TWI643327B - Photoluminescent led display device and method for manufacturing the same - Google Patents

Photoluminescent led display device and method for manufacturing the same Download PDF

Info

Publication number
TWI643327B
TWI643327B TW106117616A TW106117616A TWI643327B TW I643327 B TWI643327 B TW I643327B TW 106117616 A TW106117616 A TW 106117616A TW 106117616 A TW106117616 A TW 106117616A TW I643327 B TWI643327 B TW I643327B
Authority
TW
Taiwan
Prior art keywords
light
photoluminescent
region
blue
green
Prior art date
Application number
TW106117616A
Other languages
Chinese (zh)
Other versions
TW201901949A (en
Inventor
傑 陳
Original Assignee
行家光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行家光電股份有限公司 filed Critical 行家光電股份有限公司
Priority to TW106117616A priority Critical patent/TWI643327B/en
Application granted granted Critical
Publication of TWI643327B publication Critical patent/TWI643327B/en
Publication of TW201901949A publication Critical patent/TW201901949A/en

Links

Landscapes

  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本發明提出一種光致發光LED顯示裝置及其製造方法,該顯示裝置包括一發光二極體陣列及設置於發光二極體陣列一側的一顯示面板,而顯示面板包含一透光基板及一光致發光層結構。透光基板支撐光致發光層結構、且包含相鄰的一紅光穿透區、一綠光穿透區及一藍光穿透區;光致發光層結構包含一紅色光致發光層與一綠色光致發光層,其中,紅色光致發光層設置於綠色光致發光層上。藉此垂直堆疊之光致發光層設置,光致發光層結構可不需像素精確對位以使顯示裝置更易於製造,同時顯示裝置亦具有較佳的光能量利用率與較大的顯示視角。 The present invention provides a photoluminescent LED display device and a manufacturing method thereof. The display device includes a light emitting diode array and a display panel disposed on one side of the light emitting diode array, and the display panel includes a transparent substrate and a display panel. Photoluminescent layer structure. The light-transmitting substrate supports the photoluminescent layer structure and includes an adjacent red light-transmitting region, a green light-transmitting region and a blue light-transmitting region; the photoluminescent layer structure comprises a red photoluminescent layer and a green layer A photoluminescent layer, wherein the red photoluminescent layer is disposed on the green photoluminescent layer. Thereby, the vertically stacked photoluminescent layer is disposed, and the photoluminescent layer structure can eliminate the need for precise pixel alignment to make the display device easier to manufacture, and the display device also has better light energy utilization ratio and larger display viewing angle.

Description

光致發光LED顯示裝置及其製造方法 Photoluminescence LED display device and method of manufacturing same

本發明有關一種顯示裝置及其製造方法,特別關於一種光致發光LED顯示裝置及其製造方法。 The present invention relates to a display device and a method of fabricating the same, and more particularly to a photoluminescence LED display device and a method of fabricating the same.

傳統之液晶顯示裝置包含一背光模組與一液晶面板,其中該液晶面板包含一薄膜電晶體控制電路層、一液晶層、一偏光板及一彩色濾光片等元件,該背光模組可產生一白光至該液晶面板,然後白光穿過由薄膜電晶體控制之液晶層後可抵達至彩色濾光片。如第1圖所示,彩色濾光片90包含紅色像素區91、綠色像素區92及藍色像素區93,其分別允許白光光譜中具有紅色光譜之光線R、具有綠色光譜之光線G及具有藍色光譜之光線B通過。以紅色像素區91為例,白光光譜中能通過紅色像素區91的僅有具有紅色光譜之光線R,而其餘光譜之光線G及B將會被紅色像素區91阻擋並吸收;綠色像素區92及藍色像素區93亦具有相似之特性。因此,白光在抵達彩色濾光片90時,會有大部分(約三分之二)之光譜無法通過彩色濾光片90而損耗。 The conventional liquid crystal display device comprises a backlight module and a liquid crystal panel, wherein the liquid crystal panel comprises a thin film transistor control circuit layer, a liquid crystal layer, a polarizing plate and a color filter, and the backlight module can generate A white light is applied to the liquid crystal panel, and then white light passes through the liquid crystal layer controlled by the thin film transistor to reach the color filter. As shown in FIG. 1, the color filter 90 includes a red pixel region 91, a green pixel region 92, and a blue pixel region 93, which respectively allow a light spectrum R having a red spectrum in the white light spectrum, a light G having a green spectrum, and having The blue spectrum of light B passes. Taking the red pixel region 91 as an example, only the light spectrum R having the red spectrum passing through the red pixel region 91 in the white light spectrum, and the remaining spectral rays G and B will be blocked and absorbed by the red pixel region 91; the green pixel region 92 And the blue pixel area 93 also has similar characteristics. Therefore, when the white light reaches the color filter 90, most of the spectrum (about two-thirds) cannot be lost through the color filter 90.

由此可知,傳統之液晶顯示裝置在形成影像時僅利用到很少部分由背光模組所提供之白光能量,通常僅有4%~10%的白光能量可輸出至液晶顯示裝置外,因此光能量使用效率低。 It can be seen that the conventional liquid crystal display device uses only a small amount of white light energy provided by the backlight module when forming an image, and usually only 4% to 10% of white light energy can be output to the liquid crystal display device, so the light Energy use is inefficient.

另一方面,傳統之液晶顯示裝置受限於液晶層切換光線之機制,通常具有視角(viewing angle)過小的問題。為此,企業界提出各種改善方案,例如日本日立(Hitachi)提出了IPS(In-Plane Switching)技術,採用水平電極使液晶分子產生平面旋轉而增加視角;日本富士通(Fujitsu)與韓國三星(Samsung)分別提出MVA(Multi-Domain Vertical Alignment)與PVA(Pattern Vertical Alignment)技術,將單一像素切割成多重區域(Multi-Domain)以增加視角。上述技術皆可改善視角過小之問題,但卻也面臨製程複雜、良率低、生產成本高或透光率低等相應問題。此外,雖然富士通所提出之廣視角膜(Wide Viewing Film)技術具有較低的生產成本,但其改善視角的功效卻相對較低。因此,傳統液晶顯示裝置廣視角技術仍未具有令人滿意的方案。 On the other hand, the conventional liquid crystal display device is limited by the mechanism in which the liquid crystal layer switches light, and usually has a problem that the viewing angle is too small. To this end, the business community has proposed various improvement programs. For example, Japan's Hitachi has proposed IPS (In-Plane Switching) technology, which uses horizontal electrodes to cause planar rotation of liquid crystal molecules to increase the viewing angle; Fujitsu and Samsung (Samsung) MVA (Multi-Domain Vertical Alignment) and PVA (Pattern Vertical Alignment) techniques are respectively proposed to cut a single pixel into a multi-Domain to increase the viewing angle. All of the above techniques can improve the problem of too small a viewing angle, but they also face corresponding problems such as complicated process, low yield, high production cost, or low light transmittance. In addition, although Fujitsu's Wide Viewing Film technology has a lower production cost, its effect of improving the viewing angle is relatively low. Therefore, the conventional liquid crystal display device wide viewing angle technology still does not have a satisfactory solution.

為了改善上述光能量使用效率低與視角過小之問題,有些由藍光背光光源激發之螢光材料顯示裝置技術方案被提出。例如在美國專利公告號US 8,670,089或US 8,947,619所揭露的顯示裝置中,背光模組係提供一藍光,該藍光在通過一液晶層後,可激發一光致發光層,該光致發光層包含並排(side by side)排列的紅色螢光材料像素區、綠色螢光材料像素區及藍色像素區,藍色像素區通常不含螢光材料;當藍光通過紅色螢光材料像素區時可轉換成紅光,通過綠色螢光材料像素區時可轉換成綠光,通過藍色像素區時該藍光可直接顯示。藉此,顯示裝置不必透過彩色濾光片篩選波長便可產生紅光、綠光及藍光像素,減少了光能量的損耗,因此可在不需增加電源消耗之下,大幅增加彩色影像之亮度。此外,藍光通過螢光材料時所產生之光散射(scattering)現象亦可改善傳統之液晶顯示裝置視角 過小的問題。 In order to improve the above-mentioned problems of low light energy use efficiency and small viewing angle, some technical schemes of fluorescent material display devices excited by a blue backlight source have been proposed. For example, in the display device disclosed in US Pat. No. 8,670,089 or US Pat. No. 8,947,619, the backlight module provides a blue light which, after passing through a liquid crystal layer, excites a photoluminescent layer, the photoluminescent layer comprising side by side (side by side) arranged red fluorescent material pixel area, green fluorescent material pixel area and blue pixel area, blue pixel area usually does not contain fluorescent material; when blue light passes through red fluorescent material pixel area, it can be converted into The red light can be converted into green light when passing through the green fluorescent material pixel area, and the blue light can be directly displayed when passing through the blue pixel area. Thereby, the display device can generate red, green and blue light pixels without filtering the wavelength through the color filter, thereby reducing the loss of light energy, thereby greatly increasing the brightness of the color image without increasing the power consumption. In addition, the scattering phenomenon of light generated by the blue light passing through the fluorescent material can also improve the viewing angle of the conventional liquid crystal display device. Too small a problem.

此外,亦有採取發光二極體陣列搭配波長轉換層之技術方案。例如美國專利公告號US 9,111,464所揭露的顯示裝置中,每一個發光二極體(Light Emitting Diode)各自被覆蓋波長轉換層或光分散層,以使發光二極體發出之藍光經過波長轉換層後能轉變成紅光或綠光,而藍光經過光分散層後仍維持為藍光,或使發光二極體發出紫外光,紫外光經過波長轉換層後能轉變成紅光、綠光或藍光,藉此形成彩色影像。而此波長轉換層亦採用並排(side by side)排列之方式分別覆蓋發光二極體。 In addition, there are also technical solutions for adopting a light-emitting diode array with a wavelength conversion layer. For example, in the display device disclosed in US Pat. No. 9,111,464, each of the light emitting diodes is covered with a wavelength conversion layer or a light dispersion layer, so that the blue light emitted by the light emitting diode passes through the wavelength conversion layer. It can be converted into red or green light, and the blue light remains blue after passing through the light dispersion layer, or the light emitting diode emits ultraviolet light, and the ultraviolet light can be converted into red light, green light or blue light after passing through the wavelength conversion layer. This forms a color image. The wavelength conversion layer also covers the light emitting diodes in a side by side arrangement.

然而,在行動顯示裝置中,像素皆具有微小的尺寸,以智慧型手機為例,其搭配五吋之Full HD(High Definition)顯示裝置時,每一像素的長度與寬度分別為為57微米與19微米,這些尺寸微小且彼此並排排列的紅色及綠色螢光材料於製造時需要相當高的對位精確度,故有相當之製造難度;舉例而言,綠色螢光材料會因為對位不良(misalignment)而覆蓋到一旁的紅色螢光材料而部分堆積於其上,使製程不易控制而導致螢光材料厚度不均勻。 However, in the mobile display device, the pixels are all of a small size. For example, in the case of a smart phone, the length and width of each pixel are 57 μm and the width of the full HD (High Definition) display device. 19 micrometers, these red and green fluorescent materials, which are small in size and arranged side by side, require relatively high alignment accuracy in manufacturing, so they are quite difficult to manufacture; for example, green fluorescent materials may be poorly aligned ( Misalignment) covers a portion of the red fluorescent material and partially accumulates thereon, making the process difficult to control and resulting in uneven thickness of the fluorescent material.

另一方面,因紅色螢光材料與綠色螢光材料通常具有不同的光轉換效率,因此光致發光層所需之紅色螢光材料的厚度及綠色螢光材料的厚度亦不同;又,要使每個像素區的螢光材料皆具有良好的厚度一致性,在製造上相當難以控制。因此,對位不良、厚度需求不同及厚度控制困難等問題大幅增加了量產並排排列的紅色與綠色螢光材料的困難度。 On the other hand, since the red fluorescent material and the green fluorescent material generally have different light conversion efficiencies, the thickness of the red fluorescent material required for the photoluminescent layer and the thickness of the green fluorescent material are also different; The phosphor material of each pixel region has good thickness uniformity and is quite difficult to control in manufacturing. Therefore, problems such as poor alignment, different thickness requirements, and difficulty in thickness control have greatly increased the difficulty of mass-producing red and green fluorescent materials arranged side by side.

綜上,前案所揭露之顯示裝置仍具有各種缺失而有待更佳之方案加以改善。 In summary, the display device disclosed in the previous case still has various defects and needs to be improved to be improved.

本發明之一目的在於提出一種光致發光LED顯示裝置及其製造方法,其可使光致發光LED顯示裝置不需像素精確對位而較易於製造,同時亦可使光致發光LED顯示裝置具有較佳的光能量使用效率及/或較大之視角光致發光LED顯示裝置等特點。 An object of the present invention is to provide a photoluminescence LED display device and a manufacturing method thereof, which can make a photoluminescence LED display device easier to manufacture without precise pixel alignment, and can also have a photoluminescence LED display device Preferred light energy use efficiency and/or large viewing angle photoluminescence LED display device.

為達上述目的,根據本發明所提出的光致發光LED顯示裝置之一實施例,該光致發光LED顯示裝置可包括:一發光二極體陣列,用以提供一藍色光線、一深藍色光線或一紫外光線;以及一顯示面板,設置於該發光二極體陣列之一側,該顯示面板包含一透光基板及一光致發光層結構,該透光基板用以支撐該光致發光層結構;其中,該透光基板包含相鄰的一紅光穿透區、一綠光穿透區及一藍光穿透區,該光致發光層結構朝向該發光二極體陣列設置於該透光基板上,且該光致發光層結構包含一第一發光部,該第一發光部係沿著該透光基板之一法線方向而同時覆蓋該紅光穿透區及該綠光穿透區。 In order to achieve the above object, according to an embodiment of the photoluminescent LED display device of the present invention, the photoluminescent LED display device may include: an array of light emitting diodes for providing a blue light and a dark blue a light or an ultraviolet light; and a display panel disposed on one side of the light emitting diode array, the display panel comprising a light transmissive substrate and a photoluminescent layer structure for supporting the photoluminescence The light-transmissive substrate includes an adjacent red light-transmissive region, a green light-transmitting region, and a blue light-transmitting region, and the photoluminescent layer structure is disposed on the light-emitting diode array. On the optical substrate, the photoluminescent layer structure includes a first light emitting portion, and the first light emitting portion covers the red light penetrating region and the green light penetrating along a normal direction of the light transmitting substrate. Area.

為達上述目的,根據本發明所提出的光致發光LED顯示裝置之一實施例,該光致發光LED顯示裝置之製造方法可包括:提供一發光二極體陣列之一側;及形成一顯示面板並設置於該發光二極體陣列之一側、或直接地於該光二極體陣列之一側形成該顯示面板;其中,該發光二極體陣列用以提供一藍光、深藍光或一紫外光;其中,該顯示面板的形成包含:提供一透光基板及形成一光致發光層結構;該透光基板用以支撐該光致發光層結構、且包含相鄰的一紅光穿透區、一綠光穿透區及一藍光穿透區;該光致發光層結構包含一第一發光部,該第一發光部沿著該透光基板之一 法線方向而同時覆蓋該紅光穿透區及該綠光穿透區。 In order to achieve the above object, in accordance with an embodiment of the photoluminescent LED display device of the present invention, the method of fabricating the photoluminescent LED display device may include: providing one side of a light emitting diode array; and forming a display The display panel is disposed on one side of the LED array or directly on one side of the photodiode array; wherein the LED array is configured to provide a blue light, a deep blue light or an ultraviolet light The forming of the display panel includes: providing a transparent substrate and forming a photoluminescent layer structure; the transparent substrate is configured to support the photoluminescent layer structure and includes an adjacent red light penetrating region a green light penetrating region and a blue light penetrating region; the photoluminescent layer structure includes a first light emitting portion along the light emitting substrate The normal light direction covers the red light penetration region and the green light penetration region at the same time.

此外,根據本發明所提出的光致發光LED顯示裝置之一實施例,顯示面板更可包含一濾光層結構,濾光層結構包含相鄰的一紅色區、一綠色區及一藍色區,該紅色區設置成允許一紅色光線通過,該綠色區設置成允許一綠色光線通過,而該藍色區設置成允許一藍色光線通過;該光致發光層結構朝向該發光二極體陣列設置於該濾光層結構上,且該濾光層之該紅色區、該綠色區及該藍色區分別覆蓋該紅光穿透區、該綠光穿透區及該藍光穿透區。 In addition, according to an embodiment of the photoluminescent LED display device of the present invention, the display panel may further comprise a filter layer structure, wherein the filter layer structure comprises an adjacent red region, a green region and a blue region. The red zone is configured to allow passage of a red light, the green zone being configured to allow passage of a green light, and the blue zone being configured to allow passage of a blue light; the photoluminescent layer structure facing the array of light emitting diodes And disposed on the filter layer structure, and the red region, the green region, and the blue region of the filter layer respectively cover the red light penetrating region, the green light penetrating region, and the blue light penetrating region.

藉此,本發明所提出的光致發光LED顯示裝置及其製造方法至少可提供以下有益技術效果:光致發光層結構之第一(綠色)光致發光層至少覆蓋透光基板的紅光穿透區及綠光穿透區、或是覆蓋濾光層結構之紅色區及綠色區,故綠色光致發光層可具有較大之像素尺寸,因而較易於製造。此外,另一(紅色)光致發光層設置於綠色光致發光層之上,為上下堆疊設置、而非並排設置,因此增加了對位容許誤差,故紅色光致發光層亦較易於製造。同時,兩光致發光層之間不需精準對位,避免了對位不精準所產生的厚度不均、製程不易控制等缺失。基於此等原因,光致發光層結構在製造上可較為容易,因而提高了生產良率。 Therefore, the photoluminescence LED display device and the manufacturing method thereof provided by the present invention at least provide the following beneficial technical effects: the first (green) photoluminescence layer of the photoluminescent layer structure covers at least the red light transmission of the transparent substrate The transparent region and the green light penetrating region, or the red region and the green region covering the filter layer structure, the green photoluminescent layer can have a larger pixel size and thus is easier to manufacture. In addition, another (red) photoluminescent layer is disposed on the green photoluminescent layer, which is disposed on the upper and lower layers instead of being arranged side by side, thereby increasing the alignment tolerance, so that the red photoluminescent layer is also easier to manufacture. At the same time, there is no need for precise alignment between the two photoluminescent layers, which avoids the thickness unevenness caused by misalignment and the difficulty in controlling the process. For these reasons, the photoluminescent layer structure can be made relatively easy to manufacture, thereby increasing the production yield.

再者,本發明所揭露之顯示裝置,其光致發光結構將紅色光致發光層設置於綠色光致發光層上,除了可使製造更容易之外,其亦具有良好的光能量使用效率。原因在於,當發光二極體陣列所提供之藍色光線(深藍色光線或紫外光線)在通過紅色濾光區的過程中,會先經過紅色光致發光層而使絕大部分之藍色光線(例如接近100%)被轉換成紅色光線, 該紅色光線接著再經過綠色光致發光層,由於紅色光線的能階較低而不會激發綠色光致發光材料而被轉換成綠色光線,故其仍維持紅色光譜組成,然後該紅色光線再通過紅色濾光區,則避免了光能量被紅色濾光區大量吸收,因此提供了良好的紅色光之光能量使用效率。 Furthermore, in the display device disclosed in the present invention, the photoluminescent structure has a red photoluminescent layer disposed on the green photoluminescent layer, which has good light energy use efficiency in addition to making the manufacturing easier. The reason is that when the blue light (dark blue light or ultraviolet light) provided by the LED array passes through the red filter region, it will pass through the red photoluminescent layer to make most of the blue light. (for example close to 100%) is converted into red light, The red light then passes through the green photoluminescent layer. Since the red light has a lower energy level and does not excite the green photoluminescent material and is converted into green light, it still maintains the red spectral composition, and then the red light passes through. The red filter area avoids the large absorption of light energy by the red filter region, thus providing good light energy efficiency for red light.

