TWI642228B - Electrolyte preparation method of solid oxide fuel cell - Google Patents

Electrolyte preparation method of solid oxide fuel cell Download PDF

Info

Publication number
TWI642228B
TWI642228B TW106131928A TW106131928A TWI642228B TW I642228 B TWI642228 B TW I642228B TW 106131928 A TW106131928 A TW 106131928A TW 106131928 A TW106131928 A TW 106131928A TW I642228 B TWI642228 B TW I642228B
Authority
TW
Taiwan
Prior art keywords
solid
oxide
fuel cell
oxidation mixture
electrolyte
Prior art date
Application number
TW106131928A
Other languages
Chinese (zh)
Other versions
TW201916446A (en
Inventor
曾重仁
李勝偉
張仍奎
莊哲瑋
李侃融
李懿軒
沈進添
Original Assignee
國立中央大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學 filed Critical 國立中央大學
Priority to TW106131928A priority Critical patent/TWI642228B/en
Application granted granted Critical
Publication of TWI642228B publication Critical patent/TWI642228B/en
Publication of TW201916446A publication Critical patent/TW201916446A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

一種固態氧化物燃料電池之電解質製備方法,包含有:一固態氧化混合物;以及一固態反應法(solid state reaction),其流程包含:球磨、烘乾、煆燒、重複、成型、燒結;經過該固態反應法處理的該固態氧化混合物後會成為一鈣鈦礦氧化物(Perovskite oxide),且該鈣鈦礦氧化物之表面形成有氧化鈰(CeO 2)之分布。 A method for preparing an electrolyte for a solid oxide fuel cell, comprising: a solid oxidation mixture; and a solid state reaction, the process comprising: ball milling, drying, calcining, repeating, forming, sintering; The solid state oxidation treatment of the solid oxidation mixture will become a perovskite oxide, and the surface of the perovskite oxide is formed with a distribution of cerium oxide (CeO 2 ).

Description

固態氧化物燃料電池之電解質製備方法Electrolyte preparation method of solid oxide fuel cell

本發明係與電池之電解質製造方法有關,特別是指一種固態氧化物燃料電池之電解質製備方法。 The present invention relates to a method for producing an electrolyte of a battery, and more particularly to a method for preparing an electrolyte of a solid oxide fuel cell.

現今世界能源多著重於化石燃料,近年評估,全球的原油平均開採年限僅約40餘年,而天然氣也僅剩60餘年,未來,除了面臨高油價的國際市場,亦會面臨能源短缺的危機。基於節約能源與環境保護的考量下,由於燃料電池能夠提供潔淨能源,因此成為最具發展潛力之一的發電技術。 Today, the world's energy is more focused on fossil fuels. In recent years, the average annual mining life of crude oil in the world is only about 40 years, while natural gas is only 60 years old. In the future, in addition to the international market facing high oil prices, it will face a crisis of energy shortage. Based on energy conservation and environmental protection considerations, fuel cells are one of the most promising power generation technologies because they provide clean energy.

一種以質子傳導電解質(proton-conducting electrolytes)的固態氧化物燃料電池(Solid Oxide Fuel Cell,SOFC),主要係由鈣鈦礦氧化物(perovskite oxide)來做為質子導體(protonic conductors),鈣鈦礦氧化物包括有:BaCeO3、BaZrO3、SrCeO3以及SiZrO3…等。固態氧化物燃料電池除了具有能源淨潔的優點外,更具有以下之優點:1.是屬於全固態的電池,沒有電解質滲漏的問題。2.電極反應速度快而且不易受到環境的影響。3.高熱力效率(thermodynamic efficiency)。4.不需使用貴重金屬作為催化劑。 A solid oxide fuel cell (SOFC) using proton-conducting electrolytes, mainly composed of perovskite oxide as protonic conductors, calcium and titanium The mineral oxides include: BaCeO3, BaZrO3, SrCeO3, and SiZrO3. In addition to the advantages of clean energy, the solid oxide fuel cell has the following advantages: 1. It is an all-solid battery, and there is no problem of electrolyte leakage. 2. The electrode reacts quickly and is not susceptible to the environment. 3. Thermodynamic efficiency. 4. No need to use precious metals as a catalyst.

請參閱如中華民國第I481109號專利,提供一種用於固態氧化物燃料電池之電解質製備方法,藉由將不同固態氧化物粉末混合、壓縮之後,顆粒較小的固態氧化物粉末可以填入另一固態氧化物粉末的孔隙中,再經過燒結之 後,所得到的產物的緻密度可得增加,所製得的固態氧化物成品可以作為質子傳導燃料電池的優良電解質。 Please refer to Patent No. I481109 of the Republic of China for providing an electrolyte preparation method for a solid oxide fuel cell. After mixing and compressing different solid oxide powders, the smaller solid oxide powder can be filled into another The pores of the solid oxide powder are sintered Thereafter, the density of the obtained product can be increased, and the obtained solid oxide product can be used as an excellent electrolyte for a proton-conducting fuel cell.

