TWI642057B - Method for operating non-volatile memory device and applications thereof - Google Patents

Method for operating non-volatile memory device and applications thereof Download PDF

Info

Publication number
TWI642057B
TWI642057B TW106114352A TW106114352A TWI642057B TW I642057 B TWI642057 B TW I642057B TW 106114352 A TW106114352 A TW 106114352A TW 106114352 A TW106114352 A TW 106114352A TW I642057 B TWI642057 B TW I642057B
Authority
TW
Taiwan
Prior art keywords
pulse
memory cell
write
volatile memory
verify
Prior art date
Application number
TW106114352A
Other languages
Chinese (zh)
Other versions
TW201839768A (en
Inventor
林昱佑
李峰旻
許凱捷
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW106114352A priority Critical patent/TWI642057B/en
Publication of TW201839768A publication Critical patent/TW201839768A/en
Application granted granted Critical
Publication of TWI642057B publication Critical patent/TWI642057B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

一種非揮發性記憶體(Non-Volatile Memory,NVM)元件的操作方法,包括下述步驟:首先進行一個第一寫入操作,此第一寫入操作包括:對非揮發性記憶體元件的至少一個可變電阻式記憶胞(resistance switching memory cell)施加具有第一電性的第一寫入脈衝。接著對此至少一個可變電阻式記憶胞施加具有驗證電壓的第一驗證脈衝。並在第一驗證脈衝之前或之後,對此至少一個可變電阻式記憶胞施加第一設定脈衝。其中,第一設定脈衝具有一個與第一電性相反的第二電性的設定電壓;且設定電壓的絕對值實質小於或等於驗證電壓的絕對值。 A method of operating a Non-Volatile Memory (NVM) component, comprising the steps of: first performing a first write operation, the first write operation comprising: at least for a non-volatile memory component A resistance switching memory cell applies a first write pulse having a first electrical property. A first verify pulse having a verify voltage is then applied to the at least one variable resistive memory cell. And applying a first set pulse to the at least one variable resistive memory cell before or after the first verify pulse. The first set pulse has a second electrical set voltage opposite to the first electrical property; and the absolute value of the set voltage is substantially less than or equal to the absolute value of the verify voltage.

Description

非揮發性記憶體元件的操作方法及其應用 Method for operating non-volatile memory components and its application

本揭露書是有關於一種非揮發性記憶體(Non-Volatile Memory,NVM)元件的操作方法及其應用裝置。特別是有關於一種包含有可變電阻式記憶胞(resistance switching memory cell)之記憶體元件的操作方法及其應用裝置。 The present disclosure relates to a method of operating a Non-Volatile Memory (NVM) component and an application device therefor. In particular, there is a method of operating a memory element including a variable resistance memory cell and an application device therefor.

非揮發性記憶體元件,具有在移除電源時亦不丟失儲存於記憶單元中之資訊的特性。目前較被廣泛使用的是屬於採用電荷儲存式(charge trap)的電荷儲存式快閃(Charge Trap Flash,CTF)記憶體元件。然而,隨著記憶體元件的積集密度增加,元件關鍵尺寸(critical size)和間隔(pitch)縮小,電荷儲存式快閃記憶體元件面臨其物理極限,而無法動作。 A non-volatile memory component that has the property of not losing information stored in the memory unit when the power is removed. Currently widely used is a Charge Trap Flash (CTF) memory component that uses a charge trap. However, as the accumulation density of memory components increases, the critical size and pitch of the components shrink, and the charge storage type flash memory device faces its physical limit and cannot operate.

可變電阻式記憶體元件(例如可變電阻式隨機存取記憶體元件),是利用可變電阻式記憶胞的電阻大小來作為資訊儲 存狀態的判讀依據。其不論在元件密度(device density)、電力消耗、程式化/抹除速度或三維空間堆疊特性上,都優於其他快閃記憶體。因此,目前已成為倍受業界關注的記憶體元件之一。 A variable-resistance memory device (for example, a variable-resistance random access memory device) uses a resistance of a variable-resistance memory cell as a information storage The basis for the interpretation of the state. It is superior to other flash memories in terms of device density, power consumption, stylization/erasing speed or three-dimensional space stacking characteristics. Therefore, it has become one of the memory components that have received much attention in the industry.

典型可變電阻式記憶體元件的寫入操作(programming)步驟,包括對可變電阻式隨機存取記憶體元件中被選取的複數個可變電阻式記憶胞施加一寫入脈衝,使可變電阻式記憶胞的電阻分佈由第一阻值分佈狀態(例如,低阻值分佈狀態)轉變成第二阻值分佈狀態(高值阻值分佈狀態)。並進行一次驗證操作(verification),以驗證被寫入之可變電阻式記憶胞的電阻分佈是否轉變成第二阻值分佈狀態。而為了使驗證操作有效實施,就必須具備足以分辨前述兩種電阻分佈狀態的電阻辨別窗(resistance window)。 A programming operation of a typical variable resistance memory device, comprising applying a write pulse to a plurality of selected variable resistance memory cells in a variable resistance random access memory device to make a variable The resistance distribution of the resistive memory cell is changed from a first resistance distribution state (for example, a low resistance distribution state) to a second resistance distribution state (a high value resistance distribution state). A verification operation is performed to verify whether the resistance distribution of the written variable resistance memory cell is converted into the second resistance distribution state. In order for the verification operation to be effectively implemented, it is necessary to have a resistance window sufficient to distinguish the two kinds of resistance distribution states.

因此,有需要提供一種非揮發性記憶體元件的操作方法及其應用裝置,以解決習知技術所面臨的問題。 Therefore, there is a need to provide a method of operating a non-volatile memory component and an application thereof to solve the problems faced by the prior art.

本說明書的一個實施例是有關於一種非揮發性記憶體元件的操作方法。此非揮發性記憶體元件的操作方法包括:首先進行一個第一寫入操作,此第一寫入操作包括:對非揮發性記憶體元件的至少一個可變電阻式記憶胞施加具有第一電性的第一寫入脈衝。接著對此至少一個可變電阻式記憶胞施加具有驗證電壓(Vver)的第一驗證脈衝。並在第一驗證脈衝之前或之後,對此 至少一個可變電阻式記憶胞施加一個第一設定脈衝。其中,第一設定脈衝具有一個與第一電性相反的第二電性相反的設定電壓(Vset);且設定電壓的絕對值,實質小於或等於驗證電壓的絕對值(|Vset|Vver|)。 One embodiment of the present specification is directed to a method of operating a non-volatile memory component. The method of operating the non-volatile memory component includes first performing a first write operation, the first write operation comprising: applying a first charge to the at least one variable resistive memory cell of the non-volatile memory component The first write pulse of sex. A first verify pulse having a verify voltage (V ver ) is then applied to the at least one variable resistive memory cell. And applying a first set pulse to the at least one variable resistive memory cell before or after the first verify pulse. Wherein, the first set pulse has a second electrical opposite set voltage ( Vset ) opposite to the first electrical property; and the absolute value of the set voltage is substantially less than or equal to the absolute value of the verify voltage (| Vset | |V ver |).

本說明書的一個實施例是有關於一種非揮發性記憶體元件。此非揮發性記憶體元件包括:至少一個可變電阻式記憶胞以及一個控制器。控制器與此至少一個可變電阻式記憶胞電性連接,用來對此至少一個可變電阻式記憶胞進行第一寫入操作。第一寫入操作包括下述步驟:首先對此至少一個可變電阻式記憶胞施加具有第一電性的第一寫入脈衝。接著對此至少一個可變電阻式記憶胞施具有驗證電壓(Vver)的第一驗證脈衝。並在第一驗證脈衝之前或之後,對此至少一個可變電阻式記憶胞施加一個第一設定脈衝。其中,第一設定脈衝具有一個與第一電性相反的第二電性相反的設定電壓(Vset);且設定電壓的絕對值,實質小於或等於驗證電壓的絕對值(|Vset|Vver|)。 One embodiment of the present specification is directed to a non-volatile memory component. The non-volatile memory component includes: at least one variable resistance memory cell and a controller. The controller is electrically coupled to the at least one variable resistive memory for performing a first write operation on the at least one variable resistive memory cell. The first write operation includes the step of first applying a first write pulse having a first electrical property to the at least one variable resistive memory cell. A first verify pulse having a verify voltage (V ver ) is then applied to the at least one variable resistive memory cell. And applying a first set pulse to the at least one variable resistive memory cell before or after the first verify pulse. Wherein, the first set pulse has a second electrical opposite set voltage ( Vset ) opposite to the first electrical property; and the absolute value of the set voltage is substantially less than or equal to the absolute value of the verify voltage (| Vset | |V ver |).

一種非揮發性記憶體元件的製作方法,包括:形成至少一個可變電阻式記憶胞;以及形成一個可變電阻式記憶胞電性連接的控制器,用來對可變電阻式記憶胞進行第一寫入操作。第一寫入操作包括下述步驟:首先對此至少一個可變電阻式記憶胞施加具有第一電性的第一寫入脈衝。接著對此至少一個可變電阻式記憶胞施具有驗證電壓(Vver)的第一驗證脈衝。並在第一驗證脈衝之前或之後,對此至少一個可變電阻式記憶胞施加一個第一 設定脈衝。其中,第一設定脈衝具有一個與第一電性相反的第二電性相反的設定電壓(Vset);且設定電壓的絕對值,實質小於或等於驗證電壓的絕對值(|Vset|Vver|)。 A method of fabricating a non-volatile memory device, comprising: forming at least one variable resistance memory cell; and forming a variable resistance memory cell electrically connected controller for performing a variable resistance memory cell A write operation. The first write operation includes the step of first applying a first write pulse having a first electrical property to the at least one variable resistive memory cell. A first verify pulse having a verify voltage (V ver ) is then applied to the at least one variable resistive memory cell. And applying a first set pulse to the at least one variable resistive memory cell before or after the first verify pulse. Wherein, the first set pulse has a second electrical opposite set voltage ( Vset ) opposite to the first electrical property; and the absolute value of the set voltage is substantially less than or equal to the absolute value of the verify voltage (| Vset | |V ver |).

根據上述,本說明書的實施例是提供一種非揮發性記憶體元件的操作方法及其應用裝置,其係在非揮發性記憶體元件的寫入操作期間,對非揮發性記憶體元件的至少一個可變電阻式記憶胞施加至少一個寫入脈衝和一個驗證脈衝。並在驗證脈衝之前或之後,對此可變電阻式記憶胞施加至少一個設定脈衝。其中設定脈衝具有一個與寫入脈衝電性相反的設定電壓,且設定電壓絕對值實值小於或等於驗證脈衝之驗證電壓絕的對值。可變電阻式記憶胞在寫入操作之後,電阻值會大於一個預設電阻值。且經過一段時間之後,電阻分布狀態不會再度回復到先前較寬的電阻分布狀態,而使部分小於此預設電阻值。進而可以解決可變電阻式記憶胞寫入操作不穩定的問題。 In accordance with the above, embodiments of the present specification provide a method of operating a non-volatile memory component and an application thereof, at least one of non-volatile memory components during a write operation of a non-volatile memory component. The variable resistive memory cell applies at least one write pulse and one verify pulse. At least one set pulse is applied to the variable resistive memory cell before or after the verify pulse. The set pulse has a set voltage opposite to the write pulse electrical polarity, and the set voltage absolute value is less than or equal to the verification value of the verify pulse. The variable resistance memory cell will have a resistance value greater than a preset resistance value after the write operation. After a period of time, the resistance distribution state does not return to the previous wider resistance distribution state, and the portion is smaller than the preset resistance value. Further, the problem that the variable resistance memory cell writing operation is unstable can be solved.

