TWI641477B - Composite material and method of manufacturing the same - Google Patents

Composite material and method of manufacturing the same Download PDF

Info

Publication number
TWI641477B
TWI641477B TW106120502A TW106120502A TWI641477B TW I641477 B TWI641477 B TW I641477B TW 106120502 A TW106120502 A TW 106120502A TW 106120502 A TW106120502 A TW 106120502A TW I641477 B TWI641477 B TW I641477B
Authority
TW
Taiwan
Prior art keywords
composite material
metal
nanocellulose
core
silver
Prior art date
Application number
TW106120502A
Other languages
Chinese (zh)
Other versions
TW201904758A (en
Inventor
蔡明志
何羽軒
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW106120502A priority Critical patent/TWI641477B/en
Application granted granted Critical
Publication of TWI641477B publication Critical patent/TWI641477B/en
Publication of TW201904758A publication Critical patent/TW201904758A/en

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

本發明提供一種複合材料。複合材料包括奈米纖維素內芯以及金屬外殼。金屬外殼包覆奈米纖維素內芯的表面。上述複合材料具有奈米等級的尺寸以及高機械強度。此外,本發明亦提供一種複合材料的製造方法。The present invention provides a composite material. The composite material includes a nanocellulose inner core and a metal outer casing. The metal casing covers the surface of the inner core of the nanocellulose. The above composite material has a nanometer size and high mechanical strength. In addition, the present invention also provides a method of manufacturing a composite material.

Description

複合材料及其製造方法Composite material and method of manufacturing same

本發明是有關於一種材料及其製造方法,且特別是有關於一種複合材料及其製造方法。The present invention relates to a material and a method of manufacturing the same, and more particularly to a composite material and a method of manufacturing the same.

隨著科技日新月異,印刷技術也隨之升級,其中,印刷電子(printed electronics)技術及其涉及層面甚廣,例如包括奈米線(nanowire)、電極(electrode)、透明導電膜(transparent conducting film)等的製作。With the rapid development of technology, printing technology has also been upgraded. Among them, printed electronics technology and its various aspects, including nanowires, electrodes, and transparent conducting films. Production.

然而,用於印刷電子的導電墨水,通常以奈米金屬顆粒或奈米金屬薄片為主,較少一維奈米金屬材料存在,肇因於一維奈米金屬材料直徑約為數十奈米,長度約為數微米。此金屬材料的尺寸過大,可能造成印刷過程中噴嘴阻塞的問題。另一方面,在習知技術中,為了形成具有小尺寸的金屬材料的導電墨水,需先在氧化鋁層中形成微孔道,接著,利用電化學沉積的方法填入金屬材料後,再移除氧化鋁層模板,在製程上的步驟較為繁複。此外,習知技術之一維結構往往因溫度升高會融斷成片段或融為顆粒,失去原本形貌,造成電性改變以及降低導電效果。因此,如何改善噴嘴阻塞的問題以及簡化製程並維持電性是目前研究的課題。However, the conductive ink used for printing electrons is usually made of nano metal particles or nano metal foil, and less one-dimensional nano metal material exists, because the diameter of the one-dimensional nano metal material is about several tens of nanometers. The length is about a few microns. The size of this metal material is too large and may cause problems with nozzle clogging during printing. On the other hand, in the prior art, in order to form a conductive ink having a small-sized metal material, it is necessary to first form a microporous channel in the aluminum oxide layer, and then, after filling the metal material by electrochemical deposition, move it again. In addition to the alumina layer template, the steps in the process are more complicated. In addition, one of the conventional techniques is often broken into fragments or melted into particles due to an increase in temperature, losing its original appearance, causing electrical changes and reducing electrical conductivity. Therefore, how to improve the problem of nozzle clogging and simplify the process and maintain electrical properties is the subject of current research.

本發明提供一種複合材料,其具有奈米等級的尺寸以及高機械強度。The present invention provides a composite material having a nanometer size and high mechanical strength.

本發明提供一種複合材料的製造方法,利用此方法可製造出具有奈米等級的尺寸以及高機械強度的複合材料。The present invention provides a method of producing a composite material by which a composite material having a nanometer size and high mechanical strength can be produced.

本發明提供一種複合材料,所述複合材料包括奈米纖維素內芯以及金屬外殼。金屬外殼包覆奈米纖維素內芯的表面。The present invention provides a composite material comprising a nanocellulose inner core and a metal outer shell. The metal casing covers the surface of the inner core of the nanocellulose.

在本發明的一些實施例中,所述複合材料的長度與直徑的比介於1.5:1至500:1之間。In some embodiments of the invention, the composite has a length to diameter ratio of between 1.5:1 and 500:1.

在本發明的一些實施例中,所述複合材料的直徑介於2奈米至200奈米之間。In some embodiments of the invention, the composite material has a diameter between 2 nanometers and 200 nanometers.

在本發明的一些實施例中,所述複合材料的長度介於50奈米至5000奈米之間。In some embodiments of the invention, the composite has a length between 50 nanometers and 5000 nanometers.

