or an off-chip regulator. Use a regulator to generate a high power supply voltage V2 It can help control the NMOS switch transistor to operate in an open state having a voltage level relative to temperature, voltage voltage level, and/or relatively constant current load. In some configurations, a silicon-on-insulator (SOI) program is used to fabricate IC 10, and switch 12 can include an SOI transistor. However, there are other configurations available. 2 is a schematic block diagram of one embodiment of a wireless device 11. The exemplary wireless device 11 depicted in FIG. 2 may represent a multi-band and/or multi-mode device such as a multi-band/multi-mode mobile phone. In the illustrated configuration, the wireless device 11 includes a switch 12, a transceiver 13, an antenna 14, a power amplifier 17, a control component 18, a computer readable medium 19, a processor 20, a battery 21, A charge pump 22 and a switch controller 23. The transceiver 13 can generate RF signals for transmission via the antenna 14. Additionally, transceiver 13 can receive input RF signals from antenna 14. It should be understood that various functions associated with the transmission and reception of RF signals can be achieved by one or more components, collectively represented in FIG. 2 as transceivers 13. For example, a single component can be configured to provide both transmission and reception functions. In another example, the transmission and reception functions may be provided by separate components. Similarly, it should be understood that a variety of antenna functions associated with the transmission and reception of RF signals can be achieved by one or more components, collectively represented in FIG. 2 as antenna 14. For example, a single antenna can be configured to provide both transmission and reception functions. In another example, transmission and reception functions may be provided by separate antennas. In yet another example, different antennas can be utilized to provide different frequency bands associated with wireless device 11. In FIG. 2, one or more output signals from transceiver 13 are depicted as being provided to antenna 14 via one or more transmission paths 15. In the example shown, different transmission paths 15 may represent output paths associated with different frequency bands and/or different power outputs. For example, the two exemplary power amplifiers 17 shown may represent amplification associated with different power output configurations (eg, low power output and high power output) and/or amplification associated with different frequency bands. Although FIG. 2 illustrates the configuration using one of the two transmission paths 15, the wireless device 11 can be adapted to include more or fewer transmission paths 15. The power amplifier 17 can be used to amplify, for example, Global System for Mobile (GSM) signals, coded multiple access (CDMA) signals, W-CDMA signals, wireless local area network (WLAN) signals, Long Term Evolution (LTE) signals, and/or Or a variety of RF signals for EDGE signals. In FIG. 2, one or more detected signals from antenna 14 are depicted as being provided to transceiver 13 via one or more receive paths 16. In the example shown, different receive paths 16 may represent paths associated with different frequency bands. Although FIG. 2 illustrates the configuration using one of the four receive paths 16, the wireless device 11 can be adapted to include more or fewer receive paths 16. To facilitate switching between the receive path and the transmit path, switch 12 can be configured to electrically connect antenna 14 to a selected transmit or receive path. Thus, switch 12 can provide several switching functions associated with operation of one of wireless devices 11. In some configurations, switch 12 can include providing for association with, for example, switching between different frequency bands, switching between different power modes, switching between transmission modes and reception modes, or the like. Several switches of function. Switch 12 can also provide additional functionality including filtering and/or duplexing of the signals. Charge pump 22 can be used to generate a charge pump voltage that can be used in wireless device 11 for a variety of purposes. For example, in some configurations, the charge pump voltage generated by charge pump 22 can be provided to switch controller 23 and partially for biasing switch 12. 2 shows that in some configurations, a control component 18 can be provided for controlling various operations associated with operation of switch 12, power amplifier 17, charge pump 22, switch controller 23, and/or other operational components. control function. In some configurations, control component 18 generates a mode signal and/or one or more switch enable signals that are provided to switch controller 23. Thus, control component 18 can be used to operate switch controller 23 in a standby mode at certain times. When operating in the standby mode, control component 18 can disable or turn off charge pump 22 using the mode signal. In some configurations, a processor 20 can be configured to facilitate the implementation of the various programs described herein. The processor 20 can operate using computer program instructions. These computer program instructions can be provided to the processor 20. In some configurations, the computer program instructions can also be stored in a computer readable memory 19 that can direct the processor 20 or other programmable data processing device to operate in a particular manner. Battery 21 can be used in any suitable battery in wireless device 11, including, for example, a lithium ion battery. In some configurations, one of the battery voltages generated by battery 21 is adjusted to produce a portion for controlling a high power supply voltage of one of switches 12. 3 is a schematic block diagram of one embodiment of a power amplifier system 40. The illustrated power amplifier system 40 includes an RF switching circuit 27 that includes a series switching transistor 25 and a parallel switching transistor 26. The illustrated power amplifier system 40 further includes a charge pump 22, a switch controller 23, a directional coupler 24, a power amplifier bias circuit 30, a power amplifier 32, and a transceiver 33. The illustrated transceiver 33 includes a baseband processor 34, an I/Q modulator 37, a mixer 38, and an analog-to-digital converter (ADC) 39. Although not shown in FIG. 3 for clarity, transceiver 33 may include circuitry associated with receiving signals via one or more receive paths. The baseband signal processor 34 can be used to generate an in-phase (I) signal and a quadrature phase (Q) signal that can be used to represent a sine wave or a signal having a desired amplitude, frequency, and phase. For example, an I signal can be used to represent one of the sinusoidal in-phase components and a Q signal can be used to represent one of the sine waves that can be equivalent to one of the sine waves. In some embodiments, the I and Q signals can be provided to the I/Q modulator 37 in a digital format. The baseband processor 34 can be any suitable processor configured to process a baseband signal. For example, baseband processor 34 can include a digital signal processor, a microprocessor, a programmable code, or any combination thereof. Moreover, in some embodiments, two or more baseband processors 34 may be included in power amplifier system 40. I/Q modulator 37 can be configured to receive I and Q signals from baseband processor 34 and process the I and Q signals to produce an RF signal. For example, the I/Q modulator 37 can include a DAC that is configured to convert the I and Q signals into an analog format, a mixer that is used to upconvert the I and Q signals to a radio frequency; And a signal combiner for combining the upconverted I and Q signals into one of RF signals suitable for amplification by power amplifier 32. In some embodiments, I/Q modulator 37 can include one or more filters configured to filter the frequency content of the signals processed therein. Power amplifier bias circuit 30 can receive an enable signal ENABLE from base frequency processor 34 and can use the enable signal ENABLE to generate one or more bias signals for power amplifier 32. Power amplifier 32 can receive RF signals from I/Q modulator 37 of transceiver 33. The switch controller 23 can turn the series switch transistor 25 and the parallel switch transistor 26 on and off in a complementary manner. For example, the switch controller 23 can be used to turn on the series switch transistor 25 and turn off the parallel switch transistor 26 such that the power amplifier 32 provides an amplified RF signal to the antenna 14 through the series switch transistor 25. Additionally, the switch controller 23 can be used to turn off the series switch transistor 25 and turn on the parallel switch transistor 26 to provide a high impedance path between the output of the power amplifier 32 and the antenna 14, while providing the terminal to the power amplifier. Output. To control the state of one of the RF switching circuits 27, the switch controller 23 can receive a switch enable signal (not shown in FIG. 3) from any suitable circuit, such as the control assembly 18 of FIG. The directional coupler 24 can be positioned between the output of the power amplifier 32 and the source of the series switching transistor 25, thereby allowing one of the power amplifiers 32 of the power amplifier 32 that does not include the insertion loss of the series switching transistor 25. The sensed output signal from directional coupler 24 can be provided to a mixer 38 that can multiply the sensed output signal by a reference signal having a controlled frequency for down-frequency shift sensing The frequency content of the output signal is used to produce a signal that is shifted down. The down-shifted signal can be provided to an ADC 39 that can convert the down-shifted signal into a digital format suitable for processing by the baseband processor 34. By including a feedback path between the output of power amplifier 32 and baseband processor 34, baseband processor 34 can be configured to dynamically adjust the I and Q signals to optimize operation of power amplifier 40. For example, configuring power amplifier system 40 in this manner can help control power added efficiency (PAE) and/or linearity of power amplifier 32. In the illustrated configuration, power pump 22 provides a charge pump voltage to switch controller 23 for controlling series switching transistor 25 and parallel switching transistor 26. In some configurations, the charge pump voltage is used to bias the series switching transistor 25 and/or the parallel switching transistor 26 when the series switching transistor 25 and/or the parallel switching transistor 26 are off. Gate voltage. For example, charge pump 22 can generate a negative charge pump voltage for turning off one of series-connected switching transistor 25 and/or parallel switching transistor 26. While the switch controller 23 is illustrated as generating switch control signals for the two transistors, the switch controller 23 can be adapted to control more or fewer switch control transistors. For example, a switch controller can receive a plurality of switch enable signals and