100‧‧‧非揮發性記憶體元件 100‧‧‧Non-volatile memory components

101‧‧‧可變電阻式記憶胞 101‧‧‧Variable Resistive Memory Cell

158‧‧‧階層解碼器 158‧‧ ‧ class decoder

159‧‧‧串列選擇線 159‧‧‧Sequence selection line

160‧‧‧立體記憶體陣列 160‧‧‧ Stereo Memory Array

161‧‧‧行解碼器 161‧‧ ‧ row decoder

162‧‧‧條字線 162‧‧‧ word line

163‧‧‧列解碼器 163‧‧‧ column decoder

164‧‧‧位元線 164‧‧‧ bit line

165‧‧‧匯流排 165‧‧ ‧ busbar

166‧‧‧感測放大器和資料輸入結構 166‧‧‧Sense Amplifier and Data Input Structure

167‧‧‧資料匯流排 167‧‧‧ data bus

168‧‧‧電壓供應器 168‧‧‧Voltage supply

169‧‧‧偏壓配置狀態機 169‧‧‧ bias configuration state machine

171‧‧‧資料輸入線 171‧‧‧ data input line

172‧‧‧資料輸出線 172‧‧‧ data output line

174‧‧‧其他電路 174‧‧‧Other circuits

408‧‧‧複合脈衝 408‧‧‧Complex pulse

200、200’、300、400、404、405、406、407、500、600、604、605、606、607‧‧‧寫入操作 200, 200', 300, 400, 404, 405, 406, 407, 500, 600, 604, 605, 606, 607‧‧‧ write operations

201、301、401、501、504、505、506、507、601‧‧‧寫入脈衝 201, 301, 401, 501, 504, 505, 506, 507, 601‧‧‧ write pulses

202、302、402、402’、502、602‧‧‧設定脈衝 202, 302, 402, 402', 502, 602‧‧‧ set pulse

203、203’、303、403、403’、503、603、608‧‧‧驗證脈衝 203, 203', 303, 403, 403', 503, 603, 608‧‧‧ verification pulse

701、702、702’、801、802、802’、901、902、902’、902”、 902'''‧‧‧電阻值累積分佈函曲線 701, 702, 702', 801, 802, 802', 901, 902, 902', 902", 902'''‧‧‧ resistance value cumulative distribution curve

S21‧‧‧提供非揮發性記憶體元件 S21‧‧‧ provides non-volatile memory components

S22‧‧‧對可變電阻式記憶胞施加寫入脈衝 S22‧‧‧ Applying a write pulse to a variable resistance memory cell

S23‧‧‧對可變電阻式記憶胞施加設定脈衝 S23‧‧‧ Applying a set pulse to a variable resistance memory cell

S24‧‧‧對可變電阻式記憶胞施加驗證脈衝,以驗證可變電阻式記憶胞的電阻值是否到達一個預設門檻值 S24‧‧‧ Apply a verification pulse to the variable resistance memory cell to verify whether the resistance value of the variable resistance memory cell reaches a preset threshold

S31‧‧‧提供非揮發性記憶體元件 S31‧‧‧ provides non-volatile memory components

S32‧‧‧對可變電阻式記憶胞施加寫入脈衝 S32‧‧‧ Applying a write pulse to a variable resistance memory cell

S33‧‧‧對可變電阻式記憶胞施加驗證脈衝,以驗證可變電阻式記憶胞的電阻值是否到達一個預設門檻值 S33‧‧‧ Apply a verification pulse to the variable resistance memory cell to verify whether the resistance value of the variable resistance memory cell reaches a preset threshold

S34‧‧‧對可變電阻式記憶胞施加設定脈衝 S34‧‧‧ Applying a set pulse to a variable resistance memory cell

S41‧‧‧提供非揮發性記憶體元件 S41‧‧‧ provides non-volatile memory components

S42‧‧‧對可變電阻式記憶胞施加寫入脈衝 S42‧‧‧ Applying a write pulse to a variable resistance memory cell

S43‧‧‧對可變電阻式記憶胞施加設定脈衝 S43‧‧‧ Applying a set pulse to a variable resistance memory cell

S44‧‧‧對可變電阻式記憶胞施加驗證脈衝,以驗證可變電阻式記憶胞的電阻值是否到達一個預設門檻值 S44‧‧‧ Apply a verification pulse to the variable resistance memory cell to verify whether the resistance value of the variable resistance memory cell reaches a preset threshold

S45‧‧‧對可變電阻式記憶胞施加另一個寫入脈衝 S45‧‧‧ Apply another write pulse to the variable resistance memory cell

S51‧‧‧提供非揮發性記憶體元件 S51‧‧‧ provides non-volatile memory components

S52‧‧‧對可變電阻式記憶胞施加寫入脈衝 S52‧‧‧ Applying a write pulse to a variable resistance memory cell

S53‧‧‧對可變電阻式記憶胞施加驗證脈衝,以驗證可變電阻式記憶胞的電阻值是否到達一個預設門檻值 S53‧‧‧ Apply a verification pulse to the variable resistance memory cell to verify whether the resistance value of the variable resistance memory cell reaches a preset threshold

S54‧‧‧對可變電阻式記憶胞施加設定脈衝 S54‧‧‧ Applying a set pulse to a variable resistance memory cell

S55‧‧‧對可變電阻式記憶胞施加另一個寫入脈衝 S55‧‧‧ Apply another write pulse to the variable resistance memory cell

S61‧‧‧提供非揮發性記憶體元件 S61‧‧‧ provides non-volatile memory components

S62‧‧‧對可變電阻式記憶胞施加寫入脈衝 S62‧‧‧ Applying a write pulse to a variable resistance memory cell

S63‧‧‧對可變電阻式記憶胞施加驗證脈衝,以驗證可變電阻式記憶胞的電阻值是否大於一個預設門檻值 S63‧‧‧ Apply a verification pulse to the variable resistance memory cell to verify whether the resistance value of the variable resistance memory cell is greater than a preset threshold

S64‧‧‧對可變電阻式記憶胞施加另一個寫入脈衝 S64‧‧‧ Apply another write pulse to the variable resistance memory cell

S65‧‧‧對可變電阻式記憶胞施加設定脈衝 S65‧‧‧ Applying a set pulse to a variable resistance memory cell

S60A‧‧‧前段寫入操作 S60A‧‧‧Segment write operation

S60B‧‧‧後段寫入操作 S60B‧‧‧Send write operation

Vpgm、Vpgm1、Vpgm2、Vpgm3、Vpgm4、Vpgm5‧‧‧寫入電壓 V pgm , V pgm1 , V pgm2 , V pgm3 , V pgm4 , V pgm5 ‧‧‧ write voltage

Vver、Vver’‧‧‧驗證電壓 V ver , V ver '‧‧‧ verification voltage

Vset‧‧‧設定電壓 V set ‧‧‧Set voltage

K‧‧‧預設門檻值 K‧‧‧ default threshold

為了對本發明之上述實施例及其他目的、特徵和優點能更明顯易懂,特舉數個較佳實施例,並配合所附圖式,作詳細說明如下:第1圖係根據本說明書的一實施例繪示一種非揮發性記憶體元件的電路方塊圖;第2A圖係根據本說明書的一實施例所繪示之非揮發性記憶 體元件的操作方法流程圖;第2B圖係根據本說明書的一實施例採用第2A圖之方法對非揮發性記憶體元件進行寫入操作所繪示的操作時序圖(timing diagram);第2C圖係根據本說明書的另一實施例採用第2A圖之方法對非揮發性記憶體元件進行寫入操作所繪示的操作時序圖;第3A圖係根據本說明書的一實施例所繪示之非揮發性記憶體元件的操作方法流程圖;第3B圖係繪示採用第3A圖所述之方法對非揮發性記憶體元件進行寫入操作的操作時序圖;第4A圖係根據本說明書的一實施例所繪示之非揮發性記憶體元件的操作方法流程圖;第4B圖係根據本說明書的一實施例採用第4A圖之方法對非揮發性記憶體元件進行寫入操作所繪示的操作時序圖;第4C圖係根據本說明書的另一實施例採用第4A圖之方法對非揮發性記憶體元件進行寫入操作所繪示的操作時序圖;第5A圖係根據本說明書的一實施例所繪示之非揮發性記憶體元件的操作方法流程圖;第5B圖係根據本說明書的一實施例採用第5A圖之方法對非揮發性記憶體元件進行寫入操作所繪示的操作時序圖;第6A圖係根據本說明書的一實施例所繪示之非揮發性記憶體元件的操作方法流程圖; 第6B圖係根據本說明書的一實施例採用第6A圖之方法對非揮發性記憶體元件進行寫入操作所繪示的操作時序圖;第7A圖係繪示採用第5A圖所述之方法,對非揮發性記憶體元件進行進行5B圖所繪示之寫入操作並經過一段特定時間間隔後,可變電阻式記憶胞的電阻值累積分佈函數(Cumulative Distribution Function,CDF)圖;第7B圖係繪示採用一比較例所提供之方法,對非揮發性記憶體元件進行寫入操作並經過一段特定時間間隔後,可變電阻式記憶胞的電阻值累積分佈函圖;第8A圖係繪示採用第6A圖所述之方法,對非揮發性記憶體元件進行進行6B圖所繪示之寫入操作並經過一段特定時間間隔後,可變電阻式記憶胞的電阻值累積分佈函數圖;第8B圖係繪示採用一比較例所提供之方法,對非揮發性記憶體元件進行寫入操作並經過一段特定時間間隔後,可變電阻式記憶胞的電阻值累積分佈函圖;第9A圖至第9D圖係採用第5A圖和第5B圖所述之方法,分別以-0.3V、-0.5V、-0.7V和-1.0V的設定電壓Vset對非揮發性記憶體元件100進行寫入操作500經過一段特定時間間隔之後,可變電阻式記憶胞的電阻值累積分佈圖;以及第10圖係根據本說明書一實施例所繪示之電阻式隨機存取記憶體(Resistive Random Access Memory,ReRAM)單元的可變電阻式記憶胞結構剖面圖。 The above-described embodiments and other objects, features and advantages of the present invention will become more apparent from the aspects of the invention. The embodiment shows a circuit block diagram of a non-volatile memory element; FIG. 2A is a flow chart of the operation method of the non-volatile memory element according to an embodiment of the present specification; FIG. 2B is a description according to the present specification. An embodiment of the present invention uses the method of FIG. 2A to perform a write operation of a non-volatile memory element; and FIG. 2C uses a second embodiment according to another embodiment of the present specification. Method for performing a write operation on a non-volatile memory element; FIG. 3A is a flow chart of a method for operating a non-volatile memory element according to an embodiment of the present specification; FIG. 3B The operation timing diagram of the writing operation of the non-volatile memory element by the method described in FIG. 3A is shown; FIG. 4A is a non-volatile memory element according to an embodiment of the present specification. Operation method flow chart; FIG. 4B is an operation timing diagram illustrated by a method of writing a non-volatile memory element by using the method of FIG. 4A according to an embodiment of the present specification; FIG. 4C is another operation according to the present specification. An embodiment shows an operation timing diagram for writing a non-volatile memory element by the method of FIG. 4A; FIG. 5A is a non-volatile memory element according to an embodiment of the present specification. FIG. 5B is an operation timing diagram showing a non-volatile memory element writing operation according to an embodiment of the present specification by using the method of FIG. 5A; FIG. 6A is a diagram according to the present specification. A flow chart of a method for operating a non-volatile memory element according to an embodiment of the present invention; FIG. 6B is a diagram showing a write operation of a non-volatile memory element by the method of FIG. 6A according to an embodiment of the present specification. Operation timing diagram; Figure 7A shows the non-volatile memory component performing the write operation shown in Figure 5B after a certain time interval, using the method described in Figure 5A, after a certain time interval, the variable resistor Cumulative Distribution Function (CDF) diagram of the memory cell; Figure 7B shows the method of writing a non-volatile memory component by a method provided in a comparative example and after a specific time interval After that, the resistance distribution cumulative distribution of the variable resistance memory cell; FIG. 8A shows the writing operation of the non-volatile memory component in FIG. 6B by using the method described in FIG. 6A and The cumulative distribution function diagram of the resistance value of the variable resistance memory cell after a certain time interval; FIG. 8B shows the writing operation of the non-volatile memory component by a method provided by a comparative example After a specific time interval, the resistance distribution cumulative distribution of the variable resistance memory cells; the 9A to 9D diagrams are based on the methods described in Figures 5A and 5B, respectively, at -0.3V, -0.5V, a set voltage Vset of -0.7V and -1.0V, a write operation of the non-volatile memory element 100, a cumulative distribution of resistance values of the variable resistance memory cell after a certain time interval; and a tenth figure according to A cross-sectional view of a variable resistance memory cell structure of a Resistive Random Access Memory (ReRAM) cell according to an embodiment of the present specification.

本說明書是揭露一種非揮發性記憶體元件的操作方法及其應用裝置,可解決習知技術寫入操作不穩定的問題。為了對本說明書之上述實施例及其他目的、特徵和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式作詳細說明。但必須注意的是,這些特定的實施案例與方法,並非用以限定本發明。本發明的其他實施例仍可採用其他特徵、元件、方法及參數來加以實施。較佳實施例的提出,僅係用以例示本發明的技術特徵,並非用以限定本發明的申請專利範圍。該技術領域中具有通常知識者,將可根據以下說明書的描述,在不脫離本發明的精神範圍內,作均等的修飾與變化。在不同實施例與圖式之中,相同的元件,將以相同的元件符號加以表示。 The present specification discloses a method for operating a non-volatile memory element and an application device thereof, which can solve the problem that the writing operation of the prior art is unstable. The above-described embodiments, as well as other objects, features and advantages of the present invention will become more apparent and understood. However, it must be noted that these specific embodiments and methods are not intended to limit the invention. Other embodiments of the invention may be practiced with other features, elements, methods, and parameters. The preferred embodiments are merely illustrative of the technical features of the present invention and are not intended to limit the scope of the invention. Equivalent modifications and variations will be made without departing from the spirit and scope of the invention. In the different embodiments and the drawings, the same elements will be denoted by the same reference numerals.