承上所述,相較於傳統之液晶顯示裝置,其由白色光線通過彩色濾光片之紅色像素區、綠色像素區及藍色像素區,而產生相對應之紅色、綠色及藍色像素。而本發明所揭露之光致發光LED顯示裝置,其發光二極體陣列所提供之藍色光線(深藍色光線或紫外光線)在通過光致發光層結構後,可相對應於紅色濾光區、綠色濾光區及藍色濾光區,分別轉換成紅色光線、綠色光線及維持藍色光線,然後該紅色光線、綠色光線及藍色光線可分別通過濾光層結構之紅色區、綠色區及藍色區,避免了光能量被濾光層結構大量吸收。因此,大部分的紅色光線、綠色光線及藍色光線都可通過濾光層結構而輸出至發光裝置外。如此,光致發光LED顯示裝置可具有較佳的整體光能量使用效率,因而可提高顯示裝置亮度或降低電能消耗量。 As described above, compared with the conventional liquid crystal display device, white light passes through the red pixel region, the green pixel region, and the blue pixel region of the color filter, and corresponding red, green, and blue pixels are generated. In the photoluminescence LED display device disclosed in the present invention, the blue light (dark blue light or ultraviolet light) provided by the LED array can correspond to the red filter region after passing through the photoluminescent layer structure. The green filter area and the blue filter area are respectively converted into red light, green light and blue light, and then the red light, the green light and the blue light can respectively pass through the red zone and the green zone of the filter layer structure. And the blue zone avoids the absorption of light energy by the filter layer structure. Therefore, most of the red light, green light, and blue light can be output to the outside of the light-emitting device through the filter layer structure. As such, the photoluminescent LED display device can have better overall light energy use efficiency, thereby increasing the brightness of the display device or reducing the amount of power consumption.

本發明之顯示裝置還可直接省略濾光層結構,可避免光線被濾光層結構吸收之問題,進一步改善光能量使用效率。 The display device of the invention can also directly omit the filter layer structure, can avoid the problem that the light is absorbed by the filter layer structure, and further improve the light energy use efficiency.

另一方面,光致發光層結構可產生紅色散射光線、綠色散射光線及藍色散色光線,該散射光線亦可呈現或近似一朗伯光型(Lambertian emission pattern),故紅色光線、綠色光線及藍色光線能以較大擴散角度輸出至發光裝置外;如此,紅色光線、綠色光線及藍色光線所構成的彩色影像可有較大之顯示視角。 On the other hand, the photoluminescent layer structure can generate red scattered light, green scattered light and blue scattered light, and the scattered light can also exhibit or approximate a Lambertian emission pattern, so red light, green light and blue The color light can be output to the outside of the light-emitting device at a large diffusion angle; thus, the color image formed by the red light, the green light, and the blue light can have a larger display angle of view.

為讓上述目的、技術特徵及優點能更明顯易懂,下文係以較佳之實施例配合所附圖式進行詳細說明。 The above objects, technical features and advantages will be more apparent from the following description.

1-9‧‧‧光致發光LED顯示裝置 1-9‧‧‧Photoluminescent LED display device

R‧‧‧紅色光線 R‧‧‧Red light

G‧‧‧綠色光線 G‧‧‧Green light

B‧‧‧藍色光線 B‧‧‧Blue light

UV‧‧‧紫外光線 UV‧‧‧UV light

DB‧‧‧深藍色光線 DB‧‧‧Deep blue light

10‧‧‧藍光光源 10‧‧‧Blue light source

10’‧‧‧發光二極體陣列 10'‧‧‧Light Emitter Array

101‧‧‧發光二極體 101‧‧‧Lighting diode

102‧‧‧基板結構 102‧‧‧Substrate structure

1021‧‧‧基材 1021‧‧‧Substrate

1022‧‧‧控制電路層 1022‧‧‧Control circuit layer

1023‧‧‧電極層 1023‧‧‧electrode layer

103‧‧‧反射結構或透明結構 103‧‧‧Reflective or transparent structure

11‧‧‧背光模組 11‧‧‧Backlight module

12‧‧‧液晶模組 12‧‧‧LCD Module

13‧‧‧有機發光二極體模組 13‧‧‧Organic LED Module

131‧‧‧有機發光二極體 131‧‧‧Organic Luminescent Diodes

14‧‧‧藍光雷射掃描模組 14‧‧‧Blu-ray laser scanning module

20‧‧‧顯示面板 20‧‧‧ display panel

21‧‧‧透光基板 21‧‧‧Transparent substrate

21R‧‧‧紅光穿透區 21R‧‧‧Red Light Penetration Zone

21G‧‧‧綠光穿透區 21G‧‧‧Green light penetration zone

21B‧‧‧藍光穿透區 21B‧‧‧Blue light penetration zone

211‧‧‧出光面 211‧‧‧Glossy

212‧‧‧入光面 212‧‧‧Into the glossy surface

213‧‧‧法線方向 213‧‧‧ normal direction

22‧‧‧濾光層結構 22‧‧‧Filter layer structure

22PU‧‧‧像素單元 22PU‧‧ ‧ pixel unit

22R‧‧‧紅色區 22R‧‧‧Red Zone

221‧‧‧紅色濾光器 221‧‧‧Red filter

22G‧‧‧綠色區 22G‧‧‧Green Area

222‧‧‧綠色濾光器 222‧‧‧Green filter

22B‧‧‧藍色區 22B‧‧‧Blue Zone

223‧‧‧藍色濾光器 223‧‧‧Blue filter

224‧‧‧遮光層 224‧‧‧Lighting layer

225‧‧‧高通濾光器 225‧‧‧High-pass filter

2251‧‧‧第一高通濾光器 2251‧‧‧First high-pass filter

2252‧‧‧第二高通濾光器 2252‧‧‧Second high-pass filter

23‧‧‧光致發光層結構 23‧‧‧Photoluminescent layer structure

231‧‧‧第一發光部 231‧‧‧ first light department

2311‧‧‧第一區 2311‧‧‧First District

2312‧‧‧第二區 2312‧‧‧Second District

232‧‧‧第二發光部 232‧‧‧second light department

233‧‧‧透光部 233‧‧‧Transmission Department

234‧‧‧第三發光部 234‧‧‧The third light department

2341‧‧‧第一區 2341‧‧‧First District

2342‧‧‧第二區 2342‧‧‧Second District

24‧‧‧平坦層結構 24‧‧‧flat layer structure

25‧‧‧低通濾光層結構 25‧‧‧Low pass filter layer structure

26‧‧‧光反射結構 26‧‧‧Light reflection structure

30‧‧‧遮蔽板 30‧‧‧Shielding board

31‧‧‧開孔 31‧‧‧ Opening

40‧‧‧密封結構 40‧‧‧ Sealing structure

90‧‧‧彩色濾光片 90‧‧‧Color filters

91‧‧‧紅色像素區 91‧‧‧Red Pixel Area

92‧‧‧綠色像素區 92‧‧‧Green Pixel Area

93‧‧‧藍色像素區 93‧‧‧Blue pixel area

第1圖為習知的彩色濾光片的示意圖(剖視圖)。 Fig. 1 is a schematic view (cross-sectional view) of a conventional color filter.

第2A圖為依據本發明第1較佳實施例的光致發光LED顯示裝置的示意圖(剖視圖)。 Fig. 2A is a schematic view (cross-sectional view) of a photoluminescence LED display device according to a first preferred embodiment of the present invention.

第2B圖為第2A圖所示的光致發光LED顯示裝置中藍色光線通過顯示面板的光轉換示意圖。 Fig. 2B is a schematic diagram showing the light conversion of blue light rays through the display panel in the photoluminescence LED display device shown in Fig. 2A.

第2C圖為低通濾光層結構的波長與穿透率之關係圖。 Figure 2C is a plot of wavelength versus transmittance for a low pass filter layer structure.

第3A圖及第3B圖為依據本發明第2較佳實施例的光致發光LED顯示裝置的示意圖。 3A and 3B are schematic views of a photoluminescence LED display device in accordance with a second preferred embodiment of the present invention.

第3C圖至第3E圖為依據本發明第2較佳實施例的光致發光LED顯示裝置於不同態樣的示意圖。 3C to 3E are schematic views showing different aspects of the photoluminescence LED display device according to the second preferred embodiment of the present invention.

第3F圖為第3E圖所示的光致發光LED顯示裝置中紫外光線通過顯示面板的光轉換示意圖。 FIG. 3F is a schematic diagram of light conversion of ultraviolet light through the display panel in the photoluminescence LED display device shown in FIG. 3E.

第4A圖為依據本發明第3較佳實施例的光致發光LED顯示裝置的示意圖。 Fig. 4A is a schematic view showing a photoluminescence LED display device in accordance with a third preferred embodiment of the present invention.

第4B圖為依據本發明第3較佳實施例的光致發光LED顯示裝置於另一態樣的示意圖。 Fig. 4B is a view showing another aspect of the photoluminescence LED display device according to the third preferred embodiment of the present invention.

第5A圖為依據本發明第4較佳實施例的光致發光LED顯示裝置的示意圖。 Fig. 5A is a schematic view showing a photoluminescence LED display device in accordance with a fourth preferred embodiment of the present invention.

第5B圖為高通濾光器的波長與穿透率之關係圖。 Figure 5B is a plot of wavelength versus transmittance for a high pass filter.

第5C圖為依據本發明第4較佳實施例的光致發光LED顯示裝置於另一態樣 的示意圖。 FIG. 5C is a view showing another aspect of the photoluminescence LED display device according to the fourth preferred embodiment of the present invention; Schematic diagram.

第6A圖為依據本發明第5較佳實施例的光致發光LED顯示裝置的示意圖。 Fig. 6A is a schematic view showing a photoluminescence LED display device in accordance with a fifth preferred embodiment of the present invention.

第6B圖為依據本發明第5較佳實施例的光致發光LED顯示裝置於另一態樣的示意圖。 Fig. 6B is a view showing another aspect of the photoluminescence LED display device according to the fifth preferred embodiment of the present invention.

第7A圖為依據本發明第6較佳實施例的光致發光LED顯示裝置的示意圖。 Fig. 7A is a schematic view showing a photoluminescence LED display device in accordance with a sixth preferred embodiment of the present invention.

第7B圖為第7A圖所示的光致發光LED顯示裝置中藍色光線通過顯示面板的光轉換示意圖。 Fig. 7B is a schematic diagram showing the light conversion of blue light rays through the display panel in the photoluminescence LED display device shown in Fig. 7A.

第7C圖為依據本發明第6較佳實施例的光致發光LED顯示裝置於另一態樣的示意圖。 Fig. 7C is a view showing another aspect of the photoluminescence LED display device according to the sixth preferred embodiment of the present invention.

第8圖為依據本發明第7較佳實施例的光致發光LED顯示裝置的示意圖。 Figure 8 is a schematic view of a photoluminescence LED display device in accordance with a seventh preferred embodiment of the present invention.

第9A圖為依據本發明第8較佳實施例的光致發光LED顯示裝置的示意圖。 Figure 9A is a schematic view of a photoluminescence LED display device in accordance with an eighth preferred embodiment of the present invention.

第9B圖為第9A圖所示的光致發光LED顯示裝置中藍色光線通過顯示面板的光轉換示意圖。 Fig. 9B is a schematic diagram showing the light conversion of blue light rays through the display panel in the photoluminescence LED display device shown in Fig. 9A.

第9C圖及第9D圖為依據本發明第8較佳實施例的光致發光LED顯示裝置於不同態樣的示意圖。 9C and 9D are schematic views of different aspects of a photoluminescence LED display device according to an eighth preferred embodiment of the present invention.

第10圖為依據本發明第9較佳實施例的光致發光LED顯示裝置的示意圖。 Figure 10 is a schematic view of a photoluminescence LED display device in accordance with a ninth preferred embodiment of the present invention.

第11A圖至第11H圖為依據本發明之一較佳實施例之光致發光LED顯示裝置之製造方法的步驟示意圖。 11A through 11H are schematic diagrams showing the steps of a method of fabricating a photoluminescence LED display device in accordance with a preferred embodiment of the present invention.

第12圖為依據本發明之較佳實施例之遮蔽板之示意圖。 Figure 12 is a schematic illustration of a shield panel in accordance with a preferred embodiment of the present invention.

第13A圖至第13C圖為依據本發明之另一較佳實施例之光致發光LED顯示裝置之製造方法的步驟示意圖。 13A to 13C are schematic diagrams showing the steps of a method of fabricating a photoluminescence LED display device in accordance with another preferred embodiment of the present invention.

請參閱第2A圖,其為依據本發明第1較佳實施例的光致發光(Photoluminescent,PL)顯示裝置1的示意圖。該光致發光LED顯示裝置1(以下簡稱為PL顯示裝置1)可提供由紅色光線形成之紅色像素、由綠色光線形成之綠色像素及由藍色光線形成之藍色像素,並於顯示裝置上形成一彩色影像。該PL顯示裝置1可包含一藍光光源10及一顯示面板20,該顯示面板20設置於藍光光源10的一側(例如出光側),且顯示面板20與藍光光源10可為相分離、或是相接觸。藍光光源10及顯示面板20的技術內容將進一步說明如下。 Please refer to FIG. 2A, which is a schematic diagram of a photoluminescent (PL) display device 1 according to a first preferred embodiment of the present invention. The photoluminescent LED display device 1 (hereinafter simply referred to as the PL display device 1) can provide red pixels formed by red light, green pixels formed by green light, and blue pixels formed by blue light, and displayed on a display device. Form a color image. The PL display device 1 can include a blue light source 10 and a display panel 20 disposed on one side of the blue light source 10 (eg, the light exiting side), and the display panel 20 and the blue light source 10 can be separated from each other, or Contact. The technical contents of the blue light source 10 and the display panel 20 will be further explained below.

藍光光源10可產生一藍色光線B,並且可使該藍色光線B均勻照射至顯示面板20之特定區域,也就是,顯示面板20包含複數個像素時,藍光光源10可讓藍色光線B照射至特定數個像素上。藍光光源10亦可使藍色光線B照射至顯示面板20之全部區域。該藍色光線B之峰值(peak)波長可為420nm至480nm。 The blue light source 10 can generate a blue light B, and the blue light B can be uniformly irradiated to a specific area of the display panel 20, that is, when the display panel 20 includes a plurality of pixels, the blue light source 10 can make the blue light B Illuminate onto a specific number of pixels. The blue light source 10 can also illuminate the entire area of the display panel 20 with the blue light B. The blue light B may have a peak wavelength of 420 nm to 480 nm.

藍光光源10可包含一背光模組11及一液晶模組12,背光模組11可包含複數個並排的藍色發光二極體(圖未示),形成一直下式背光模組,或是包含藍色發光二極體配合一導光板,形成一側入式背光模組,使得背光模組11可產生均勻分佈之藍色光線B。液晶模組12設置於背光模組11的一側(出光側),以接收藍色光線B。液晶模組12可包含液晶層、透明電極、薄膜電晶體控制電路層及偏光板等元件,藉由施加電能改變液晶之狀態,可選擇性地使藍色光線B之一特定部分通過液晶模組12。換言之,透過薄膜電晶體之控制,背光模組11所產生之藍色光線B可部分地通過液晶模組12而顯示於面板20之特定數個像素上。 The blue light source 10 can include a backlight module 11 and a liquid crystal module 12. The backlight module 11 can include a plurality of side-by-side blue light-emitting diodes (not shown) to form a direct-lit backlight module, or The blue light-emitting diode is combined with a light guide plate to form a one-side backlight module, so that the backlight module 11 can generate a uniform distribution of blue light B. The liquid crystal module 12 is disposed on one side (light exit side) of the backlight module 11 to receive the blue light B. The liquid crystal module 12 can include components such as a liquid crystal layer, a transparent electrode, a thin film transistor control circuit layer, and a polarizing plate. By applying electric energy to change the state of the liquid crystal, a specific portion of the blue light B can be selectively passed through the liquid crystal module. 12. In other words, the blue light B generated by the backlight module 11 can be partially displayed on the specific number of pixels of the panel 20 through the liquid crystal module 12 through the control of the thin film transistor.

藍光光源10亦可實施為一發光二極體(Light Emitting Diode,LED)陣列(圖未示),其包含複數個並排的藍色LED,經由控制電路可使相對於特定數個像素之特定藍色LED發光,俾以使藍色光線B照射於顯示於面板20之特定數個像素上。更具體的技術內容可參閱後述第3C圖所示的實施例。 The blue light source 10 can also be implemented as an array of light emitting diodes (LEDs) (not shown), which includes a plurality of side-by-side blue LEDs, which can be made to a specific blue with respect to a specific number of pixels via a control circuit. The color LEDs are illuminated to cause the blue light B to illuminate a particular number of pixels displayed on the panel 20. For a more specific technical content, refer to the embodiment shown in FIG. 3C which will be described later.

請配合參閱第2B圖所示,藍色光線B可顯示於面板20,且顯示面板20可將藍色光線B之一部分轉換成一紅色光線R顯示於顯示面板20之紅色區22R、另一部分轉換成一綠色光線G顯示於顯示面板20之綠色區22G、又一部分保留為藍色光線B顯示於顯示面板20之藍色區22B。 Please refer to FIG. 2B , the blue light B can be displayed on the panel 20 , and the display panel 20 can convert one part of the blue light B into a red light R. The red light is displayed on the red area 22R of the display panel 20, and the other part is converted into a The green light G is displayed on the green area 22G of the display panel 20, and the other part remains as the blue light B displayed on the blue area 22B of the display panel 20.

結構上顯示面板20可包含一透光基板21、一濾光層結構22及一光致發光層結構23。透光基板21可為一剛性或可撓性基板,且可由玻璃、塑膠(例如PEN)等可透光材料來製成。因此,透光基板21可提供一平面或曲面以應用於影像顯示裝置上,例如曲面電視(curve TV)或可調整曲面電視(flexible TV)。透光基板21用以支撐濾光層結構22或光致發光層結構23,也就是,濾光層結構22及光致發光層結構23其中一者可固定地設置於透光基板21上,而不從透光基板21上脫離。本實施例中,濾光層結構22被透光基板21支撐,而於其他實施例中(圖未示),可由光致發光層結構23被透光基板21支撐。 The structural display panel 20 can include a transparent substrate 21, a filter layer structure 22, and a photoluminescent layer structure 23. The transparent substrate 21 can be a rigid or flexible substrate and can be made of a light transmissive material such as glass or plastic (for example, PEN). Therefore, the light-transmitting substrate 21 can provide a plane or a curved surface to be applied to an image display device, such as a curved TV or an adjustable TV. The transparent substrate 21 is used to support the filter layer structure 22 or the photoluminescent layer structure 23, that is, one of the filter layer structure 22 and the photoluminescent layer structure 23 can be fixedly disposed on the transparent substrate 21, and It is not detached from the light-transmitting substrate 21. In this embodiment, the filter layer structure 22 is supported by the light-transmitting substrate 21, and in other embodiments (not shown), the photoluminescent layer structure 23 can be supported by the light-transmitting substrate 21.

此外,透光基板21還可定義包含有一出光面211、一入光面212及一法線方向213,出光面211及入光面212表示光線的進入及離開的面,而入光面212朝向藍光光源10,法線方向213垂直於出光面211及入光面212,且可表示光線的傳遞方向。若為曲面透光基板21時,某特定像素區域 之法線方向213可定義為局部地同時垂直於出光面211及入光面212。該透光基板21還可定義包含相鄰的一紅光穿透區21R、一綠光穿透區21G及一藍光穿透區21B,其分別沿著法線方向213對應於顯示面板20之紅色區22R、綠色區22G及藍色區22B,表示不同顏色光線所穿透的區域。 In addition, the transparent substrate 21 can also be defined to include a light-emitting surface 211, a light-incident surface 212, and a normal direction 213. The light-emitting surface 211 and the light-incident surface 212 indicate the entrance and exit of the light, and the light-incident surface 212 faces. The blue light source 10 has a normal direction 213 perpendicular to the light exit surface 211 and the light incident surface 212, and can indicate the direction of light transmission. If the surface is transparent to the substrate 21, a certain pixel area The normal direction 213 can be defined as being locally perpendicular to the light exit surface 211 and the light incident surface 212 at the same time. The transparent substrate 21 can also be defined to include an adjacent red light penetrating region 21R, a green light penetrating region 21G and a blue light penetrating region 21B, which respectively correspond to the red color of the display panel 20 along the normal direction 213. The area 22R, the green area 22G, and the blue area 22B indicate areas through which light of different colors penetrates.

濾光層結構22可固定地設置於透光基板21的入光面212上,且可包含複數個像素單元22PU(第2A圖僅顯示其中兩個),而每一個像素單元22PU包含相鄰的一紅色區22R、一綠色區22G及一藍色區22B,也就是,沿著與法線方向213垂直的一方向上,紅色區22R、綠色區22G及藍色區22B為相並排,且彼此相鄰的側邊可為相連。 The filter layer structure 22 can be fixedly disposed on the light incident surface 212 of the transparent substrate 21, and can include a plurality of pixel units 22PU (only two of which are shown in FIG. 2A), and each of the pixel units 22PU includes adjacent ones. A red region 22R, a green region 22G, and a blue region 22B, that is, in a direction perpendicular to the normal direction 213, the red region 22R, the green region 22G, and the blue region 22B are side by side, and mutually The sides of the neighbors can be connected.