generate a plurality of switch control signals for controlling different RF switching circuits.Overview of examples of switch controllers Apparatus and methods for controlling radio frequency (RF) switches are disclosed. In some configurations, a switch controller includes a quasi-shifter control circuit and a quasi-shifter. The level shifter control circuit generates a bias voltage for biasing the level shifter and controls the bias voltage to a different voltage level based on a state of a mode signal. Powered by a high power supply voltage and a charge pump voltage to the level shifter. When the mode signal is in a first state, the level shifter level shifts a switch enable signal to generate one or more switch control signals for one or more RF switches. Additionally, the level shifter control circuit generates a bias voltage to have a tracking charge pump voltage to assist in the level shifter level shift switch enable signal voltage level. However, when the mode signal is in a second state, one of the charge pump voltages can be deactivated. Thus, the level shifter control circuit can control the bias voltage to a fixed voltage level and can control the charge pump voltage and one or more switch control signals to turn off the RF switch. Thus, when the mode signal is in a first state, the level shifter level shifts the switch enable signal to generate one of the voltage levels associated with a high power supply voltage and/or a charge pump voltage or Multiple switch control signals. In addition, when the mode signal is in a second state, the level shifter control circuit can control the charge pump voltage and one or more level shifters to a voltage level of a low power supply voltage to turn off the RF switch. . Thus, the switch controller can be used to control the RF switch to the desired voltage level even when operating in the second state. 4 is a schematic block diagram of one embodiment of a switch controller 50. The switch controller 50 includes a one-position shifter 51 and a one-bit shifter control circuit 52. As shown in FIG. 4, the level shifter 51 receives a switch enable signal SW.EN And generating a switch control signal SW that can be used to turn on or off an RF switch (eg, an NMOS transistor)CTL . In some configurations, the level shifter 51 produces two or more switch control signals. For example, in some configurations, the level shifter 51 can generate a non-inverting switch control signal for controlling a series RF switch (eg, the series switching transistor 25 of FIG. 3) and for An inverted switch control signal is controlled by one of the parallel RF switches (e.g., the parallel switch transistor 26 of FIG. 3). However, there are other configurations available. The illustrated level shifter 51 includes an NMOS stacked transistor 56 and a PMOS stacked transistor 57. In some configurations, each of the NMOS stacked transistors 56 is paired with one of the PMOS stacked transistors 57, and each pair of transistors is stacked in series or disposed at a high power supply voltage V.2 With a charge pump voltage VCP between. As shown in FIG. 4, one of the bias voltages V is generated by the level shifter control circuit 52.BIAS Biased to NMOS stacked transistor 56 and using a low power supply voltage V1 The PMOS stacked transistor 57 is biased. The level shifter control circuit 52 receives one of the plurality of states operable to include a first state and a second state. In addition, the level shifter control circuit 52 controls the bias voltage V based on the state of the mode signal MODE.BIAS One of the voltage levels. The illustrated level shifter control circuit 52 includes a charge pump voltage VCP One of the voltage levels together changes one of the stacked reference voltages to overlap the reference circuit 61. In some configurations, the level shifter control circuit 52 can control the bias voltage V when the mode signal MODE is in the first state.BIAS To the splicing reference voltage. In addition, when the mode signal MODE is in the second state, the level shifter control circuit 52 can control the bias voltage V.BIAS To such as high power supply voltage V2 One of the voltage levels or any other suitable DC voltage is substantially a fixed voltage. The level shifter control circuit 52 further includes a one of the standby control circuits 62 that assists in providing control when the mode signal MODE is in the second state. In some configurations, the level shifter control circuit 52 can control the charge pump voltage V when the mode signal MODE is in the second state.CP One of the voltage levels. For example, when operating in the standby mode, the generation of the charge pump voltage V can be disabled.CP Charge pump, and can float the charge pump voltage VCP . In some embodiments, the standby control circuit 62 can use the low power supply voltage V when the mode signal MODE is in the second state.1 Control charge pump voltage VCP . In some configurations, the standby control circuit 62 can also be used to control the voltage level of one or more of the switch control signals during standby. For example, the standby control circuit 62 can be used to control the switch control signal SW during standby.C TL Voltage level to low power supply voltage V1 . Although FIG. 4 illustrates one configuration in which the switch controller 50 includes a one-position shifter, the switch controller 50 can be adapted to include an additional level shifter. In these configurations, a one-bit shifter control circuit can be shared by all or part of the level shifter. FIG. 5 is a circuit diagram of one embodiment of a one-bit shifter 70. The level shifter 70 includes first to fourth NMOS level shifting transistors 71 to 74, first to first NMOS stacked transistors 81 to 84, and first to fourth PMOS stacked transistors 91 to 94. The first to fourth PMOS levels shift the transistors 101 to 104, a first inverter 107, and a second inverter 108. The level shifter 70 receives a switch enable signal SWEN And a bias voltage VBIAS And generating a non-inverting switch control signal SWCTL And an inverting switch control signal SWCTLB . As shown in FIG. 5, the first NMOS level shifting transistor 71, the first NMOS stacked transistor 81, the first PMOS stacked transistor 91, and the first PMOS level shifting transistor 101 are stacked or arranged in series. High power supply voltage V2 With charge pump voltage VCP between. In addition, the second NMOS level shifting transistor 72, the second NMOS stacked transistor 82, the second PMOS stacked transistor 92, and the second PMOS level shifting transistor 102 are stacked on the high power supply voltage V.2 With charge pump voltage VCP between. In addition, the third NMOS level shifting transistor 73, the third NMOS stacked transistor 83, the third PMOS stacked transistor 93, and the third PMOS level shifting transistor 103 are stacked on the high power supply voltage V.2 With charge pump voltage VCP between. In addition, the fourth NMOS level shifting transistor 74, the fourth NMOS stacked transistor 84, the fourth PMOS stacked transistor 94, and the fourth PMOS level shifting transistor 104 are stacked on the high power supply voltage V.2 With charge pump voltage VCP between. Use bias voltage VBIAS Biasing the gates of the first to fourth NMOS stacked transistors 81 to 84, and using a low power supply voltage V1 The gates of the first to fourth PMOS stacked transistors 91 to 94 are biased. The gate of the first NMOS level shifting transistor 71 and the gate of the third NMOS level shifting transistor 73 are electrically connected to the drain of the second NMOS level shifting transistor 72. In addition, the gate of the second NMOS level shifting transistor 72 and the gate of the fourth NMOS level shifting transistor 74 are electrically connected to the drain of the third NMOS level shifting transistor 73. Use high power supply voltage V2 And low power supply voltage V1 Power is supplied to the first inverter 107 and the second inverter 108. In addition, the first inverter 107 includes a receiving switch enable signal SWEN One input and the switch enable signal SWEN An inverted version is provided to the input of the second inverter 108, to the gate of the second PMOS level shift transistor 102 and to the gate of the fourth PMOS level shift transistor 104. The second inverter 108 includes a switch enable signal SWEN One non-inverted version is provided to the gate of the first level shift PMOS transistor 101 and to the gate of the third level shift PMOS transistor 103. The level shifter 70 of FIG. 5 illustrates one embodiment of one of the level shifters that can be used in the switch controller 50 of FIG. However, other configurations of the level shifter can be used in accordance with the teachings herein. Referring to FIG. 4 and FIG. 5, when the mode signal MODE is in the first state, the level shifter 70 illustrated in FIG. 5 can set the switch enable signal SW.EN Self and high power supply voltage V2 And low power supply voltage V1 Associate one of the voltage domain levels to shift to a high power supply voltage V2 And charge pump voltage VCP Associated with one of the voltage domains. For example, when the switch enable signal SWEN Non-inverting switch control signal SW when logic highCTL Can have approximately equal to a high power supply voltage V2 One of the voltage levels, the voltage level and the inverting switch control signal SWCTLB Can have approximately equal charge pump voltage VCP One of the voltage levels is a voltage level. In addition, when the switch enable signal SWEN Non-inverting switch control signal SW when logic is lowCTL Can have approximately equal charge pump voltage VCP One of the voltage levels, the voltage level and the inverting switch control signal SWCTLB Can have approximately equal to a high power supply voltage V2 One of the voltage levels is a voltage level. Bias voltage VBIAS There is one of the voltage levels based on one of the state changes of the mode signal MODE. For example, when the mode signal MODE is in the first state, the bias voltage VBIAS The voltage level can be generated by a stacked reference circuit and can dynamically track the charge pump voltage VCP . Configure the bias voltage V in this wayBIAS Can help in the presence of charge pump voltage VCP The gates of the NMOS stacked transistors 81 to 84 are biased during the level shifting operation of the level shifter 70 in the event of a change and/or settling. However, when the mode signal MODE is in the second state, the charge pump voltage V can be turned off.CP The charge pump. In addition, the level shifter control circuit 52 can control the bias voltage V.BIAS To such as high power supply voltage V2 One of the voltages is a fixed voltage level. Therefore, the bias voltage VBIAS The voltage level can be changed based on a state of the mode signal MODE. With continued reference to Figures 4 and 5, in some configurations, the level shifter control circuit 52 is configured to control the charge pump voltage V during standby.CP Voltage level and non-inverting switch control signal SWCTL And inverting switch control signal SWCTLB The voltage level. For example, when the mode signal MODE is in the second state, the level shifter control circuit 52 is configured to use the low power supply voltage V.1 Control charge pump voltage VCP Voltage level and non-inverting switch control signal SWCTL And inverting switch control signal SWCTLB The voltage level. Additional details of the level shifter 70 can be as previously described. 