請參照第1圖,第1圖係根據本說明書的一實施例繪示一種非揮發性記憶體元件100的電路方塊圖。在本說明書的一些實施例中,非揮發性記憶體元件100可以是一種具有複數個可變電阻式記憶胞101的記憶體元件。例如非揮發性記憶體元件100,可以是一種包括位於積體電路基板上由複數個可變電阻式記憶胞101所構成之立體記憶體陣列160的電阻式隨機存取記憶體(Resistive Random Access Memory,ReRAM)單元。每一個可變電阻式記憶胞101(如第10圖所繪示),可以包括位於第一電極101b和第二電極101c之間的電阻轉換層101a。其中,電阻轉換 層101a包括高介電係數材料(high-K dielectric material)、二元金屬氧化物(binary metal oxide)或過渡金屬氧化物(transition metal oxide)。第一電極101b和第二電極101c可以包括導電材料,例如矽(Si)、鎢(W)、氮化鈦(TiN)、氮化鉭(TaN)、鉭(Ta)、銅(Cu)或其他合適的材料。 Please refer to FIG. 1 . FIG. 1 is a circuit block diagram of a non-volatile memory device 100 according to an embodiment of the present specification. In some embodiments of the present specification, the non-volatile memory component 100 can be a memory component having a plurality of variable resistive memory cells 101. For example, the non-volatile memory element 100 may be a resistive random access memory including a stereo memory array 160 composed of a plurality of variable resistance memory cells 101 on an integrated circuit substrate. , ReRAM) unit. Each of the variable resistance memory cells 101 (as shown in FIG. 10) may include a resistance conversion layer 101a between the first electrode 101b and the second electrode 101c. Among them, resistance conversion Layer 101a includes a high-k dielectric material, a binary metal oxide, or a transition metal oxide. The first electrode 101b and the second electrode 101c may include a conductive material such as germanium (Si), tungsten (W), titanium nitride (TiN), tantalum nitride (TaN), tantalum (Ta), copper (Cu), or the like. Suitable materials.

在本實施例之中,非揮發性記憶體元件100包括行解碼器(row decoder)161與複數條字線162耦接,並且沿著記憶體陣列160中的行線進行配置。列解碼器(column decoder)163與沿著記憶體陣列160中的列線配置的複數條位元線164耦接,用以從記憶體陣列160中的可變電阻式記憶胞讀取並寫入資料。位址由匯流排165提供給列解碼器163、行解碼器161和階層解碼器158。感測放大器和資料輸入結構(sense amplifiers and data-in structures)166係經由資料匯流排167和列解碼器163耦接。由非揮發性記憶體元件100的輸入/輸出埠,或由非揮發性記憶體元件100內部或外部的其他資料來源輸入的資料,係透過資料輸入線(data-in)171,提供至感測放大器和資料輸入結構166中。另外,非揮發性記憶體元件100中還包括其他電路174,例如一般用途處理器(general purpose processor)或是特定用途應用電路(special purpose application circuit),抑或是提供系統晶片(system-on-a-chip)功能且受到可程式電阻胞陣列(programmable resistance cell array)所支援的整合模組。來自於感測放大器和資料輸入結構166中的資料,則係透過資料輸出(data-out)線172, 提供至非揮發性記憶體元件100的輸入/輸出埠,或至非揮發性記憶體元件100內部或外部的其他資料目的位址。 In the present embodiment, the non-volatile memory component 100 includes a row decoder 161 coupled to a plurality of word lines 162 and configured along the row lines in the memory array 160. A column decoder 163 is coupled to a plurality of bit lines 164 disposed along the column lines in the memory array 160 for reading and writing from the variable resistive memory cells in the memory array 160. data. The address is provided by the bus 165 to the column decoder 163, the row decoder 161, and the level decoder 158. Sensing amplifiers and data-in structures 166 are coupled via data bus 167 and column decoder 163. The input/output port of the non-volatile memory element 100, or the data input by other sources inside or outside the non-volatile memory element 100, is supplied to the sensing through a data-in 171. The amplifier and data entry structure 166. In addition, the non-volatile memory component 100 also includes other circuits 174, such as a general purpose processor or a special purpose application circuit, or a system-on-a system. -chip) An integrated module that is functionally supported by a programmable resistance cell array. The data from the sense amplifier and data input structure 166 is transmitted through a data-out line 172. The input/output ports to the non-volatile memory element 100, or other data destination addresses to the inside or outside of the non-volatile memory element 100.

非揮發性記憶體元件100還包括一個控制器與記憶體陣列160中的可變電阻式記憶胞101電性連接。在本實施例中,控制器是偏壓配置狀態機(bia arrangement state machine)169來控制電壓供應器168的偏壓配置,以產生或提供讀取或寫入電壓,藉以對可變電阻式記憶胞101進行讀取或寫入操作。在本說明書的一些實施例之中,控制器可以是使用特殊用途邏輯電路來加以實現。在另一實施例中,控制器包括在同一積體電路中用來執行計算機程序以控制元件(例如,可變電阻式記憶胞101)之操作的一般用途處理器。在又一實施例中,可以採用殊用途邏輯電路和一般用途處理器的組合來實現此控制器。 The non-volatile memory component 100 also includes a controller electrically coupled to the variable resistive memory cell 101 in the memory array 160. In the present embodiment, the controller is a bia arrangement state machine 169 to control the bias configuration of the voltage supply 168 to generate or provide a read or write voltage for the variable resistance memory. Cell 101 performs a read or write operation. In some embodiments of the present specification, the controller may be implemented using special purpose logic circuitry. In another embodiment, the controller includes a general purpose processor for executing a computer program to control the operation of an element (e.g., variable resistive memory cell 101) in the same integrated circuit. In yet another embodiment, the controller can be implemented using a combination of special purpose logic circuitry and general purpose processors.

在本書明書的一些實施例之中,非揮發性記憶體元件100係一種用藉由多個不同操作進行資料儲存的電阻式隨機存取記憶體單元。在「形成(forming)」操作中,對可變電阻式記憶胞101的第一電極101b和第二電極101c施加「形成」電壓,藉由提供足夠高的「形成」電壓,以在電阻轉換層101a中產生導電部分。在一個實施例之中,導電部分包括一個或多個導電條帶,以提供導電路徑,進而使得電阻轉換層101a呈現出「開啟」或低電阻狀態。導電路徑可以與電阻轉換層101a中的缺陷(例如氧)空位的排列相關。在一些實施例中,可以僅對可變電阻式記憶胞101施加一次「形成」電壓。一旦導電路徑形成,其將保持 存在電阻轉換層101a中。 In some embodiments of the book, non-volatile memory component 100 is a resistive random access memory cell that utilizes a plurality of different operations for data storage. In the "forming" operation, a "forming" voltage is applied to the first electrode 101b and the second electrode 101c of the variable resistive memory cell 101 to provide a sufficiently high "forming" voltage to the resistive switching layer. A conductive portion is produced in 101a. In one embodiment, the conductive portion includes one or more conductive strips to provide a conductive path, thereby causing the resistive switching layer 101a to exhibit an "on" or low resistance state. The conductive path may be related to the arrangement of defects (e.g., oxygen) vacancies in the resistance conversion layer 101a. In some embodiments, only a "formation" voltage can be applied to the variable resistive memory cell 101. Once the conductive path is formed, it will remain There is a resistance conversion layer 101a.

在「形成」操作之後,可以進行「寫入(program operations)」操作,藉由較小或不同的電壓來斷開或重新連接導電路徑。「寫入」操作可以包括「設定(set)」操作或「重設(reset)」操作。 After the "formation" operation, a "program operations" operation can be performed to disconnect or reconnect the conductive paths by a small or different voltage. The "write" operation can include a "set" operation or a "reset" operation.

在「設定」操作中,可變電阻式記憶胞101被施加足夠高的「設定」電壓,使位於電阻轉換層101a中的導電路徑重新連接,進而使得電阻轉換層101a呈現出「開啟」或低電阻狀態。 In the "setting" operation, the variable resistance memory cell 101 is applied with a sufficiently high "set" voltage to reconnect the conductive paths in the resistance conversion layer 101a, thereby causing the resistance conversion layer 101a to exhibit "on" or low. Resistance state.

在「重設」操作中,可變電阻式記憶胞101被施加足夠高的「重設」電壓,使位於電阻轉換層101a中的導電路徑斷開,進而使得電阻轉換層101a呈現出「關閉」或高電阻狀態。藉由對第一電極101b和第二電極101c施加不同電壓,可以改變電阻轉換層101a的電阻值大小。其中,高電阻值和低電阻值可以分別代表「1」和「0」的數位訊號,藉以用來儲存數據。 In the "reset" operation, the variable resistance memory cell 101 is applied with a sufficiently high "reset" voltage to disconnect the conductive path in the resistance conversion layer 101a, thereby causing the resistance conversion layer 101a to "close". Or high resistance state. The magnitude of the resistance value of the resistance conversion layer 101a can be changed by applying different voltages to the first electrode 101b and the second electrode 101c. Among them, the high resistance value and the low resistance value can represent the digital signals of "1" and "0", respectively, for storing data.

請參照第2A圖和第2B圖,第2A圖係根據本說明書的一實施例所繪示之非揮發性記憶體元件100的操作方法流程圖。第2B圖係根據本說明書的另一實施例採用第2A圖之方法對非揮發性記憶體元件100進行寫入操作200所繪示的操作時序圖(timing diagram)。在本說明書的一些實施例中,非揮發性記憶體元件100的寫入操作200方包括下述步驟:首先提供如第1圖所繪示的非揮發性記憶體元件100(如步驟S21所繪示)。 Please refer to FIG. 2A and FIG. 2B . FIG. 2A is a flow chart of a method for operating the non-volatile memory element 100 according to an embodiment of the present specification. 2B is an operational timing diagram of the write operation 200 of the non-volatile memory element 100 in accordance with another embodiment of the present specification using the method of FIG. 2A. In some embodiments of the present specification, the write operation 200 of the non-volatile memory element 100 includes the following steps: first, the non-volatile memory element 100 as shown in FIG. 1 is provided (as depicted in step S21). Show).

接著,對非揮發性記憶體元件100的至少一個可變 電阻式記憶胞101施加具有第一電性的寫入脈衝201(如步驟S22所繪示)。例如,在本實施例中,寫入脈衝201可以具有實質為1.6V的正向寫入電壓Vpgm;且具有實值介於500奈秒(nanosecond,ns)至3000奈秒之間的脈衝寬度。 Next, a write pulse 201 having a first electrical property is applied to at least one of the variable resistive memory cells 101 of the non-volatile memory device 100 (as shown in step S22). For example, in the present embodiment, the write pulse 201 may have a substantial positive write voltage of 1.6V V pgm; and having a pulse width between the real value is between 500 nanoseconds (nanosecond, ns) to 3000 nanoseconds .

然後,對可變電阻式記憶胞101施加設定脈衝202(如步驟S23所繪示)。其中,設定脈衝202具有與第一電性相反的第二電性。例如,在本說明書的一些實施例中,設定脈衝202可以具有值實質介於-0.3V至-1.0V之間的設定電壓Vset;具有實值介於1微秒(microsecond,μs)至3微秒之間的脈衝寬度。且設定脈衝202的設定電壓Vset絕對值實值小於寫入脈衝201的寫入電壓Vpgm絕對值(|Vset|<|Vpgm|)。在本實施例中,設定脈衝202可以具有實質為-0.5V的設定電壓Vset,脈衝寬度較佳約為1微秒。 Then, a set pulse 202 is applied to the variable resistive memory cell 101 (as shown in step S23). Wherein, the set pulse 202 has a second electrical property opposite to the first electrical property. For example, in some embodiments of the present specification, the set pulse 202 may have a set voltage Vset having a value substantially between -0.3V and -1.0V; having a real value between 1 microsecond (μs) to 3 The pulse width between microseconds. The absolute value of the set voltage Vset absolute value of the set pulse 202 is smaller than the absolute value of the write voltage V pgm of the write pulse 201 (|V set |<|V pgm |). In the present embodiment, the set pulse 202 may have a set voltage Vset of substantially -0.5 V, and the pulse width is preferably about 1 microsecond.