紅色區22R設置成允許紅色光線R通過,綠色區22G設置成允許綠色光線G通過,而藍色區22B設置成允許藍色光線B通過;換言之,綠色光線G及藍色光線B無法通過紅色區22R。紅色區22R包含一紅色濾光器221,綠色區22G包含一綠色濾光器222,而藍色區22B包含一藍色濾光器223,各濾光器221~223可由對光線波長有選擇性的材料(例如顏料、染料)來製成,以允許對應顏色的光線通過其中。 The red zone 22R is set to allow red light rays R to pass, the green zone 22G is set to allow green light rays G to pass, and the blue zone 22B is set to allow blue light rays B to pass; in other words, the green light rays G and the blue light rays B cannot pass through the red zone 22R. The red region 22R includes a red filter 221, the green region 22G includes a green filter 222, and the blue region 22B includes a blue filter 223, and each of the filters 221 to 223 can be selective for the wavelength of light. Materials such as pigments, dyes are made to allow light of the corresponding color to pass therethrough.

紅色區22R、綠色區22G及藍色區22B各可包含一遮光層224,該等遮光層224設置於紅色濾光器221、綠色濾光器222及藍色濾光器223之間;遮光層224為不透光者(如黑色樹脂、金屬等),故紅色光線R、綠色光線G及藍色光線B無法通過其中。遮光層224可為一框體,圍繞各濾光器221~223。 Each of the red region 22R, the green region 22G, and the blue region 22B may include a light shielding layer 224 disposed between the red color filter 221, the green color filter 222, and the blue color filter 223; 224 is an opaque person (such as black resin, metal, etc.), so red light R, green light G, and blue light B cannot pass through it. The light shielding layer 224 can be a frame surrounding the respective filters 221 to 223.

光致發光層結構23朝向藍光光源10而設置於濾光層結構22上,表示該光致發光層結構23較濾光層結構22位置上更為接近藍光光源 10;換言之,光致發光層結構23、濾光層結構22及透光基板21係依序地堆疊,而透光基板21相對最遠離藍光光源10。若於其他實施例中(圖未示),光致發光層結構23固定地設置於透光基板21之出光面211而被透光基板21支撐,濾光層結構22則是相對最遠離藍光光源10。 The photoluminescent layer structure 23 is disposed on the filter layer structure 22 toward the blue light source 10, indicating that the photoluminescent layer structure 23 is closer to the blue light source than the filter layer structure 22. In other words, the photoluminescent layer structure 23, the filter layer structure 22, and the light transmissive substrate 21 are sequentially stacked, and the light transmissive substrate 21 is relatively farthest from the blue light source 10. In other embodiments (not shown), the photoluminescent layer structure 23 is fixedly disposed on the light emitting surface 211 of the transparent substrate 21 and supported by the transparent substrate 21, and the filter layer structure 22 is relatively far away from the blue light source. 10.

光致發光層結構23可包含一第一發光部231、一第二發光部232及一透光部233。第一發光部231可設置於濾光層結構22上,且沿著透光基板21之法線方向213而同時覆蓋濾光層結構22的紅色區22R及綠色區22G,但暴露藍色區22B;也就是,沿著法線方向213將第一發光部231與紅色區22R、綠色區22G及藍色區22B投影至一平面時,紅色區22R及綠色區22G的投影面們會位於第一發光部231的投影面內,但藍色區22B的投影面位於第一發光部231的投影面之外。第一發光部231沿著法線方向213亦同時覆蓋透光基板21的紅光穿透區21R及綠光穿透區21G,但暴露藍光穿透區21B。 The photoluminescent layer structure 23 can include a first light emitting portion 231, a second light emitting portion 232, and a light transmitting portion 233. The first light emitting portion 231 may be disposed on the filter layer structure 22 and cover the red region 22R and the green region 22G of the filter layer structure 22 along the normal direction 213 of the transparent substrate 21, but expose the blue region 22B. That is, when the first light-emitting portion 231 and the red region 22R, the green region 22G, and the blue region 22B are projected to a plane along the normal direction 213, the projection surfaces of the red region 22R and the green region 22G are located first. The projection surface of the light-emitting portion 231 is located outside the projection surface of the first light-emitting portion 231. The first light-emitting portion 231 also covers the red light-transmitting region 21R and the green light-transmitting region 21G of the light-transmitting substrate 21 along the normal direction 213, but exposes the blue light-transmitting region 21B.

第二發光部232可設置於第一發光部231上,較第一發光部231接近藍光光源10,且沿著法線方向213而覆蓋紅色區22R(紅光穿透區21R),但暴露綠色區22G(綠光穿透區21G)及藍色區22B(藍光穿透區21B);也就是,沿著法線方向213將第二發光部232與紅色區22R、綠色區22G及藍色區22B投影至一平面時,紅色區22R的投影面會位於第二發光部232的投影面內,但綠色區22G及藍色區22B的投影面們位於第二發光部232的投影面之外。 The second light emitting portion 232 can be disposed on the first light emitting portion 231, is closer to the blue light source 10 than the first light emitting portion 231, and covers the red region 22R (red light penetrating region 21R) along the normal direction 213, but is exposed to green. a region 22G (green light penetrating region 21G) and a blue region 22B (blue light penetrating region 21B); that is, the second light emitting portion 232 and the red region 22R, the green region 22G, and the blue region along the normal direction 213 When 22B is projected onto a plane, the projection surface of the red region 22R is located in the projection plane of the second light emitting portion 232, but the projection surfaces of the green region 22G and the blue region 22B are located outside the projection surface of the second light emitting portion 232.

透光部233可設置於濾光層結構22上,相鄰於第一發光部231,且可與第一發光部231相連。較佳地,透光部233還沿著法線方向213而覆蓋藍色區22B,但暴露綠色區22G及紅色區22R。由上述可知,濾光層 結構22的紅色區22R(或紅光穿透區21R)被第一發光部231的一部分及第二發光部232覆蓋,綠色區22G(或綠光穿透區21G)被第一發光部231的另一部分覆蓋,而藍色區22B(或藍光穿透區21B)被透光部233覆蓋。 The light transmitting portion 233 may be disposed on the filter layer structure 22 adjacent to the first light emitting portion 231 and may be connected to the first light emitting portion 231. Preferably, the light transmitting portion 233 also covers the blue region 22B along the normal direction 213, but exposes the green region 22G and the red region 22R. As can be seen from the above, the filter layer The red region 22R (or the red light penetrating region 21R) of the structure 22 is covered by a portion of the first light emitting portion 231 and the second light emitting portion 232, and the green region 22G (or the green light penetrating region 21G) is the first light emitting portion 231 The other portion is covered, and the blue region 22B (or the blue light transmitting region 21B) is covered by the light transmitting portion 233.

第一發光部231可包含一綠色光致發光材料(以六邊形示意),例如可為β-SiAlON、SrGa2S4或矽酸鹽(silicate)等螢光材料,以產生綠色光線G。第二發光部232可包含一紅色光致發光材料(以四邊形示意),例如可為K2SiF6或(Ca1-xSrx)AlSiN3等螢光材料,以產生紅色光線R。第一發光部231及第二發光部232還可包含固定光致發光材料的黏合材料(例如可透光的高分子材料,如矽膠、橡膠或環氧樹脂等)。 The first light emitting portion 231 may include a green photoluminescent material (indicated by a hexagon), and may be, for example, a fluorescent material such as β-SiAlON, SrGa 2 S 4 or silicate to generate green light G. The second light emitting portion 232 may include a red photoluminescent material (indicated by a quadrangle), for example, a fluorescent material such as K 2 SiF 6 or (Ca 1-x Sr x )AlSiN 3 to generate a red light ray R. The first light emitting portion 231 and the second light emitting portion 232 may further include an adhesive material (for example, a light transmissive polymer material such as silicone rubber, rubber or epoxy resin) for fixing the photoluminescent material.

此外,綠色光致發光材料與紅色光致發光材料可為無機光致發光材料、有機光致發光材料或量子點(Quantum Dot)等材料。舉例而言,量子點材料可為II-VI族、III-V族、IV-VI族或IV族之二元組成、三元組成或四元組成材料,例如二元組成量子點材料可為CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe(II-VI族)、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb(III-V族)、PbS、PbSe、PbTe、SnS、SnSe、SnTe(IV-VI族)、SiC、SiGe(IV族)等材料及其組合,例如三元組成量子點材料可為CdSeS、CdSeTe、CdSTe、ZnSeS、ZnTeSe、ZnSeTe、ZnSTe、CdZnS、CdZnSe、CdZnTe(II-VI族)、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb(III-V族)、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe(IV-VI族)等材料及其組合,例如四元組成量子點材料可為CdZnSeS、CdZnSeTe、HgZnTeS(II-VI族)、GaAlNAs、GaAlNSb、GaInNP、InAlNP(III-V族)、SnPbSSe、SnPbSeTe、SnPbSTe(IV-VI 族)等材料及其組合;量子點材料亦可選自IV族材料,例如Si、Ge及其組合。 In addition, the green photoluminescent material and the red photoluminescent material may be materials such as inorganic photoluminescent materials, organic photoluminescent materials, or quantum dots (Quantum Dot). For example, the quantum dot material may be a binary composition, a ternary composition or a quaternary constituent material of Group II-VI, Group III-V, Group IV-VI or Group IV, for example, a binary composition quantum dot material may be CdS , CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe (Group II-VI), AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb (III-V Materials such as Groups, PbS, PbSe, PbTe, SnS, SnSe, SnTe (Group IV-VI), SiC, SiGe (Group IV), and combinations thereof, for example, ternary quantum dot materials may be CdSeS, CdSeTe, CdSTe, ZnSeS , ZnTeSe, ZnSeTe, ZnSTe, CdZnS, CdZnSe, CdZnTe (Group II-VI), GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb (Group III-V), SnSeS, SnSeTe, SnSTe Materials such as PbSeS, PbSeTe, PbSTe (Group IV-VI) and combinations thereof, for example, quaternary quantum dot materials may be CdZnSeS, CdZnSeTe, HgZnTeS (Group II-VI), GaAlNAs, GaAlNSb, GaInNP, InAlNP (III-V) Family), SnPbSSe, SnPbSeTe, SnPbSTe (IV-VI Materials such as families and combinations thereof; quantum dot materials may also be selected from Group IV materials such as Si, Ge, and combinations thereof.

透光部233係讓光線通過而不需將光線轉換成另一波長的光線,故透光部233可不包含任何光致發光材料。而較佳地,透光部233可包含一光散射性微粒(以黑點示意),例如可為二氧化鈦(TiO2)、氮化硼(BN)、二氧化矽(SiO2)或三氧化二鋁(Al2O3)等。補充說明的是,在形成透光部233時,亦可因應製程需求(例如簡化製程或增加容許誤差),使少量的透光部233覆蓋第一發光部231及/或第二發光部232(圖未示),因為透光部233不包含光致發光材料,因此被少量的透光部233覆蓋不會明顯影第一發光部231與第二發光部232的功能。 The light transmitting portion 233 allows light to pass without converting the light into light of another wavelength, so the light transmitting portion 233 may not contain any photoluminescent material. Preferably, the light transmitting portion 233 may include a light-scattering fine particle (indicated by a black dot), and may be, for example, titanium dioxide (TiO 2 ), boron nitride (BN), cerium oxide (SiO 2 ) or trioxide. Aluminum (Al 2 O 3 ) or the like. It should be noted that, when the light transmitting portion 233 is formed, a small amount of the light transmitting portion 233 may be covered by the first light emitting portion 231 and/or the second light emitting portion 232 in response to process requirements (for example, simplifying the process or increasing the tolerance). Although the light transmitting portion 233 does not include the photoluminescent material, it is not covered by the small amount of the light transmitting portion 233 and does not significantly affect the functions of the first light emitting portion 231 and the second light emitting portion 232.

請復參閱第2B圖,以下將說明藍光光源10所產生的藍色光線B通過顯示面板20的光轉換示意圖。來自藍光光源10的藍色光線B可區分成三部分,分別朝向紅色區22R、綠色區22G及藍色區22B。 Referring to FIG. 2B, a schematic diagram of light conversion of the blue light B generated by the blue light source 10 through the display panel 20 will be described below. The blue light B from the blue light source 10 can be divided into three parts, respectively facing the red zone 22R, the green zone 22G, and the blue zone 22B.

朝向綠色區22G的藍色光線B先通過第一發光部231。第一發光部231的綠色光致發光材料具有一特定總量,此總量較高,以使藍色光線B之絕大部分(例如接近100%)都可被轉換成綠色光線G;所轉換成的綠色光線G係為散射光線。大部分的綠色光線G接著可通過綠色區22G(綠光穿透區21G)、並從透光基板21之出光面211輸出。少部分的綠色光線G會朝向相鄰的紅色區22R或藍色區22B前進,但會被紅色濾光器221或藍色濾光器223阻擋。 The blue light B directed toward the green area 22G first passes through the first light emitting portion 231. The green photoluminescent material of the first light-emitting portion 231 has a specific total amount, and the total amount is high, so that most of the blue light B (for example, close to 100%) can be converted into green light G; The green light G is a scattered light. Most of the green light G can then be output through the green region 22G (green light transmissive region 21G) and from the light exit surface 211 of the light transmissive substrate 21. A small portion of the green light G will advance toward the adjacent red zone 22R or blue zone 22B, but will be blocked by the red filter 221 or the blue filter 223.

朝向紅色區22R的藍色光線B先通過第二發光部232。第二發光部232的紅色光致發光材料具有一特定總量,此總量也較高,以使藍色光 線B之絕大部分(例如接近100%)都可被轉換成紅色光線R;所轉換成的紅色光線R係為散射光線。大部分的紅色光線R接著可通過第一發光部231及紅色區22R(紅光穿透區21R)、並從透光基板21之出光面211顯示。紅色光線R通過第一發光部231時,由於紅色光線R的能階較低而不會激發綠色光致發光材料,所以紅色光線R並不會被綠色光致發光材料轉換成綠色光線G,故在通過紅色區22R時,光譜組成皆為紅色,避免了光能量被紅色濾光器221大量吸收。 The blue light B directed toward the red region 22R first passes through the second light emitting portion 232. The red photoluminescent material of the second light emitting portion 232 has a specific total amount, and the total amount is also high to make the blue light Most of the line B (for example, close to 100%) can be converted into a red ray R; the converted red ray R is a scattered ray. Most of the red light rays R are then displayed through the first light-emitting portion 231 and the red region 22R (red light-transmissive region 21R) and from the light-emitting surface 211 of the light-transmitting substrate 21. When the red ray R passes through the first illuminating portion 231, since the energy level of the red ray R is low and the green photo luminescent material is not excited, the red ray R is not converted into the green ray G by the green illuminating material. When passing through the red region 22R, the spectral composition is red, and the light energy is prevented from being largely absorbed by the red filter 221.

朝向藍色區22B的藍色光線B會先通過透光部233。透光部233不會將藍色光線B轉換成綠色光線G或紅色光線R,較佳地,藍色光線B會被光散射性微粒散射而形成散射光線。大部分的藍色光線B接著可通過藍色區22B(藍光穿透區21B)、並從透光基板21之出光面211顯示。 The blue light B directed toward the blue region 22B passes through the light transmitting portion 233 first. The light transmitting portion 233 does not convert the blue light B into the green light G or the red light R. Preferably, the blue light B is scattered by the light scattering particles to form scattered light. Most of the blue light B can then pass through the blue region 22B (blue light transmissive region 21B) and be displayed from the light exit surface 211 of the light transmissive substrate 21.

由上述說明可知,藍光光源10所產生的藍色光線B通過光致發光層結構23後,一部分轉換為紅色光線R、另一部分轉換為綠色光線G、又一部分維持為藍色光線B,且紅色光線R、綠色光線G及藍色光線B爾後通過濾光層結構22時,主要是通過對應的紅色區22R、綠色區22G及藍色區22B,有效避免了被非對應的濾光器阻擋及吸收而造成光能量損失。 It can be seen from the above description that after the blue light B generated by the blue light source 10 passes through the photoluminescent layer structure 23, a part is converted into a red light R, another part is converted into a green light G, and a part is maintained as a blue light B, and red When the light R, the green light G, and the blue light B pass through the filter layer structure 22, the corresponding red region 22R, the green region 22G, and the blue region 22B are mainly used to effectively prevent the non-corresponding filter from being blocked. Absorption causes loss of light energy.

換言之,藍光光源10所產生的藍色光線B(輸入光線)之大部分都可被顯示面板20轉換成紅色光線R、綠色光線G及藍色光線B而顯示(輸出光線),使得PL顯示裝置1具有較高的光能量使用效率(即輸出光線之能量與輸入光線之能量相比,兩者之差異明顯減少)。 In other words, most of the blue light B (input light) generated by the blue light source 10 can be converted into red light R, green light G, and blue light B by the display panel 20 to display (output light), so that the PL display device 1 has a higher efficiency of light energy use (ie, the energy of the output light is significantly reduced compared to the energy of the input light).

除了光能量使用效率較高外,由於輸出顯示面板20的紅色光線R、綠色光線G及藍色光線B可為散射光線,具有較大的擴散角度,亦可 呈現或近似一朗伯光型(Lambertian emission pattern),故紅色光線R、綠色光線G及藍色光線B所構成的彩色影像可具有較大之顯示角度。因此,PL顯示裝置1具有較大的視角(viewing angle)。 In addition to the high efficiency of the light energy, the red light R, the green light G, and the blue light B of the output display panel 20 may be scattered light, and have a large diffusion angle. A color image composed of red light R, green light G, and blue light B may have a larger display angle when presenting or approximating a Lambertian emission pattern. Therefore, the PL display device 1 has a large viewing angle.

再者,PL顯示裝置1在光致發光層結構23的製造上,製程較容易控制,良率也較高。原因在於,第一發光部231覆蓋濾光層22的紅色區22R及綠色區22G,故第一發光部231可有較大之尺寸,有利於製造;此外,第一發光部231的尺寸大於第二發光部232的尺寸,且兩者為垂直堆疊設置、而非並排設置,因此,顯著地增加了對位容許誤差,因而不需很高的對位精確度。此兩項優點可使製程較容易控制,避免了對位不良所衍生的厚度不均等缺失,而有效提升生產良率。 Furthermore, in the manufacture of the photoluminescent layer structure 23 of the PL display device 1, the process is easier to control and the yield is also higher. The reason is that the first light-emitting portion 231 covers the red region 22R and the green region 22G of the filter layer 22, so that the first light-emitting portion 231 can have a larger size, which is advantageous for manufacturing; moreover, the size of the first light-emitting portion 231 is larger than that of the first light-emitting portion 231. The size of the two light-emitting portions 232, and the two are vertically stacked rather than arranged side by side, thus significantly increasing the alignment tolerance, and thus does not require high alignment accuracy. These two advantages make the process easier to control, avoiding the lack of thickness inequality caused by poor alignment, and effectively improve production yield.

請復參閱第2A圖,PL顯示裝置1的顯示面板20可選擇地更包括一平坦層結構24及/或一低通濾光層結構25,其朝向藍光光源10設置於光致發光層結構23上,也就是,低通濾光層結構25及/或平坦層結構24較光致發光層結構23更接近藍光光源10。 Referring to FIG. 2A, the display panel 20 of the PL display device 1 optionally further includes a flat layer structure 24 and/or a low pass filter layer structure 25 disposed on the photoluminescent layer structure 23 toward the blue light source 10. Upper, that is, the low pass filter layer structure 25 and/or the flat layer structure 24 are closer to the blue light source 10 than the photoluminescent layer structure 23.

平坦層結構24可由可透光的材料所製成,且可覆蓋光致發光層結構23,並具有一平坦表面。藉由該平坦表面,顯示面板20與藍光光源10易相貼合。若是光致發光層結構23本身已具有平坦表面,或是顯示面板20不需與藍光光源10相貼合的情況下,平坦層結構24亦可省略之。 The planar layer structure 24 can be made of a light transmissive material and can cover the photoluminescent layer structure 23 and have a flat surface. With the flat surface, the display panel 20 is easily attached to the blue light source 10. If the photoluminescent layer structure 23 itself has a flat surface, or the display panel 20 does not need to be attached to the blue light source 10, the flat layer structure 24 may be omitted.