但是,質子傳導電解質的固態氧化物燃料電池在高溫與二氧化碳,以及水或硫化氫環境下時,BaCeO3氧化物具有較差的化學穩定性。其中,所遇到的問題點在於,以BaCeO3所組成之固態氧化物燃料電池於工作時與二氧化碳接觸時,固態氧化燃料電池表面之鈣鈦礦結構會與二氧化碳產生毒化反應(poisoning),當經過長時間二氧化碳的毒化後,鈣鈦礦結構的表面會被雜相(如:BaCO3)所覆蓋,導致質子傳導路徑受阻,造成質子傳導率大幅衰退甚至喪失對質子的傳導效果。 However, BaCeO3 oxides have poor chemical stability when the solid oxide fuel cell of the proton conducting electrolyte is exposed to high temperatures and carbon dioxide, and water or hydrogen sulfide. Among them, the problem encountered is that when the solid oxide fuel cell composed of BaCeO3 is in contact with carbon dioxide during operation, the perovskite structure on the surface of the solid oxide fuel cell will poison with carbon dioxide. After the poisoning of carbon dioxide for a long time, the surface of the perovskite structure will be covered by the heterophase (such as: BaCO3), causing the proton conduction path to be blocked, causing a large decline in proton conductivity or even a loss of proton conduction.

本發明之主要目的乃在於提供一種固態氧化物燃料電池之電解質製備方法,其係不需經過額外的加工手法,可使鈣鈦礦結構(perovskite structure)之表面形成氧化鈰(CeO2),得以穩定質子的傳導率,達到提升化學穩定性之功效。 The main object of the present invention is to provide a method for preparing an electrolyte of a solid oxide fuel cell, which can form cerium oxide (CeO 2 ) on the surface of a perovskite structure without additional processing. Stabilize the conductivity of protons to improve chemical stability.

為了達成上述之目的,本發明提供之一種固態氧化物燃料電池之電解質製備方法,包含有:一固態氧化混合物;以及一固態反應法(solid state reaction),其流程包含:a.將該固態氧化混合物於異丙醇中球磨1~12小時;b.將經球磨後的該固態氧化混合物於60~180℃烘乾;c.將烘乾後的該固態氧化混合物於800~1500℃,煆燒1~15小時;d.重複a~c步驟進行1~5次;e.將煆燒後的該固態氧化混合物乾壓成型;f.對乾壓成型的該固態氧化混合物以至少1600℃,燒結 1~24小時;其中,該固態氧化混合物經該固態反應法處理後成為一鈣鈦礦氧化物(Perovskite oxide),且該鈣鈦礦氧化物之表面形成有氧化鈰(CeO2)之分布。 In order to achieve the above object, the present invention provides a method for preparing an electrolyte for a solid oxide fuel cell, comprising: a solid oxidation mixture; and a solid state reaction, the process comprising: a. oxidizing the solid state The mixture is ball milled in isopropanol for 1 to 12 hours; b. the ball-milled solid oxidation mixture is dried at 60 to 180 ° C; c. the dried solid mixture is dried at 800 to 1500 ° C. 1~15 hours; d. repeating the a~c step for 1~5 times; e. dry pressing the solid oxidation mixture after calcination; f. sintering the solid pressed mixture of the dry press at at least 1600 ° C 1 to 24 hours; wherein the solid oxidation mixture is treated by the solid state reaction to form a perovskite oxide, and the surface of the perovskite oxide is formed with a distribution of cerium oxide (CeO 2 ).

藉此,本發明之固態氧化物燃料電池之電解質製備方法,不需經過額外的加工手法,可使鈣鈦礦氧化物之表面形成氧化鈰,得以穩定質子的傳導率,達到提升化學穩定性之功效。 Thereby, the electrolyte preparation method of the solid oxide fuel cell of the invention can form cerium oxide on the surface of the perovskite oxide without additional processing methods, thereby stabilizing the conductivity of the proton and improving the chemical stability. efficacy.

10‧‧‧固態氧化物燃料電池之電解質製備方法 10‧‧‧ Electrolyte preparation method for solid oxide fuel cell

11‧‧‧固態氧化混合物 11‧‧‧Solid oxidizing mixture

21‧‧‧固態反應法 21‧‧‧ Solid state reaction method

31‧‧‧鈣鈦礦氧化物 31‧‧‧Perovskite oxide

第1圖係本發明一較佳實施例之方塊示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram of a preferred embodiment of the present invention.

第2圖係本發明一較佳實施例之流程圖。 Figure 2 is a flow chart of a preferred embodiment of the present invention.

第3圖係本發明一較佳實施例之第一XRD圖;顯示CeO2於不同燒結溫度下的形成狀況。 Figure 3 is a first XRD pattern of a preferred embodiment of the invention; showing the formation of CeO 2 at different sintering temperatures.

第4圖係本發明一較佳實施例之第二XRD圖;顯示CeO2於不同燒結時間下的形成狀況。 Figure 4 is a second XRD pattern of a preferred embodiment of the invention; showing the formation of CeO 2 at different sintering times.

第5圖係本發明一較佳實施例之第三XRD圖;顯示BCY-CeO2於不同拋光程度下存在於BCY表面的含量。 Figure 5 is a third XRD pattern of a preferred embodiment of the invention; showing the amount of BCY-CeO 2 present on the surface of the BCY at different degrees of polishing.