後續,對可變電阻式記憶胞101施加一個具有驗證電壓Vver的驗證脈衝203(如步驟S24所繪示),以驗證可變電阻式記憶胞101的電阻值是否到達一個預設門檻值(predetermined criteria)。在本說明書的一些實施例中,驗證脈衝203的驗證電壓Vver絕對值實質大於或等於設定脈衝202的設定電壓Vset絕對值(|Vset|Vver|);且驗證脈衝203的脈衝寬度遠小於設定脈衝202的脈衝寬度。例如,在本實施例中,驗證脈衝203可以具有正向的驗證電壓Vver。其中驗證電壓Vver實質為0.5V,驗證電壓Vver的脈衝寬度實值介於50奈秒(nanosecond,ns)至100奈秒之 間,在一實施例中,較佳為80奈秒。 Subsequently, a verification pulse 203 having a verification voltage V ver is applied to the variable resistance memory cell 101 (as shown in step S24) to verify whether the resistance value of the variable resistance memory cell 101 reaches a preset threshold value ( Prediction criteria). In some embodiments of the present specification, the verification voltage V ver absolute value of the verification pulse 203 is substantially greater than or equal to the set voltage V set absolute value of the set pulse 202 (|V set | |V ver |); and the pulse width of the verify pulse 203 is much smaller than the pulse width of the set pulse 202. For example, in the present embodiment, the verify pulse 203 may have a positive verify voltage V ver . Wherein the verification voltage V ver is substantially 0.5 V, and the true value of the pulse width of the verification voltage V ver is between 50 nanoseconds (ns) and 100 nanoseconds, and in one embodiment, preferably 80 nanoseconds.

在驗證過程中,當可變電阻式記憶胞101的電阻值到達預設門檻值(是)時,即結束寫入操作200。當可變電阻式記憶胞101的電阻值未能大於預設門檻值(否)時,則回到步驟S22;再重複實施一次步驟S22、S23及S24。意即,對可變電阻式記憶胞101再施加一次寫入脈衝201(步驟S22)、設定脈衝202(步驟S23)和驗證脈衝203(步驟S24),直到可變電阻式記憶胞101的電阻值到達預設門檻值。在本實施例之中,寫入操作200在對可變電阻式記憶胞101施加第一次的驗證脈衝203之後,可變電阻式記憶胞101的電阻值即已到達預設門檻值,而結束寫入操作200。因此,寫入操作200總共僅對可變電阻式記憶胞101施加一次寫入脈201、一次設定脈衝202和一次驗證脈衝203。 In the verification process, when the resistance value of the variable resistance memory cell 101 reaches the preset threshold (Yes), the write operation 200 is ended. When the resistance value of the variable resistance memory cell 101 fails to be greater than the preset threshold value (NO), the process returns to step S22; and steps S22, S23, and S24 are repeated once more. That is, the write pulse 201 (step S22), the set pulse 202 (step S23), and the verify pulse 203 (step S24) are applied to the variable resistive memory cell 101 until the resistance value of the variable resistive memory cell 101. Reach the preset threshold. In the present embodiment, after the write operation 200 applies the first verification pulse 203 to the variable resistance memory cell 101, the resistance value of the variable resistance memory cell 101 has reached the preset threshold value, and ends. Write operation 200. Therefore, the write operation 200 applies only one write pulse 201, one set pulse 202, and one verify pulse 203 to the variable resistive memory cell 101 in total.

經過寫入操作200之後,可變電阻式記憶胞101的電阻值會大於預設電阻值,且經過一段時間之後,可變電阻式記憶胞101的電阻分布狀態不會再度回復到先前較寬的電阻分布狀態,而使部分可變電阻式記憶胞101的電阻值小於此預設電阻值。進而可以解決寫入操作不穩定的問題。 After the write operation 200, the resistance value of the variable resistance memory cell 101 is greater than the preset resistance value, and after a period of time, the resistance distribution state of the variable resistance memory cell 101 does not return to the previous wider The resistance distribution state causes the resistance value of the partial variable resistance memory cell 101 to be smaller than the preset resistance value. In turn, the problem of unstable write operation can be solved.

而值得注意的是,在本說明書的另一些實施例中,驗證脈衝203以可以具有與寫入脈衝201相反的電性。例如請參照第2C圖,第2C圖係根據本說明書的另一實施例採用第2A圖之方法對非揮發性記憶體元件進行寫入操作200’所繪示的操作時序圖。其中,第2C圖所繪示的操作時序圖大致與第2B圖所繪示 者相似,差別僅在於第2C圖之寫入操作200’所採用的驗證脈衝203’具有與寫入脈衝201電性相反的負向電壓。在本實施例中,驗證脈衝203’的驗證電壓Vver’實質為-0.5V。雖然,驗證脈衝203’和設定脈衝202都具有與寫入脈衝201相反的電性,且二者的電壓絕對值也都小於寫入脈衝201的寫入電壓Vpgm絕對值。不過,由於驗證脈衝203’的脈衝寬度遠小於設定脈衝202的的脈衝寬度。因此,仍可藉由脈衝寬度和電壓大小來區別驗證脈衝203’和設定脈衝202。 It should be noted that in other embodiments of the present specification, the verify pulse 203 may have an electrical opposite to the write pulse 201. For example, please refer to FIG. 2C, which is an operational timing diagram of a non-volatile memory element write operation 200' according to another embodiment of the present specification using the method of FIG. 2A. The operation timing diagram shown in FIG. 2C is substantially similar to that shown in FIG. 2B , except that the verification pulse 203 ′ used in the write operation 200 ′ of FIG. 2C has electrical properties with the write pulse 201 . The opposite negative voltage. In the present embodiment, the verification voltage V ver ' of the verification pulse 203' is substantially -0.5V. Although both the verify pulse 203' and the set pulse 202 have the opposite polarity to the write pulse 201, the absolute values of the voltages of both are smaller than the absolute value of the write voltage Vpgm of the write pulse 201. However, since the pulse width of the verify pulse 203' is much smaller than the pulse width of the set pulse 202. Therefore, the verify pulse 203' and the set pulse 202 can still be distinguished by the pulse width and the voltage magnitude.

請參照第3A圖和第3B圖,第3A圖係根據本說明書的一實施例所繪示之非揮發性記憶體元件100的操作方法流程圖。第3B圖係繪示採用第3A圖所述之方法對非揮發性記憶體元件100進行寫入操作300的操作時序圖。在本說明書的一些實施例中,非揮發性記憶體元件100的寫入操作300方包括下述步驟:首先提供如第1圖所繪示的非揮發性記憶體元件100(如步驟S31所繪示)。 Please refer to FIG. 3A and FIG. 3B . FIG. 3A is a flow chart of a method for operating the non-volatile memory element 100 according to an embodiment of the present specification. FIG. 3B is a timing chart showing the operation of the write operation 300 to the non-volatile memory device 100 by the method described in FIG. 3A. In some embodiments of the present specification, the write operation 300 of the non-volatile memory element 100 includes the following steps: first providing the non-volatile memory element 100 as depicted in FIG. 1 (as depicted in step S31) Show).

接著,對非揮發性記憶體元件100的至少一個可變電阻式記憶胞101施加具有第一電性的寫入脈衝301(如步驟S32所繪示)。例如,在本實施例中,寫入脈衝301可以具有實質為16V的正向寫入電壓Vpgm;以及實值介於500奈秒至3000奈秒之間的脈衝寬度。 Next, a write pulse 301 having a first electrical property is applied to at least one of the variable resistive memory cells 101 of the non-volatile memory device 100 (as shown in step S32). For example, in the present embodiment, the write pulse 301 may have a forward write voltage Vpgm of substantially 16V; and a pulse width with a real value between 500 nanoseconds and 3000 nanoseconds.

然後,對可變電阻式記憶胞101施加一個具有驗證電壓Vver的驗證脈衝303(如步驟S33所繪示),以驗證可變電阻 式記憶胞101的電阻值是否到達一個預設門檻值。在本實施例中,驗證脈衝303可以具有實質小於寫入脈衝301之寫入電壓Vpgm的正向驗證電壓Vver(例如0.5V);且具有實值介於50奈秒至100奈秒之間的脈衝寬度。在一實施例中,驗證脈衝303的脈衝寬度較佳為80奈秒。 Then, a verification pulse 303 having a verification voltage V ver is applied to the variable resistance memory cell 101 (as shown in step S33) to verify whether the resistance value of the variable resistance memory cell 101 reaches a predetermined threshold value. In the present embodiment, the verify pulse 303 may have a forward verify voltage V ver (eg, 0.5 V) that is substantially less than the write voltage V pgm of the write pulse 301; and has a real value between 50 nanoseconds and 100 nanoseconds. The pulse width between. In one embodiment, the pulse width of the verify pulse 303 is preferably 80 nanoseconds.

在驗證過程中,當可變電阻式記憶胞101的電阻值到達預設門檻值(是)時,則進入步驟S34,對可變電阻式記憶胞101施加設定脈衝302,然後結束寫入操作300。相反的,當可變電阻式記憶胞101的電阻值未能到達預設門檻值(否)時,回到步驟S33,再次對可變電阻式記憶胞101施加寫入脈衝301(步驟S32)和驗證脈衝303(步驟S33)。重複實施步驟S32和S33,直到可變電阻式記憶胞101的電阻值到達預設門檻值。之後,再對可變電阻式記憶胞101施加設定脈衝302,隨即結束寫入操作300。其中,設定脈衝302具有與寫入脈衝301電性相反的負向設定電壓Vset;設定脈衝302的設定電壓Vset絕對值實質小於或等於驗證脈衝303的驗證電壓絕對值(|Vset|Vver|);且驗證脈衝303的脈衝寬度遠小於設定脈衝302的脈衝寬度。 In the verification process, when the resistance value of the variable resistive memory cell 101 reaches the preset threshold (Yes), the process proceeds to step S34, the set pulse 302 is applied to the variable resistive memory cell 101, and then the write operation 300 is ended. . Conversely, when the resistance value of the variable resistive memory cell 101 fails to reach the preset threshold (NO), the process returns to step S33, and the write pulse 301 is applied to the variable resistive memory cell 101 again (step S32). The pulse 303 is verified (step S33). Steps S32 and S33 are repeatedly performed until the resistance value of the variable resistive memory cell 101 reaches a preset threshold value. Thereafter, the set pulse 302 is applied to the variable resistive memory cell 101, and the write operation 300 is terminated. The set pulse 302 has a negative set voltage Vset that is electrically opposite to the write pulse 301; the set voltage Vset absolute value of the set pulse 302 is substantially less than or equal to the verify voltage absolute value of the verify pulse 303 (| Vset | |V ver |); and the pulse width of the verify pulse 303 is much smaller than the pulse width of the set pulse 302.

在本實施例之中,寫入操作300在對可變電阻式記憶胞101施加第一次的驗證脈衝303之後,還重複實施了一次步驟S32和S33。因此,寫入操作300總共對可變電阻式記憶胞101施加二次寫入脈301、二次設定脈衝302和一次設定脈衝302。經過寫入操作300之後,可變電阻式記憶胞101的電阻值會大於 預設電阻值,且經過一段時間之後,可變電阻式記憶胞101的電阻分布狀態不會再度回復到先前較寬的電阻分布狀態,而使部分可變電阻式記憶胞101的電阻值小於此預設電阻值。進而可以解決寫入操作不穩定的問題。 In the present embodiment, after the write operation 300 applies the first verification pulse 303 to the variable resistive memory cell 101, steps S32 and S33 are repeatedly performed. Therefore, the write operation 300 applies the secondary write pulse 301, the secondary set pulse 302, and the primary set pulse 302 to the variable resistive memory cell 101 in total. After the write operation 300, the resistance value of the variable resistance memory cell 101 is greater than The resistance value is preset, and after a period of time, the resistance distribution state of the variable resistance memory cell 101 does not return to the previous wider resistance distribution state, and the resistance value of the partial variable resistance memory cell 101 is smaller than this. The preset resistance value. In turn, the problem of unstable write operation can be solved.