請配合參閱第2C圖,其為低通濾光層結構25的波長與穿透率之關係圖。低通濾光層結構25可讓藍色光線B通過,但反射紅色光線R及綠色光線G,因此,可以防止光致發光層結構23所產生的紅色光線R及綠色光線G朝向藍光光源10前進。也就是,光致發光層結構23將藍色光線B轉換 成紅色光線R或綠色光線G時,紅色光線R或綠色光線G係為等向性發射,因此部分的紅色光線R及綠色光線G會朝向藍光光源10前進,而此時低通濾光層結構25可反射紅色光線R及綠色光線G,使得其仍可能從透光基板21輸出,可增加光能量使用效率。低通濾光層結構25可為一種分佈式布拉格反射鏡(Distributed Bragg reflector)。 Please refer to FIG. 2C, which is a relationship between the wavelength and the transmittance of the low-pass filter layer structure 25. The low-pass filter layer structure 25 allows the blue light B to pass, but reflects the red light R and the green light G. Therefore, the red light R and the green light G generated by the photoluminescent layer structure 23 can be prevented from advancing toward the blue light source 10. . That is, the photoluminescent layer structure 23 converts the blue light B When the red light R or the green light G is red, the red light R or the green light G is an isotropic emission, so part of the red light R and the green light G will advance toward the blue light source 10, and the low pass filter layer structure at this time 25 can reflect the red light R and the green light G so that it can still be output from the light-transmitting substrate 21, which can increase the light energy use efficiency. The low pass filter layer structure 25 can be a distributed Bragg reflector.

請復參閱第2B圖,另說明的是,可選擇讓顯示面板20不包含濾光層結構22,以使光致發光層結構23所發出的紅色光線R、綠色光線G及藍色光線B不需經過濾光層結構22,可進一步降低光能量損失。 Please refer to FIG. 2B. In addition, the display panel 20 may be selected not to include the filter layer structure 22 such that the red light R, the green light G, and the blue light B emitted by the photoluminescent layer structure 23 are not The optical layer structure 22 is filtered to further reduce the optical energy loss.

以上是PL顯示裝置1的技術內容的說明,接著說明依據本發明其他實施例的PL顯示裝置的技術內容,而各實施例的技術內容應可互相參考,故相同的部分將省略或簡化。此外,各實施例的技術內容應可互相應用。 The above is a description of the technical contents of the PL display device 1. Next, the technical contents of the PL display device according to other embodiments of the present invention will be described, and the technical contents of the respective embodiments should be referred to each other, and the same portions will be omitted or simplified. Furthermore, the technical content of the embodiments should be applicable to each other.

請參閱第3A圖及第3B圖,其為依據本發明第2較佳實施例的PL顯示裝置2的兩示意圖。PL顯示裝置2亦包括一藍光光源10及一顯示面板20,該顯示面板20可相同於第1實施例或後述實施例的顯示面板20,而藍光光源10可包含一有機發光二極體模組13或是一藍光雷射掃描模組14。 Please refer to FIGS. 3A and 3B, which are two schematic views of a PL display device 2 according to a second preferred embodiment of the present invention. The PL display device 2 also includes a blue light source 10 and a display panel 20. The display panel 20 can be identical to the display panel 20 of the first embodiment or the embodiment described later, and the blue light source 10 can include an organic light emitting diode module. 13 or a blue laser scanning module 14.

如第3A圖所示,有機發光二極體模組13可包含複數個並排的有機發光二極體131,每一個有機發光二極體131可被施加電能而產生藍色光線B。因此,控制特定的有機發光二極體131產生藍色光線B,可使得顯示面板20之特定的像素區域(如紅色區22R、綠色區22G或藍色區22B)被藍色光線B所照射。 As shown in FIG. 3A, the organic light-emitting diode module 13 may include a plurality of side-by-side organic light-emitting diodes 131, and each of the organic light-emitting diodes 131 may be applied with electric energy to generate blue light B. Therefore, controlling the specific organic light-emitting diode 131 to generate the blue light B can cause a specific pixel region of the display panel 20 (such as the red region 22R, the green region 22G, or the blue region 22B) to be illuminated by the blue light B.

如第3B圖所示,藍光雷射掃描模組14可包含一藍光雷射光 源(例如藍光二極體)及一掃描鏡(圖未示),藍光雷射光源可產生一藍色光線B至掃描鏡上,然後掃描鏡將該藍色光線B反射至顯示面板20之特定的像素區域(如紅色區22R、綠色區22G或藍色區22B)。掃描鏡可變化其反射角度,以使得不同的像素區域可被藍色光線B所照射。 As shown in FIG. 3B, the blue laser scanning module 14 can include a blue laser light. a source (such as a blue LED) and a scanning mirror (not shown), the blue laser light source can generate a blue light B onto the scanning mirror, and then the scanning mirror reflects the blue light B to the specificity of the display panel 20. The pixel area (such as red area 22R, green area 22G or blue area 22B). The scanning mirror can change its reflection angle so that different pixel regions can be illuminated by the blue light B.

因此,透過有機發光二極體模組13或是一藍光雷射掃描模組14,藍光光源10可提供藍色光線B至顯示面板20,進而形成彩色影像。 Therefore, the blue light source 10 can provide the blue light B to the display panel 20 through the organic light emitting diode module 13 or a blue laser scanning module 14, thereby forming a color image.

請參閱第3C圖,其為依據本發明第2較佳實施例的PL顯示裝置2的另一示意圖。於另一態樣中,PL顯示裝置2包括一發光二極體陣列10’及一顯示面板20,該顯示面板20可相同於第1實施例或後述實施例的顯示面板20、但可不包括濾光層結構22,故光致發光層結構23直接地形成於透光基板21上、且被透光基板21支撐。 Please refer to FIG. 3C, which is another schematic diagram of the PL display device 2 according to the second preferred embodiment of the present invention. In another aspect, the PL display device 2 includes a light emitting diode array 10' and a display panel 20, which may be the same as the display panel 20 of the first embodiment or the later embodiment, but may not include filtering Since the photo-layer structure 22 is formed, the photo-luminescence layer structure 23 is directly formed on the light-transmitting substrate 21 and supported by the light-transmitting substrate 21.

發光二極體陣列10’設置於顯示面板20之一側,且兩者沿著法線方向213相分隔(未有相貼合或組裝),發光二極體陣列10’可提供一藍色光線B至顯示面板20之特定處。發光二極體陣列10’可包含複數個發光二極體101及一基板結構102,該等發光二極體101設置該基板結構102上、並電性連接至該基板結構102。基板結構102可包含一基材1021、一控制電路層1022(例如薄膜電晶體)、一電極層1023等電子元件,控制電路層1022設置於基材1021上,電極層1023設置於控制電路層1022上,而該等發光二極體101則電性連接至電極層1023及控制電路層1022;如此,基板結構102可控制個別發光二極體101發射出藍色光線B。發光二極體101可為微尺寸者,例如發光二極體101之晶片邊長可為1微米至100微米,故發光二極體陣列10’亦可稱為微發光二極體陣列(micro LED array),而PL顯示裝置2可稱微發 光二極體顯示器(micro LED display)。 The LED array 10' is disposed on one side of the display panel 20, and the two are separated along the normal direction 213 (not attached or assembled), and the LED array 10' can provide a blue light. B to a specific portion of the display panel 20. The light emitting diode array 10' can include a plurality of light emitting diodes 101 and a substrate structure 102. The light emitting diodes 101 are disposed on the substrate structure 102 and electrically connected to the substrate structure 102. The substrate structure 102 can include a substrate 1021, a control circuit layer 1022 (eg, a thin film transistor), an electrode layer 1023, and the like. The control circuit layer 1022 is disposed on the substrate 1021, and the electrode layer 1023 is disposed on the control circuit layer 1022. The light-emitting diodes 101 are electrically connected to the electrode layer 1023 and the control circuit layer 1022; thus, the substrate structure 102 can control the individual light-emitting diodes 101 to emit blue light B. The light-emitting diode 101 can be micro-sized. For example, the length of the wafer of the light-emitting diode 101 can be from 1 micrometer to 100 micrometers. Therefore, the light-emitting diode array 10' can also be called a micro-light emitting diode array (micro LED). Array), and PL display device 2 can be called micro hair Light LED display.

請參閱第3D圖,其為依據本發明第2較佳實施例的PL顯示裝置2的又一示意圖。於又一態樣中,PL顯示裝置2所包含的顯示面板20可貼合於發光二極體陣列10’上、或直接形成於發光二極體陣列10’上。當顯示面板20直接形成於發光二極體陣列10’時,第二發光部232係先形成,第一發光部231才形成於第二發光部232上;因此,較小尺寸的第二發光部232之側面會被第一發光部231包覆。 Please refer to FIG. 3D, which is still another schematic diagram of the PL display device 2 according to the second preferred embodiment of the present invention. In another aspect, the display panel 20 included in the PL display device 2 can be attached to the LED array 10' or directly formed on the LED array 10'. When the display panel 20 is directly formed on the LED array 10', the second light emitting portion 232 is formed first, and the first light emitting portion 231 is formed on the second light emitting portion 232; therefore, the second light emitting portion of a smaller size is formed. The side of 232 is covered by the first light emitting portion 231.

請參閱第3E圖,其為依據本發明第2較佳實施例的PL顯示裝置2的再一示意圖。於再一態樣中,PL顯示裝置2所包含的發光二極體陣列10’用以發出一紫外光線UV或一深藍色光線DB(其波長介於藍色光線B及紫外光線UV之間),而顯示面板20之光致發光層結構23更包含一第三發光部234。 Please refer to FIG. 3E, which is still another schematic diagram of the PL display device 2 according to the second preferred embodiment of the present invention. In still another aspect, the LED display device 2 includes a light emitting diode array 10' for emitting an ultraviolet light UV or a deep blue light DB (having a wavelength between blue light B and ultraviolet light UV). The photoluminescent layer structure 23 of the display panel 20 further includes a third light emitting portion 234.

更具體而言,第三發光部234包含由紫外光線UV或一深藍色光線DB所激發之一藍色光致發光材料(以三角形示意),例如可為無機光致發光材料、有機光致發光材料或量子點(Quantum Dot)等光致發光材料,以產生藍色光線B。第三發光部234沿著法線方向213而同時覆蓋透光基板21之紅光穿透區21R、綠光穿透區21G及藍光穿透區21B;若顯示面板20包含濾光層結構22時,則第三發光部234同時覆蓋紅色區22R、綠色區22G及藍色區22B。第一發光部231朝向發光二極體陣列10’設置於第三發光部234上。 More specifically, the third light emitting portion 234 includes a blue photoluminescent material (indicated by a triangle) excited by ultraviolet light UV or a deep blue light DB, and may be, for example, an inorganic photoluminescent material or an organic photoluminescent material. Or a photoluminescent material such as a quantum dot (Quantum Dot) to produce blue light B. The third light-emitting portion 234 covers the red light-transmitting region 21R, the green light-transmitting region 21G, and the blue light-transmitting region 21B of the transparent substrate 21 along the normal direction 213; if the display panel 20 includes the filter layer structure 22 Then, the third light emitting portion 234 simultaneously covers the red region 22R, the green region 22G, and the blue region 22B. The first light emitting portion 231 is disposed on the third light emitting portion 234 toward the light emitting diode array 10'.

由紫外光線UV或一深藍色光線DB所激發之量子點(Quantum Dot)光致發光材料包括CdSe、CdZnSe/CdS/CdZnS/ZnS、ZnSe/ZnSeS/ZnS等材料。對量子點而言,其發光光譜可透過改變量子點尺 寸而進行改變,因此縮小量子點尺寸可使其發出較短波長之光線,例如粒徑2奈米的CdSe量子點可發出藍光,而粒徑10奈米的CdSe量子點則發出紅光。 Quantum Dot photoluminescent materials excited by ultraviolet light UV or a deep blue light DB include materials such as CdSe, CdZnSe/CdS/CdZnS/ZnS, ZnSe/ZnSeS/ZnS. For quantum dots, the luminescence spectrum can change the quantum dot The inch is changed, so the size of the quantum dot is reduced to emit light of a shorter wavelength. For example, a CdSe quantum dot having a particle diameter of 2 nm emits blue light, and a CdSe quantum dot having a particle diameter of 10 nm emits red light.

請參閱第3F圖,以下將說明發光二極體陣列10’所產生的紫外光線UV(或深藍色光線DB)通過顯示面板20的光轉換示意圖。以紫外光線UV為例,其可區分成三部分,分別朝向紅光穿透區21R、綠光穿透區21G及藍光穿透區21B。 Referring to Fig. 3F, a schematic diagram of light conversion of the ultraviolet light UV (or dark blue light DB) generated by the light emitting diode array 10' through the display panel 20 will be described below. Taking UV light UV as an example, it can be divided into three parts, which respectively face the red light penetrating area 21R, the green light penetrating area 21G, and the blue light penetrating area 21B.

朝向紅光穿透區21R的紫外光線UV先通過第二發光部232,紫外光線UV之絕大部分(例如接近100%)都可被轉換成紅色光線R。紅色光線R接著通過第一發光部231、第三發光部234及紅光穿透區21R而往外輸出。紅色光線R通過第一發光部231及第三發光部234時,由於能階較低,不會被綠色或藍色光致發光材料轉換成綠色光線G或藍色光線B。 The ultraviolet light UV toward the red light penetrating region 21R first passes through the second light emitting portion 232, and most of the ultraviolet light UV (for example, nearly 100%) can be converted into a red light ray R. The red light ray R is then outputted outward through the first light emitting portion 231, the third light emitting portion 234, and the red light transmitting region 21R. When the red light ray R passes through the first light-emitting portion 231 and the third light-emitting portion 234, since the energy level is low, it is not converted into green light G or blue light B by the green or blue photo-luminescent material.

朝向綠光穿透區21G的紫外光線UV先通過第一發光部231,紫外光線UV之絕大部分(例如接近100%)都可被轉換成綠色光線G;綠色光線G接著可通過第三發光部234及綠光穿透區21G而往外輸出。綠色光線G通過第三發光部234時,由於能階較低,不會被藍色光致發光材料轉換成藍色光線B。 The ultraviolet light UV toward the green light penetrating region 21G first passes through the first light emitting portion 231, and most of the ultraviolet light UV (for example, close to 100%) can be converted into green light G; the green light G can then pass through the third light emitting The portion 234 and the green light penetrating region 21G are outputted outward. When the green light G passes through the third light-emitting portion 234, the blue light-emitting material is not converted into the blue light B because the energy level is low.

朝向藍光穿透區21B的紫外光線UV會先通過第三發光部234,紫外光線UV之絕大部分(例如接近100%)可被轉換成藍色光線B,然後再通過藍光穿透區21B而往外輸出。 The ultraviolet light UV toward the blue light-transmitting region 21B passes through the third light-emitting portion 234, and most of the ultraviolet light UV (for example, close to 100%) can be converted into blue light B, and then passes through the blue light-transmitting region 21B. Output out.

由上述說明可知,發光二極體陣列10’所產生的紫外光線UV(或深藍色光線DB)通過光致發光層結構23後,一部分轉換為紅色光線R、 另一部分轉換為綠色光線G、又一部分轉換為藍色光線B,分別通過紅光穿透區21R、綠光穿透區21G及藍光穿透區21B而射出。 As can be seen from the above description, the ultraviolet light UV (or deep blue light DB) generated by the light-emitting diode array 10' passes through the photoluminescent layer structure 23, and a part thereof is converted into a red light R. The other portion is converted into a green light G, and a portion is converted into a blue light B, which is emitted through the red light penetrating region 21R, the green light penetrating region 21G, and the blue light penetrating region 21B, respectively.

由於第三發光部234同時覆蓋紅光穿透區21R、綠光穿透區21G及藍光穿透區21B,第三發光部234可有較大之尺寸、且不需特別的對準步驟,更易於製造。 Since the third light emitting portion 234 simultaneously covers the red light transmitting region 21R, the green light transmitting region 21G, and the blue light transmitting region 21B, the third light emitting portion 234 can have a large size and does not require a special alignment step. Easy to manufacture.

請參閱第4A圖,其為依據本發明第3較佳實施例的PL顯示裝置3的示意圖。PL顯示裝置3與前述PL顯示裝置1或2相似,而差別在於,PL顯示裝置3的第一發光部231所包含的綠色光致發光材料並非是均勻地分佈。 Please refer to FIG. 4A, which is a schematic diagram of a PL display device 3 according to a third preferred embodiment of the present invention. The PL display device 3 is similar to the aforementioned PL display device 1 or 2, except that the green photoluminescent material contained in the first light-emitting portion 231 of the PL display device 3 is not uniformly distributed.

具體而言,第一發光部231可包含相鄰、且一體成型的一第一區2311及一第二區2312,而第一區2311遮蔽紅色區22R,第二區2312遮蔽綠色區22G;第二發光部232則設置於第一區2311上。第一發光部231所包含的綠色光致發光材料可集中地分佈於第二區2312中,因此,第一區2311的綠色光致發光材料之濃度或總量低於第二區2312的綠色光致發光材料之濃度或總量。此外,綠色光致發光材料也可僅分佈於第二區2312中,故第一區2311之中無任何綠色光致發光材料。 Specifically, the first light emitting portion 231 may include a first region 2311 and a second region 2312 which are adjacent and integrally formed, and the first region 2311 shields the red region 22R, and the second region 2312 shields the green region 22G. The two light emitting portions 232 are disposed on the first region 2311. The green photoluminescent material included in the first light emitting portion 231 can be concentratedly distributed in the second region 2312. Therefore, the concentration or total amount of the green photoluminescent material of the first region 2311 is lower than the green light of the second region 2312. The concentration or total amount of the luminescent material. In addition, the green photoluminescent material may also be distributed only in the second region 2312, so that there is no green photoluminescent material in the first region 2311.

請配合參閱第2B圖,朝向第二發光部232的藍色光線B可被紅色光致發光材料轉換成紅色光線R,紅色光線R接著通過第一區2311及紅色區22R、並從透光基板21之出光面211顯示。由於第一區2311具有較少或是無任何綠色光致發光材料,紅色光線R通過第一區2311的過程較不會受到綠色光致發光材料散射及阻礙,可進一步減少光能量損失。因此,可有更多的紅色光線R通過第一區2311及紅色區22R而從透光基板21之出光面211 顯示。 Referring to FIG. 2B, the blue light B toward the second light-emitting portion 232 can be converted into a red light R by the red photo-luminescence material, and the red light R then passes through the first region 2311 and the red region 22R, and from the transparent substrate. The illuminating surface 211 of 21 is displayed. Since the first region 2311 has less or no green photoluminescent material, the process of passing the red light R through the first region 2311 is less likely to be scattered and hindered by the green photoluminescent material, and the optical energy loss can be further reduced. Therefore, more red light rays R may pass through the first region 2311 and the red region 22R to exit the light emitting surface 211 of the transparent substrate 21. display.

此外,在尺寸上,第一發光部231的第一區2311與第二區2312的厚度可設定為相同,亦可依設計需求而設定為不同。 In addition, the thickness of the first region 2311 and the second region 2312 of the first light-emitting portion 231 may be set to be the same in size, or may be set to be different according to design requirements.

請參閱第4B圖,其為依據本發明第3較佳實施例的PL顯示裝置3的另一示意圖。於另一態樣中,PL顯示裝置3可包含一發光二極體陣列(圖未示),用以產生紫外光線UV(或深藍色光線DB),而第三發光部234所包含的藍色光致發光材料係非均勻地分佈。 Please refer to FIG. 4B, which is another schematic diagram of a PL display device 3 according to a third preferred embodiment of the present invention. In another aspect, the PL display device 3 can include an array of light emitting diodes (not shown) for generating ultraviolet light UV (or dark blue light DB), and the blue light included in the third light emitting portion 234 The luminescent material is non-uniformly distributed.

具體而言,第三發光部234包含相鄰、且一體成型的一第一區2341及一第二區2342,第一區2341覆蓋於紅光穿透區21R及綠光穿透區21G,第二區2342覆蓋於藍光穿透區21B,第三發光部234所包含的藍色光致發光材料集中地分佈於第二區2342中,因此,第一區2341的藍色光致發光材料之濃度或總量低於第二區2342的藍色光致發光材料之濃度或總量。此外,藍色光致發光材料也可僅分佈於第二區2342中,故第一區2341之中無任何藍色光致發光材料。 Specifically, the third light-emitting portion 234 includes a first region 2341 and a second region 2342 which are adjacent and integrally formed. The first region 2341 covers the red light-transmitting region 21R and the green light-transmitting region 21G. The second region 2342 covers the blue light transmissive region 21B, and the blue photoluminescent material contained in the third light emitting portion 234 is concentratedly distributed in the second region 2342. Therefore, the concentration or total of the blue photoluminescent material of the first region 2341 is The amount is lower than the concentration or total amount of the blue photoluminescent material of the second region 2342. In addition, the blue photoluminescent material may also be distributed only in the second region 2342, so that there is no blue photoluminescent material in the first region 2341.