6 is a circuit diagram of one embodiment of a one-bit shifter control circuit 120. The level shifter control circuit 120 includes a stack reference circuit 61, a standby control circuit 62, a first inverter 135, a first PMOS level shifter control transistor 121, and a second PMOS level. The shifter control transistor 122, an NMOS level shifter control transistor 123, first to fourth NMOS body bias transistors 131 to 134, a first inverter 135 and a second inverter 136 . The level shifter control circuit 120 generates a bias voltage V based on the state of the mode signal MODEBIAS . The level shifter control circuit 120 of FIG. 6 illustrates one embodiment of a level shifter control circuit that can be used in the switch controller 50 of FIG. However, other configurations of the level shifter control circuit can be used in accordance with the teachings herein. The splicing reference circuit 61 receives the mode signal MODE and the charge pump voltage VCP . In addition, the splicing reference circuit 61 generates a spliced reference voltage V based on one of the states of the mode signal MODECASREF . In some configurations, when the mode signal MODE is in the first state, the reference voltage V is splicedCASREF Dynamic tracking of charge pump voltage VCP One of the voltage levels. In addition, when the mode signal MODE is in the second state, the splicing reference circuit 61 can generate the spliced reference voltage VCASREF To have approximately equal to the low power supply voltage V1 One of the voltage levels. However, there are other configurations available. Use high power supply voltage V2 And low power supply voltage V1 Power is supplied to the first inverter 135 and the second inverter 136. The first inverter 135 includes an input of the receive mode signal MODE and provides an inverted version of the mode signal to the input of the second inverter 136 to the gate of the first PMOS level shifter control transistor 121. And to one of the standby control circuits 62. The second inverter 136 further includes providing a non-inverted version of the mode signal MODE to the gate of the second PMOS level shifter control transistor 122 to the gate of the NMOS level shifter control transistor 123. And to one of the standby control circuits 62. The first PMOS level shifter control transistor 121 and the second PMOS level shifter control transistor 122 and the NMOS level shifter control transistor 123 can be used to control the bias voltage V.BIAS The voltage level. For example, when the mode signal MODE is logic high, the first PMOS level shifter control transistor 121 and the NMOS level shifter control transistor 123 can be turned on to control the bias voltage V.BIAS The voltage level is approximately equal to the splicing reference voltage VCASREF . Configuring the level shifter control circuit 120 to include parallel operation to control the bias voltage VBIAS One PMOS transistor and one NMOS transistor can help provide a robust electrical connection across a program, supply voltage, and/or temperature variation. In addition, when the mode signal MODE is logic low, the second PMOS level shifter controls the transistor 122 to control the bias voltage V.BIAS The voltage level is approximately equal to the high power supply voltage V2 . The first to fourth NMOS body bias transistors 131 to 134 are operable to bias the bodies of the first PMOS level shifter control transistor 121 and the second PMOS level shifter control transistor 122. As shown in FIG. 6, the first NMOS body bias transistor 131 and the second NMOS body bias transistor 132 are electrically connected in series to the spliced reference voltage V.CASREF With bias voltage VBIAS The third NMOS body bias transistor 133 and the fourth NMOS body bias transistor 134 are electrically connected in series to the bias voltage V.BIAS With high power supply voltage V2 between. In addition, the gate of the second NMOS body bias transistor 132 is electrically connected to the spliced reference voltage V.CASREF The gate of the third NMOS body bias transistor 133 is electrically connected to the high power supply voltage V2 And the gates of the first NMOS body bias transistor 131 and the fourth NMOS body bias transistor 134 are electrically connected to the bias voltage VBIAS . Configuring the NMOS body bias transistors 131 to 134 in this manner can help bias the body of the first PMOS level shifter control transistor 121 and the second PMOS level shifter control transistor 122 to prevent parasitic The drain-to-body and/or source-to-body diodes become forward biased during various operating conditions. When the mode signal MODE is in the first state (normal operation mode), a charge pump (not shown in FIG. 6) can be used to control the charge pump voltage V.CP . When the mode signal MODE is in the second state (standby state), the standby control circuit 62 can be used to control the charge pump voltage V.CP Up to approximately equal to the low power supply voltage V1 . In some configurations, the standby control circuit 62 can also be used to control one or more switch control signals (such as the switch control signal SW) when the mode signal MODE is in the second state.CT One of the states. FIG. 7 is a circuit diagram of one embodiment of a spliced reference circuit 150. The splicing reference circuit 150 includes first to seventh NMOS voltage divider transistors 151 to 157, a first NMOS control transistor 161, a second NMOS control transistor 162, a PMOS control transistor 163, and an inverter. 165 and a bypass capacitor 167. The splicing reference circuit 150 of FIG. 7 includes one embodiment of a splicing reference circuit that may be included in a level shifter control circuit such as the level shifter control circuit 120 of FIG. However, other configurations of the spliced reference circuit can be used in accordance with the teachings herein. First to seventh NMOS voltage divider transistors 151 to 157 at charge pump voltage VCP With high power supply voltage V2 The electrical connection is made in series with the PMOS control transistor 163. As shown in FIG. 7, the first to seventh NMOS voltage divider transistors 151 to 157 are each connected via a diode and at a high power supply voltage V.2 With charge pump voltage VCP It is configured as a voltage divider. Although one example of a voltage divider is illustrated, a voltage divider can be implemented in other ways including, for example, using more or fewer transistors and/or configuration using other electrical components such as resistors. Use high power supply voltage V2 And power supply voltage V1 Power is supplied to the inverter 165. The inverter 165 includes one input of the reception mode signal MODE and provides an inverted version of the mode signal to the PMOS control transistor 163 and one of the gates of the first NMOS control transistor 161 and the second NMOS control transistor 162. . When the mode signal MODE is logic high, the first NMOS control transistor 161 and the second NMOS control transistor 162 can be turned off and the PMOS control transistor 163 can be turned on. Additionally, the first through seventh NMOS voltage divider transistors 151 through 157 are operable to generate approximately equal to VCP +4/7*(V2 -VCP Stacked reference voltage VCASREF One of the voltage dividers. Therefore, the reference voltage V is splicedCASREF The charge pump voltage V can be dynamically tracked in the first state of one of the mode signals MODECP . However, when the mode signal MODE is logic low, the first second NMOS control transistor 161 and the second NMOS control transistor 162 can be turned on and the PMOS control transistor 163 can be turned off. In this configuration, the splicing reference voltage V can be controlledCASREF Low power supply voltage V1 The voltage level. The illustrated configuration includes a drain electrically connected to the PMOS control transistor 163 and a spliced reference voltage VCASREF A bypass capacitor 167 between. Including bypass capacitor 167 can help reduce the overlap reference voltage VCASREF The noise. FIG. 8 is a circuit diagram of one embodiment of a standby control circuit 180. The standby control circuit 180 includes an NMOS charge pump voltage control transistor 183, a first NMOS standby control transistor 181, a second NMOS standby control transistor 182, a PMOS stacked transistor 191, and an NMOS stacked transistor 192. A first PMOS standby control transistor 193, a second standby control transistor 194, first to third NMOS switch control transistors 201 to 203, and first to third NMOS switches control the stacked transistors 211 to 213. Standby control circuit 180 of FIG. 8 illustrates one embodiment of a standby control circuit that may be included in a level shifter control circuit, such as level shifter control circuit 120 of FIG. However, other configurations of the standby control circuit can be used in accordance with the teachings herein. The first NMOS standby control transistor 181, the PMOS stacked transistor 191, and the first PMOS standby control transistor 193 are electrically connected in series to the charge pump voltage V.CP With high power supply voltage V2 between. In addition, the second NMOS standby control transistor 182, the NMOS stacked transistor 192, and the second standby control transistor 194 are electrically connected in series to the charge pump voltage V.CP With high power supply voltage V2 between. The gate of the first NMOS standby control transistor 181 is electrically connected to the drain of the second NMOS standby control transistor 182, and the gate of the second NMOS standby control transistor 182 is electrically connected to the first NMOS standby control transistor 181. Bungee jumping. In addition, the gate of the PMOS stacked transistor 191 is electrically connected to the low power supply voltage V.1 And the gate of the NMOS stacked transistor 192 is electrically connected to the bias voltage VBIAS . In addition, the gate of the first PMOS standby control transistor 193 is electrically connected to the mode signal MODE, and the gate of the second PMOS standby control transistor 194 is electrically connected to the inverted mode signal MODEB. NMOS charge pump voltage control transistor 183 includes electrical connection to charge pump voltage VCP One source and body, electrically connected to a low power supply voltage V1 One of the drains is electrically connected to one of the gates of the first NMOS standby control transistor 181. When the mode signal MODE is logic high, the NMOS charge pump charge control transistor 183 can be turned off and a charge pump can generate the charge pump voltage V.CP To have less than a low power supply voltage V1 One of the voltage levels is a voltage level. However, when the mode signal MODE is logic low, the NMOS charge pump voltage control transistor 183 can be turned on, and the standby control circuit 180 can control the charge pump voltage V.CP To have approximately equal to the low power supply voltage V1 One of the voltage levels is a voltage level. Therefore, the standby control