請參照第4A圖和第4B圖,第4A圖係根據本說明書的一實施例所繪示之非揮發性記憶體元件100的操作方法流程圖。第4B圖係根據本說明書的另一實施例採用第4A圖之方法對非揮發性記憶體元件100進行寫入操作400所繪示的操作時序圖。在本說明書的一些實施例中,非揮發性記憶體元件100的寫入操作400方包括下述步驟:首先提供如第1圖所繪示的非揮發性記憶體元件100(如步驟S41所繪示)。 Please refer to FIG. 4A and FIG. 4B . FIG. 4A is a flow chart of a method for operating the non-volatile memory element 100 according to an embodiment of the present specification. 4B is an operational timing diagram of the write operation 400 of the non-volatile memory device 100 in accordance with another embodiment of the present specification using the method of FIG. 4A. In some embodiments of the present specification, the write operation 400 of the non-volatile memory element 100 includes the following steps: first providing the non-volatile memory element 100 as depicted in FIG. 1 (as depicted in step S41) Show).

接著,對非揮發性記憶體元件100的至少一個可變電阻式記憶胞101施加具有第一電性的寫入脈衝401(如步驟S42所繪示)。例如,在本實施例中,寫入脈衝401可以具有實質為16V的正向寫入電壓Vpgm1;寫入脈衝401的脈衝寬度實值介於500奈秒至3000奈秒之間。 Next, a write pulse 401 having a first electrical property is applied to at least one of the variable resistive memory cells 101 of the non-volatile memory device 100 (as shown in step S42). For example, in the present embodiment, the write pulse 401 may have a forward write voltage V pgm1 of substantially 16V; the pulse width of the write pulse 401 may be between 500 nanoseconds and 3000 nanoseconds.

然後,對可變電阻式記憶胞101施加設定脈衝402(如步驟S43所繪示)。例如,在本說明書的一些實施例中,設定脈衝402可以具有值實質介於-0.3V至-1.0V之間的負向設定電壓Vset,以及實值介於1微秒至3微秒之間的脈衝寬度。且設定脈衝402的設定電壓Vset絕對值實值小於寫入脈衝401的寫入電壓Vpgm1絕對值(|Vset|<|Vpgm1|)。在本實施例中,設定脈衝 402可以具有實質0.5V的負向設定電壓Vset,以及較佳約為1微秒的脈衝寬度。 Then, a set pulse 402 is applied to the variable resistive memory cell 101 (as shown in step S43). For example, in some embodiments of the present specification, the set pulse 402 can have a negative set voltage Vset having a value substantially between -0.3V and -1.0V, and a real value between 1 microsecond and 3 microseconds. The pulse width between. Further, the set value V set absolute value of the set pulse 402 is smaller than the absolute value of the write voltage V pgm1 of the write pulse 401 (|V set |<|V pgm1 |). In the present embodiment, the set pulse 402 can have a negative set voltage Vset of substantially 0.5V, and preferably a pulse width of about 1 microsecond.

後續,對可變電阻式記憶胞101施加一個具有驗證電壓Vver的驗證脈衝403(如步驟S44所繪示),以驗證可變電阻式記憶胞101的電阻值是否到達一個預設門檻值。當可變電阻式記憶胞101的電阻值到達預設門檻值(是)時,即結束寫入操作400。在本說明書的實施例中,驗證脈衝403之驗證電壓Vver的絕對值實質大於設定脈衝402之設定電壓Vset的絕對值(|Vver|>|Vset|);且驗證脈衝403的脈衝寬度遠小於設定脈衝402的脈衝寬度。例如,在本實施例中,驗證脈衝403係具有實質為0.5V的正向驗證電壓Vver,以及實值介於介於50奈秒至100奈秒之間的脈衝寬度。 Subsequently, a verification pulse 403 having a verification voltage V ver is applied to the variable resistance memory cell 101 (as shown in step S44) to verify whether the resistance value of the variable resistance memory cell 101 reaches a predetermined threshold value. When the resistance value of the variable resistive memory cell 101 reaches the preset threshold (Yes), the write operation 400 is ended. In the embodiment of the present specification, the absolute value of the verification voltage V ver of the verification pulse 403 is substantially greater than the absolute value of the set voltage V set of the set pulse 402 (|V ver |>|V set |); and the pulse of the verification pulse 403 The width is much smaller than the pulse width of the set pulse 402. For example, in the present embodiment, the verify pulse 403 has a positive verify voltage V ver of substantially 0.5 V and a pulse width of between 50 nanoseconds and 100 nanoseconds.

在步驟S44的驗證過程中,若可變電阻式記憶胞101的電阻值仍未到達此預設門檻值(否),則進入步驟S45。對可變電阻式記憶胞101施加具有第一電性的另一個寫入脈衝(例如寫入脈衝404)。在本實施例中,寫入脈衝404的寫入電壓Vpgm2可以實質大於寫入脈衝401的寫入電壓Vpgm1。之後,再實施一次步驟S43和步驟S44,對可變電阻式記憶胞101施加設定脈衝402和驗證脈衝403。重複步驟S45、S43和S44,直到可變電阻式記憶胞101的電阻值到達預設門檻值(是)時,再結束寫入操作400。 In the verification process of step S44, if the resistance value of the variable resistive memory cell 101 has not reached the preset threshold (NO), the process proceeds to step S45. Another write pulse (e.g., write pulse 404) having a first electrical property is applied to the variable resistive memory cell 101. In the present embodiment, the write voltage V pgm2 of the write pulse 404 may be substantially greater than the write voltage V pgm1 of the write pulse 401. Thereafter, step S43 and step S44 are performed again to apply the set pulse 402 and the verify pulse 403 to the variable resistive memory cell 101. Steps S45, S43, and S44 are repeated until the resistance value of the variable resistive memory cell 101 reaches the preset threshold (Yes), and the write operation 400 is ended.

在本實施例之中,寫入操作400在對可變電阻式記憶胞101施加第一次的驗證脈衝403之後,還重複實施了四次的 步驟S45、步驟S43和步驟S44。因此,寫入操作400總共對可變電阻式記憶胞101施加四次寫入脈衝404、405、406和407、五次設定脈衝402以及五次驗證脈衝403(如第4B圖所繪示)。步驟S45所提供之寫入脈衝404、405、406和407的寫入電壓Vpgm2、Vpgm3、Vpgm4和Vpgm5,實質大於寫入脈衝401的寫入電壓Vpgm1。且寫入電壓值Vpgm1、Vpgm2、Vpgm3、Vpgm4和Vpgm5係逐次增加。 In the present embodiment, after the write operation 400 applies the first verification pulse 403 to the variable resistive memory cell 101, the step S45, the step S43, and the step S44 are repeated four times. Therefore, the write operation 400 applies a total of four write pulses 404, 405, 406, and 407, five set pulses 402, and five verify pulses 403 (as shown in FIG. 4B) to the variable resistive memory cell 101. The write voltages V pgm2 , V pgm3 , V pgm4 , and V pgm5 of the write pulses 404, 405, 406, and 407 provided in step S45 are substantially larger than the write voltage V pgm1 of the write pulse 401. The write voltage values V pgm1 , V pgm2 , V pgm3 , V pgm4 , and V pgm5 are sequentially increased.

而值得注意的是,當驗證脈衝403’可以具有與設定脈衝402’相同電性時(即皆具有負向電性)時,驗證脈衝403’和設定脈衝402’可以結合形成一個複合脈衝408。例如請參照第4C圖,第4C圖係根據本說明書的另一實施例採用第4A圖之方法對非揮發性記憶體元件進行寫入操作400’所繪示的操作時序圖。其中,第4C圖所繪示之寫入操作400’的操作時序圖大致與第4B圖所繪示之寫入操作400的操作時序圖相似,差別僅在於的寫入操作400’所採用的驗證脈衝403’具有實質為與寫入脈衝401電性相反的負向驗證電壓Vver’,且負向驗證電壓Vver’實質低於設定脈衝402’的負向設定電壓Vset。另外,驗證脈衝403’和設定脈衝402’二者之間並無時間間隔,可以結合形成一個如第4C圖所繪示的鋸齒狀連續複合脈衝408。 It should be noted that when the verify pulse 403' can have the same electrical properties as the set pulse 402' (ie, both have negative electrical properties), the verify pulse 403' and the set pulse 402' can be combined to form a composite pulse 408. For example, please refer to FIG. 4C. FIG. 4C is an operation timing diagram of the non-volatile memory element writing operation 400' according to another embodiment of the present specification by the method of FIG. 4A. The operation timing diagram of the write operation 400' illustrated in FIG. 4C is substantially similar to the operation timing diagram of the write operation 400 illustrated in FIG. 4B, and the difference lies only in the verification used by the write operation 400'. The pulse 403' has a negative verify voltage Vver ' that is substantially opposite to the write pulse 401, and the negative verify voltage Vver ' is substantially lower than the negative set voltage Vset of the set pulse 402'. In addition, there is no time interval between the verification pulse 403' and the set pulse 402', and a zigzag continuous composite pulse 408 as shown in FIG. 4C can be combined.

請參照第5A圖和第5B圖,第5A圖係根據本說明書的一實施例所繪示之非揮發性記憶體元件100的操作方法流程圖。第5B圖係根據本說明書的一實施例採用第5A圖之方法對非揮發性記憶體元件100進行寫入操作500所繪示的寫入操作時序 圖。在本說明書的一些實施例中,非揮發性記憶體元件100的寫入操作500方包括下述步驟:首先提供如第1圖所繪示的非揮發性記憶體元件100(如步驟S51所繪示)。 Please refer to FIG. 5A and FIG. 5B . FIG. 5A is a flow chart of a method for operating the non-volatile memory element 100 according to an embodiment of the present specification. FIG. 5B is a timing diagram of a write operation illustrated by the write operation 500 of the non-volatile memory device 100 by the method of FIG. 5A according to an embodiment of the present specification. Figure. In some embodiments of the present specification, the write operation 500 of the non-volatile memory element 100 includes the following steps: first providing the non-volatile memory element 100 as depicted in FIG. 1 (as depicted in step S51) Show).

接著,對非揮發性記憶體元件100的至少一個可變電阻式記憶胞101施加具有第一電性的寫入脈衝501(如步驟S52所繪示)。例如,在本實施例中,寫入脈衝501可以具有實質為16V的正向寫入電壓Vpgm1;寫入脈衝501的脈衝寬度實值介於500奈秒至3000奈秒之間。 Next, a write pulse 501 having a first electrical property is applied to at least one of the variable resistive memory cells 101 of the non-volatile memory device 100 (as shown in step S52). For example, in the present embodiment, the write pulse 501 may have a forward write voltage V pgm1 of substantially 16V; the pulse width of the write pulse 501 may be between 500 nanoseconds and 3000 nanoseconds.

之後,對可變電阻式記憶胞101施加一個具有驗證電壓Vver的驗證脈衝503(如步驟S53所繪示),以驗證可變電阻式記憶胞101的電阻值是否到達一個預設門檻值。在本實施例中,驗證脈衝503可以具有實質小於寫入脈衝501的正向驗證電壓Vver(例如0.5V);且具有實值介於50奈秒至100奈秒之間的脈衝寬度。 Thereafter, a verification pulse 503 having a verification voltage V ver is applied to the variable resistance memory cell 101 (as shown in step S53) to verify whether the resistance value of the variable resistance memory cell 101 reaches a predetermined threshold value. In the present embodiment, the verify pulse 503 may have a forward verify voltage V ver (eg, 0.5 V) that is substantially less than the write pulse 501; and has a pulse width with a real value between 50 nanoseconds and 100 nanoseconds.

在步驟S53的驗證過程,當可變電阻式記憶胞101的電阻值到達預設門檻值(是)時,寫入操作500進入步驟S54:對可變電阻式記憶胞101施加設定脈衝502,之後即結束寫入操作500。在本實施例中,設定脈衝502可以具有實質為-0.5V的負向設定電壓Vset,脈衝寬度約為1微秒。 In the verification process of step S53, when the resistance value of the variable resistive memory cell 101 reaches the preset threshold (Yes), the write operation 500 proceeds to step S54: the set pulse 502 is applied to the variable resistive memory cell 101, after which That is, the write operation 500 is ended. In the present embodiment, the set pulse 502 can have a negative set voltage Vset of substantially -0.5V with a pulse width of about 1 microsecond.