第6A及6B圖係本發明一較佳實施例之第四XRD圖;分別顯示BCYZ-CeO2於拋光前、後的狀況。 6A and 6B are fourth XRD patterns of a preferred embodiment of the present invention; respectively, showing the condition of BCYZ-CeO 2 before and after polishing.

第7A及7B圖係本發明一較佳實施例之第一導電度;分別顯示BCYZ-CeO2於拋光前與拋光後的狀況。 7A and 7B are first conductivity of a preferred embodiment of the present invention; respectively, showing the condition of BCYZ-CeO 2 before and after polishing.

第8圖係本發明一較佳實施例之第二導電度圖;顯示BCY與BCZY未形成CeO2時,進行二氧化碳毒化前、後的比較。 Figure 8 is a second conductivity diagram of a preferred embodiment of the present invention; showing a comparison between before and after carbon dioxide poisoning when BCY and BCZY do not form CeO 2 .

第9圖係本發明一較佳實施例之第七XRD圖;顯示BCY與BCZY形成CeO2時,進行二氧化碳毒化前、後的比較。 Figure 9 is a seventh XRD pattern of a preferred embodiment of the present invention; showing a comparison between before and after carbon dioxide poisoning when BCY and BCZY form CeO 2 .

為了詳細說明本發明之技術特點所在,茲舉以下一較佳實施例並配合圖式說明如後,其中:如第1、2圖所示,本發明一較佳實施例提供之一種固態氧化物燃料電池之電解質製備方法10,其係將一固態氧化混合物11由一固態反應法21(solid state reaction)進行處理。 In order to describe the technical features of the present invention in detail, the following preferred embodiments are described with reference to the accompanying drawings, wherein, as shown in FIGS. 1 and 2, a solid oxide according to a preferred embodiment of the present invention is provided. The fuel cell electrolyte preparation method 10 is characterized in that a solid oxidation mixture 11 is treated by a solid state reaction.

該固態氧化混合物11包含碳酸鋇(BaCO3)、氧化鈰(CeO2)以及氧化鋯(ZrO2),並將碳酸鋇(BaCO3)、氧化鈰(CeO2)以及氧化鋯(ZrO2)依各自莫爾比重計算後混合;其中,該固態氧化混合物11經該固態反應法21處理後成為一鈣鈦礦氧化物31,且該鈣鈦礦氧化物31之表面具有氧化鈰(CeO2)之分布。於本較佳實施例中,該鈣鈦礦氧化物31係為鋇鈰釔氧化物(BaCe0.8Y0.2O3,BCY)(以下簡稱鋇鈰釔氧化物(BCY))。 The solid oxidation mixture 11 comprises barium carbonate (BaCO 3 ), cerium oxide (CeO 2 ) and zirconium oxide (ZrO 2 ), and cerium carbonate (BaCO 3 ), cerium oxide (CeO 2 ) and zirconium oxide (ZrO 2 ) are The respective Moire specific gravity is calculated and mixed; wherein the solid oxidation mixture 11 is treated by the solid state reaction method 21 to become a perovskite oxide 31, and the surface of the perovskite oxide 31 has cerium oxide (CeO 2 ). distributed. In the preferred embodiment, the perovskite oxide 31 is a cerium oxide (BaCe 0.8 Y 0.2 O 3 , BCY) (hereinafter referred to as cerium oxide (BCY)).

該固態反應法21,其步驟包含: The solid state reaction method 21, the steps of which include:

a.將該固態氧化混合物11於異丙醇中球磨6小時。其中,球磨主要係為了能夠充分混合該固態氧化混合物11,因此,只要達成充分混合之目的,例如:4、8、12小時皆可做為球磨時間,故球磨時間不應僅以本較佳實施例為限。 a. The solid oxidation mixture 11 was ball milled in isopropanol for 6 hours. The ball milling is mainly for the purpose of sufficiently mixing the solid oxidation mixture 11 . Therefore, as long as the purpose of sufficient mixing is achieved, for example, 4, 8 and 12 hours can be used as the ball milling time, the ball milling time should not be only the preferred embodiment. The example is limited.

b.將經球磨後的該固態氧化混合物11於溫度110℃進行烘乾;其中,除了本較佳實施例使用的烘乾溫度外,僅要係能夠達成烘乾目的之溫度皆 能作為烘乾溫度的應用,例如:60、80、130、180℃皆可做為烘乾溫度,故烘乾溫度不應僅以本較佳實施例為限。 b. The ball-milled solid oxidation mixture 11 is dried at a temperature of 110 ° C; wherein, in addition to the drying temperature used in the preferred embodiment, only the temperature at which the drying purpose can be achieved is The application can be used as the drying temperature, for example, 60, 80, 130, and 180 ° C can be used as the drying temperature, so the drying temperature should not be limited to the preferred embodiment.

c.將烘乾後的該固態氧化混合物11於1250℃,煆燒8小時;其中,除了本較佳實施例之煆燒溫度外,煆燒溫度亦能以1000、1300、1500℃為應用,故煆燒溫度應不僅以本較佳實施例為限。 c. The dried solid oxidation mixture 11 is calcined at 1250 ° C for 8 hours; wherein, in addition to the calcination temperature of the preferred embodiment, the calcination temperature can also be applied at 1000, 1300, and 1500 ° C. Therefore, the calcination temperature should not be limited to the preferred embodiment.