請配合參閱第3B圖,朝向第二發光部232及第一發光部231的紫外光線UV(或深藍色光線DB)可被轉換成紅色光線R及綠色光線G,然後通過第三發光部234之第一區2341;由於第一區2341具有較少或無任何藍色光致發光材料,紅色光線R及綠色光線G較不會受到藍色光致發光材料散射及阻礙,可進一步減少光能量損失。因此,有更多的紅色光線R及綠色光線G可通過第一區2341而往外輸出。 Referring to FIG. 3B , the ultraviolet light UV (or dark blue light DB) toward the second light emitting portion 232 and the first light emitting portion 231 can be converted into a red light R and a green light G, and then passed through the third light emitting portion 234. The first region 2341; since the first region 2341 has less or no blue photoluminescent material, the red light R and the green light G are less scattered and hindered by the blue photoluminescent material, and the optical energy loss can be further reduced. Therefore, more red light rays R and green light rays G can be outputted through the first area 2341.

請參閱第5A圖,其為依據本發明第4較佳實施例的PL顯示裝置4的示意圖(藍光光源或發光二極體陣列未繪示)。PL顯示裝置4與前述PL 顯示裝置1與3相似,而差別在於,PL顯示裝置4的濾光層結構22更包括一高通濾光器225,而顯示面板20更包括複數個光反射結構26。 Please refer to FIG. 5A, which is a schematic diagram of a PL display device 4 according to a fourth preferred embodiment of the present invention (a blue light source or a light emitting diode array is not shown). PL display device 4 and the aforementioned PL The display devices 1 and 3 are similar in that the filter layer structure 22 of the PL display device 4 further includes a high pass filter 225, and the display panel 20 further includes a plurality of light reflecting structures 26.

具體而言,高通濾光器225朝向藍光光源或發光二極體陣列(圖未示)而覆蓋紅色區22R及綠色區22G,但不覆蓋藍色區22B。而如第5B圖(高通濾光器225的波長與穿透率之關係圖)所示,高通濾光器225可反射藍色光線B,但可讓紅色光線R及綠色光線G通過。如此,若藍色光線B通過第一發光部231及第二發光部232而沒有被完全轉換成綠色光線G及紅色光線R時,未被轉換的藍色光線B會被高通濾光器225反射回第一發光部231及第二發光部232而有機會再被轉換成綠色光線G及紅色光線R,然後再分別通過綠色區22G與紅色區22R,接著輸出至PL顯示裝置4外。 Specifically, the high pass filter 225 covers the red region 22R and the green region 22G toward the blue light source or the light emitting diode array (not shown), but does not cover the blue region 22B. As shown in FIG. 5B (the relationship between the wavelength and the transmittance of the high-pass filter 225), the high-pass filter 225 can reflect the blue light B, but allows the red light R and the green light G to pass. Thus, if the blue light B passes through the first light emitting portion 231 and the second light emitting portion 232 and is not completely converted into the green light G and the red light R, the unconverted blue light B is reflected by the high pass filter 225. The first light-emitting portion 231 and the second light-emitting portion 232 are returned to the green light G and the red light R, and then passed through the green region 22G and the red region 22R, respectively, and then output to the outside of the PL display device 4.

所以,透過高通濾光器225,可進一步確保藍色光線B被第一發光部231及第二發光部232轉換成綠色光線G及紅色光線R,避免未被轉換的藍色光線B被濾光層結構22所吸收,進而提升PL顯示裝置4的光能量使用效率。較佳地,高通濾光器225可搭配本發明第3較佳實施例的PL顯示裝置3實施,使第一發光部231的第一區2311具有較少量或較低濃度的綠色光致發光材料、或無綠色光致發光材料,以獲得較佳實施效果。此外,高通濾光器225亦可依設計需求,僅覆蓋紅色區22R或綠色區22G。 Therefore, the high-pass filter 225 can further ensure that the blue light B is converted into the green light G and the red light R by the first light-emitting portion 231 and the second light-emitting portion 232 to prevent the unconverted blue light B from being filtered. The layer structure 22 absorbs, thereby improving the light energy use efficiency of the PL display device 4. Preferably, the high-pass filter 225 can be implemented in conjunction with the PL display device 3 of the third preferred embodiment of the present invention such that the first region 2311 of the first light-emitting portion 231 has a smaller or lower concentration of green photoluminescence. Materials, or no green photoluminescent materials, for better implementation. In addition, the high pass filter 225 can also cover only the red area 22R or the green area 22G according to design requirements.

該些光反射結構26朝向藍光光源或發光二極體陣列(圖未示)而設置於濾光層結構22上,且該些光反射結構26之每一個可沿著法線方向213而覆蓋藍色區22B(藍光穿透區21B)、紅色區22R(紅光穿透區21R)及綠色區22G(綠光穿透區21G)之其中一者的一側;換言之,以剖視圖而言,藍色區22B之兩側會被兩個光反射結構26覆蓋,以上視圖而言,藍色區 22B之四周會被光反射結構26圍繞,紅色區22R及綠色區22G也是如此。較佳地,光反射結構26覆蓋藍色區22B、紅色區22R及綠色區22G的遮光層224,而光反射結構26之形狀對應於遮光層224之形狀。 The light reflecting structures 26 are disposed on the filter layer structure 22 toward a blue light source or a light emitting diode array (not shown), and each of the light reflecting structures 26 can cover the blue along the normal direction 213. One side of one of the color region 22B (blue light penetrating region 21B), the red region 22R (red light penetrating region 21R), and the green region 22G (green light penetrating region 21G); in other words, in a cross-sectional view, blue Both sides of the color region 22B are covered by two light reflecting structures 26, in the above view, the blue region The periphery of 22B is surrounded by the light reflecting structure 26, as is the red zone 22R and the green zone 22G. Preferably, the light reflecting structure 26 covers the light shielding layer 224 of the blue region 22B, the red region 22R and the green region 22G, and the shape of the light reflecting structure 26 corresponds to the shape of the light shielding layer 224.

光致發光層結構23則設置於該些光反射結構26之間,其中,第一發光部231的第一區2311及第二區2312被光反射結構26分隔開,而第二區2312與透光部233亦被光反射結構26分隔開。第一區2311、第二區2312、第二發光部232及透光部233皆被光反射結構26圍繞。 The photoluminescent layer structure 23 is disposed between the light reflecting structures 26, wherein the first region 2311 and the second region 2312 of the first light emitting portion 231 are separated by the light reflecting structure 26, and the second region 2312 is The light transmitting portion 233 is also separated by the light reflecting structure 26. The first region 2311, the second region 2312, the second light emitting portion 232, and the light transmitting portion 233 are all surrounded by the light reflecting structure 26.

光反射結構26可阻擋或反射紅色光線R、綠色光線G及藍色光線B,以更提升PL顯示裝置4的光能量使用效率。具體而言,以紅色光線R為例,其在光致發光層結構23中是呈現散射者,故會有部分光線側向傳遞,即朝向綠色區22G或藍色區22B前進;此時,光反射結構26可將該部分光線反射,使得該部分光線仍有機會可通過紅色區22R而輸出至發光裝置4外;綠色光線G及藍色光線B也是如此。 The light reflecting structure 26 can block or reflect the red light R, the green light G, and the blue light B to further improve the light energy use efficiency of the PL display device 4. Specifically, taking the red light R as an example, it exhibits a scattering in the photoluminescent layer structure 23, so that some light is transmitted laterally, that is, toward the green area 22G or the blue area 22B; The reflective structure 26 can reflect the portion of the light such that the portion of the light still has a chance to be output to the outside of the light-emitting device 4 through the red region 22R; the same is true for the green light G and the blue light B.

所以,光反射結構26可反射側向傳遞的光線,增加通過濾光層結構22的紅色光線R、綠色光線G及藍色光線B,故PL顯示裝置4可具有較佳的光能量使用效率。換言之,光反射結構26可確保第二發光部232所產生的紅色光線R不會朝向綠色區22G或藍色區22B前進,對於綠色光線G及藍色光線B亦同。 Therefore, the light reflecting structure 26 can reflect the laterally transmitted light and increase the red light R, the green light G, and the blue light B passing through the filter layer structure 22, so that the PL display device 4 can have better light energy use efficiency. In other words, the light reflecting structure 26 can ensure that the red light R generated by the second light emitting portion 232 does not advance toward the green region 22G or the blue region 22B, and is also the same for the green light G and the blue light B.

光反射結構26可由包含光散射性微粒之一可透光樹脂來製成,例如該可透光樹脂可為聚鄰苯二甲醯胺(polyphthalamide)、聚對苯二甲酸環己烷二甲醇酯(Polycyclolexylene-di-methylene Terephthalate)、熱固性環氧樹脂(Epoxy molding compound)、矽膠(silicone)或橡膠(rubber)等。 光反射結構26亦可由感光性樹脂等來製成;或先形成樹脂材料的反射結構26後,再於其表面鍍上金屬反射層;或由非有機材料,例如金屬,製作而成。 The light reflecting structure 26 may be made of a light transmissive resin containing one of the light scattering particles. For example, the light transmissive resin may be polyphthalamide or poly(cyclohexanedimethylene terephthalate). (Polycyclolexylene-di-methylene Terephthalate), Epoxy molding compound, silicone or rubber. The light reflecting structure 26 may also be made of a photosensitive resin or the like; or a reflective structure 26 of a resin material may be formed first, and then a metal reflective layer may be plated on the surface thereof; or a non-organic material such as metal may be used.

上述的高通濾光器225及光反射結構26各自都可增加PL顯示裝置4的光能量使用效率效率,但不一定要同時實施。因此,可視需求選擇高通濾光器225及光反射結構26之其中一者來實施。 Each of the above-described high-pass filter 225 and light-reflecting structure 26 can increase the efficiency of light energy use efficiency of the PL display device 4, but it is not necessarily required to be performed at the same time. Therefore, one of the high pass filter 225 and the light reflecting structure 26 can be selected as desired.

請參閱第5C圖,其為依據本發明第4較佳實施例的PL顯示裝置4的另一示意圖。於另一態樣中,PL顯示裝置4之光致發光層結構23包含一第三發光部234,並設置於該些光反射結構26之間。另,反射結構26之厚度亦可小於或等於第三發光部234之厚度(圖未示),故第一發光部231及第二發光部232不會被反射結構26圍繞。 Please refer to FIG. 5C, which is another schematic diagram of the PL display device 4 according to the fourth preferred embodiment of the present invention. In another aspect, the photoluminescent layer structure 23 of the PL display device 4 includes a third light emitting portion 234 disposed between the light reflecting structures 26. In addition, the thickness of the reflective structure 26 can also be less than or equal to the thickness of the third light emitting portion 234 (not shown), so the first light emitting portion 231 and the second light emitting portion 232 are not surrounded by the reflective structure 26.

請參閱第6A圖及第6B圖,其為依據本發明第5較佳實施例的PL顯示裝置5的示意圖(藍光光源或發光二極體陣列未繪示)。PL顯示裝置5與前述PL顯示裝置4相似,而差別在於,PL顯示裝置5的濾光層結構22不同。 Please refer to FIG. 6A and FIG. 6B, which are schematic diagrams of a PL display device 5 according to a fifth preferred embodiment of the present invention (a blue light source or a light emitting diode array is not shown). The PL display device 5 is similar to the aforementioned PL display device 4, with the difference that the filter layer structure 22 of the PL display device 5 is different.

具體而言,在PL顯示裝置5中,濾光層結構22的紅色區22R包含一第一高通濾光器2251,綠色區22G包含一第二高通濾光器2252,但藍色區22B不包含高通濾光器;而紅色區22R、綠色區22G及藍色區22B不包含紅色、綠色及藍色濾光器。其中,因藍色區22B不包含藍色率光器及高通濾光器,故光致發光層結構23之透光部233或第三發光部234可與透光基板21相連接或接觸。 Specifically, in the PL display device 5, the red region 22R of the filter layer structure 22 includes a first high pass filter 2251, and the green region 22G includes a second high pass filter 2252, but the blue region 22B does not include The high pass filter; the red zone 22R, the green zone 22G and the blue zone 22B do not contain red, green and blue filters. Wherein, since the blue region 22B does not include the blue light detector and the high-pass filter, the light transmitting portion 233 or the third light emitting portion 234 of the photoluminescent layer structure 23 can be connected or in contact with the transparent substrate 21.

先前說明過,第一及第二高通濾光器2251及2252可確保藍色光線B(深藍色光線DB或紫外光線UV)被第一發光部231及第二發光部232 轉換成綠色光線G及紅色光線R,而光反射結構26可確保紅色光線R不會朝向綠色區22G或藍色區22B前進,綠色光線G不會朝向紅色區22R或藍色區22B前進,而藍色光線B不會朝向綠色區22G或紅色區22R前進。因此,紅色區22R僅會有紅色光線R通過,綠色區22G僅會有綠色光線G通過,藍色區22B僅會有藍色光線B通過。 As described above, the first and second high-pass filters 2251 and 2252 ensure that the blue light B (dark blue light DB or ultraviolet light UV) is used by the first light emitting portion 231 and the second light emitting portion 232. The green light G and the red light R are converted, and the light reflecting structure 26 ensures that the red light R does not advance toward the green area 22G or the blue area 22B, and the green light G does not advance toward the red area 22R or the blue area 22B. The blue light B does not advance toward the green area 22G or the red area 22R. Therefore, only the red light R passes through the red region 22R, only the green light G passes through the green region 22G, and only the blue light B passes through the blue region 22B.

所以,紅色區22R、綠色區22G及藍色區22B可不包含紅色、綠色及藍色濾光器,亦可使PL顯示裝置5具有相同的影像顯示功能,因為不會有其他非對應顏色的光線通過其中。較佳地,PL顯示裝置5可搭配PL顯示裝置3實施,使第一發光部231的第一區2311不包含綠色光致發光材料,以獲得較佳實施效果。 Therefore, the red area 22R, the green area 22G, and the blue area 22B may not include red, green, and blue filters, and the PL display device 5 may have the same image display function because there is no other non-corresponding color light. Through it. Preferably, the PL display device 5 can be implemented in conjunction with the PL display device 3 such that the first region 2311 of the first light emitting portion 231 does not include a green photoluminescent material to obtain a better implementation effect.

請參閱第7A圖及第7C圖,其為依據本發明第6較佳實施例的光致發光LED顯示裝置6的示意圖。PL顯示裝置6與前述PL顯示裝置1相似,而差別在於,PL顯示裝置6的光致發光層結構23所包含的第二發光部232是同時覆蓋紅色區22R及綠色區22G(即與第一發光部231的情況一樣)。較佳地,第二發光部232的尺寸可略小於第一發光部231的尺寸。 Please refer to FIGS. 7A and 7C, which are schematic diagrams of a photoluminescence LED display device 6 in accordance with a sixth preferred embodiment of the present invention. The PL display device 6 is similar to the PL display device 1 described above, except that the second light-emitting portion 232 included in the photoluminescent layer structure 23 of the PL display device 6 covers both the red region 22R and the green region 22G (ie, the first The same as in the case of the light-emitting portion 231). Preferably, the size of the second light emitting portion 232 may be slightly smaller than the size of the first light emitting portion 231.

請配合參閱第7B圖,接著說明藍光光源10或發光二極體陣列10’所產生的藍色光線B通過顯示面板20的光轉換示意圖。來自藍光光源10或發光二極體陣列10’的藍色光線B可區分成三部分,分別朝向紅色區22R、綠色區22G及藍色區22B。 Referring to FIG. 7B, a schematic diagram of light conversion of the blue light B generated by the blue light source 10 or the LED array 10' through the display panel 20 will be described. The blue light B from the blue light source 10 or the light emitting diode array 10' can be divided into three portions, which are respectively directed to the red region 22R, the green region 22G, and the blue region 22B.

朝向藍色區22B的藍色光線B會通過透光部233及藍色區22B,然後從透光基板21顯示。 The blue light B toward the blue region 22B passes through the light transmitting portion 233 and the blue region 22B, and is then displayed from the light transmitting substrate 21.

朝向紅色區22R及綠色區22G的藍色光線B先通過第二發光 部232。第二發光部232的紅色光致發光材料係具有一特定總量(此總量應低於第1實施例的紅色光致發光材料的總量),以使得通過第二發光部231的藍色光線B僅一部分(例如二分之一)被轉換成紅色光線R、而其餘部分仍為藍色光線B;換言之,藍色光線B通過第二發光部232後轉變為紅色光線R及藍色光線B的紅藍混合光線。 The blue light B that faces the red area 22R and the green area 22G passes through the second light Part 232. The red photoluminescent material of the second light emitting portion 232 has a specific total amount (this total amount should be lower than the total amount of the red photoluminescent material of the first embodiment) so that the blue color passing through the second light emitting portion 231 Only a part (for example, one-half) of the light B is converted into a red light R, and the rest is still a blue light B; in other words, the blue light B passes through the second light-emitting portion 232 and is converted into a red light R and a blue light. B's red and blue mixed light.

該紅藍混合光線接著通過第一發光部231。第一發光部231的綠色光致發光材料可將該紅藍混合光線中的藍色光線B轉換成綠色光線G;換言之,紅藍混合光線通過第二發光部232後轉變為紅色光線R及綠色光線G的紅綠混合光線。該紅綠混合光線接著抵達濾光層結構22,紅色區22R會從紅綠混合光線中過濾出紅色光線R,綠色區22G則可從紅綠混合光線中過濾出綠色光線G。最後,過濾出的紅色光線R及綠色光線G再從透光基板21輸出。 The red-blue mixed light then passes through the first light emitting portion 231. The green photoluminescent material of the first light-emitting portion 231 can convert the blue light B in the red-blue mixed light into the green light G; in other words, the red-blue mixed light passes through the second light-emitting portion 232 and is converted into a red light R and a green color. Red and green mixed light of light G. The red-green mixed light then reaches the filter layer structure 22, the red region 22R filters out the red light R from the red-green mixed light, and the green region 22G filters the green light G from the red-green mixed light. Finally, the filtered red light R and the green light G are output from the light-transmitting substrate 21.

由此可知,第一發光部231所產生的紅綠混合光線會有一部分(例如二分之一)被濾光層結構22阻擋而無法從透光基板21射出。因此與PL顯示裝置1相比,PL顯示裝置6具有較低的紅色光線R及綠色光線G的光能量使用效率(例如接近二分之一),但仍高於傳統之液晶顯示裝置。在藍色光線B的光能量使用效率上,PL顯示裝置1及6應是相仿(例如接近100%)。 From this, it is understood that a part (for example, one-half) of the red-green mixed light generated by the first light-emitting portion 231 is blocked by the filter layer structure 22 and cannot be emitted from the light-transmitting substrate 21. Therefore, compared with the PL display device 1, the PL display device 6 has a lower light energy use efficiency (for example, nearly one-half) of the red light R and the green light G, but is still higher than that of the conventional liquid crystal display device. In the light energy use efficiency of the blue light B, the PL display devices 1 and 6 should be similar (for example, close to 100%).

另一方面,PL顯示裝置6在光致發光層結構23的製造上,可更為容易。原因在於,第一發光部231及第二發光部232都是覆蓋濾光層22的紅色區22R及綠色區22G,故第二發光部232與第一發光部231都具有較大之尺寸,較易於製造;同時,第二發光部232的尺寸可略小於第一發光部231,因此在製造上亦具有較大之對位容許誤差,而不需很高的對位精確度。 On the other hand, the PL display device 6 can be made easier in the manufacture of the photoluminescent layer structure 23. The reason is that the first light-emitting portion 231 and the second light-emitting portion 232 both cover the red region 22R and the green region 22G of the filter layer 22, so that the second light-emitting portion 232 and the first light-emitting portion 231 both have larger sizes. At the same time, the size of the second light-emitting portion 232 can be slightly smaller than that of the first light-emitting portion 231, and therefore has a large alignment tolerance in manufacturing, without requiring high alignment accuracy.