相反的,當可變電阻式記憶胞101的電阻值仍未到達此預設門檻值(否)時,則寫入操作500進入步驟S55:對可變電阻式記憶胞101施加具有第一電性的另一個寫入脈衝(例如,寫 入脈衝504)。在本說明書的一些實施例中,寫入脈衝504的寫入電壓Vpgm2可以實質大於寫入脈衝501的寫入電壓Vpgm1。之後,再對可變電阻式記憶胞101施加一次驗證脈衝503(步驟S53)。重複實施步驟S55和S53,直到可變電阻式記憶胞101的電阻值到達預設門檻值。當可變電阻式記憶胞101的電阻值到達預設門檻值時,對可變電阻式記憶胞101施加設定脈衝502(步驟S54),即結束寫入操作500。 Conversely, when the resistance value of the variable resistive memory cell 101 has not reached the preset threshold (NO), the write operation 500 proceeds to step S55: applying the first electrical property to the variable resistive memory cell 101. Another write pulse (eg, write pulse 504). In some embodiments of the present specification, the write voltage Vpgm2 of the write pulse 504 may be substantially greater than the write voltage Vpgm1 of the write pulse 501. Thereafter, the verification pulse 503 is applied once to the variable resistance memory cell 101 (step S53). Steps S55 and S53 are repeatedly performed until the resistance value of the variable resistive memory cell 101 reaches a preset threshold value. When the resistance value of the variable resistive memory cell 101 reaches the preset threshold value, the set pulse 502 is applied to the variable resistive memory cell 101 (step S54), that is, the write operation 500 is ended.

在本實施例之中,寫入操作500在對可變電阻式記憶胞101施加第一次的驗證脈衝503之後,還重複實施了四次的步驟S55、S53和S54。因此,寫入操作500總共對可變電阻式記憶胞101施加五次寫入脈衝501、504、505、506和507五次驗證脈衝503以及一次設定脈衝502(如第5B圖所繪示)。步驟S55所提供之寫入脈衝504、505、506和507的寫入電壓Vpgm2、Vpgm3、Vpgm4和Vpgm5,實質大於寫入脈衝501的寫入電壓Vpgm1。且寫入電壓值Vpgm1、Vpgm2、Vpgm3、Vpgm4和Vpgm5係逐次增加。 In the present embodiment, after the write operation 500 applies the first verification pulse 503 to the variable-resistance memory cell 101, the steps S55, S53, and S54 are repeated four times. Therefore, the write operation 500 applies a total of five write pulses 501, 504, 505, 506, and 507 five times of the verify pulse 503 and one set pulse 502 (as shown in FIG. 5B) to the variable resistive memory cell 101. The write voltages V pgm2 , V pgm3 , V pgm4 , and V pgm5 of the write pulses 504 , 505 , 506 , and 507 provided in step S55 are substantially larger than the write voltage V pgm1 of the write pulse 501. The write voltage values V pgm1 , V pgm2 , V pgm3 , V pgm4 , and V pgm5 are sequentially increased.

請參照第6A圖和第6B圖,第6A圖係根據本說明書的一實施例所繪示之非揮發性記憶體元件100的操作方法流程圖。第6B圖係根據本說明書的另一實施例採用第6A圖之方法對非揮發性記憶體元件100進行寫入操作600所繪示的操作時序圖。在本說明書的一些實施例中,非揮發性記憶體元件100的寫入操作600方包括下述步驟:首先提供如第1圖所繪示的非揮發性記憶體元件100(如步驟S61所繪示)。接著,對非揮發性記憶 體元件100的至少一個可變電阻式記憶胞101進行一前段寫入操作S60A。之後,對可變電阻式記憶胞101施加一設定脈衝602(如步驟S65所繪示)。後續,再進行一後段寫入操作S60B。 Please refer to FIG. 6A and FIG. 6B . FIG. 6A is a flow chart of a method for operating the non-volatile memory element 100 according to an embodiment of the present specification. 6B is an operational timing diagram of the write operation 600 of the non-volatile memory element 100 in accordance with another embodiment of the present specification using the method of FIG. 6A. In some embodiments of the present specification, the write operation 600 of the non-volatile memory element 100 includes the steps of first providing the non-volatile memory element 100 as depicted in FIG. 1 (as depicted in step S61). Show). Next, for non-volatile memory At least one variable resistance memory cell 101 of the body element 100 performs a front-end write operation S60A. Thereafter, a set pulse 602 is applied to the variable resistance memory cell 101 (as shown in step S65). Subsequently, a subsequent write operation S60B is performed.

前段寫入操作S60A包括下述步驟:先對可變電阻式記憶胞101施加具有第一電性的寫入脈衝601(如步驟S62所繪示)。之後,對可變電阻式記憶胞101施加一個具有驗證電壓Vver的驗證脈衝603(如步驟S63所繪示),以驗證可變電阻式記憶胞101的電阻值是否到達一個預設門檻值。 The preceding write operation S60A includes the step of first applying a write pulse 601 having a first electrical property to the variable resistive memory cell 101 (as shown in step S62). Thereafter, a verification pulse 603 having a verification voltage V ver is applied to the variable resistance memory cell 101 (as shown in step S63) to verify whether the resistance value of the variable resistance memory cell 101 reaches a predetermined threshold value.

在本實施例中,寫入脈衝601可以具有實質為16V的正向寫入電壓Vpgm1;寫入脈衝601的脈衝寬度實值介於500奈秒至3000奈秒之間。驗證脈衝603可以具有實質小於寫入脈衝601的正向驗證電壓Vver(例如0.5V);且具有實值介於介於50奈秒至100奈秒之間的脈衝寬度。 In the present embodiment, the write pulse 601 may have a forward write voltage V pgm1 of substantially 16V; the pulse width of the write pulse 601 may be between 500 nanoseconds and 3000 nanoseconds. The verify pulse 603 can have a positive verify voltage V ver (eg, 0.5 V) that is substantially less than the write pulse 601; and has a pulse width with a real value between 50 nanoseconds and 100 nanoseconds.

若經步驟S63驗證,可變電阻式記憶胞101的電阻值仍未到達此預設門檻值(否),則進入步驟S64。對可變電阻式記憶胞101施加具有第一電性的另一個寫入脈衝(例如寫入脈衝604)。寫入脈衝604的寫入電壓Vpgm2可以實質大於寫入脈衝401的寫入電壓Vpgm1。之後,再實施一次步驟S63,對可變電阻式記憶胞101施加驗證脈衝603。重複步驟S64和S63,直到可變電阻式記憶胞101的電阻值到達預設門檻值(是)時,完成前段寫入操作S60A。 If it is verified in step S63 that the resistance value of the variable resistive memory cell 101 has not reached the preset threshold (NO), the process proceeds to step S64. Another write pulse (e.g., write pulse 604) having a first electrical property is applied to the variable resistive memory cell 101. The write voltage Vpgm2 of the write pulse 604 can be substantially greater than the write voltage Vpgm1 of the write pulse 401. Thereafter, step S63 is performed again to apply a verification pulse 603 to the variable resistance memory cell 101. Steps S64 and S63 are repeated until the resistance value of the variable resistive memory cell 101 reaches the preset threshold value (Yes), and the previous stage write operation S60A is completed.

在本實施例中,前段寫入操作S60A重複了二次步 驟S64和S63。因此,前段寫入操作S60A總共對可變電阻式記憶胞101施加三次寫入脈衝601、604和605以及三次驗證脈衝603(如第6B圖所繪示)。步驟S64所提供之寫入脈衝604和605的寫入電壓Vpgm2和Vpgm3實質大於寫入脈衝601的寫入電壓Vpgm1,且逐次增加。 In the present embodiment, the previous stage write operation S60A repeats the second steps S64 and S63. Therefore, the preceding write operation S60A applies a total of three write pulses 601, 604, and 605 and three verify pulses 603 (as shown in FIG. 6B) to the variable resistive memory cell 101. The write voltages V pgm2 and V pgm3 of the write pulses 604 and 605 provided in step S64 are substantially larger than the write voltage V pgm1 of the write pulse 601 and are successively increased.

然後,進入步驟S65,對可變電阻式記憶胞101施加設定脈衝602對可變電阻式記憶胞101施加設定脈衝602。其中,設定脈衝602具有與第一電性相反的第二電性。設定脈衝602的設定電壓Vset絕對值實值小於或等於驗證脈衝603的驗證電壓Vver絕對值(|Vset|Vver|)。且設定脈衝602的脈衝寬度遠大於驗證脈衝603的脈衝寬度。在本實施例中,設定脈衝602具有值實質為-0.5V的負向設定電壓Vset,以及約為1微秒的脈衝寬度。 Then, the process proceeds to step S65, and a set pulse 602 is applied to the variable resistive memory cell 101 to apply a set pulse 602 to the variable resistive memory cell 101. Wherein, the set pulse 602 has a second electrical property opposite to the first electrical property. The set value V set absolute value of the set pulse 602 is less than or equal to the absolute value of the verification voltage V ver of the verification pulse 603 (|V set | |V ver |). Moreover, the pulse width of the set pulse 602 is much larger than the pulse width of the verify pulse 603. In the present embodiment, the set pulse 602 has a negative set voltage Vset having a value of substantially -0.5 V and a pulse width of about 1 microsecond.

後續,再進行後段寫入操作S60B,然後結束寫入操作600。在本實施例中,後段寫入操作S60B包括對可變電阻式記憶胞101施加二次寫入脈衝606和607以及二次驗證脈衝608(如第6B圖所繪示)。其中,寫入脈衝606和607的寫入電壓與寫入脈衝601和604的寫入電壓Vpgm2和Vpgm3實質相同;且驗證脈衝608的驗證電壓與驗證脈衝603的驗證電壓Vver實質相同。由於後段寫入操作S60B的實施內容,實質上與前段寫入操作S60A相同。故不在此贅述。 Subsequently, the subsequent stage write operation S60B is performed, and then the write operation 600 is ended. In the present embodiment, the subsequent write operation S60B includes applying the secondary write pulses 606 and 607 and the secondary verify pulse 608 to the variable resistive memory cell 101 (as shown in FIG. 6B). The write voltages of the write pulses 606 and 607 are substantially the same as the write voltages V pgm2 and V pgm3 of the write pulses 601 and 604; and the verify voltage of the verify pulse 608 is substantially the same as the verify voltage V ver of the verify pulse 603. Since the implementation of the subsequent write operation S60B is substantially the same as the previous write operation S60A. Therefore, it is not described here.

請參照第7A圖和第7B圖,第7A圖係繪示採用第5A圖所述之方法對非揮發性記憶體元件100進行如5B圖所繪示 之寫入操作500並經過一段特定時間間隔後,可變電阻式記憶胞101的電阻值累積分佈函數圖。第7B圖係繪示採用一比較例所提供之方法對非揮發性記憶體元件100進行寫入操作並經過一段特定時間間隔後,可變電阻式記憶胞101的電阻值累積分佈函圖。其中,本實施例所採用的寫入操作500和比較例所採用的寫入操作步驟程序與操作參數大致相同,差別僅在於比較例所採用的寫入操方法省略了步驟S54,並未對可變電阻式記憶胞101施加設定脈衝502。 Please refer to FIG. 7A and FIG. 7B. FIG. 7A illustrates the non-volatile memory device 100 as shown in FIG. 5B by using the method described in FIG. 5A. The resistance value of the variable resistive memory cell 101 is cumulatively distributed as a function of the write operation 500 and after a certain time interval. FIG. 7B is a diagram showing a cumulative distribution of resistance values of the variable resistance memory cell 101 after a non-volatile memory element 100 is written by a method provided by a comparative example and after a certain time interval. The write operation procedure used in the write operation 500 and the comparative example used in this embodiment is substantially the same as the operation parameter, except that the write operation method used in the comparative example omits step S54, and is not correct. The variable resistance memory cell 101 applies a set pulse 502.

由第7A圖和第7B圖的結果可知,本實施例和比較例在進行寫入操作之後,可變電阻式記憶胞101的電阻值分佈狀態,可分別由第一電阻值分佈狀態(以電阻值累積分佈函曲線701表示)偏移到第二電阻值分佈狀態(分別以電阻值累積分佈函曲線702和702’表示),且可變電阻式記憶胞101的電阻值會超過預設門檻值K(例如87K-ohm)。經過一段特定時間間隔之後(例如,經過約為1秒時間間隔之後),大部分可變電阻式記憶胞101的電阻值仍會維持超過預設門檻值K的狀態。但少部分可變電阻式記憶胞101的電阻值會再度回復到先前小於預設門檻值K的狀態。 As can be seen from the results of FIGS. 7A and 7B, after the write operation in the present embodiment and the comparative example, the resistance value distribution state of the variable resistance memory cell 101 can be respectively distributed from the first resistance value state (with resistance). The value cumulative distribution function curve 701 represents an offset to the second resistance value distribution state (represented by the resistance value cumulative distribution curve 702 and 702', respectively), and the resistance value of the variable resistance memory cell 101 exceeds a preset threshold value. K (for example, 87K-ohm). After a certain period of time (for example, after a time interval of about 1 second), the resistance of most of the variable resistive memory cells 101 remains maintained above the preset threshold K. However, the resistance value of a small portion of the variable resistance memory cell 101 is again restored to a state previously smaller than the preset threshold K.