circuit 180 can be used to prevent the charge pump voltage VCP Float during standby mode. In the illustrated configuration, the standby control circuit 180 is illustrated as including a first switch control signal SWCTL1 a second switch control signal SWCTL 2 And a third switch control signal SWCTL 3 The associated switch controls the transistor. The first to third switch control signals SW may be generated by level shifters associated with different switchesCTL1 To SWCTL3 . While one of the configurations associated with the three switch control signals is shown, the standby control circuit 180 can be adapted to provide standby control for more or fewer switch control signals. The gates of the first to third NMOS switch control transistors 201 to 203 are electrically connected to the drain of the first NMOS standby control transistor 181. In addition, the first to third NMOS switches control the gates of the stacked transistors 211 to 213 to be electrically connected to the bias voltage V.BIAS . The first NMOS switch control transistor 201 and the first NMOS switch control stack transistor 211 are electrically connected in series. Similarly, the second NMOS switch control transistor 202 and the second NMOS switch control the stacked transistor 212 are electrically connected in series, and the third NMOS switch control transistor 203 and the second NMOS switch control the stacked transistor 213 are connected in series. connection. When the mode signal MODE is logic high, the first to third NMOS switch control transistors 201 to 203 may be turned off and the standby control circuit 180 should not control the first to third switch control signals SWCTL1 To SWCTL3 . Configuring the standby control circuit 180 in this manner can prevent the standby control circuit 180 from interfering with controlling the first to third switch control signals SW during normal operation.CTL1 To SWCTL 3 The operation of the voltage level level shifter. However, when the mode signal MODE is logic low, the switch controller is operable in a standby mode, and the standby control circuit 180 can control the first to third switch control signals SWCTL1 To SWCTL3 Each of them is approximately equal to a low power supply voltage V1 . 9 is a schematic block diagram of one of RF systems 200 in accordance with an embodiment. The RF system 200 includes a charge pump 22, a first RF switch 201a, a second RF switch 201b, a third RF switch 201c, and a switch controller 203. Although RF system 200 is depicted as including three RF switches, RF system 200 can be adapted to include more or fewer RF switches. The charge pump 22 receives a mode signal MODE and generates a charge pump voltage VCP . The charge pump 22 is enabled in one of the first states of the mode signal MODE and the charge pump 22 is deactivated in one of the second states of the mode signal MODE. For example, the first state may indicate one of the RF system 200 normal operating modes and the second state may indicate one of the RF system 200 standby modes. The switch controller 203 receives the mode signal MODE and a first switch enable signal SWEN1 a second switch enable signal SWEN 2 And a third switch enable signal SWEN 3 . In addition, the switch controller 203 generates a first switch control signal SW for controlling one of the first RF switches 201a.CTL1 For controlling one of the second RF switch 201b, the second switch control signal SWCTL 2 And a third switch control signal SW for controlling one of the third RF switches 201cCTL 3 . The illustrated switch controller 203 includes a one-bit shifter control circuit 252, a first level shifter 251a, a second level shifter 251b, and a third level shifter 251c. The level shifter control circuit 252 can operate in a manner similar to that of the level shifter control circuit 52 of FIG. In addition, the level shifters 251a to 251c can operate in a manner similar to that of the level shifter 51 of FIG. Although the illustrated switch controller includes three level shifters, the switch controller can include more or fewer level shifters. Additional details of the RF system 200 can be as previously described. FIG. 10A is a schematic diagram of an embodiment of a package module 300. Figure 10B is a schematic illustration of one of the cross sections of the package module 300 of Figure 10A taken along line 10B-10B. The package module 300 includes an IC or die 301, a surface mount component 303, a wire bond 308, a package substrate 320, and an encapsulation structure 340. The package substrate 320 includes a pad 306 formed of a conductor disposed therein. Additionally, die 301 includes pad 304 and wire bond 308 has been used to electrically connect pad 304 of die 301 to pad 306 of package substrate 301. As shown in FIGS. 10A and 10B, the die 301 includes a charge pump 22, a switch controller 23, and a switch 12, which may be as previously described. The package substrate 320 can be configured to receive a plurality of components, such as die 301 and surface mount component 303, which can include, for example, surface mount capacitors and/or inductors. As shown in FIG. 10B, the display package module 300 includes a plurality of contact pads 332 disposed on a side of the package module 300 opposite the side for mounting the die 301. Configuring the packaged module 300 in this manner can help connect the packaged module 300 to a circuit board such as one of the wireless devices. The exemplary contact pads 332 can be configured to provide RF signals, bias signals, (several) low power voltages, and/or high power voltage(s) to the die 301 and/or surface mount component 303. As shown in FIG. 10B, the electrical connection between the contact pads 332 and the die 301 can be facilitated by the connection 333 through the package substrate 320. Connection 333 may represent an electrical path formed through package substrate 320, such as a connection associated with a via and conductor of a multilayer laminate package substrate. In some embodiments, the package module 300 can also include one or more package structures to, for example, provide protection and/or facilitate handling of the package module 300. The package structure can include a overmold or encapsulation structure 340 formed over the package substrate 320 and the components disposed thereon and the die(s). It will be understood that while package module 300 is described with respect to the context of electrical connections based on wire bonds, one or more features of the present invention may also be implemented in other package configurations including, for example, flip chip configurations.application Some of the embodiments described above have been provided in connection with wireless devices or mobile phones. However, the principles and advantages of the embodiments can be applied to any other system or device having the need for a control circuit for a radio frequency switch. These switching controllers can be implemented in a variety of electronic devices. Examples of electronic devices may include, but are not limited to, consumer electronics, parts of consumer electronics, electronic test equipment, and the like. Examples of electronic devices may also include, but are not limited to, memory chips, memory modules, circuits of optical networks or other communication networks, and disk drive circuits. Consumer electronics products may include, but are not limited to, a mobile phone, a telephone, a television, a computer monitor, a computer, a handheld computer, a PDA, a microwave oven, a refrigerator, a car, a stereo system, a cassette recorder or player, a DVD player, a CD player, a VCR, an MP3 player, a radio, a video camera, a camera, a digital camera, a portable memory A body wafer, a washer, a clothes dryer, a washer/dryer, a photocopier, a facsimile device, a scanner, a multifunction peripheral, a wristwatch, a clock, and the like. Additionally, the electronic device can include an unfinished product. Conclusion Unless the context clearly requires otherwise, the phrase "comprise", "comprising" and the like should be understood as an inclusive rather than an exclusive or exhaustive. Meaning, meaning "including, but not limited to". The phrase "coupled" as used herein generally means that two or more elements are directly connected or connected by one or more intermediate elements. Similarly, the term "connected" as used herein generally means that two or more elements are directly connected or connected by one or more intermediate elements. In addition, the words "in this article", "above", "below" and similar meanings when used in this application refer to this application as a whole and not to any specific part of the application. . Where the context allows, the use of the singular or negative number of the above-described embodiments may also include negative or singular numbers, respectively. The word "or" refers to a list of two or more items that cover all of the following interpretations of the word: any of the items in the list, all of the items in the list, and the list Any combination of items. In addition, unless specifically stated otherwise or unless understood within the context of the context as used, such as "can", "could", "might", "can", "Conditional language as used herein, such as (eg) / (for example), "such as" and the like, is generally intended to convey that certain embodiments include (and other embodiments do not include) certain features, components and/or status. Therefore, this conditional language is generally not intended to imply that such features, elements, and/or states are required in any manner for one or more embodiments or one or more embodiments must be included for use with or without The logic of the decision, whether or not such features, elements and/or states are included or executed in any particular embodiment. The above description of the embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Although the specific embodiments and examples of the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as will be appreciated by those skilled in the art. For example, although a program or block is presented in a given order, alternative embodiments may perform a routine having steps or a system with blocks in a different order, and may be deleted, moved, added, subdivided, combined And/or modify some programs or blocks. Each of these procedures or blocks can be implemented in a number of different ways. In addition, although programs or blocks are sometimes shown in series, they may alternatively be performed in parallel, or such programs or blocks may be executed at different times. The teachings of the present invention provided herein can be applied to other systems and need not be the systems described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments. Although certain embodiments of the invention have been described, these embodiments are presented by way of example only and are not intended to limit the scope of the invention. Of course, the novel methods and systems described herein may be embodied in a variety of other forms and, in addition, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the invention. The scope of the claims and the equivalents thereof are intended to cover such forms or modifications as fall within the scope and spirit of the invention.