PL顯示裝置6之光致發光層結構23亦可包含一第三發光部234(如第3E圖所示),以配合深藍色光線DB或紫外光線UV之發光二極體陣列10’。請配合參閱第7B圖,當光致發光層結構23包含一第三發光部234時,朝向藍色區22B的紫外光線UV(深藍色光線DB)會通過第三發光部234而轉換成藍色光線B。朝向紅色區22R及綠色區22G的紫外光線UV先通過第二發光部232,轉變為紅色光線R及紫外光線UV的紅紫外混合光線。紅紫外混合光線接著通過第一發光部231,將該紅紫外混合光線中的紫外光線UV轉換成綠色光線G;換言之,紅紫外混合光線通過第二發光部232後轉變為紅色光線R及綠色光線G的紅綠混合光線,然後通過第三發光部234後抵達濾光層結構22。 The photoluminescent layer structure 23 of the PL display device 6 may also include a third light emitting portion 234 (as shown in Fig. 3E) to match the deep blue light DB or the ultraviolet light UV light emitting diode array 10'. Referring to FIG. 7B, when the photoluminescent layer structure 23 includes a third light emitting portion 234, the ultraviolet light UV (dark blue light DB) toward the blue region 22B is converted into blue by the third light emitting portion 234. Light B. The ultraviolet light UV toward the red region 22R and the green region 22G first passes through the second light-emitting portion 232, and is converted into a red-light mixed light of red light R and ultraviolet light UV. The red ultraviolet mixed light then passes through the first light emitting portion 231 to convert the ultraviolet light in the red ultraviolet mixed light into a green light G; in other words, the red ultraviolet mixed light passes through the second light emitting portion 232 and is converted into a red light R and a green light. The red-green mixed light of G then passes through the third light-emitting portion 234 and reaches the filter layer structure 22.

請參閱第8圖,其為依據本發明第7較佳實施例的光致發光LED顯示裝置7的示意圖。PL顯示裝置7與前述PL顯示裝置6相似,而差別在於,PL顯示裝置7的光致發光層結構23未有包含第二發光部,而光致發光層結構23的第一發光部231則包含一相混合的紅色光致發光材料及綠色光致發光材料。也就是,在第一發光部231中,紅色光致發光材料及綠色光致發光材料皆是均勻地分佈。 Please refer to FIG. 8, which is a schematic diagram of a photoluminescence LED display device 7 in accordance with a seventh preferred embodiment of the present invention. The PL display device 7 is similar to the aforementioned PL display device 6, except that the photoluminescent layer structure 23 of the PL display device 7 does not include the second light emitting portion, and the first light emitting portion 231 of the photoluminescent layer structure 23 includes A phase mixed red photoluminescent material and a green photoluminescent material. That is, in the first light emitting portion 231, both the red photoluminescent material and the green photoluminescent material are uniformly distributed.

因此,藍光光源或發光二極體陣列(圖未示)的藍色光線B可被第一發光部231轉換成紅色光線R及綠色光線G的紅綠混合光線,然後紅色區22R及綠色區22G再從紅綠混合光線中過濾出紅色光線R與綠色光線G。所以,PL顯示裝置7產生紅色光線R與綠色光線G的方式與PL顯示裝置6相似,故PL顯示裝置7與6在紅色光線R及綠色光線G的光能量使用效率上應是相仿。如此,可省略第一發光部231與第二發光部232之間的對位步驟, 以簡化製程。 Therefore, the blue light B of the blue light source or the LED array (not shown) can be converted into the red-green mixed light of the red light R and the green light G by the first light-emitting portion 231, and then the red region 22R and the green region 22G. The red light R and the green light G are filtered from the red and green mixed light. Therefore, the manner in which the PL display device 7 generates the red light R and the green light G is similar to that of the PL display device 6, so that the PL display devices 7 and 6 should be similar in light energy use efficiency of the red light R and the green light G. In this way, the alignment step between the first light emitting portion 231 and the second light emitting portion 232 can be omitted. To simplify the process.

第一發光部231亦可包含一黃色光致發光材料,而不是包含紅色光致發光材料及綠色光致發光材料。黃色光致發光材料可為YAG等螢光材料。因此,藍光光源或發光二極體陣列(圖未示)的藍色光線B可被第一發光部231轉換成黃色光線Y,黃色光線Y之光譜涵蓋紅色光譜及綠色光譜,故紅色區22R及綠色區22G可從黃色光線Y中過濾出紅色光線R與綠色光線G。 The first light emitting portion 231 may also include a yellow photoluminescent material instead of the red photoluminescent material and the green photoluminescent material. The yellow photoluminescent material may be a fluorescent material such as YAG. Therefore, the blue light B of the blue light source or the LED array (not shown) can be converted into the yellow light Y by the first light emitting portion 231, and the spectrum of the yellow light Y covers the red spectrum and the green spectrum, so the red region 22R and The green area 22G filters out the red light R and the green light G from the yellow light Y.

請參閱第9A圖及第9C圖,其為依據本發明第8較佳實施例的光致發光LED顯示裝置8的示意圖。PL顯示裝置8與前述PL顯示裝置6相似,而差別在於,PL顯示裝置8的光致發光層結構23包含的第一發光部231及第二發光部232之每一者同時覆蓋紅色區22R、綠色區22G及藍色區22B。 Please refer to FIG. 9A and FIG. 9C, which are schematic diagrams of a photoluminescence LED display device 8 according to an eighth preferred embodiment of the present invention. The PL display device 8 is similar to the PL display device 6 described above, except that each of the first light-emitting portion 231 and the second light-emitting portion 232 included in the photoluminescent layer structure 23 of the PL display device 8 simultaneously covers the red region 22R, Green area 22G and blue area 22B.

請配合參閱第9B圖,為藍光光源10或發光二極體陣列10’所產生的藍色光線B通過顯示面板20的光轉換示意圖。來自藍光光源10或發光二極體陣列10’的藍色光線B先通過第二發光部232。第二發光部232的紅色光致發光材料係具有一特定總量,以使得通過第二發光部232的藍色光線B僅一部分(例如三分之一)被轉換成紅色光線R、而其餘部分仍為藍色光線B(例如三分之二);換言之,藍色光線B通過第二發光部232後轉變為紅色光線R及藍色光線B的紅藍混合光線(藍色光線B的比例較大)。 Please refer to FIG. 9B for a schematic diagram of light conversion of the blue light B generated by the blue light source 10 or the LED array 10' through the display panel 20. The blue light B from the blue light source 10 or the light emitting diode array 10' passes through the second light emitting portion 232 first. The red photoluminescent material of the second light emitting portion 232 has a specific total amount such that only a part (for example, one third) of the blue light B passing through the second light emitting portion 232 is converted into a red light R, and the rest Still blue light B (for example, two-thirds); in other words, the blue light B passes through the second light-emitting portion 232 and is converted into a red-blue mixed light of red light R and blue light B (the ratio of blue light B is higher) Big).

該紅藍混合光線接著通過第一發光部231。第一發光部231的綠色光致發光材料具有一特定總量,以使得紅藍混合光線中的藍色光線B僅一部分(例如二分之一)被轉換成綠色光線G;換言之,紅藍混合光線通過第二發光部232後轉變為紅色光線R、綠色光線G及藍色光線B的紅綠藍混 合光線(三者比例相仿)。 The red-blue mixed light then passes through the first light emitting portion 231. The green photoluminescent material of the first light-emitting portion 231 has a specific total amount such that only a part (for example, one-half) of the blue light B in the red-blue mixed light is converted into green light G; in other words, red and blue mixed After the light passes through the second light emitting portion 232, it is converted into a red, green and blue mixture of red light R, green light G and blue light B. The light is combined (the ratio of the three is similar).

紅綠藍混合光線接著抵達濾光層結構22,紅色區22R會從紅綠藍混合光線中過濾出紅色光線R,綠色區22G則從紅綠藍混合光線中過濾出綠色光線G,藍色區22B則從紅綠藍混合光線中過濾出藍色光線B。最後,過濾出的紅色光線R、綠色光線G及藍色光線B再從透光基板21顯示。 The red, green and blue mixed light then reaches the filter layer structure 22, the red zone 22R filters out the red light R from the red, green and blue mixed light, and the green zone 22G filters out the green light G from the red, green and blue mixed light, the blue zone 22B filters blue light B from the red, green and blue mixed light. Finally, the filtered red light R, green light G, and blue light B are displayed from the light-transmitting substrate 21.

由此可知,在經過第一發光部231後所產生的紅綠藍混合光線會有一部分(例如三分之二)會被濾光層結構22阻擋而無法從透光基板21輸出。因此相較於PL顯示裝置6與1,PL顯示裝置8具有較低的紅色光線R、綠色光線G及藍色光線B的光能量使用效率(相似於傳統之液晶顯示裝置之光能量使用效率,例如接近三分之一)。 It can be seen that a part (for example, two-thirds) of the red, green and blue mixed light rays generated after passing through the first light-emitting portion 231 is blocked by the filter layer structure 22 and cannot be output from the light-transmitting substrate 21. Therefore, compared with the PL display devices 6 and 1, the PL display device 8 has lower light energy use efficiency of the red light R, the green light G, and the blue light B (similar to the light energy use efficiency of the conventional liquid crystal display device, For example, close to a third).

然而,PL顯示裝置8在光致發光層結構23的製造上,相對更為容易。原因在於,第一發光部231及第二發光部232都同時覆蓋紅色區22R、綠色區22G及藍色區22B,因此可省略第一發光部231與第二發光部232之像素化製程步驟而整面地覆蓋濾光層結構22,如此一來,第一發光部231與第二發光部之間可不需要進行對位,光致發光層結構23與濾光層結構22之間亦可不需要進行對位,大幅降低了製造難度。同時,PL顯示裝置8相較於傳統之液晶顯示裝置仍具有較大的視角(viewing angle)。 However, the PL display device 8 is relatively easier in the fabrication of the photoluminescent layer structure 23. The reason is that the first light-emitting portion 231 and the second light-emitting portion 232 cover the red region 22R, the green region 22G, and the blue region 22B at the same time, so that the pixelation process steps of the first light-emitting portion 231 and the second light-emitting portion 232 can be omitted. The filter layer structure 22 is covered over the entire surface, so that alignment between the first light-emitting portion 231 and the second light-emitting portion is not required, and the photo-emitting layer structure 23 and the filter layer structure 22 need not be performed. The alignment has greatly reduced the difficulty of manufacturing. At the same time, the PL display device 8 still has a larger viewing angle than the conventional liquid crystal display device.

請參閱第9D圖,其為依據本發明第8較佳實施例的PL顯示裝置8的另一示意圖。於另一態樣中,PL顯示裝置8之光致發光層結構23可包含一第三發光部234,以配合深藍色光線DB或紫外光線UV之發光二極體陣列10’。請配合參閱第9B圖,朝向藍色區22B的紫外光線UV(深藍色光線DB)先通過第二發光部232,紫外光線UV僅一部分(例如三分之一)被轉換成 紅色光線R、而其餘部分仍為紫外光線UV(例如三分之二);換言之,紫外光線UV通過第二發光部232後轉變為紅紫外混合光線。 Please refer to FIG. 9D, which is another schematic diagram of the PL display device 8 according to the eighth preferred embodiment of the present invention. In another aspect, the photoluminescent layer structure 23 of the PL display device 8 can include a third light emitting portion 234 to match the deep blue light DB or the ultraviolet light UV light emitting diode array 10'. Referring to FIG. 9B, the ultraviolet light UV (dark blue light DB) toward the blue region 22B first passes through the second light emitting portion 232, and only a part (for example, one third) of the ultraviolet light UV is converted into The red light rays R, while the rest are still UV light UV (for example, two-thirds); in other words, the ultraviolet light UV is converted into red-violet mixed light by the second light-emitting portion 232.

該紅紫外混合光線接著通過第一發光部231,紅紫外混合光線中的紫外光線UV僅一部分(例如二分之一)被轉換成綠色光線G,紅紫外混合光線轉變為紅綠紫外混合光線(三者比例相仿)。紅綠紫外混合光線接著抵達第三發光部234,紅綠紫外混合光線中的紫外光線UV大部分被轉換為藍色光線,紅綠紫外混合光線通過第三發光部234後轉變為紅綠藍混合光線(三者比例相仿)。 The red-violet mixed light then passes through the first light-emitting portion 231, and only a part (for example, one-half) of the ultraviolet light UV in the red-violet mixed light is converted into green light G, and the red-violet mixed light is converted into a red-green ultraviolet mixed light ( The proportion of the three is similar). The red-green ultraviolet mixed light then reaches the third light-emitting portion 234, and the ultraviolet light UV in the red-green ultraviolet mixed light is mostly converted into blue light, and the red-green ultraviolet mixed light passes through the third light-emitting portion 234 and is converted into a red-green-blue mixture. Light (the ratio of the three is similar).

紅綠藍混合光線接著抵達濾光層結構22,紅色區22R會從紅綠藍混合光線中過濾出紅色光線R,綠色區22G則從紅綠藍混合光線中過濾出綠色光線G,藍色區22B則從紅綠藍混合光線中過濾出藍色光線B。 The red, green and blue mixed light then reaches the filter layer structure 22, the red zone 22R filters out the red light R from the red, green and blue mixed light, and the green zone 22G filters out the green light G from the red, green and blue mixed light, the blue zone 22B filters blue light B from the red, green and blue mixed light.

請參閱第10圖,其為依據本發明第9較佳實施例的光致發光LED顯示裝置9的示意圖。PL顯示裝置9與前述PL顯示裝置8相似,而差別在於,PL顯示裝置9的光致發光層結構23未有包含第二發光部,而第一發光部231則是包含一相混合的紅色光致發光材料及綠色光致發光材料。 Please refer to FIG. 10, which is a schematic diagram of a photoluminescence LED display device 9 in accordance with a ninth preferred embodiment of the present invention. The PL display device 9 is similar to the PL display device 8 described above, except that the photoluminescent layer structure 23 of the PL display device 9 does not include the second light emitting portion, and the first light emitting portion 231 includes a mixed red light. Luminescent materials and green photoluminescent materials.

因此,藍光光源或發光二極體陣列(圖未示)的藍色光線B可部分(例如三分之二)被第一發光部231轉換成紅色光線R及綠色光線G,再與未被轉換的藍色光線B形成紅綠藍混合光線(三者比例相仿),然後紅色區22R、綠色區22G及藍色區22B再從紅綠藍混合光線中分別過濾出紅色光線R、綠色光線G與藍色光線B。所以,PL顯示裝置9產生紅色光線R與綠色光線G的方式與PL顯示裝置8相似,故PL顯示裝置9與8的光能量使用效率上應是相仿(例如接近三分之一)。 Therefore, the blue light B of the blue light source or the LED array (not shown) may be partially (for example, two-thirds) converted into the red light R and the green light G by the first light-emitting portion 231, and then converted. The blue light B forms a red, green and blue mixed light (the ratio of the three is similar), and then the red region 22R, the green region 22G and the blue region 22B respectively filter out the red light R and the green light G from the red, green and blue mixed light. Blue light B. Therefore, the manner in which the PL display device 9 generates the red light R and the green light G is similar to that of the PL display device 8, so that the light energy use efficiency of the PL display devices 9 and 8 should be similar (for example, nearly one-third).

第一發光部231亦可包含一黃色光致發光材料。在此情況下,藍光光源或發光二極體陣列(圖未示)的藍色光線B可部分被第一發光部231轉換成黃色光線Y,黃色光線Y之光譜涵蓋紅色光譜與綠色光譜,其再與未被轉換的藍色光線B形成具有紅綠藍光譜的混合光線,故紅色區22R、綠色區22G及藍色區22B再從具有紅綠藍光譜的混合光線中過濾出紅色光線R、綠色光線G與藍色光線B。 The first light emitting portion 231 may also include a yellow photoluminescent material. In this case, the blue light B of the blue light source or the LED array (not shown) may be partially converted into the yellow light Y by the first light emitting portion 231, and the spectrum of the yellow light Y covers the red spectrum and the green spectrum. And the blue light B that is not converted forms a mixed light having a red, green and blue spectrum, so the red region 22R, the green region 22G and the blue region 22B filter out the red light R from the mixed light having the red, green and blue spectrum. Green light G and blue light B.

接著將說明依據本發明的PL顯示裝置的製造方法,該製造方法可製造出相同或類似於上述實施例的PL顯示裝置1~9,故製造方法的技術內容與PL顯示裝置1~9的技術內容可相互參考。 Next, a method of manufacturing a PL display device according to the present invention, which can produce PL display devices 1 to 9 which are the same as or similar to the above-described embodiments, and the technical contents of the manufacturing method and the technology of the PL display devices 1 to 9 will be described. The content can be referenced to each other.

請參閱第11A圖至第11D圖所示,其為依據本發明之較佳實施例之PL顯示裝置之製造方法的各步驟之示意圖。 Please refer to FIGS. 11A to 11D, which are schematic diagrams showing the steps of a method of manufacturing a PL display device according to a preferred embodiment of the present invention.

該製造方法主要可包含兩步驟:形成一顯示面板20(如第11D圖所示);以及將一藍光光源10(可參考第2A圖)或一發光二極體陣列10’(可參考第3C圖)放置於一顯示面板20的一側。而在形成顯示面板20的步驟中可包含以下過程。 The manufacturing method can mainly include two steps: forming a display panel 20 (as shown in FIG. 11D); and placing a blue light source 10 (refer to FIG. 2A) or a light emitting diode array 10' (refer to 3C) Figure) is placed on one side of a display panel 20. The following process may be included in the step of forming the display panel 20.

如第11A圖所示,首先提供一透光基板21,然後在透光基板21上形成一濾光層結構22。濾光層結構22形成中,係將一紅色濾光器221形成於紅色區22R中,將一綠色濾光器222形成於綠色區22G中,將一藍色濾光器223形成於該藍色區22B中。此外,可選擇地將一高通濾光器225(如第5A圖所示)形成於紅色區22R及/或綠色區22G上。 As shown in FIG. 11A, a transparent substrate 21 is first provided, and then a filter layer structure 22 is formed on the transparent substrate 21. The filter layer structure 22 is formed by forming a red filter 221 in the red region 22R, a green filter 222 in the green region 22G, and a blue filter 223 in the blue region. In area 22B. Additionally, a high pass filter 225 (shown in Figure 5A) is optionally formed on the red region 22R and/or the green region 22G.

如第11B圖所示,接著形成一光致發光層結構23於濾光層結構22上。也就是,形成一第一發光部231於濾光層結構22上,並使第一發光 部231覆蓋紅色區22R及綠色區22G;然後形成一第二發光部232於第一發光部23上,且使第二發光部232覆蓋紅色區22R。 As shown in FIG. 11B, a photoluminescent layer structure 23 is then formed on the filter layer structure 22. That is, a first light emitting portion 231 is formed on the filter layer structure 22, and the first light is emitted. The portion 231 covers the red region 22R and the green region 22G; then a second light emitting portion 232 is formed on the first light emitting portion 23, and the second light emitting portion 232 covers the red region 22R.

第一發光部231及第二發光部232的形成可藉由一或複數個遮蔽板30(如第12圖)來輔助;該遮蔽孔包含複數個開口31,而開口31之尺寸可對應第一發光部231或第二發光部232的尺寸。具體而言,先將一遮蔽板30放置於濾光層結構22上(可接觸透光層結構22或相距),並且使遮蔽板30的開孔31覆蓋於綠色區22G及紅色區22R(也就是,沿著法線方向213可從開孔31觀察到綠色區22G及紅色區22R);然後,將一綠色光致發光材料及一高分子材料通過開孔31而沈積於綠色區22G及紅色區22R上。待高分子材料固化後,可形成第一發光部231。 The formation of the first light-emitting portion 231 and the second light-emitting portion 232 may be assisted by one or a plurality of shielding plates 30 (as shown in FIG. 12); the shielding hole includes a plurality of openings 31, and the size of the opening 31 may correspond to the first The size of the light emitting portion 231 or the second light emitting portion 232. Specifically, a shielding plate 30 is first placed on the filter layer structure 22 (which can contact the light transmissive layer structure 22 or a distance), and the opening 31 of the shielding plate 30 is covered in the green area 22G and the red area 22R (also That is, the green region 22G and the red region 22R can be observed from the opening 31 along the normal direction 213; then, a green photoluminescent material and a polymer material are deposited in the green region 22G and red through the opening 31. On area 22R. After the polymer material is cured, the first light emitting portion 231 can be formed.

之後,將另一遮蔽板30放置於第一發光部231上(可接觸第一發光部231或相距),並且使遮蔽板30的開孔31僅覆蓋於紅色區22R;然後,將一紅色光致發光材料及一高分子材料通過開孔31而沈積於紅色區22R上。待高分子材料固化後,可形成第二發光部232。 Thereafter, another shielding plate 30 is placed on the first light emitting portion 231 (which may contact the first light emitting portion 231 or a distance), and the opening 31 of the shielding plate 30 is covered only in the red region 22R; then, a red light is used The luminescent material and a polymer material are deposited on the red region 22R through the opening 31. After the polymer material is cured, the second light emitting portion 232 can be formed.