在本實施例中,採用第5A圖和第5B圖所述之方法進行寫入操作500再經過一段特定時間間隔之後,可變電阻式記憶胞101之電阻值低於預設門檻值K的機率,實質小於百分之1(例如約為0.6%)(如第7A圖所繪示);而採用比較例之方法進行寫入操作500’再經過一段特定時間間隔之後,可變電阻式記憶 胞101之電阻值低於預設門檻值K的機率約為2%(如第7B圖所繪示)。顯示採用第5A圖和第5B圖所述之方法來操作非揮發性記憶體元件100,可有效消除寫入操作不穩定的現象,大幅增進非揮發性記憶體元件100的效能。 In this embodiment, after the writing operation 500 is performed by the method described in FIGS. 5A and 5B, the resistance value of the variable resistance memory cell 101 is lower than the preset threshold K after a certain time interval. , substantially less than 1% (for example, about 0.6%) (as shown in FIG. 7A); and the write operation 500' is performed by the method of the comparative example, after a certain time interval, the variable resistance memory The probability that the resistance value of the cell 101 is lower than the preset threshold K is about 2% (as shown in FIG. 7B). The operation of the non-volatile memory device 100 by the methods described in FIGS. 5A and 5B is shown to effectively eliminate the instability of the write operation and greatly improve the performance of the non-volatile memory device 100.

請參照第8A圖和第8B圖,第8A圖係繪示採用第6A圖所述之方法對非揮發性記憶體元件100進行如6B圖所繪示之寫入操作600,再經過一段特定時間間隔後,可變電阻式記憶胞101的電阻值累積分佈函數圖。第8B圖係繪示採用一比較例所提供之方法對非揮發性記憶體元件100進行寫入操作,再經過一段特定時間間隔後,可變電阻式記憶胞101的電阻值累積分佈函圖。本實施例所採用的寫入操作600和比較例所採用的寫入操作步驟程序與操作參數大致相同,差別僅在於比較例所採用的寫入操方法省略了步驟S65,並未對可變電阻式記憶胞101施加設定脈衝602。 Please refer to FIG. 8A and FIG. 8B. FIG. 8A illustrates the writing operation 600 of the non-volatile memory device 100 as shown in FIG. 6B by using the method described in FIG. 6A, after a certain period of time. After the interval, the resistance value cumulative resistance distribution graph of the variable resistance memory cell 101. FIG. 8B is a diagram showing the cumulative distribution of resistance values of the variable resistance memory cell 101 after a certain time interval has been performed by performing a write operation on the non-volatile memory device 100 by the method provided in a comparative example. The write operation procedure and the operation parameters used in the write operation 600 and the comparative example used in this embodiment are substantially the same as the operation parameters, except that the write operation method used in the comparative example omits the step S65, and the variable resistor is not applied. The memory cell 101 applies a set pulse 602.

由第8A圖和第8B圖的結果可知,本實施例和比較例在進行寫入操作之後,可變電阻式記憶胞101的電阻值分佈狀態,可分別由第一電阻值分佈狀態(以電阻值累積分佈函曲線801表示)偏移到第二電阻值分佈狀態(分別以電阻值累積分佈函曲線802和802’表示),且可變電阻式記憶胞101的電阻值會超過預設門檻值K(例如87K-ohm)。再經過一段特定時間間隔之後(例如,經過約為1秒時間間隔之後),大部分可變電阻式記憶胞101的電阻值仍會維持超過預設門檻值K的狀態。但少部分可變電阻 式記憶胞101的電阻值會再度回復到先前小於預設門檻值K的狀態。 As can be seen from the results of FIGS. 8A and 8B, in the present embodiment and the comparative example, after the writing operation, the resistance value distribution state of the variable resistance memory cell 101 can be respectively distributed by the first resistance value state (with resistance). The value cumulative distribution function curve 801 represents an offset to the second resistance value distribution state (represented by the resistance value cumulative distribution curve 802 and 802', respectively), and the resistance value of the variable resistance memory cell 101 exceeds a preset threshold value. K (for example, 87K-ohm). After a certain period of time (for example, after a time interval of about 1 second), the resistance value of most of the variable resistive memory cells 101 remains maintained above the preset threshold K. But a small part of the variable resistor The resistance value of the memory cell 101 is again restored to a state that was previously less than the preset threshold K.

在本實施例中,採用第6A圖和第6B圖所述之方法進行寫入操作600,再經過一段特定時間間隔之後,全部的可變電阻式記憶胞101中電阻值仍低於預設門檻值K(如第8A圖所繪示);而採用比較例之方法進行寫入操作,再經過一段特定時間間隔之後,可變電阻式記憶胞101之電阻值低於預設門檻值K的機率約為2%(如第8B圖所繪示)。顯示採用第6A圖和第6B圖所述之方法來操作非揮發性記憶體元件100,可有效消除寫入操作不穩定的現象,大幅增進非揮發性記憶體元件100的效能。 In the present embodiment, the writing operation 600 is performed by the method described in FIGS. 6A and 6B, and after a certain time interval, the resistance value of all the variable resistance memory cells 101 is still lower than the preset threshold. The value K (as shown in FIG. 8A); and the writing operation of the comparative example method, after a certain time interval, the resistance value of the variable resistance memory cell 101 is lower than the preset threshold K It is about 2% (as shown in Figure 8B). The operation of the non-volatile memory device 100 by the methods described in FIGS. 6A and 6B is shown to effectively eliminate the instability of the writing operation and greatly improve the performance of the non-volatile memory device 100.

另外值得注意的是,在本說明書的前述實施例中,設定脈衝的設定電壓Vset大小係消除寫入操作不穩定現象的重要因素之一。例如請參照第9A圖至第9D圖,第9A圖至第9D圖係採用第5A圖和第5B圖所述之方法,分別以-0.3V、-0.5V、-0.7V和-1.0V的設定電壓Vset對非揮發性記憶體元件100進行寫入操作500,再經過一段特定時間間隔後,可變電阻式記憶胞101的電阻值累積分佈圖。 It is also worth noting that in the foregoing embodiment of the present specification, setting the set voltage Vset of the pulse is one of the important factors for eliminating the instability of the write operation. For example, please refer to Figures 9A to 9D. Figures 9A to 9D are based on the methods described in Figures 5A and 5B, with -0.3V, -0.5V, -0.7V, and -1.0V, respectively. The set voltage Vset is subjected to a write operation 500 to the non-volatile memory element 100, and after a certain period of time, the resistance value of the variable resistive memory cell 101 is cumulatively distributed.

由第9A圖至第9D圖可觀察到,採用-0.3V、-0.5V、-0.7V和-1.0V的設定電壓Vset對非揮發性記憶體元件100進行寫入操作500之後,可變電阻式記憶胞101的電阻值分佈狀態,可分別由第一電阻值分佈狀態(以電阻值累積分佈函曲線901表示)偏移到第二電阻值分佈狀態(分別以電阻值累積分佈函曲線902、 902’、902”和902'''表示),且可變電阻式記憶胞101的電阻值會超過預設門檻值K(例如87K-ohm)。再經過一段特定時間間隔之後,可變電阻式記憶胞101之電阻值低於預設門檻值K的機率,分別為0.7%、0、1%和2%。顯示採用-0.5V之設定電壓Vset來對非揮發性記憶體元件100進行寫入操作500,藉以消除寫入操作不穩定現象的效果(如第9B圖所繪示),優於採用-0.3V的設定電壓Vset來對非揮發性記憶體元件100進行寫入操作500來消除寫入操作不穩定現象的效果(如第9A圖所繪示)。更優於採用-0.7V和-1.0V的設定電壓Vset對非揮發性記憶體元件100進行寫入操作500來消除寫入操作不穩定現象的效果(如第9C圖和第9D圖所繪示)。 It can be observed from Fig. 9A to Fig. 9D that after the writing operation 500 is performed on the nonvolatile memory element 100 with the set voltage Vset of -0.3V, -0.5V, -0.7V, and -1.0V, it is variable. The resistance value distribution state of the resistive memory cell 101 can be shifted from the first resistance value distribution state (represented by the resistance value cumulative distribution function curve 901) to the second resistance value distribution state (the resistance value cumulative distribution function curve 902, respectively). , 902 ', 902" and 902 ′′′), and the resistance value of the variable resistance memory cell 101 exceeds a preset threshold K (for example, 87 K-ohm). After a certain time interval, the variable resistor The probability that the resistance value of the memory cell 101 is lower than the preset threshold K is 0.7%, 0, 1%, and 2%, respectively. The display voltage Vset of -0.5V is used to perform the non-volatile memory element 100. The operation 500 is written to eliminate the effect of the unstable operation of the write operation (as shown in FIG. 9B), and the write operation 500 is performed on the non-volatile memory device 100 by using the set voltage Vset of -0.3 V. To eliminate the effects of unstable write operations (as shown in Figure 9A), better than -0.7V and -1.0V Set voltage V set to the non-volatile memory device 100 to perform a write operation 500 writes the effect of eliminating the instability (e.g., FIGS. 9C and 9D of FIG depicted).

根據上述,本說明書的實施例是提供一種非揮發性記憶體元件的操作方法及其應用裝置,其係在非揮發性記憶體元件的寫入操作期間,對非揮發性記憶體元件的至少一個可變電阻式記憶胞施加至少一個寫入脈衝和一個驗證脈衝。並在驗證脈衝之前或之後,對此可變電阻式記憶胞施加至少一個設定脈衝。其中設定脈衝具有一個與寫入脈衝電性相反的設定電壓,且設定電壓絕對值實值小於或等於驗證脈衝之驗證電壓絕的對值。可變電阻式記憶胞在寫入操作之後電阻值會大於一個預設電阻值。且經過一段時間之後,電阻分布狀態不會再度回復到先前較寬的電阻分布狀態,而使部分小於此預設電阻值。進而可以解決可變電阻式記憶胞寫入操作不穩定的問題。 In accordance with the above, embodiments of the present specification provide a method of operating a non-volatile memory component and an application thereof, at least one of non-volatile memory components during a write operation of a non-volatile memory component. The variable resistive memory cell applies at least one write pulse and one verify pulse. At least one set pulse is applied to the variable resistive memory cell before or after the verify pulse. The set pulse has a set voltage opposite to the write pulse electrical polarity, and the set voltage absolute value is less than or equal to the verification value of the verify pulse. The variable resistance memory cell will have a resistance value greater than a predetermined resistance value after the write operation. After a period of time, the resistance distribution state does not return to the previous wider resistance distribution state, and the portion is smaller than the preset resistance value. Further, the problem that the variable resistance memory cell writing operation is unstable can be solved.

雖然本說明書已以較佳實施例揭露如上,然其並非用以限定本發明,任何該技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present specification has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

Claims (17)