d.將步驟a~c重複3次。其中,將步驟a~c重複係確保該固態氧化混合物11於每一步驟的充分反應,因此,若僅須經過步驟a~c 1次就可使該固態樣化混合物的充分反應,即不需進行步驟a~c的重複而直接進行後續步驟d~f,或僅進行2次即可;然而,若是重複進行步驟(a)~(c)3次仍不足以達到充分反應的狀態,則需要增加步驟(a)~(c)的重複次數,如4、5次,因此,步驟(a)~(c)的重複次數並不應僅以本較佳實施例為限。 d. Repeat steps a~c three times. Wherein, the steps a~c are repeated to ensure sufficient reaction of the solid oxidation mixture 11 at each step, and therefore, if only a step a~c is required, the solid mixture can be fully reacted, that is, without Repeat steps a~c to directly perform the subsequent steps d~f, or only 2 times; however, if it is not enough to repeat the steps (a) to (c) 3 times to achieve sufficient reaction, then The number of repetitions of steps (a) to (c) is increased, such as 4 or 5 times. Therefore, the number of repetitions of steps (a) to (c) should not be limited to the preferred embodiment.

(e)將煆燒後的該固態氧化混合物11乾壓成錠狀,並以單軸壓製(uniaxially pressed)而成(以250MPa壓製成直徑1cm/厚度1mm之圓柱體)。 (e) The solid oxidation mixture 11 after calcination was dry-pressed into a pellet and uniaxially pressed (a cylinder having a diameter of 1 cm/thickness of 1 mm was pressed at 250 MPa).

(f)對乾壓後的該固態氧化混合物11以1600℃,燒結12小時;其中,本較佳實施例中以所述燒結溫度以及時間為例,主要係依據後續會進行敘明之結果,並且考量生產成本(如時間、能源消耗)所設定的較佳條件,因此,若係以更高的燒結溫度,如1700、1800、1900、2000℃;燒結時間為1、4、8、10、14小時,皆能應用於此,故燒結溫度以及時間不應僅以本較佳實施例為限。 (f) sintering the solid-state oxidation mixture 11 after dry pressing at 1600 ° C for 12 hours; wherein, in the preferred embodiment, the sintering temperature and time are taken as an example, mainly based on the results of subsequent descriptions, and Consider the best conditions set by production costs (such as time and energy consumption). Therefore, if higher sintering temperatures are used, such as 1700, 1800, 1900, 2000 °C; sintering time is 1, 4, 8, 10, 14 The hour can be applied to this, so the sintering temperature and time should not be limited to the preferred embodiment.

藉此,本發明之較佳實施例可藉由該固態反應法21,使該固態氧化混合物11不需經過額外的加工手法即可於表面形成氧化鈰(CeO2),使該鈣鈦礦氧化物31得以穩定質子的傳導率,達到提升化學穩定性之功效。 Accordingly, the preferred embodiment of the present invention can cause the solid oxide mixture 11 to form cerium oxide (CeO 2 ) on the surface without additional processing by the solid state reaction method 21 to oxidize the perovskite. The substance 31 can stabilize the conductivity of the proton and achieve the effect of improving chemical stability.

此外,該固態氧化混合物11更可包含有氧化釔(Y2O3),經該固態反應法21處理後係為鋇鈰鋯釔氧化物(BaCe0.6Zr0.2Y0.2O3,BCZY)(以下簡稱鋇鈰鋯釔氧化物(BCZY)),且同樣能夠於其表面形成氧化鈰(CeO2),達到穩定質子的傳導率,達到提升化學穩定性之功效,因此,該固態氧化混合物11之組成不應僅以本較佳實施例為限。 In addition, the solid oxidation mixture 11 may further contain yttrium oxide (Y 2 O 3 ), which is treated by the solid state reaction method 21 to be cerium zirconium lanthanum oxide (BaCe 0.6 Zr 0.2 Y 0.2 O 3 , BCZY) (below) It is abbreviated as cerium zirconium lanthanum oxide (BCZY), and can also form cerium oxide (CeO 2 ) on its surface to achieve stable proton conductivity and improve chemical stability. Therefore, the composition of the solid oxidation mixture 11 It should not be limited to the preferred embodiment.

以下接續說明有關本發明之實驗數據。 Experimental data relating to the present invention will be described below.

燒結溫度試驗:請參閱第3圖,係為鋇鈰釔氧化物(BCY)進行不同燒結溫度試驗,其係將鋇鈰釔氧化物(BCY)於1400~1600℃進行燒結12小時,再以X光繞射圖譜(X-ray Diffraction,XRD)顯示其結果,其中,可以看出氧化鈰(CeO2)僅有燒結溫度為1600℃時才明顯形成,由此可知,若要氧化鈰(CeO2)形成,需要高於1600℃的燒結環境。 Sintering temperature test: Please refer to Figure 3 for different sintering temperature tests for bismuth oxide (BCY). The bismuth oxide (BCY) is sintered at 1400~1600 °C for 12 hours, then X. X-ray Diffraction (XRD) shows the results. It can be seen that cerium oxide (CeO 2 ) is formed only when the sintering temperature is 1600 ° C. It is known that cerium oxide (CeO 2 ) is required. ) Formation requires a sintering environment above 1600 °C.