除了藉由遮蔽板30,第一發光部231及第二發光部232的形成還可透過微影製程(lithography)來達成。具體而言,將綠色光致發光材料及高分子材料沈積於紅色區22R、綠色區22G及藍色區22B上,即整面地覆蓋濾光層結構22,該高分子材料為一感光性材料;接著,對高分子材料進行曝光及顯影,以將高分子材料沈積於藍色區22B的部分移除。如此,可形成第一發光部231。 In addition to the shielding plate 30, the formation of the first light-emitting portion 231 and the second light-emitting portion 232 can also be achieved by lithography. Specifically, the green photoluminescent material and the polymer material are deposited on the red region 22R, the green region 22G, and the blue region 22B, that is, the filter layer structure 22 is covered over the entire surface, and the polymer material is a photosensitive material. Next, the polymer material is exposed and developed to remove the portion of the polymer material deposited in the blue region 22B. In this manner, the first light emitting portion 231 can be formed.

之後,將紅色光致發光材料及高分子材料沈積於第一發光部231及藍色區22B上;然後,對高分子材料進行曝光及顯影,以將高分子材 料沈積於藍色區22B的部分及沈積於第一發光部231上對應綠色區22G的部分移除。如此,可形成第二發光部232。 Thereafter, a red photoluminescent material and a polymer material are deposited on the first light-emitting portion 231 and the blue region 22B; then, the polymer material is exposed and developed to be a polymer material. The portion deposited on the blue region 22B and the portion deposited on the first light-emitting portion 231 corresponding to the green region 22G are removed. In this manner, the second light emitting portion 232 can be formed.

較佳地,上述的光致發光材料及高分子材料的沈積可藉由申請人先前提出的公開號US2010/0119839之美國專利申請案(對應於證書號I508331之臺灣專利)所揭露的方法來達成。該方法可以使材料均勻地沈積,故第一發光部231及第二發光部232可有均勻的厚度。此外,該方法可使得材料密集地沈積,故第一發光部231及第二發光部232可有較高濃度的光致發光材料。 Preferably, the above-described deposition of the photoluminescent material and the polymer material can be achieved by the method disclosed in the U.S. Patent Application Publication No. US 2010/0119839 (the Taiwan Patent No. I508331). . This method allows the material to be uniformly deposited, so that the first light-emitting portion 231 and the second light-emitting portion 232 can have a uniform thickness. In addition, the method can make the material densely deposited, so that the first light-emitting portion 231 and the second light-emitting portion 232 can have a higher concentration of photoluminescent material.

當第一發光部231及第二發光部232形成後,可將一散射性微粒及另一高分子材料沈積於藍色區22B上,以形成光致發光層結構23的透光部233(如第11C圖所示)。散射性微粒及高分子材料可先混合,然後再藉由噴塗(spraying)或點膠(dispensing)等方式沈積至藍色區22B上;或以噴塗(spraying)或印刷(printing)等方式搭配遮蔽板30沈積至藍色區22B上。其中,採用噴塗方式時,高分子材料具有良好的流動性,在噴塗後,藉由重力的作用可使散射性微粒及高分子材料自行匯集至藍色區22B,於固化後形成透光部233,因此亦可不需使用遮蔽板30及相關的對位步驟,使製程簡化。又,因散射性微粒不會改變光線的顏色,因此若在製程中造成少量的散射性微粒及高分子材料覆蓋於第一發光部231及/或第二發光部232的表面,並不會對兩者之功能造成明顯的影響。 After the first light emitting portion 231 and the second light emitting portion 232 are formed, a scattering particle and another polymer material may be deposited on the blue region 22B to form the light transmitting portion 233 of the photoluminescent layer structure 23 (eg, Figure 11C shows). The scattering particles and the polymer material may be mixed first, and then deposited onto the blue region 22B by spraying or dispensing; or may be masked by spraying or printing. Plate 30 is deposited onto blue zone 22B. Among them, when the spraying method is adopted, the polymer material has good fluidity, and after spraying, the scattering fine particles and the polymer material can be collected by themselves into the blue region 22B by the action of gravity, and the light transmitting portion 233 is formed after curing. Therefore, it is also possible to simplify the process without using the shielding plate 30 and the related alignment steps. Moreover, since the scattering fine particles do not change the color of the light, if a small amount of scattering fine particles and polymer material are applied to the surface of the first light-emitting portion 231 and/or the second light-emitting portion 232 during the process, the The function of both has a significant impact.

光致發光層結構23形成後,可選擇地形成一平坦層結構24及/或一低通濾光層結構25於光致發光層結構23上(如第11D圖所示)。另,若顯示面板20不包括濾光層結構22時,上述光致發光層結構23可直接形成 於透光基板21上。 After formation of the photoluminescent layer structure 23, a planar layer structure 24 and/or a low pass filter layer structure 25 is selectively formed on the photoluminescent layer structure 23 (as shown in FIG. 11D). In addition, if the display panel 20 does not include the filter layer structure 22, the photoluminescent layer structure 23 can be directly formed. On the light-transmissive substrate 21.

藉由上述步驟,可製造出類似第1至3實施例的PL顯示裝置。 By the above steps, a PL display device similar to the first to third embodiments can be manufactured.

另一方面,於濾光層結構22形成後,可形成複數個光反射結構26(如第5A圖所示)於濾光層結構22上,然後形成光致發光層結構23於光反射結構26之間。如此可製造出類似第4及5實施例的PL顯示裝置。 On the other hand, after the filter layer structure 22 is formed, a plurality of light reflecting structures 26 (as shown in FIG. 5A) may be formed on the filter layer structure 22, and then the photoluminescent layer structure 23 is formed on the light reflecting structure 26. between. Thus, a PL display device similar to the fourth and fifth embodiments can be manufactured.

更一方面,形成光致發光層結構23的過程中,可如第11E圖及第11F圖所示。首先形成一第三發光部234於濾光層結構22上,並同時覆蓋紅色區22R、綠色區22G及藍色區;接著,依序形成第一發光部231及第二發光部232。 On the other hand, in the process of forming the photoluminescent layer structure 23, it can be as shown in Figs. 11E and 11F. First, a third light-emitting portion 234 is formed on the filter layer structure 22, and simultaneously covers the red region 22R, the green region 22G, and the blue region. Then, the first light-emitting portion 231 and the second light-emitting portion 232 are sequentially formed.

又一方面,形成光致發光層結構23的過程中,可使第二發光部232同時覆蓋紅色區22R及綠色區22G(如第11G圖所示);或者,不形成第二發光部232,但使第一發光部231包含相混合的紅色光致發光材料及綠色光致發光材料、或是包含一黃色光致發光材料。或者,先形成一第三發光部234後,才依序形成第一發光部231及第二發光部232。如此可製造出類似第6及7實施例的PL顯示裝置。 On the other hand, in the process of forming the photoluminescent layer structure 23, the second light emitting portion 232 can be simultaneously covered with the red region 22R and the green region 22G (as shown in FIG. 11G); or, the second light emitting portion 232 is not formed. However, the first light-emitting portion 231 includes a mixed red photoluminescent material and a green photoluminescent material, or a yellow photoluminescent material. Alternatively, after the third light-emitting portion 234 is formed, the first light-emitting portion 231 and the second light-emitting portion 232 are sequentially formed. Thus, a PL display device similar to the sixth and seventh embodiments can be manufactured.

再一方面,形成光致發光層結構23的過程中,可使第一發光部231及第二發光部232同時覆蓋紅色區22R、綠色區22G及藍色區22B(如第11H圖所示);或者,不形成第二發光部232,但使第一發光部231包含相混合的紅色光致發光材料及綠色光致發光材料、或是包含一黃色光致發光材料。或者,先形成一第三發光部234後,才依序形成第一發光部231及第二發光部232。如此可製造出類似第8及9實施例的PL顯示裝置。 On the other hand, in the process of forming the photoluminescent layer structure 23, the first light emitting portion 231 and the second light emitting portion 232 can simultaneously cover the red region 22R, the green region 22G, and the blue region 22B (as shown in FIG. 11H). Or, the second light-emitting portion 232 is not formed, but the first light-emitting portion 231 includes a mixed red photo-luminescence material and a green photo-luminescence material, or a yellow photo-luminescence material. Alternatively, after the third light-emitting portion 234 is formed, the first light-emitting portion 231 and the second light-emitting portion 232 are sequentially formed. Thus, a PL display device similar to the eighth and ninth embodiments can be manufactured.

請參閱第13A圖至第13C圖所示,其為依據本發明之較佳實 施例之PL顯示裝置之製造方法的各步驟之示意圖。於此實施例之製造方法中,發光二極體陣列10’與顯示面板20係分別製造,然後再將兩者組裝於一起。 Please refer to FIGS. 13A to 13C, which are preferred according to the present invention. Schematic diagram of the steps of the method of manufacturing the PL display device of the embodiment. In the manufacturing method of this embodiment, the light-emitting diode array 10' and the display panel 20 are separately manufactured, and then the two are assembled together.

具體而言,如第13A圖所示,先提供一基板結構102,該基板結構102可包含一基材1021、一控制電路層1022(例如薄膜電晶體)、一電極層1023等電子元件;接著如第13B圖所示,設置複數個發光二極體101於基板結構102上,並使該等發光二極體101與基板結構102產生電性連接,例如將覆晶式發光二極體101銲接至電極層1023後與控制電路層1022形成電性連接;如此,發光二極體陣列10’即製造完成。如第13C圖所示,將製造完成的發光二極體陣列10’與顯示面板20相對準後,進行貼合組裝,以完成一PL顯示裝置;貼合組裝時,發光二極體陣列10’與顯示面板20可進一步膠黏。 Specifically, as shown in FIG. 13A, a substrate structure 102 is provided. The substrate structure 102 may include a substrate 1021, a control circuit layer 1022 (eg, a thin film transistor), an electrode layer 1023, and the like; As shown in FIG. 13B, a plurality of light emitting diodes 101 are disposed on the substrate structure 102, and the light emitting diodes 101 are electrically connected to the substrate structure 102, for example, the flip chip type light emitting diode 101 is soldered. After the electrode layer 1023 is electrically connected to the control circuit layer 1022; thus, the LED array 10' is manufactured. As shown in FIG. 13C, the completed LED array 10' is aligned with the display panel 20, and then assembled and assembled to complete a PL display device. When the assembly is assembled, the LED array 10' It can be further glued to the display panel 20.

較佳地,發光二極體陣列10’與顯示面板20可透過一密封結構40進行貼合組裝,該密封結構40圍繞該發光二極體陣列10’四周,因此,顯示面板20亦可不與發光發光二極體陣列10’直接接觸。較佳地,發光二極體陣列10’製造時,該等發光二極體101之間可形成一反射結構或一透明結構103,該透明結構103還可進一步覆蓋該等發光二極體101之頂面;如此,發光二極體陣列10’整體上有一平坦的上表面,便於與顯示面板20進行貼合組裝,因此,顯示面板20亦可與發光發光二極體陣列10’之透明結構103直接接觸。 Preferably, the LED array 10' and the display panel 20 are assembled and assembled through a sealing structure 40. The sealing structure 40 surrounds the LED array 10'. Therefore, the display panel 20 may not be illuminated. The LED array 10' is in direct contact. Preferably, when the LED array 10' is manufactured, a reflective structure or a transparent structure 103 may be formed between the LEDs 101, and the transparent structure 103 may further cover the LEDs 101. The top surface; thus, the LED array 10' has a flat upper surface as a whole for easy assembly and assembly with the display panel 20. Therefore, the display panel 20 can also be combined with the transparent structure 103 of the LED array 10'. direct contact.

以上說明了依據本發明之各較佳實施例的光致發光LED顯示裝置及其製造方法,而上述實施例的技術內容並非用來限制本發明之保 護範疇。本發明所屬技術領域中具有通常知識者可輕易完成之改變或均等性之安排均屬於本發明所主張之範圍,本發明之權利保護範圍應以申請專利範圍為準。 The photoluminescent LED display device and the method for fabricating the same according to various preferred embodiments of the present invention have been described above, and the technical content of the above embodiments is not intended to limit the protection of the present invention. Protection range. It is to be understood that the scope of the invention is to be construed as being limited by the scope of the invention.

Claims (36)