5a‧‧‧第一接腳5a‧‧‧First pin

5b‧‧‧第二接腳5b‧‧‧second pin

10‧‧‧積體電路(IC)10‧‧‧Integrated Circuit (IC)

10B-10B‧‧‧線10B-10B‧‧‧ line

11‧‧‧無線裝置11‧‧‧Wireless devices

12‧‧‧開關12‧‧‧ switch

13‧‧‧收發器13‧‧‧ transceiver

14‧‧‧天線14‧‧‧Antenna

15‧‧‧傳輸路徑15‧‧‧Transmission path

16‧‧‧接收路徑16‧‧‧Receiving path

17‧‧‧功率放大器17‧‧‧Power Amplifier

18‧‧‧控制組件18‧‧‧Control components

19‧‧‧電腦可讀媒體19‧‧‧ Computer readable media

20‧‧‧處理器20‧‧‧ processor

21‧‧‧電池21‧‧‧Battery

22‧‧‧電荷泵22‧‧‧Charge pump

23‧‧‧開關控制器23‧‧‧Switch controller

24‧‧‧定向耦合器24‧‧‧Directional coupler

25‧‧‧串聯式開關電晶體25‧‧‧Series Switching Transistor

26‧‧‧並聯式開關電晶體26‧‧‧Parallel Switching Transistor

27‧‧‧射頻(RF)切換電路27‧‧‧RF (RF) switching circuit

30‧‧‧功率放大器偏壓電路30‧‧‧Power amplifier bias circuit

32‧‧‧功率放大器32‧‧‧Power Amplifier

33‧‧‧收發器33‧‧‧ transceiver

34‧‧‧基頻處理器34‧‧‧Baseband processor

37‧‧‧I/Q調變器37‧‧‧I/Q Modulator

38‧‧‧混合器38‧‧‧ Mixer

39‧‧‧類比轉數位轉換器(ADC)39‧‧‧ Analog to Digital Converter (ADC)

40‧‧‧功率放大器系統40‧‧‧Power Amplifier System

50‧‧‧開關控制器50‧‧‧Switch controller

51‧‧‧位準移位器51‧‧‧ position shifter

52‧‧‧位準移位器控制電路52‧‧‧ level shifter control circuit

56‧‧‧n型金屬氧化物半導體(NMOS)疊接電晶體56‧‧‧n type metal oxide semiconductor (NMOS) stacked transistor

57‧‧‧p型金屬氧化物半導體(PMOS)疊接電晶體57‧‧‧p-type metal oxide semiconductor (PMOS) stacked transistor

61‧‧‧疊接參考電路61‧‧‧Stack reference circuit

62‧‧‧待命控制電路62‧‧‧ Standby control circuit

70‧‧‧位準移位器70‧‧‧ position shifter

71‧‧‧第一n型金屬氧化物半導體(NMOS)位準移位電晶體71‧‧‧First n-type metal oxide semiconductor (NMOS) level shift transistor

72‧‧‧第二n型金屬氧化物半導體(NMOS)位準移位電晶體72‧‧‧Second n-type metal oxide semiconductor (NMOS) level shifting transistor

73‧‧‧第三n型金屬氧化物半導體(NMOS)位準移位電晶體73‧‧‧ Third n-type metal oxide semiconductor (NMOS) level shifting transistor

74‧‧‧第四n型金屬氧化物半導體(NMOS)位準移位電晶體74‧‧‧ Fourth n-type metal oxide semiconductor (NMOS) level shift transistor

81‧‧‧第一n型金屬氧化物半導體(NMOS)疊接電晶體81‧‧‧First n-type metal oxide semiconductor (NMOS) stacked transistor

82‧‧‧第二n型金屬氧化物半導體(NMOS)疊接電晶體82‧‧‧Second n-type metal oxide semiconductor (NMOS) stacked transistor

83‧‧‧第三n型金屬氧化物半導體(NMOS)疊接電晶體83‧‧‧ Third n-type metal oxide semiconductor (NMOS) stacked transistor

84‧‧‧第四n型金屬氧化物半導體(NMOS)疊接電晶體84‧‧‧Fourth n-type metal oxide semiconductor (NMOS) stacked transistor

91‧‧‧第一p型金屬氧化物半導體(PMOS)疊接電晶體91‧‧‧First p-type metal oxide semiconductor (PMOS) stacked transistor