一種非揮發性記憶體(Non-Volatile Memory,NVM)元件的操作方法,包括:進行一第一寫入操作,包括:對該非揮發性記憶體元件的至少一可變電阻式記憶胞(resistance switching memory cell)施加具有一第一電性的一第一寫入脈衝;對該可變電阻式記憶胞施加具有一驗證電壓(Vver)的一第一驗證脈衝;在該第一驗證脈衝之前或之後,對該可變電阻式記憶胞施加一第一設定脈衝,該第一設定脈衝包括一設定電壓(Vset)具有與該第一電性相反的一第二電性以及實質小於該驗證電壓的一絕對值(|Vset|Vver|);對該可變電阻式記憶胞施加具有該第一電性的一第二寫入脈衝;以及對該可變電阻式記憶胞施加一第二驗證脈衝。 A method of operating a Non-Volatile Memory (NVM) component, comprising: performing a first write operation, comprising: at least one variable resistive memory cell of the non-volatile memory component (resistance switching) a first write pulse having a first electrical property; applying a first verify pulse having a verify voltage (V ver ) to the variable resistive memory cell; before the first verify pulse or And applying a first set pulse to the variable resistance memory cell, the first set pulse comprising a set voltage ( Vset ) having a second electrical property opposite to the first electrical property and substantially less than the verifying voltage An absolute value (|V set | |V ver |); applying a second write pulse having the first electrical property to the variable resistive memory cell; and applying a second verify pulse to the variable resistive memory cell. 如申請專利範圍第1項所述之非揮發性記憶體元件的操作方法,其中該驗證電壓具有該第一電性或該第二電性。 The method of operating a non-volatile memory element according to claim 1, wherein the verification voltage has the first electrical property or the second electrical property. 如申請專利範圍第1項所述之非揮發性記憶體元件的操作方法,其中該第一設定脈衝係在該第二驗證脈衝之後施加於該可變電阻式記憶胞。 The method of operating a non-volatile memory device according to claim 1, wherein the first set pulse is applied to the variable resistive memory cell after the second verify pulse. 如申請專利範圍第3項所述之非揮發性記憶體元件的操作方法,其中在施加該第二驗證脈衝之後,該可變電阻式記憶胞具有大於一預設門檻值(predetermined criteria)的一電阻值;且在施加該第一設定脈衝,再經過一時間間隔之後,該電阻值不會小於該預設值。 The method of operating a non-volatile memory element according to claim 3, wherein the variable resistive memory cell has a predetermined greater than a predetermined threshold after applying the second verifying pulse. a resistance value; and after applying the first set pulse, after a time interval, the resistance value is not less than the preset value. 如申請專利範圍第1項所述之非揮發性記憶體元件的操作方法,其中該第一設定脈衝係施加於該第一寫入脈衝之後,該第一驗證脈衝之前;且該第二設定脈衝係施加於該第二寫入脈衝之後,該第二驗證脈衝之前。 The method of operating a non-volatile memory device according to claim 1, wherein the first set pulse is applied after the first write pulse, before the first verify pulse; and the second set pulse After the second write pulse is applied, before the second verify pulse. 如申請專利範圍第5項所述之非揮發性記憶體元件的操作方法,其中該第一驗證脈衝具有該第二電性;且該第一驗證脈衝和該第一設定脈衝二者係結合形成一鋸齒狀連續複合脈衝。 The method for operating a non-volatile memory element according to claim 5, wherein the first verification pulse has the second electrical property; and the first verification pulse and the first set pulse are combined to form A zigzag continuous composite pulse. 如申請專利範圍第1項所述之非揮發性記憶體元件的操 作方法,其中該第一設定脈衝係在第一寫入脈衝和該第一驗證脈衝之後;且該第二設定脈衝係在第二寫入脈衝和該第二驗證脈衝之後。 The operation of non-volatile memory components as described in claim 1 The method, wherein the first set pulse is after the first write pulse and the first verify pulse; and the second set pulse is after the second write pulse and the second verify pulse. 如申請專利範圍第1項所述之非揮發性記憶體元件的操作方法,其中該第一設定脈衝係施加於該第二寫入脈衝之後。 The method of operating a non-volatile memory element according to claim 1, wherein the first set pulse is applied after the second write pulse. 如申請專利範圍第8項所述之非揮發性記憶體元件的操作方法,更包括:在該第一設定脈衝之後,進行一第二寫入操作,該第二寫入操作包括:對該可變電阻式記憶胞施加具有該第一電性的一第三寫入脈衝;以及對該可變電阻式記憶胞施加具有該驗證電壓(Vver)的一第三驗證脈衝。 The method for operating a non-volatile memory device according to claim 8 , further comprising: after the first set pulse, performing a second write operation, the second write operation comprising: The variable resistance memory cell applies a third write pulse having the first electrical property; and a third verify pulse having the verification voltage (V ver ) is applied to the variable resistive memory cell. 如申請專利範圍第1項所述之非揮發性記憶體元件的操作方法,其中該第一設定脈衝具有實值大於該第一驗證脈衝的一脈沖寬度(pulse width)。 The method of operating a non-volatile memory element according to claim 1, wherein the first set pulse has a pulse width greater than a pulse width of the first verify pulse. 如申請專利範圍第10項所述之非揮發性記憶體元件的 操作方法,其中該第一設定脈衝的該脈沖寬度實值為1微秒(microsecond,μs);該第一驗證脈衝具有介於50奈秒(nanosecond,ns)至100奈秒之間的一脈沖寬度。 Non-volatile memory components as described in claim 10 The operating method, wherein the pulse width of the first set pulse is 1 microsecond (μs); the first verify pulse has a pulse between 50 nanoseconds (ns) and 100 nanoseconds width. 一種非揮發性記憶體元件,包括:至少一可變電阻式記憶胞;以及一控制器,與該可變電阻式記憶胞電性連接,用來對該可變電阻式記憶胞進行一第一寫入操作,該第一寫入操作包括:對該可變電阻式記憶胞施加具有一第一電性的一第一寫入脈衝;對該可變電阻式記憶胞施加具有一驗證電壓(Vver)的一第一驗證脈衝;在該第一驗證脈衝之前或之後,對該可變電阻式記憶胞施加一第一設定脈衝,該第一設定脈衝包括一設定電壓(Vset),具有與該第一電性相反的一第二電性以及實質小於該驗證電壓的一絕對值(|Vset|Vver|);對該可變電阻式記憶胞施加具有該第一電性的一第二寫入脈衝;以及對該可變電阻式記憶胞施加一第二驗證脈衝。 A non-volatile memory component comprising: at least one variable resistance memory cell; and a controller electrically coupled to the variable resistance memory for performing a first a write operation, the first write operation includes: applying a first write pulse having a first electrical property to the variable resistive memory cell; applying a verify voltage to the variable resistive memory cell (V) Ver) a first verify pulse; the first verify pulse before or after a first application of a set pulse to the variable resistance memory cell, the first set pulse comprises a set voltage (V set), and having a second electrical property of the first electrical opposite and substantially less than an absolute value of the verifying voltage (| Vset | |V ver |); applying a second write pulse having the first electrical property to the variable resistive memory cell; and applying a second verify pulse to the variable resistive memory cell. 如申請專利範圍第12項所述之非揮發性記憶體元件,其中該驗證電壓具有該第一電性或該第二電性。 The non-volatile memory component of claim 12, wherein the verification voltage has the first electrical property or the second electrical property. 如申請專利範圍第12項所述之非揮發性記憶體元件,其中其中該第一設定脈衝具有實值大於該第一驗證脈衝的一脈沖寬度。 The non-volatile memory component of claim 12, wherein the first set pulse has a real value greater than a pulse width of the first verify pulse. 一種非揮發性記憶體元件的製作方法,包括:形成至少一可變電阻式記憶胞;以及形成一控制器,與該可變電阻式記憶胞電性連接,用來對該可變電阻式記憶胞進行一第一寫入操作,該第一寫入操作包括:對該可變電阻式記憶胞施加具有一第一電性的一第一寫入脈衝;對該可變電阻式記憶胞施加具有一驗證電壓(Vver)的一第一驗證脈衝;在該第一驗證脈衝之前或之後,對該可變電阻式記憶胞施加一第一設定脈衝,該第一設定脈衝包括一設定電壓(Vset),具有與該第一電性相反的一第二電性以及實質小於該驗證電壓的一絕對值(|Vset|Vver|);對該可變電阻式記憶胞施加具有該第一電性的 一第二寫入脈衝;以及對該可變電阻式記憶胞施加一第二驗證脈衝。 A method of fabricating a non-volatile memory device, comprising: forming at least one variable resistance memory cell; and forming a controller electrically coupled to the variable resistance memory for use in the variable resistance memory Performing a first write operation, the first write operation includes: applying a first write pulse having a first electrical property to the variable resistive memory cell; and applying the variable resistive memory cell to a first verification pulse of the verification voltage (V ver ); applying a first set pulse to the variable resistance memory cell before or after the first verification pulse, the first set pulse comprising a set voltage (V Set ), having a second electrical property opposite to the first electrical property and substantially less than an absolute value of the verification voltage (|V set | |V ver |); applying a second write pulse having the first electrical property to the variable resistive memory cell; and applying a second verify pulse to the variable resistive memory cell. 如申請專利範圍第15項所述之非揮發性記憶體元件的製作方法,其中該驗證電壓具有該第一電性或該第二電性。 The method of fabricating the non-volatile memory device of claim 15, wherein the verification voltage has the first electrical property or the second electrical property. 如申請專利範圍第15項所述之非揮發性記憶體元件的製作方法,其中其中該第一設定脈衝具有實值大於該第一驗證脈衝的一脈沖寬度。 The method of fabricating the non-volatile memory device of claim 15, wherein the first set pulse has a real value greater than a pulse width of the first verify pulse.
TW106114352A 2017-04-28 2017-04-28 Method for operating non-volatile memory device and applications thereof TWI642057B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106114352A TWI642057B (en) 2017-04-28 2017-04-28 Method for operating non-volatile memory device and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106114352A TWI642057B (en) 2017-04-28 2017-04-28 Method for operating non-volatile memory device and applications thereof

Publications (2)

Publication Number Publication Date
TW201839768A TW201839768A (en) 2018-11-01
TWI642057B true TWI642057B (en) 2018-11-21

Family

ID=65033863

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106114352A TWI642057B (en) 2017-04-28 2017-04-28 Method for operating non-volatile memory device and applications thereof

Country Status (1)

Country Link
TW (1) TWI642057B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708254B (en) * 2019-12-11 2020-10-21 華邦電子股份有限公司 Method and electronic circuit for verifying operation performed by cell of rram
US10910051B1 (en) 2019-11-17 2021-02-02 Winbond Electronics Corp. Method and electronic circuit for verifying operation performed by cell of RRAM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130094275A1 (en) * 2011-10-18 2013-04-18 Micron Technology, Inc. Stabilization of resistive memory
US20130094276A1 (en) * 2011-10-18 2013-04-18 Micron Technology, Inc. Apparatuses and methods for determining stability of a memory cell
US20140050011A1 (en) * 2012-08-15 2014-02-20 Sony Corporation Storage unit and driving method
US20150036426A1 (en) * 2013-07-30 2015-02-05 Donghun Kwak Nonvolatile memory device and method of program verifying the same
US20160336066A1 (en) * 2015-05-13 2016-11-17 Macronix International Co., Ltd. VERIFY SCHEME FOR ReRAM
TWI571875B (en) * 2015-10-30 2017-02-21 華邦電子股份有限公司 Resistive memory apparatus and a writing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130094275A1 (en) * 2011-10-18 2013-04-18 Micron Technology, Inc. Stabilization of resistive memory
US20130094276A1 (en) * 2011-10-18 2013-04-18 Micron Technology, Inc. Apparatuses and methods for determining stability of a memory cell
US20140050011A1 (en) * 2012-08-15 2014-02-20 Sony Corporation Storage unit and driving method
US20150036426A1 (en) * 2013-07-30 2015-02-05 Donghun Kwak Nonvolatile memory device and method of program verifying the same
US20160336066A1 (en) * 2015-05-13 2016-11-17 Macronix International Co., Ltd. VERIFY SCHEME FOR ReRAM
TWI571875B (en) * 2015-10-30 2017-02-21 華邦電子股份有限公司 Resistive memory apparatus and a writing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910051B1 (en) 2019-11-17 2021-02-02 Winbond Electronics Corp. Method and electronic circuit for verifying operation performed by cell of RRAM
TWI708254B (en) * 2019-12-11 2020-10-21 華邦電子股份有限公司 Method and electronic circuit for verifying operation performed by cell of rram

Also Published As

Publication number Publication date
TW201839768A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
CN108665933B (en) Method for operating a non-volatile memory element and use thereof
JP6251885B2 (en) Resistance variable nonvolatile memory device and writing method thereof
US10147486B2 (en) Memory systems and memory programming methods
JP4838399B2 (en) Nonvolatile memory device and method of writing to nonvolatile memory device
JP4607256B2 (en) Nonvolatile storage device and writing method thereof
KR102219293B1 (en) Memory Devices, Memory Systems, Methods of Operating the Memory Device, and Methods of Operating the Memory Systems
KR102140786B1 (en) Resistive Memory Device and Methods of Operating the Memory Device
KR102140785B1 (en) Resistive Memory Device and Methods of Operating the Resistive Memory Device
US9378817B2 (en) Variable resistance nonvolatile memory element writing method and variable resistance nonvolatile memory device
TWI616874B (en) Sensing data in resistive switching memory devices
US11295812B2 (en) Memory devices and memory operational methods
JP6425137B2 (en) Data recording method and nonvolatile storage device
JP2005216466A (en) Nonvolatile semiconductor memory device
CN109671453B (en) Semiconductor memory device and method of operating the same
CN105931665B (en) Phase change memory reading circuit and method
TWI642057B (en) Method for operating non-volatile memory device and applications thereof
US9947403B1 (en) Method for operating non-volatile memory device and applications thereof
JP6653488B2 (en) Forming method of variable resistance nonvolatile memory element and variable resistance nonvolatile memory device
US11443800B2 (en) Semiconductor memory apparatus for preventing disturbance
KR20210086988A (en) Memory device including dynamic programming voltage
WO2016157719A1 (en) Rewriting method for semiconductor storage apparatus, and semiconductor storage apparatus
JP2009104715A (en) Method and device for driving variable resistance element
TWI596610B (en) Resistive non-volatile memory and operation method thereof
KR20230000055A (en) Resistive memory device and operating method thereof