燒結時間試驗:請參閱第4圖,將鋇鈰釔氧化物(BCY)於1600℃並於燒結4、8、12小時三個時間點以XRD圖譜顯示來觀察氧化鈰(CeO2)於鋇鈰釔氧化物(BCY)的形成狀況,由結果中可看出鋇鈰釔氧化物(BCY)於燒結12小時的氧化鈰(CeO2)形成量最高。因此,我們認為隨著燒結時間的增加,氧化鈰(CeO2)的形成亦會隨之增加,其考量到燒結的時間越長會造成生產成本增加,故本發明係以12小時為例。 Sintering time test: Please refer to Figure 4 for the observation of cerium oxide (CeO 2 ) at 1600 ° C at three time points of sintering at 4, 8 and 12 hours by XRD pattern. From the results, it can be seen that the cerium oxide (BCY) has the highest amount of cerium oxide (CeO 2 ) formed during sintering for 12 hours. Therefore, we believe that as the sintering time increases, the formation of cerium oxide (CeO 2 ) also increases. Considering that the longer the sintering time, the production cost increases, so the present invention takes 12 hours as an example.

藉此可證明,鋇鈰釔氧化物(BCY)只要能夠於1600℃燒結足夠的時間,就會於鋇鈰釔氧化物(BCY)之表面自然形成氧化鈰(CeO2),而步驟(f)中的燒結時間越長會使氧化鈰(CeO2)形成量則越高。 This proves that bismuth oxide (BCY) naturally forms cerium oxide (CeO 2 ) on the surface of cerium oxide (BCY) as long as it can be sintered at 1600 ° C for a sufficient period of time, and step (f) The longer the sintering time is, the higher the amount of cerium oxide (CeO 2 ) is formed.

拋光試驗:請參閱第5圖,由上述燒結溫度、時間試驗,將鋇鈰釔氧化物(BCY)以溫度1600℃燒結後,進行0、10、20、30μm拋光厚度的XRD分析, 依照XRD圖譜結果可以看出,當拋光厚度為0、10、20μm的時候,會偵測到氧化鈰(CeO2)的訊號,但拋光厚度20μm能夠偵測到的訊號已經相當微弱,而當拋光厚度為30μm的時候,已偵測不到訊號。由此可證明,氧化鈰(CeO2)的形成僅限於鋇鈰釔氧化物(BCY)的表面。 Polishing test: Please refer to Figure 5 for the XRD analysis of the polishing thickness of 0, 10, 20, 30 μm by sintering the tantalum oxide (BCY) at a temperature of 1600 °C from the above sintering temperature and time test, according to the XRD pattern. As a result, it can be seen that when the polishing thickness is 0, 10, 20 μm, the signal of cerium oxide (CeO 2 ) is detected, but the signal which can be detected by polishing the thickness of 20 μm is already quite weak, and when the polishing thickness is 30 μm. At the time, no signal was detected. From this, it can be confirmed that the formation of cerium oxide (CeO 2 ) is limited to the surface of cerium oxide (BCY).

另外,請參閱第6A、6B圖,同樣也對鋇鈰鋯釔氧化物(BCZY)進行燒結後的拋光試驗,由第6A圖式中可以看出,經過溫度1600℃燒結,確實也有氧化鈰(CeO2)的形成,接著,由第6B圖可以看出,氧化鈰(CeO2)同樣僅形成於鋇鈰鋯釔氧化物(BCZY)之表面。 In addition, please refer to the drawings of Figs. 6A and 6B, and also the polishing test after sintering of lanthanum zirconium lanthanum oxide (BCZY). It can be seen from the pattern of Fig. 6A that there is indeed yttrium oxide after sintering at a temperature of 1600 ° C ( The formation of CeO 2 ), and then, as can be seen from Fig. 6B, cerium oxide (CeO 2 ) is also formed only on the surface of lanthanum zirconium lanthanum oxide (BCZY).