92‧‧‧第二p型金屬氧化物半導體(PMOS)疊接電晶體92‧‧‧Second p-type metal oxide semiconductor (PMOS) stacked transistor

93‧‧‧第三p型金屬氧化物半導體(PMOS)疊接電晶體93‧‧‧ Third p-type metal oxide semiconductor (PMOS) stacked transistor

94‧‧‧第四p型金屬氧化物半導體(PMOS)疊接電晶體94‧‧‧ Fourth p-type metal oxide semiconductor (PMOS) stacked transistor

101‧‧‧第一p型金屬氧化物半導體(PMOS)位準移位電晶體101‧‧‧First p-type metal oxide semiconductor (PMOS) level shift transistor

102‧‧‧第二p型金屬氧化物半導體(PMOS)位準移位電晶體102‧‧‧Second p-type metal oxide semiconductor (PMOS) level shift transistor

103‧‧‧第三p型金屬氧化物半導體(PMOS)位準移位電晶體103‧‧‧ Third p-type metal oxide semiconductor (PMOS) level shift transistor

104‧‧‧第四p型金屬氧化物半導體(PMOS)位準移位電晶體104‧‧‧ Fourth p-type metal oxide semiconductor (PMOS) level shift transistor

107‧‧‧第一反相器107‧‧‧First Inverter

108‧‧‧第二反相器108‧‧‧Second inverter

120‧‧‧位準移位器控制電路120‧‧‧ level shifter control circuit

121‧‧‧第一p型金屬氧化物半導體(PMOS)位準移位器控制電晶體121‧‧‧First p-type metal oxide semiconductor (PMOS) level shifter control transistor

122‧‧‧第二p型金屬氧化物半導體(PMOS)位準移位器控制電晶體122‧‧‧Second p-type metal oxide semiconductor (PMOS) level shifter control transistor

123‧‧‧n型金屬氧化物半導體(NMOS)位準移位器控制電晶體123‧‧‧n type metal oxide semiconductor (NMOS) level shifter control transistor

131‧‧‧第一n型金屬氧化物半導體(NMOS)本體偏壓電晶體131‧‧‧First n-type metal oxide semiconductor (NMOS) body bias transistor

132‧‧‧第二n型金屬氧化物半導體(NMOS)本體偏壓電晶體132‧‧‧Second n-type metal oxide semiconductor (NMOS) body bias transistor

133‧‧‧第三n型金屬氧化物半導體(NMOS)本體偏壓電晶體133‧‧‧ Third n-type metal oxide semiconductor (NMOS) body bias transistor

134‧‧‧第四n型金屬氧化物半導體(NMOS)本體偏壓電晶體134‧‧‧4th n-type metal oxide semiconductor (NMOS) body bias transistor

135‧‧‧第一反相器135‧‧‧First Inverter

136‧‧‧第二反相器136‧‧‧Second inverter

150‧‧‧疊接參考電路150‧‧‧Stack reference circuit

151‧‧‧第一n型金屬氧化物半導體(NMOS)分壓器電晶體151‧‧‧First n-type metal oxide semiconductor (NMOS) voltage divider transistor

152‧‧‧第二n型金屬氧化物半導體(NMOS)分壓器電晶體152‧‧‧Second n-type metal oxide semiconductor (NMOS) voltage divider transistor

153‧‧‧第三n型金屬氧化物半導體(NMOS)分壓器電晶體153‧‧‧ Third n-type metal oxide semiconductor (NMOS) voltage divider transistor

154‧‧‧第四n型金屬氧化物半導體(NMOS)分壓器電晶體154‧‧‧ Fourth n-type metal oxide semiconductor (NMOS) voltage divider transistor

155‧‧‧第五n型金屬氧化物半導體(NMOS)分壓器電晶體155‧‧‧ Fifth n-type metal oxide semiconductor (NMOS) voltage divider transistor

156‧‧‧第六n型金屬氧化物半導體(NMOS)分壓器電晶體156‧‧‧6th n-type metal oxide semiconductor (NMOS) voltage divider transistor

157‧‧‧第七n型金屬氧化物半導體(NMOS)分壓器電晶體157‧‧‧ seventh n-type metal oxide semiconductor (NMOS) voltage divider transistor

161‧‧‧第一n型金屬氧化物半導體(NMOS)控制電晶體161‧‧‧First n-type metal oxide semiconductor (NMOS) controlled transistor

162‧‧‧第二n型金屬氧化物半導體(NMOS)控制電晶體162‧‧‧Second n-type metal oxide semiconductor (NMOS) controlled transistor

163‧‧‧p型金屬氧化物半導體(PMOS)控制電晶體163‧‧‧p-type metal oxide semiconductor (PMOS) control transistor

165‧‧‧反相器165‧‧‧Inverter

167‧‧‧旁路電容器167‧‧‧Bypass capacitor

180‧‧‧待命控制電路180‧‧‧ Standby control circuit

181‧‧‧第一n型金屬氧化物半導體(NMOS)待命控制電晶體181‧‧‧First n-type metal oxide semiconductor (NMOS) standby control transistor

182‧‧‧第二n型金屬氧化物半導體(NMOS)待命控制電晶體182‧‧‧Second n-type metal oxide semiconductor (NMOS) standby control transistor

183‧‧‧n型金屬氧化物半導體(NMOS)電荷泵電壓控制電晶體183‧‧‧n type metal oxide semiconductor (NMOS) charge pump voltage controlled transistor

191‧‧‧p型金屬氧化物半導體(PMOS)疊接電晶體191‧‧‧p-type metal oxide semiconductor (PMOS) stacked transistor

192‧‧‧n型金屬氧化物半導體(NMOS)疊接電晶體192‧‧‧n type metal oxide semiconductor (NMOS) stacked transistor

193‧‧‧第一PMOS待命控制電晶體193‧‧‧First PMOS Standby Control Cell

194‧‧‧第二待命控制電晶體194‧‧‧Second standby control transistor

200‧‧‧射頻(RF)系統200‧‧‧ Radio Frequency (RF) System

201‧‧‧第一n型金屬氧化物半導體(NMOS)開關控制電晶體201‧‧‧First n-type metal oxide semiconductor (NMOS) switch control transistor

201a‧‧‧第一射頻(RF)開關201a‧‧‧First Radio Frequency (RF) Switch

201b‧‧‧第二射頻(RF)開關201b‧‧‧second radio frequency (RF) switch

201c‧‧‧第三射頻(RF)開關201c‧‧‧ Third Radio Frequency (RF) Switch

202‧‧‧第二n型金屬氧化物半導體(NMOS)開關控制電晶體202‧‧‧Second n-type metal oxide semiconductor (NMOS) switch control transistor

203‧‧‧第三n型金屬氧化物半導體(NMOS)開關控制電晶體203‧‧‧ Third n-type metal oxide semiconductor (NMOS) switch control transistor

211‧‧‧第一n型金屬氧化物半導體(NMOS)開關控制疊接電晶體211‧‧‧First n-type metal oxide semiconductor (NMOS) switch control stacked transistor

212‧‧‧第二n型金屬氧化物半導體(NMOS)開關控制疊接電晶體212‧‧‧Second n-type metal oxide semiconductor (NMOS) switch control stacked transistor

213‧‧‧第三n型金屬氧化物半導體(NMOS)開關控制疊接電晶體213‧‧‧ Third n-type metal oxide semiconductor (NMOS) switch control stacked transistor