一種光致發光LED顯示裝置,包含:一發光二極體陣列,用以提供一藍色光線、一深藍色光線或一紫外光線;以及一顯示面板,設置於該發光二極體陣列之一側,該顯示面板包含一透光基板及一光致發光層結構,該透光基板用以支撐該光致發光層結構;其中,該透光基板包含相鄰的一紅光穿透區、一綠光穿透區及一藍光穿透區,該光致發光層結構朝向該發光二極體陣列設置於該透光基板上,且該光致發光層結構包含一第一發光部及一第二發光部,該第一發光部係沿著該透光基板之一法線方向而同時覆蓋該紅光穿透區及該綠光穿透區,該第二發光部朝向該發光二極體陣列設置於該第一發光部上,且沿著該法線方向而覆蓋該紅光穿透區;其中,該第一發光部包含一第一光致發光材料及一第一高分子材料,而該第二發光部包含一第二光致發光材料及一第二高分子材料,且該第二光致發光材料經由光致發光所產生的一光線之峰值波長係大於該第一光致發光材料經由光致發光所產生的另一光線之峰值波長。 A photoluminescent LED display device comprising: an array of light emitting diodes for providing a blue light, a deep blue light or an ultraviolet light; and a display panel disposed on one side of the array of light emitting diodes The display panel includes a transparent substrate and a photoluminescent layer structure for supporting the photoluminescent layer structure. The transparent substrate includes an adjacent red light penetrating region and a green layer. a light-transmitting layer and a blue light-emitting region, the photo-emitting layer structure is disposed on the light-transmitting substrate toward the light-emitting diode array, and the photo-emitting layer structure comprises a first light-emitting portion and a second light-emitting portion The first light-emitting portion covers the red light-transmitting region and the green light-transmitting region along a normal direction of the light-transmitting substrate, and the second light-emitting portion is disposed toward the light-emitting diode array. The first light emitting portion covers the red light transmitting region along the normal light direction; wherein the first light emitting portion includes a first photoluminescent material and a first polymer material, and the second The light emitting portion includes a second photoluminescent material and a second Molecular materials, and the photoluminescence peak wavelength of the second light system of a light emitting material produced by photoluminescence induced greater than the first peak wavelength light of the other light emitting material produced by photoluminescence. 如請求項1所述的光致發光LED顯示裝置,其中,該發光二極體陣列包含複數個發光二極體及一基板結構,該等發光二極體設置該基板結構上,並電性連接至該基板結構。 The photoluminescent LED display device of claim 1, wherein the LED array comprises a plurality of light emitting diodes and a substrate structure, wherein the light emitting diodes are disposed on the substrate structure and electrically connected To the substrate structure. 如請求項1或2所述的光致發光LED顯示裝置,其中,該顯示面板 更包含一濾光層結構,該濾光層結構包含相鄰的一紅色區、一綠色區及一藍色區,該紅色區設置成允許一紅色光線通過,該綠色區設置成允許一綠色光線通過,而該藍色區設置成允許一藍色光線通過;其中,該光致發光層結構朝向該發光二極體陣列設置於該濾光層結構上,且該濾光層之該紅色區、該綠色區及該藍色區分別覆蓋該紅光穿透區、該綠光穿透區及該藍光穿透區。 The photoluminescent LED display device of claim 1 or 2, wherein the display panel Further comprising a filter layer structure, the filter layer structure comprises an adjacent red zone, a green zone and a blue zone, the red zone being arranged to allow a red light to pass, the green zone being arranged to allow a green light Passing, the blue region is configured to allow a blue light to pass through; wherein the photoluminescent layer structure is disposed on the filter layer structure toward the light emitting diode array, and the red region of the filter layer The green region and the blue region respectively cover the red light penetrating region, the green light penetrating region, and the blue light penetrating region. 如請求項3所述的光致發光LED顯示裝置,其中,該紅色區包含一紅色濾光器,該綠色區包含一綠色濾光器,該藍色區包含一藍色濾光器。 The photoluminescent LED display device of claim 3, wherein the red region comprises a red filter, the green region comprising a green filter, the blue region comprising a blue filter. 如請求項3所述的光致發光LED顯示裝置,其中,該濾光層結構更包括一高通濾光器,該高通濾光器覆蓋該紅色區及/或該綠色區。 The photoluminescent LED display device of claim 3, wherein the filter layer structure further comprises a high pass filter, the high pass filter covering the red region and/or the green region. 如請求項1或2所述的光致發光LED顯示裝置,其中,該顯示面板更包括一低通濾光層結構及/或一平坦層結構,其朝向該發光二極體陣列設置於該光致發光層結構上。 The photoluminescent LED display device of claim 1 or 2, wherein the display panel further comprises a low pass filter layer structure and/or a flat layer structure disposed on the light emitting diode array The structure of the luminescent layer. 如請求項1或2所述的光致發光LED顯示裝置,其中,該顯示面板更包含複數個光反射結構,該些光反射結構之每一個沿著該法線方向而覆蓋該藍光穿透區、該紅光穿透區及該綠光穿透區之其中一者的一側。 The photoluminescent LED display device of claim 1 or 2, wherein the display panel further comprises a plurality of light reflecting structures, each of the light reflecting structures covering the blue light transmitting region along the normal direction One side of one of the red light penetrating region and the green light penetrating region. 如請求項1或2所述的光致發光LED顯示裝置,其中,該光致發光層結構更包含一透光部,該第一光致發光材料為一綠色光致發光材料,而該第二光致發光材料為一紅色光致發光材料; 其中,該第二發光部沿著該法線方向覆蓋該紅光穿透區,但暴露該綠光穿透區及該藍光穿透區;該透光部相鄰於該第一發光部,且沿著該法線方向而覆蓋該藍光穿透區。 The photoluminescent LED display device of claim 1 or 2, wherein the photoluminescent layer structure further comprises a light transmitting portion, the first photoluminescent material is a green photoluminescent material, and the second The photoluminescent material is a red photoluminescent material; The second light emitting portion covers the red light transmitting region along the normal direction, but exposes the green light transmitting region and the blue light transmitting region; the light transmitting portion is adjacent to the first light emitting portion, and The blue light penetrating region is covered along the normal direction. 如請求項8所述的光致發光LED顯示裝置,其中,該綠色光致發光材料為綠光量子點材料,且/或該紅色光致發光材料為紅光量子點材料。 The photoluminescent LED display device of claim 8, wherein the green photoluminescent material is a green light quantum dot material, and/or the red photoluminescent material is a red light quantum dot material. 如請求項8所述的光致發光LED顯示裝置,其中,該第一發光部包含相鄰、且一體成型的一第一區及一第二區,其中,該第一區覆蓋於該紅光穿透區,該第二區覆蓋於該綠光穿透區;該第二發光部朝向該發光二極體陣列設置於該第一區上;其中,該第一區的該綠色光致發光材料之一濃度或總量低於該第二區的該綠色光致發光材料之一濃度或總量。 The photoluminescent LED display device of claim 8, wherein the first light emitting portion comprises an adjacent and integrally formed first region and a second region, wherein the first region covers the red light a penetrating region, the second region covering the green light penetrating region; the second light emitting portion is disposed on the first region toward the array of the light emitting diodes; wherein the green photoluminescent material of the first region One of the concentrations or total amounts is lower than the concentration or total amount of the green photoluminescent material of the second zone. 如請求項8所述的光致發光LED顯示裝置,其中,該光致發光層結構更包含一第三發光部,該第三發光部包含一藍色光致發光材料,該第一發光部朝向該發光二極體陣列設置於該第三發光部上,該第三發光部沿著該法線方向而同時覆蓋該紅光穿透區、該綠光穿透區及該藍光穿透區。 The photoluminescent LED display device of claim 8, wherein the photoluminescent layer structure further comprises a third light emitting portion, the third light emitting portion comprising a blue photoluminescent material, the first light emitting portion facing the The LED array is disposed on the third light emitting portion, and the third light emitting portion covers the red light penetrating region, the green light penetrating region and the blue light penetrating region simultaneously along the normal direction. 如請求項11所述的光致發光LED顯示裝置,其中,該藍色光致發光材料為藍光量子點材料。 The photoluminescent LED display device of claim 11, wherein the blue photoluminescent material is a blue quantum dot material. 如請求項11所述的光致發光LED顯示裝置,其中,該第三發光部包含相鄰、且一體成型的一第一區及一第二區,其中,該第一區覆 蓋於該紅光穿透區及該綠光穿透區,該第二區覆蓋於該藍光穿透區;該第一發光部朝向該發光二極體陣列設置於該第一區上;其中,該第一區的該藍色光致發光材料之一濃度或總量低於該第二區的該藍色光致發光材料之一濃度或總量。 The photoluminescent LED display device of claim 11, wherein the third light emitting portion comprises a first region and a second region which are adjacent and integrally formed, wherein the first region is covered. Covering the red light-transmitting region and the green light-transmitting region, the second region covering the blue light-transmitting region; the first light-emitting portion is disposed on the first region toward the light-emitting diode array; The concentration or total amount of one of the blue photoluminescent materials of the first region is lower than the concentration or total amount of the blue photoluminescent material of the second region. 如請求項4所述的光致發光LED顯示裝置,其中,該光致發光層結構更包含一透光部,該第一光致發光材料為一綠色光致發光材料,而該第二光致發光材料為一紅色光致發光材料;其中,該第二發光部沿著該法線方向同時覆蓋該紅光穿透區及該綠光穿透區;該透光部相鄰於該第一發光部,且沿著該法線方向而覆蓋該藍光穿透區。 The photoluminescent LED display device of claim 4, wherein the photoluminescent layer structure further comprises a light transmitting portion, the first photoluminescent material is a green photoluminescent material, and the second light is The illuminating material is a red luminescent material; wherein the second illuminating portion covers the red light transmitting region and the green light transmitting region simultaneously along the normal direction; the light transmitting portion is adjacent to the first illuminating portion And covering the blue light penetrating region along the normal direction. 如請求項14所述的光致發光LED顯示裝置,其中,該綠色光致發光材料為綠光量子點材料,且/或該紅色光致發光材料為紅光量子點材料。 The photoluminescent LED display device of claim 14, wherein the green photoluminescent material is a green light quantum dot material and/or the red photoluminescent material is a red light quantum dot material. 如請求項14所述的光致發光LED顯示裝置,其中,該光致發光層結構更包含一第三發光部,該第三發光部包含一藍色光致發光材料,該第一發光部朝向該發光二極體陣列設置於該第三發光部上,該第三發光部沿著該法線方向而同時覆蓋該紅光穿透區、該綠光穿透區及該藍光穿透區。 The photoluminescent LED display device of claim 14, wherein the photoluminescent layer structure further comprises a third light emitting portion, the third light emitting portion comprising a blue photoluminescent material, the first light emitting portion facing the The LED array is disposed on the third light emitting portion, and the third light emitting portion covers the red light penetrating region, the green light penetrating region and the blue light penetrating region simultaneously along the normal direction. 如請求項16所述的光致發光LED顯示裝置,其中,該藍色光致發光材料為藍光量子點材料。 The photoluminescent LED display device of claim 16, wherein the blue photoluminescent material is a blue quantum dot material. 如請求項4所述的光致發光LED顯示裝置,其中,該第一光致發光 材料為一綠色光致發光材料,而該第二光致發光材料為一紅色光致發光材料;其中,該第一發光部係沿著該法線方向而同時覆蓋該紅光穿透區、該綠光穿透區及該藍光穿透區;該第二發光部沿著該法線方向同時覆蓋該紅光穿透區、該綠光穿透區及該藍光穿透區。 The photoluminescent LED display device of claim 4, wherein the first photoluminescence The material is a green photoluminescent material, and the second photoluminescent material is a red photoluminescent material; wherein the first light emitting portion covers the red light penetrating region along the normal direction, a green light penetrating region and the blue light penetrating region; the second light emitting portion simultaneously covers the red light penetrating region, the green light penetrating region and the blue light penetrating region along the normal direction. 如請求項18所述的光致發光LED顯示裝置,其中,該綠色光致發光材料為綠光量子點材料,且/或該紅色光致發光材料為紅光量子點材料。 The photoluminescent LED display device of claim 18, wherein the green photoluminescent material is a green light quantum dot material and/or the red photoluminescent material is a red light quantum dot material. 如請求項18所述的光致發光LED顯示裝置,其中,該光致發光層結構更包含一第三發光部,該第三發光部包含一藍色光致發光材料,該第一發光部朝向該發光二極體陣列設置於該第三發光部上,該第三發光部沿著該法線方向而同時覆蓋該紅光穿透區、該綠光穿透區及該藍光穿透區。 The photoluminescent LED display device of claim 18, wherein the photoluminescent layer structure further comprises a third light emitting portion, the third light emitting portion comprising a blue photoluminescent material, the first light emitting portion facing the The LED array is disposed on the third light emitting portion, and the third light emitting portion covers the red light penetrating region, the green light penetrating region and the blue light penetrating region simultaneously along the normal direction. 如請求項20所述的光致發光LED顯示裝置,其中,該藍色光致發光材料為藍光量子點材料。 The photoluminescent LED display device of claim 20, wherein the blue photoluminescent material is a blue quantum dot material. 如請求項3所述的光致發光LED顯示裝置,其中,該紅色區包含一第一高通濾光器,該綠色區包含一第二高通濾光器;其中,該光致發光層結構更包含一透光部,該第一光致發光材料為一綠色光致發光材料,而該第二光致發光材料為一紅色光致發光材料,該透光部沿著該法線方向而覆蓋該藍色區;其中,該顯示面板更包含複數個光反射結構,該些光反射結構之每一個沿著該法線方向而覆蓋該紅色區、該綠色區及該藍色區之 其中一者的一側。 The photoluminescent LED display device of claim 3, wherein the red region comprises a first high pass filter, the green region comprising a second high pass filter; wherein the photoluminescent layer structure further comprises a light transmitting portion, the first photoluminescent material is a green photoluminescent material, and the second photoluminescent material is a red photoluminescent material, and the light transmitting portion covers the blue along the normal direction a color region; wherein the display panel further comprises a plurality of light reflecting structures, each of the light reflecting structures covering the red region, the green region and the blue region along the normal direction One side of one. 如請求項22所述的光致發光LED顯示裝置,其中,該光致發光層結構更包含一第三發光部,該第三發光部包含一藍色光致發光材料,該第一發光部朝向該發光二極體陣列設置於該第三發光部上,且該第三發光部沿著該法線方向而同時覆蓋該紅色區、該綠色區及該藍色區。 The photoluminescent LED display device of claim 22, wherein the photoluminescent layer structure further comprises a third light emitting portion, the third light emitting portion comprising a blue photoluminescent material, the first light emitting portion facing the The LED array is disposed on the third light emitting portion, and the third light emitting portion covers the red region, the green region and the blue region simultaneously along the normal direction. 一種光致發光LED顯示裝置,包含:一發光二極體陣列,用以提供一藍色光線、一深藍色光線或一紫外光線;以及一顯示面板,設置於該發光二極體陣列之一側,該顯示面板包含一透光基板及一光致發光層結構,該透光基板用以支撐該光致發光層結構;其中,該透光基板包含相鄰的一紅光穿透區、一綠光穿透區及一藍光穿透區,該光致發光層結構朝向該發光二極體陣列設置於該透光基板上,且該光致發光層結構包含一第一發光部及一透光部,該第一發光部係沿著該透光基板之一法線方向而同時覆蓋該紅光穿透區及該綠光穿透區,該透光部相鄰於該第一發光部,且沿著該法線方向而覆蓋該藍色區;其中,該第一發光部包含一相混合的紅色光致發光材料及綠色光致發光材料、或是包含一黃色光致發光材料,且該第一發光部更包含一高分子材料。 A photoluminescent LED display device comprising: an array of light emitting diodes for providing a blue light, a deep blue light or an ultraviolet light; and a display panel disposed on one side of the array of light emitting diodes The display panel includes a transparent substrate and a photoluminescent layer structure for supporting the photoluminescent layer structure. The transparent substrate includes an adjacent red light penetrating region and a green layer. a light-transmitting layer and a blue light-transmitting layer, the photo-emitting layer structure is disposed on the light-transmitting substrate toward the light-emitting diode array, and the photo-emitting layer structure comprises a first light-emitting portion and a light-transmitting portion The first light-emitting portion covers the red light-transmitting region and the green light-transmitting region along a normal direction of the light-transmitting substrate, and the light-transmitting portion is adjacent to the first light-emitting portion, and along the Covering the blue region with the normal direction; wherein the first light emitting portion comprises a mixed red photoluminescent material and a green photoluminescent material, or comprises a yellow photoluminescent material, and the first The light emitting portion further comprises a polymer material. 一種光致發光LED顯示裝置,包含: 一發光二極體陣列,用以提供一藍色光線、一深藍色光線或一紫外光線;以及一顯示面板,設置於該發光二極體陣列之一側,該顯示面板包含一透光基板及一光致發光層結構,該透光基板用以支撐該光致發光層結構;其中,該透光基板包含相鄰的一紅光穿透區、一綠光穿透區及一藍光穿透區,該光致發光層結構朝向該發光二極體陣列設置於該透光基板上,且該光致發光層結構包含一第一發光部,該第一發光部係沿著該透光基板之一法線方向而同時覆蓋該紅色區、該綠色區及該藍色區,且該第一發光部包含一相混合的紅色光致發光材料、綠色光致發光材料及藍色光致發光材料、或是包含一相混合的紅色光致發光材料及綠色光致發光材料、或是包含一黃色光致發光材料,且該第一發光部更包含一高分子材料。 A photoluminescence LED display device comprising: An LED array for providing a blue light, a deep blue light or an ultraviolet light, and a display panel disposed on one side of the LED array, the display panel comprising a transparent substrate and a photoluminescent layer structure for supporting the photoluminescent layer structure; wherein the transparent substrate comprises an adjacent red light penetrating region, a green light penetrating region and a blue light penetrating region The photoluminescent layer structure is disposed on the light-transmitting substrate toward the light-emitting diode array, and the photoluminescent layer structure includes a first light-emitting portion along one of the light-transmitting substrates. a normal direction covering the red region, the green region, and the blue region, and the first light emitting portion includes a mixed red photoluminescent material, a green photoluminescent material, and a blue photoluminescent material, or The first light emitting part further comprises a polymer material, or comprises a yellow photoluminescent material and a green photoluminescent material, and the first light emitting part further comprises a polymer material. 一種光致發光LED顯示裝置的製造方法,包含:提供一發光二極體陣列;及形成一顯示面板並設置於該發光二極體陣列之一側、或直接地於該光二極體陣列之一側形成該顯示面板;其中,該發光二極體陣列用以提供一藍光、深藍光或一紫外光;其中,該顯示面板的形成包含:提供一透光基板及形成一光致發光層結構;該透光基板用以支撐該光致發光層結構、且包含相鄰的一紅光穿透區、一綠光穿透區及一藍光穿透區;該光致發光層結構包含一第一發光部及一第二發光部,該第一發光部沿著該透光 基板之一法線方向而同時覆蓋該紅光穿透區及該綠光穿透區,該第二發光部朝向該發光二極體陣列設置於該第一發光部上,且沿著該法線方向而覆蓋該紅光穿透區;其中,該第一發光部係包含一第一光致發光材料及一第一高分子材料,而該第二發光部係包含一第二光致發光材料及一第二高分子材料,且該第二光致發光材料經由光致發光所產生的一光線之峰波長係大於該第一光致發光材料經由光致發光所產生的另一光線之峰波長。 A method for manufacturing a photoluminescent LED display device, comprising: providing an array of light emitting diodes; and forming a display panel and disposed on one side of the array of light emitting diodes or directly on one of the arrays of light diodes Forming the display panel on the side; wherein the LED array is configured to provide a blue light, a deep blue light, or an ultraviolet light; wherein the forming of the display panel comprises: providing a transparent substrate and forming a photoluminescent layer structure; The transparent substrate is configured to support the photoluminescent layer structure and includes an adjacent red light penetrating region, a green light penetrating region and a blue light penetrating region; the photoluminescent layer structure includes a first light emitting layer And a second light emitting portion along the first light emitting portion The first light emitting portion is disposed on the first light emitting portion toward the light emitting diode array along a normal direction of the substrate, and covers the red light transmitting region and the green light transmitting region, and along the normal line The first light emitting portion includes a first photoluminescent material and a first polymer material, and the second light emitting portion includes a second photoluminescent material and a second polymer material, and the peak wavelength of a light generated by the second photoluminescence material via photoluminescence is greater than the peak wavelength of another light generated by the first photoluminescence material via photoluminescence. 如請求項26所述的光致發光LED顯示裝置的製造方法,其中,該顯示面板的形成更包含:形成一濾光層結構;其中,該濾光層結構包含相鄰的一紅色區、一綠色區及一藍色區,該紅色區設置成允許一紅色光線通過,該綠色區設置成允許一綠色光線通過,而該藍色區設置成允許一藍色光線通過;該光致發光層結構朝向該發光二極體陣列設置於該濾光層結構上,且該濾光層之該紅色區、該綠色區及該藍色區分別覆蓋該紅光穿透區、該綠光穿透區及該藍光穿透區。 The method of manufacturing the photoluminescent LED display device of claim 26, wherein the forming of the display panel further comprises: forming a filter layer structure; wherein the filter layer structure comprises an adjacent red region, a a green area and a blue area, the red area being arranged to allow passage of a red light, the green area being arranged to allow passage of a green light, and the blue area being arranged to allow passage of a blue light; the photoluminescent layer structure The light emitting diode array is disposed on the filter layer structure, and the red region, the green region and the blue region of the filter layer respectively cover the red light penetrating region, the green light penetrating region and The blue light penetrating zone. 如請求項26或27所述的光致發光LED顯示裝置的製造方法,其中,形成該光致發光層結構時,更包含:將該第一光致發光材料及該第一高分子材料沈積於該透光基板之該紅光穿透區及該綠光穿透區上。 The method of fabricating a photoluminescent LED display device according to claim 26, wherein the forming the photoluminescent layer structure further comprises: depositing the first photoluminescent material and the first polymer material in The red light penetrating region of the light transmissive substrate and the green light penetrating region. 如請求項28所述的光致發光LED顯示裝置的製造方法,其中,形成該光致發光層結構時,更包含:沈積該第一光致發光材料及該第 一高分子材料於該透光基板上,然後再沈積該第二光致發光材料及該第二高分子材料。 The method of manufacturing a photoluminescent LED display device according to claim 28, wherein when the photoluminescent layer structure is formed, the method further comprises: depositing the first photoluminescent material and the first A polymer material is on the light transmissive substrate, and then the second photoluminescent material and the second polymer material are deposited. 如請求項26或27所述的光致發光LED顯示裝置的製造方法,其中,形成該光致發光層結構時,更包含:將該第二光致發光材料及該第二高分子材料沈積於該發光二極體陣列上;其中,該第二光致發光材料及該第二高分子材料對應於該透光基板之該紅光穿透區及該綠光穿透區上、或僅對應該紅光穿透區上。 The method of manufacturing the photoluminescent LED display device of claim 26, wherein the forming the photoluminescent layer structure further comprises: depositing the second photoluminescent material and the second polymer material The second photoluminescent material and the second polymer material correspond to the red light penetrating region and the green light penetrating region of the light transmitting substrate, or only corresponding to The red light penetrates the area. 如請求項30所述的光致發光LED顯示裝置的製造方法,其中,形成該光致發光層結構時,更包含:沈積該第一光致發光材料及該第一高分子材料於該發光二極體陣列、該第二光致發光材料及該第二高分子材料上。 The method of manufacturing the photoluminescent LED display device of claim 30, wherein the forming the photoluminescent layer structure further comprises: depositing the first photoluminescent material and the first polymer material in the light emitting a polar body array, the second photoluminescent material, and the second polymer material. 如請求項27所述的光致發光LED顯示裝置的製造方法,其中,在形成該濾光層結構時,更包含:形成一紅色濾光器於該紅色區上,形成一綠色濾光器於該綠色區上,形成一藍色濾光器於該藍色區上。 The method of manufacturing a photoluminescent LED display device according to claim 27, wherein when the filter layer structure is formed, the method further comprises: forming a red filter on the red region to form a green filter. On the green zone, a blue filter is formed on the blue zone. 如請求項26或27所述的光致發光LED顯示裝置的製造方法,其中,在形成該光致發光層結構時,更使該光致發光層結構一併覆蓋該藍光穿透區。 The method of fabricating a photoluminescence LED display device according to claim 26 or 27, wherein, when the photoluminescent layer structure is formed, the photoluminescent layer structure is further covered by the blue light-emitting region. 如請求項26或27所述的光致發光LED顯示裝置的製造方法,其中,該發光二極體陣列包含複數個發光二極體及一基板結構,該等發光二極體設置該基板結構上,並電性連接至該基板結構。 The method of manufacturing the photoluminescent LED display device of claim 26 or 27, wherein the LED array comprises a plurality of light emitting diodes and a substrate structure, and the light emitting diodes are disposed on the substrate structure And electrically connected to the substrate structure. 如請求項34所述的光致發光LED顯示裝置的製造方法,更包含,於該等發光二極體之間及/或之上,形成一平坦層結構。 The method of fabricating a photoluminescent LED display device according to claim 34, further comprising forming a flat layer structure between and/or over the light emitting diodes. 如請求項34所述的光致發光LED顯示裝置的製造方法,更包含,於該等發光二極體之間,形成一反射結構。 The method of fabricating a photoluminescence LED display device according to claim 34, further comprising forming a reflective structure between the light emitting diodes.
TW106117616A 2017-05-26 2017-05-26 Photoluminescent led display device and method for manufacturing the same TWI643327B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106117616A TWI643327B (en) 2017-05-26 2017-05-26 Photoluminescent led display device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106117616A TWI643327B (en) 2017-05-26 2017-05-26 Photoluminescent led display device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI643327B true TWI643327B (en) 2018-12-01
TW201901949A TW201901949A (en) 2019-01-01

Family

ID=65431586

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106117616A TWI643327B (en) 2017-05-26 2017-05-26 Photoluminescent led display device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI643327B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112991967A (en) * 2019-12-17 2021-06-18 夏普福山半导体株式会社 Display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740379B (en) * 2020-02-15 2021-09-21 瑩耀科技股份有限公司 Lighting module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090153024A1 (en) * 2007-12-12 2009-06-18 Au Optronics Corporation White light emitting device and producing method thereof
US20110256648A1 (en) * 2008-12-24 2011-10-20 3M Innovative Properties Company Method of Making Double-sided Wavelength Converter and Light Generating Device Using Same
US20130082589A1 (en) * 2011-10-04 2013-04-04 Universal Display Corporation Power efficient rgbw oled display
TW201711179A (en) * 2015-09-09 2017-03-16 群創光電股份有限公司 Display device
TW201716382A (en) * 2015-09-04 2017-05-16 半導體能源研究所股份有限公司 Compound, light-emitting element, display device, electronic device, and lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090153024A1 (en) * 2007-12-12 2009-06-18 Au Optronics Corporation White light emitting device and producing method thereof
US20110256648A1 (en) * 2008-12-24 2011-10-20 3M Innovative Properties Company Method of Making Double-sided Wavelength Converter and Light Generating Device Using Same
US20130082589A1 (en) * 2011-10-04 2013-04-04 Universal Display Corporation Power efficient rgbw oled display
TW201716382A (en) * 2015-09-04 2017-05-16 半導體能源研究所股份有限公司 Compound, light-emitting element, display device, electronic device, and lighting device
TW201711179A (en) * 2015-09-09 2017-03-16 群創光電股份有限公司 Display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112991967A (en) * 2019-12-17 2021-06-18 夏普福山半导体株式会社 Display device
US11538796B2 (en) 2019-12-17 2022-12-27 Sharp Fukuyama Laser Co., Ltd. Display device
CN112991967B (en) * 2019-12-17 2023-02-17 夏普福山激光株式会社 Display device

Also Published As

Publication number Publication date
TW201901949A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
TWI737791B (en) Color filter, method of manufacturing the same and display apparatus including the same
US11650441B2 (en) Display device and method of manufacturing the same
CN110673394B (en) Backlight assembly and display device including the same
KR101785695B1 (en) Light emitting device package, light source module, backlight unit, display apparatus, television set and illumination apparatus
KR101251815B1 (en) Optical sheet and display device having the same
TWI599822B (en) Optical member, display device including the same and manufacturing method thereof
TWI591405B (en) Photoluminescent display device and method for manufacturing the same
KR102593215B1 (en) Display device
KR102126176B1 (en) Wavelengh conversion member, and method for manufacturing the same, and backlight assembly including the same
JP7335761B2 (en) display device
KR102584304B1 (en) Color conversion panel and display device comprising the same
US20180059310A1 (en) Backlight module, display device including the same, and method of fabricating the same
KR20120088273A (en) Back light unit and menufacturing method thererof
US11099301B2 (en) Display device comprising nano-pattern layer
KR102377174B1 (en) Liquid crystal display device
US10539827B2 (en) Display device and method for manufacturing the same
CN107450218B (en) Photoluminescent display device and method of manufacturing the same
KR20200088532A (en) Display device
KR102441748B1 (en) Display device
JP2022530624A (en) Backlight unit with quantum dots
KR20190082351A (en) Light-guide plate, backlight assembly and display device including the same
TWI643327B (en) Photoluminescent led display device and method for manufacturing the same
KR101349555B1 (en) Display device
KR102708384B1 (en) Liquid Crystal Display device
KR101283130B1 (en) Display device