化學穩定性試驗:如第7A、7B圖所示,第7A圖係顯示形成氧化鈰(CeO2)的鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY),第7B圖係顯示未形成氧化鈰(CeO2)的鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY)。其中,暴露於600℃的二氧化碳下進行毒化8小時後,由第7A圖可看出,經本發明所提供之方法處理而形成氧化鈰(CeO2)的鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY),經過二氧化碳毒化後,雜相(如:BaCO3)的形成仍是相當低的,而且,由結果顯示可得知,氧化鈰(CeO2)係仍然存在於鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY)之表面。然而,由第7B圖中顯示,無形成氧化鈰(CeO2)的鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY),對於雜相(如:BaCO3)的形成情況皆相當嚴重;藉此可以證實,當氧化鈰(CeO2)形成於鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY)之表面的時候,確實對鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY)具有保護效果,進而提升鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY)的化學穩定性。 Chemical stability test: As shown in Figures 7A and 7B, Figure 7A shows the formation of cerium oxide (CeO 2 ) cerium oxide (BCY) and cerium zirconium lanthanum oxide (BCZY), Figure 7B A cerium oxide (BCY) and cerium zirconium lanthanum oxide (BCZY) which do not form cerium oxide (CeO 2 ) are shown. Among them, after being poisoned by exposure to carbon dioxide at 600 ° C for 8 hours, it can be seen from Fig. 7A that the cerium oxide (CeO 2 ) cerium oxide (BCY) and cerium are formed by the method provided by the present invention. Zirconium lanthanum oxide (BCZY), after carbon dioxide poisoning, the formation of heterophases (such as BaCO 3 ) is still quite low, and it is known from the results that cerium oxide (CeO 2 ) is still present in cesium The surface of cerium oxide (BCY) and cerium zirconium lanthanum oxide (BCZY). However, as shown in Fig. 7B, no cerium oxide (CeO 2 )-forming cerium oxide (BCY) and cerium zirconium lanthanum oxide (BCZY) are formed for the formation of hetero phases (e.g., BaCO 3 ). It is quite serious; it can be confirmed that when cerium oxide (CeO 2 ) is formed on the surface of cerium oxide (BCY) and cerium zirconium lanthanum oxide (BCZY), it is true for cerium oxide (BCY). And cerium zirconium lanthanum oxide (BCZY) has a protective effect, thereby improving the chemical stability of cerium oxide (BCY) and cerium zirconium lanthanum oxide (BCZY).

導電度試驗:請參閱第8、9圖,由第8圖可看出,未形成氧化鈰(CeO2)的鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY)未經二氧化碳毒化時,鋇鈰釔氧化物(BCY)的導電率(0.0285S/cm)係優於鋇鈰鋯釔氧化物(BCZY)的導電率(將近0.018S/cm),但於二氧化碳毒化後,鋇鈰釔氧化物(BCY)與鋇鈰鋯釔氧化物(BCZY)的導電率,分別由原本毒化前的0.0285S/cm以及0.018S/cm急速劣化至毒化後的0.0126S/cm以及0.009S/cm,二氧化碳毒化前、後的衰退幅度高達50%;接著,再配合第9圖可看出,形成氧化鈰(CeO2)的鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY)未經過二氧化碳毒化時,形成氧化鈰(CeO2)鋇鈰釔氧化物(BCY)的導電率(0.020S/cm)以及鋇鈰鋯釔氧化物(BCZY)的導電率(0.017S/cm),係略低於未形成氧化鈰(CeO2)的鋇鈰釔氧化物(BCY)的導電率(0.285S/cm)以及鋇鈰鋯釔氧化物(BCZY)的導電率(0.018S/cm),但在二氧化碳毒化後,形成氧化鈰(CeO2)鋇鈰釔氧化物(BCY)與鋇鈰鋯釔氧化物(BCZY)的導電率,僅分別由0.020S/cm與0.017S/cm小幅衰退至0.0186S/cm與0.0153S/cm,其衰退幅度皆小於10%;而有形成氧化鈰(CeO2)的鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY)經二氧化碳毒化後之導電率(分別為0.0186S/cm以及0.0153S/cm),係高於未形成氧化鈰(CeO2)的鋇鈰釔氧化物(BCY)以及鋇鈰鋯釔氧化物(BCZY)之導電率(分別為:0.0126S/cm以及0.009S/cm)。 Conductivity test: Please refer to Figures 8 and 9. As can be seen from Figure 8, cerium oxide (BCY) and cerium-zirconium-cerium oxide (BCZY) without cerium oxide (CeO 2 ) are not carbon dioxide. At the time of poisoning, the conductivity of bismuth oxide (BCY) is better than that of lanthanum zirconium lanthanum oxide (BCZY) (nearly 0.018 S/cm), but after carbon dioxide poisoning, 钡The conductivity of bismuth oxide (BCY) and lanthanum zirconium lanthanum oxide (BCZY) deteriorated rapidly from 0.0285 S/cm and 0.018 S/cm before the original poisoning to 0.016 S/cm and 0.009 S/ after poisoning. Cm, the decay of carbon dioxide before and after poisoning is as high as 50%; then, together with Figure 9, it can be seen that the formation of cerium oxide (CeO 2 ) cerium oxide (BCY) and cerium zirconium lanthanum oxide (BCZY) The conductivity (0.020 S/cm) of cerium oxide (CeO 2 ) cerium oxide (BCY) and the conductivity of cerium zirconium lanthanum oxide (BCZY) (0.017 S/cm) are not formed when carbon dioxide is poisoned. The conductivity is slightly lower than the conductivity of the cerium oxide (BCY) without cerium oxide (CeO2) (0.285 S/cm) and the conductivity of lanthanum zirconium lanthanum oxide (BCZY) (0.018 S/cm), but Poisoning in carbon dioxide , the conductivity of cerium oxide (CeO2) cerium oxide (BCY) and cerium zirconium lanthanum oxide (BCZY) is formed, which only slightly decays from 0.020 S/cm and 0.017 S/cm to 0.0186 S/cm and 0.0153, respectively. S/cm, the decay rate is less than 10%; and the conductivity of cerium oxide (Be) which forms cerium oxide (CeO2) and cerium zirconium lanthanum oxide (BCZY) are poisoned by carbon dioxide (0.0186 respectively) S/cm and 0.0153 S/cm) are higher than those of cerium oxide (BCY) and cerium-zirconium-cerium oxide (BCZY) which do not form cerium oxide (CeO2) (0.0126 S/cm, respectively) And 0.009 s/cm).