251a‧‧‧第一位準移位器251a‧‧‧first position shifter

251b‧‧‧第二位準移位器251b‧‧‧second position shifter

251c‧‧‧第三位準移位器251c‧‧‧ third position shifter

252‧‧‧位準移位器控制電路252‧‧‧ Position shifter control circuit

300‧‧‧封裝模組300‧‧‧Package Module

301‧‧‧積體電路(IC)/晶粒301‧‧‧Integrated Circuit (IC) / Grain

303‧‧‧表面安裝組件303‧‧‧Surface mount components

304‧‧‧墊304‧‧‧ pads

306‧‧‧墊306‧‧‧ pads

308‧‧‧導線接合件308‧‧‧Wire joints

320‧‧‧封裝基板320‧‧‧Package substrate

332‧‧‧接觸墊332‧‧‧Contact pads

333‧‧‧連接333‧‧‧Connect

340‧‧‧囊封結構340‧‧‧encapsulated structure

圖1係一積體電路(IC)之一實施例之一示意圖。 圖2係一無線裝置之一實施例之一示意性方塊圖。 圖3係一功率放大器系統之一實施例之一示意性方塊圖。 圖4係一開關控制器之一實施例之一示意性方塊圖。 圖5係一位準移位器之一實施例之一電路圖。 圖6係一位準移位器控制電路之一實施例之一電路圖。 圖7係一疊接參考電路之一實施例之一電路圖。 圖8係一待命控制電路之一實施例之一電路圖。 圖9係根據一實施例之一射頻系統之一示意性方塊圖。 圖10A係一經封裝模組之一實施例之一示意圖。 圖10B係沿著線10B-10B獲取之圖10A之經封裝模組之一橫截面之一示意圖。1 is a schematic diagram of one embodiment of an integrated circuit (IC). 2 is a schematic block diagram of one embodiment of a wireless device. 3 is a schematic block diagram of one embodiment of a power amplifier system. 4 is a schematic block diagram of one embodiment of a switch controller. Figure 5 is a circuit diagram of one embodiment of a one-bit shifter. Figure 6 is a circuit diagram of one embodiment of a one-bit shifter control circuit. Figure 7 is a circuit diagram of one embodiment of a stacked reference circuit. Figure 8 is a circuit diagram of one embodiment of a standby control circuit. 9 is a schematic block diagram of one of the radio frequency systems in accordance with an embodiment. Figure 10A is a schematic illustration of one embodiment of a packaged module. Figure 10B is a schematic illustration of one of the cross-sections of the packaged module of Figure 10A taken along line 10B-10B.

Claims (20)

一種射頻系統,其包括:一位準移位器,其可操作以提供位準移位至一輸入信號,該位準移位器藉由一偏壓電壓偏壓且藉由一供應電壓及一電荷泵電壓供電;一電荷泵,其經組態以提供該電荷泵電壓及接收一模式信號,該模式信號可操作以在一第一狀態中啟用該電荷泵且在一第二狀態中停用該電荷泵;及一位準移位器控制電路,其經組態以當該模式信號在該第一狀態中時控制該偏壓電壓以追蹤該電荷泵電壓,及當該模式信號在該第二狀態中時使用該供應電壓來控制該偏壓電壓。 A radio frequency system comprising: a quasi-shifter operable to provide a level shift to an input signal, the level shifter being biased by a bias voltage and coupled by a supply voltage a charge pump voltage supply; a charge pump configured to provide the charge pump voltage and receive a mode signal operative to enable the charge pump in a first state and deactivate in a second state a charge pump; and a quasi-shifter control circuit configured to control the bias voltage to track the charge pump voltage when the mode signal is in the first state, and when the mode signal is at the The supply voltage is used to control the bias voltage in the two states. 如請求項1之射頻系統,其進一步包含由該位準移位器控制之一射頻開關。 The radio frequency system of claim 1, further comprising one of the radio frequency switches controlled by the level shifter. 如請求項1之射頻系統,其中該位準移位器控制電路進一步經組態以當該模式信號在該第二狀態中時控制該電荷泵電壓之一電壓位準至一接地電壓。 The radio frequency system of claim 1, wherein the level shifter control circuit is further configured to control a voltage level of the charge pump voltage to a ground voltage when the mode signal is in the second state. 如請求項1之射頻系統,其中該位準移位器包括至少一個疊接電晶體,該至少一個疊接電晶體具有由該偏壓電壓控制之一閘極。 The radio frequency system of claim 1, wherein the level shifter comprises at least one stacked transistor, the at least one stacked transistor having a gate controlled by the bias voltage. 如請求項4之射頻系統,其中該位準移位器控制電路包括一分壓器,該分壓器經組態以基於介於該供應電壓及該電荷泵電壓之間之一電壓差來產生一疊接參考電壓,該位準移位器控制電路經組態以當該模式信號在該第一狀態中時使用該疊接參考電壓來控制該偏壓電壓。 The radio frequency system of claim 4, wherein the level shifter control circuit includes a voltage divider configured to generate a voltage difference between the supply voltage and the charge pump voltage A stack of reference voltages is configured, the level shifter control circuit being configured to control the bias voltage using the stacked reference voltage when the mode signal is in the first state. 如請求項5之射頻系統,其中該位準移位器控制電路包括當該模式信號在該第一狀態中時並聯操作以將該疊接參考電壓電連接至該偏壓電壓之一n型金屬氧化物半導體電晶體及一p型金屬氧化物半導體電晶體。 The radio frequency system of claim 5, wherein the level shifter control circuit comprises operating in parallel when the mode signal is in the first state to electrically connect the splicing reference voltage to one of the bias voltages n-type metal An oxide semiconductor transistor and a p-type metal oxide semiconductor transistor. 如請求項5之射頻系統,其中該分壓器包含經串聯電連接之複數個經二極體連接的電晶體。 The radio frequency system of claim 5, wherein the voltage divider comprises a plurality of diode-connected transistors electrically connected in series. 一種用於一射頻系統之經封裝模組,該經封裝模組包含:一封裝基板;及附接至該封裝基板之一積體電路,該積體電路包括可操作以提供位準移位至一輸入信號之一位準移位器,該位準移位器經組態以接收偏壓該位準移位器之一偏壓電壓且從一供應電壓及一電荷泵電壓接收電力,該積體電路進一步包括一電荷泵,該電荷泵經組態以提供該電荷泵電壓及接收一模式信號,該模式信號可操作以在一第一狀態中啟用該電荷泵且在一第二狀態中停用該電荷泵,及一位準移位器控制電路,該位準移位器控制電路經組態以當該模式信號在該第一狀態中時控制該偏壓電壓以追蹤該電荷泵電壓,及當該模式信號在該第二狀態中時使用該供應電壓來控制該偏壓電壓。 A packaged module for a radio frequency system, the packaged module comprising: a package substrate; and an integrated circuit attached to the package substrate, the integrated circuit including an operable circuit to provide a level shift to An input level shifter configured to receive a bias voltage of one of the level shifters and receive power from a supply voltage and a charge pump voltage, the product The body circuit further includes a charge pump configured to provide the charge pump voltage and receive a mode signal operative to enable the charge pump in a first state and to stop in a second state Using the charge pump, and a quasi-shifter control circuit, the level shifter control circuit is configured to control the bias voltage to track the charge pump voltage when the mode signal is in the first state, And using the supply voltage to control the bias voltage when the mode signal is in the second state. 如請求項8之經封裝模組,其中該積體電路進一步包括由該位準移位器控制之一射頻開關。 The packaged module of claim 8, wherein the integrated circuit further comprises an RF switch controlled by the level shifter. 如請求項8之經封裝模組,其中該位準移位器控制電路進一步經組態以當該模式信號在該第二狀態中時控制該電荷泵電壓之一電壓位準至一接地電壓。 The packaged module of claim 8, wherein the level shifter control circuit is further configured to control a voltage level of the charge pump voltage to a ground voltage when the mode signal is in the second state. 如請求項8之經封裝模組,其中該位準移位器包括至少一個疊接電晶體,該至少一個疊接電晶體具有由該偏壓電壓控制之一閘極。 The packaged module of claim 8, wherein the level shifter comprises at least one stacked transistor, the at least one stacked transistor having a gate controlled by the bias voltage. 如請求項11之經封裝模組,其中該位準移位器控制電路包括一分壓器,該分壓器經組態以基於介於該供應電壓及該電荷泵電壓之間之一電壓差來產生一疊接參考電壓,該位準移位器控制電路經組態以當該模式信號在該第一狀態中時使用該疊接參考電壓來控制該偏壓電壓。 The packaged module of claim 11, wherein the level shifter control circuit includes a voltage divider configured to be based on a voltage difference between the supply voltage and the charge pump voltage To generate a spliced reference voltage, the level shifter control circuit is configured to control the bias voltage using the spliced reference voltage when the mode signal is in the first state. 如請求項12之經封裝模組,其中該位準移位器控制電路包括當該模式信號在該第一狀態中時並聯操作以將該疊接參考電壓電連接至該偏壓電壓之一n型金屬氧化物半導體電晶體及一p型金屬氧化物半導體電晶體。 The packaged module of claim 12, wherein the level shifter control circuit includes parallel operation when the mode signal is in the first state to electrically connect the spliced reference voltage to one of the bias voltages n A metal oxide semiconductor transistor and a p-type metal oxide semiconductor transistor. 如請求項12之經封裝模組,其中該分壓器包含經串聯電連接之複數個經二極體連接的電晶體。 The packaged module of claim 12, wherein the voltage divider comprises a plurality of diode-connected transistors electrically connected in series. 一種在一射頻系統中位準移位之方法,該方法包含:使用一電荷泵來產生一電荷泵電壓,包括當一模式信號在一第一狀態中時啟用該電荷泵,且當該模式信號在一第二狀態中時停用該電荷泵;使用一供應電壓及該電荷泵電壓來供電一位準移位器;使用一偏壓電壓來偏壓該位準移位器;使用一位準移位器控制電路來產生該偏壓電壓,包括當該模式信號在該第一狀態中時控制該偏壓電壓以追蹤該電荷泵電壓,及當該模式信號在該第二狀態中時使用該供應電壓來控制該偏壓電壓;及使用該位準移位器將一輸入信號位準移位。 A method of level shifting in a radio frequency system, the method comprising: using a charge pump to generate a charge pump voltage, including enabling the charge pump when a mode signal is in a first state, and when the mode signal Disabling the charge pump in a second state; using a supply voltage and the charge pump voltage to power the one-bit shifter; using a bias voltage to bias the level shifter; a shifter control circuit to generate the bias voltage, including controlling the bias voltage to track the charge pump voltage when the mode signal is in the first state, and using the mode signal when the mode signal is in the second state Supplying a voltage to control the bias voltage; and using the level shifter to shift an input signal level. 如請求項15之方法,其進一步包含使用該位準移位器來控制一射頻開關。 The method of claim 15, further comprising using the level shifter to control an RF switch. 如請求項15之方法,其進一步包含當該模式信號在該第二狀態中時使用該位準移位器控制電路來控制該電荷泵電壓之一電壓位準至一接地電壓。 The method of claim 15, further comprising using the level shifter control circuit to control a voltage level of the charge pump voltage to a ground voltage when the mode signal is in the second state. 如請求項15之方法,其進一步包含使用該偏壓電壓來控制該位準移位器之至少一疊接電晶體之一閘極。 The method of claim 15, further comprising using the bias voltage to control one of the gates of the at least one stacked transistor of the level shifter. 如請求項18之方法,其中產生該偏壓電壓包括使用一分壓器以基於介於該供應電壓及該電荷泵電壓之間之一電壓差來產生一疊接參考電壓, 及當該模式信號在該第一狀態中時使用該疊接參考電壓來控制該偏壓電壓。 The method of claim 18, wherein generating the bias voltage comprises using a voltage divider to generate a splicing reference voltage based on a voltage difference between the supply voltage and the charge pump voltage, And using the splicing reference voltage to control the bias voltage when the mode signal is in the first state. 如請求項19之方法,其進一步包含當該模式信號在該第一狀態中時使用一n型金屬氧化物半導體電晶體及一p型金屬氧化物半導體電晶體之一並聯組合來將該疊接參考電壓連接至該偏壓電壓。 The method of claim 19, further comprising using the parallel combination of one of an n-type metal oxide semiconductor transistor and a p-type metal oxide semiconductor transistor when the mode signal is in the first state A reference voltage is connected to the bias voltage.
TW106109134A 2015-06-22 2015-08-10 Apparatus and methods for controlling radio frequency switches TWI643455B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/745,818 2015-06-22
US14/745,818 US9577626B2 (en) 2014-08-07 2015-06-22 Apparatus and methods for controlling radio frequency switches

Publications (2)

Publication Number Publication Date
TW201722081A TW201722081A (en) 2017-06-16
TWI643455B true TWI643455B (en) 2018-12-01

Family

ID=58400842

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106109134A TWI643455B (en) 2015-06-22 2015-08-10 Apparatus and methods for controlling radio frequency switches
TW104126047A TWI589117B (en) 2015-06-22 2015-08-10 Apparatus and methods for controlling radio frequency switches

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104126047A TWI589117B (en) 2015-06-22 2015-08-10 Apparatus and methods for controlling radio frequency switches

Country Status (1)

Country Link
TW (2) TWI643455B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW578155B (en) * 1998-09-02 2004-03-01 Samsung Electronics Co Ltd A circuit of boosting a voltage for use in a flash memory device
TWI305339B (en) * 2005-04-28 2009-01-11 Novatek Microelectronics Corp Source driver and structure of adjusting voltage with speed
US20090023415A1 (en) * 2007-07-20 2009-01-22 Kabushiki Kaisha Toshiba Semiconductor switching device
US20100219874A1 (en) * 2009-02-27 2010-09-02 Nec Electronics Corporation Level shift circuit and switching circuit including the same
US20130029614A1 (en) * 2011-07-29 2013-01-31 Samsung Electro-Mechanics Company Systems, Methods, and Apparatuses for Negative-Charge-Pump-Based Antenna Switch Controllers Utilizing Battery Supplies
US20150048867A1 (en) * 2012-09-29 2015-02-19 Infineon Technologies Austria Ag High-Side Semiconductor-Switch Low-Power Driving Circuit and Method
US20160043710A1 (en) * 2014-08-07 2016-02-11 Skyworks Solutions, Inc. Apparatus and methods for controlling radio frequency switches

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049962A (en) * 2010-08-30 2012-03-08 Toshiba Corp Semiconductor switch circuit
WO2013033214A2 (en) * 2011-08-30 2013-03-07 Skyworks Solutions, Inc. Reduced clock feed-through systems, methods and apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW578155B (en) * 1998-09-02 2004-03-01 Samsung Electronics Co Ltd A circuit of boosting a voltage for use in a flash memory device
TWI305339B (en) * 2005-04-28 2009-01-11 Novatek Microelectronics Corp Source driver and structure of adjusting voltage with speed
US20090023415A1 (en) * 2007-07-20 2009-01-22 Kabushiki Kaisha Toshiba Semiconductor switching device
US20100219874A1 (en) * 2009-02-27 2010-09-02 Nec Electronics Corporation Level shift circuit and switching circuit including the same
US20130029614A1 (en) * 2011-07-29 2013-01-31 Samsung Electro-Mechanics Company Systems, Methods, and Apparatuses for Negative-Charge-Pump-Based Antenna Switch Controllers Utilizing Battery Supplies
US20150048867A1 (en) * 2012-09-29 2015-02-19 Infineon Technologies Austria Ag High-Side Semiconductor-Switch Low-Power Driving Circuit and Method
US20160043710A1 (en) * 2014-08-07 2016-02-11 Skyworks Solutions, Inc. Apparatus and methods for controlling radio frequency switches

Also Published As

Publication number Publication date
TW201701589A (en) 2017-01-01
TWI589117B (en) 2017-06-21
TW201722081A (en) 2017-06-16

Similar Documents

Publication Publication Date Title
US9847774B2 (en) Apparatus and methods for level shifting in a radio frequency system
US10566943B2 (en) Apparatus and methods for biasing of power amplifiers
US10680516B2 (en) Apparatus and methods for multi-mode charge pumps
US10003308B2 (en) Apparatus and methods for power amplifier biasing
US9876473B2 (en) Apparatus and methods for wideband envelope tracking
US9503026B2 (en) Dynamic error vector magnitude duty cycle correction
US10171053B2 (en) Apparatus and methods for power amplifiers with an injection-locked oscillator driver stage
TWI643455B (en) Apparatus and methods for controlling radio frequency switches