藉由上述結果可證明,本發明之固態氧化物燃料電池之電解質製備方法10,可使該鈣鈦礦氧化物31於表面形成氧化鈰(CeO2),得以穩定質子的傳導率,達到提升化學穩定性之功效。 It can be confirmed from the above results that the electrolyte preparation method 10 of the solid oxide fuel cell of the present invention can form the perovskite oxide 31 to form cerium oxide (CeO 2 ) on the surface, thereby stabilizing the conductivity of the proton and improving the chemistry. The effect of stability.

Claims (8)

一種固態氧化物燃料電池之電解質製備方法,包含有:一固態氧化混合物;以及一固態反應法(solid state reaction),其流程包含:(a)將該固態氧化混合物於異丙醇中球磨4~12小時;(b)將經球磨後的該固態氧化混合物於60~180℃烘乾;(c)將烘乾後的該固態氧化混合物於1000~1500℃,煆燒1~15小時;(d)將(a)~(c)流程重複1~5次;(e)將煆燒後的該固態氧化混合物乾壓成型;(f)對乾壓成型後的該固態氧化混合物以至少1600℃,燒結1~24小時;其中,該固態氧化混合物經該固態反應法處理後成為一鈣鈦礦型氧化物(Perovskite type oxide),且該鈣鈦礦型氧化物之表面形成有氧化鈰(CeO2)之分布。 A method for preparing an electrolyte for a solid oxide fuel cell, comprising: a solid oxidation mixture; and a solid state reaction, the process comprising: (a) ball milling the solid oxidation mixture in isopropanol 4~ 12 hours; (b) drying the ball-milled solid oxidation mixture at 60-180 ° C; (c) drying the solid oxidation mixture at 1000-1500 ° C for 1 to 15 hours; (a) to (c) repeating the process 1 to 5 times; (e) dry-forming the solid oxidation mixture after calcination; (f) at least 1600 ° C for the solid-state oxidation mixture after dry pressing, Sintering for 1 to 24 hours; wherein the solid oxidation mixture is treated by the solid state reaction to form a perovskite type oxide, and the surface of the perovskite type oxide is formed with cerium oxide (CeO 2 ) The distribution of ). 依據申請專利範圍第1項之固態氧化物燃料電池之電解質製備方法,其中該流程步驟(a)球磨程序之球磨時間為4~8小時。 The method for preparing an electrolyte for a solid oxide fuel cell according to claim 1, wherein the ball milling time of the process step (a) is 4 to 8 hours. 依據申請專利範圍第1項之固態氧化物燃料電池之電解質製備方法,其中該流程步驟(b)烘乾該固態氧化混合物之溫度係為80~130℃。 The method for preparing an electrolyte for a solid oxide fuel cell according to the first aspect of the invention, wherein the step (b) of drying the solid oxidation mixture is carried out at a temperature of 80 to 130 °C. 依據申請專利範圍第1項之固態氧化物燃料電池之電解質製備方法,其中該流程步驟(c)固態混合物之煆燒溫度為1000~1400℃,時間為6~10小時。 The method for preparing an electrolyte for a solid oxide fuel cell according to claim 1, wherein the solid mixture of the step (c) has a calcination temperature of 1000 to 1400 ° C for 6 to 10 hours. 依據申請專利範圍第1項之固態氧化物燃料電池之電解質製備方法,其中該流程步驟(e)煆燒後的該固態氧化混合物係乾壓成錠狀。 The method for preparing an electrolyte for a solid oxide fuel cell according to the first aspect of the invention, wherein the solid oxidation mixture after the calcination in the step (e) is dry pressed into a tablet shape. 依據申請專利範圍第1項之固態氧化物燃料電池之電解質製備方法,其中該流程步驟(f)乾壓成型的該固態氧化混合物的燒結溫度為1600~2000℃,燒結時間為8~14小時。 The method for preparing an electrolyte for a solid oxide fuel cell according to the first aspect of the invention, wherein the step (f) of the dry pressing of the solid oxidation mixture has a sintering temperature of 1600 to 2000 ° C and a sintering time of 8 to 14 hours. 依據申請專利範圍第1項之固態氧化物燃料電池之電解質製備方法,其中:該固態氧化混合物包含碳酸鋇(BaCO3)、氧化鈰(CeO2)以及氧化鋯(ZrO2)。 An electrolyte preparation method of a solid oxide fuel cell according to the first aspect of the invention, wherein the solid oxidation mixture comprises barium carbonate (BaCO 3 ), cerium oxide (CeO 2 ), and zirconium oxide (ZrO 2 ). 依據申請專利範圍第7項之固態氧化物燃料電池之電解質製備方法,其中:該固態氧化混合物更包含氧化釔(Y2O3)。 The method for preparing an electrolyte for a solid oxide fuel cell according to claim 7, wherein the solid oxidation mixture further comprises yttrium oxide (Y 2 O 3 ).
TW106131928A 2017-09-18 2017-09-18 Electrolyte preparation method of solid oxide fuel cell TWI642228B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106131928A TWI642228B (en) 2017-09-18 2017-09-18 Electrolyte preparation method of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106131928A TWI642228B (en) 2017-09-18 2017-09-18 Electrolyte preparation method of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
TWI642228B true TWI642228B (en) 2018-11-21
TW201916446A TW201916446A (en) 2019-04-16

Family

ID=65034359

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106131928A TWI642228B (en) 2017-09-18 2017-09-18 Electrolyte preparation method of solid oxide fuel cell

Country Status (1)

Country Link
TW (1) TWI642228B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124037B2 (en) * 2009-12-11 2012-02-28 Delphi Technologies, Inc. Perovskite materials for solid oxide fuel cell cathodes
CN102306817B (en) * 2011-08-09 2013-12-11 华南理工大学 Method for manufacturing U-shaped hollow fiber solid oxide fuel cell
US8637209B2 (en) * 2005-08-09 2014-01-28 Allan J. Jacobson Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes
TWI481109B (en) * 2013-08-01 2015-04-11 Univ Nat Central Preparation method of electrolytes for solid oxide fuel cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637209B2 (en) * 2005-08-09 2014-01-28 Allan J. Jacobson Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes
US8124037B2 (en) * 2009-12-11 2012-02-28 Delphi Technologies, Inc. Perovskite materials for solid oxide fuel cell cathodes
CN102306817B (en) * 2011-08-09 2013-12-11 华南理工大学 Method for manufacturing U-shaped hollow fiber solid oxide fuel cell
TWI481109B (en) * 2013-08-01 2015-04-11 Univ Nat Central Preparation method of electrolytes for solid oxide fuel cells

Also Published As

Publication number Publication date
TW201916446A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
Rajendran et al. Tri-doped BaCeO3–BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs)
Fabbri et al. Chemically stable Pr and Y co‐doped barium zirconate electrolytes with high proton conductivity for intermediate‐temperature solid oxide fuel cells
Zhu et al. Evaluation of SrSc0. 175Nb0. 025Co0. 8O3-δ perovskite as a cathode for proton-conducting solid oxide fuel cells: the possibility of in situ creating protonic conductivity and electrochemical performance
Yang et al. Synthesis, sintering behavior and electrical properties of Ba (Zr0. 1Ce0. 7Y0. 2) O3− δ and Ba (Zr0. 1Ce0. 7Y0. 1Yb0. 1) O3− δ proton conductors
CN101820072B (en) Preparation method of solid oxide fuel cell with symmetrical electrodes
CN110255610B (en) A-site high-entropy perovskite oxide and preparation method and application thereof
CN101320814A (en) Electrolyte material of low temperature oxide fuel battery and preparation method thereof
CN114824303B (en) R-P type layered medium-entropy perovskite structure cathode material and preparation method thereof
CN111574244B (en) Method for densifying barrier layer of solid oxide battery
CN113839054B (en) Reversible proton ceramic battery electrode material and preparation method and application thereof
Leng et al. The effect of sintering aids on BaCe0· 7Zr0· 1Y0. 1Yb0. 1O3-δ as the electrolyte of proton-conducting solid oxide electrolysis cells
Huang et al. CYO–BZCYO composites with enhanced proton conductivity: Candidate electrolytes for low-temperature solid oxide fuel cells
Dong et al. A comparative study of the RP phase Srn+ 1FenO3n+ 1 (n= 1, 2 and 3) cathodes for intermediate temperature solid oxide fuel cells
TWI481109B (en) Preparation method of electrolytes for solid oxide fuel cells
CN100517840C (en) Middle-and high-temperature solid-oxide fuel battery cathode material
TWI642228B (en) Electrolyte preparation method of solid oxide fuel cell
Zhang et al. An intermediate temperature fuel cell based on composite electrolyte of carbonate and doped barium cerate with SrFe0. 7Mn0. 2Mo0. 1O3− δ cathode
US9553317B2 (en) Ceramic cathode material of solid oxide fuel cell and manufacturing method thereof
Muzaffar et al. Synthesis, characterization, fabrication, and electrochemical performance of transition metal doped LSCTA-as anode candidates for SOFCS
Hossain et al. Recent progress in the experimental and theoretical studies on the barium zirconate proton conductors: A review
CN110707346A (en) Double-doped BaCeO3Matrix conduction electrolyte material, preparation and application
Lu et al. A cobalt-free Pr6O11–BaCe0. 2Fe0. 8O3-δ composite cathode for protonic ceramic fuel cells with promising oxygen reduction activity and hydration ability
CN116375469B (en) Method for solid phase synthesis of proton conductor electrolyte ceramic powder
KR101334902B1 (en) Cathode for solid oxide fuel cell, method for producing thereof and fuel cell comprising the same
Jiang et al. Characterization of PrBa 0.92 CoCuO 6-d as a potential cathode material of intermediate-temperature solid oxide fuel cell