在本發明的一些實施例中,所述奈米纖維素內芯的材料包括纖維素奈米纖毛(cellulose nanofibrils,CNF)、纖維素奈米結晶(cellulose nanocrystals,CNC)、菌纖維素(bacterial cellulose,BC)或其組合。In some embodiments of the present invention, the material of the nanocellulose core comprises cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and bacterial cellulose. , BC) or a combination thereof.

在本發明的一些實施例中,所述奈米纖維素內芯為實心。In some embodiments of the invention, the nanocellulose core is solid.

在本發明的一些實施例中,所述奈米纖維素內芯的直徑介於2奈米至200奈米之間。In some embodiments of the invention, the nanocellulose core has a diameter between 2 nanometers and 200 nanometers.

在本發明的一些實施例中,所述金屬外殼的材料包括金、銀、鈀、鉑、釕、銅、鎢、鎳、鋁或其組合。In some embodiments of the invention, the material of the metal outer casing comprises gold, silver, palladium, platinum, rhodium, copper, tungsten, nickel, aluminum, or a combination thereof.

在本發明的一些實施例中,所述金屬外殼的厚度介於2奈米至200奈米之間。In some embodiments of the invention, the metal outer shell has a thickness between 2 nanometers and 200 nanometers.

本發明提供一種複合材料的製造方法,所述複合材料的製造方法包括以下步驟:提供奈米纖維素內芯;修飾奈米纖維素內芯;形成金屬晶種生成點之金屬離子於修飾後的奈米纖維素內芯的表面;進行第一還原反應,還原金屬晶種生成點之金屬離子以形成金屬晶種;以及進行第二還原反應,於金屬晶種處還原金屬晶種生成點之金屬離子,以形成金屬外殼包覆修飾後的奈米纖維素內芯的表面。The invention provides a method for manufacturing a composite material, the method for manufacturing the composite material comprising the steps of: providing a nanocellulose inner core; modifying a nanocellulose inner core; and forming a metal seed to form a metal ion at the modified point a surface of the inner core of the nanocellulose; performing a first reduction reaction to reduce metal ions at a point of formation of the metal seed crystal to form a metal seed crystal; and performing a second reduction reaction to reduce the metal of the metal seed crystal formation point at the metal seed crystal The ions are coated with a metal shell to coat the surface of the modified nanocellulose core.

在本發明的一些實施例中,修飾所述奈米纖維素內芯的步驟是以金屬對所述奈米纖維素內芯的碳上的羥基進行取代反應以形成經金屬取代之羥基。In some embodiments of the invention, the step of modifying the inner core of the nanocellulose is a metal substitution reaction of a hydroxyl group on the carbon of the inner core of the nanocellulose to form a metal-substituted hydroxyl group.

在本發明的一些實施例中,所述金屬晶種生成點之金屬離子是形成於經金屬取代之羥基上。In some embodiments of the invention, the metal ions at the point of formation of the metal seed are formed on a metal-substituted hydroxyl group.

在本發明的一些實施例中,修飾奈米纖維素內芯的步驟包括以氫氧化鉀、氫氧化鈉對奈米纖維素內芯進行取代反應。In some embodiments of the invention, the step of modifying the nanocellulose core comprises subjecting the nanocellulose core to a substitution reaction with potassium hydroxide, sodium hydroxide.

在本發明的一些實施例中,進行第一還原反應以及第二還原反應的還原劑包括抗壞血酸(ascorbic acid )、聯氨(hydrazine)、氫硼酸鈉(sodium borohydride)、甲醛、葡萄糖、檸檬酸鈉、尿素、二乙醇胺、三乙醇胺、甲醇、乙醇、乙二醇、甘油或其組合。In some embodiments of the invention, the reducing agent that performs the first reduction reaction and the second reduction reaction includes ascorbic acid, hydrazine, sodium borohydride, formaldehyde, glucose, sodium citrate. Urea, diethanolamine, triethanolamine, methanol, ethanol, ethylene glycol, glycerol or a combination thereof.

在本發明的一些實施例中,形成金屬晶種生成點之金屬離子以及進行第二還原反應的金屬前驅物包括硝酸銀、亞硝酸銀、硫酸銀、氯化銀、過氯酸銀、氰酸銀、碳酸銀、醋酸銀、亞硫酸金、氯金酸、氯鉑酸、硝酸銅、硫酸銅、氯化銅、硫酸鎳或其組合。In some embodiments of the present invention, the metal ions forming the metal seed generation point and the metal precursor for performing the second reduction reaction include silver nitrate, silver nitrite, silver sulfate, silver chloride, silver perchlorate, and silver cyanate. , silver carbonate, silver acetate, gold sulfite, chloroauric acid, chloroplatinic acid, copper nitrate, copper sulfate, copper chloride, nickel sulfate or a combination thereof.

在本發明的一些實施例中,進行第二還原反應更包括加入聚合物。In some embodiments of the invention, performing the second reduction reaction further comprises adding a polymer.

在本發明的一些實施例中,所述聚合物包括聚乙烯吡咯烷酮(Polyvinylpyrrolidone,PVP)、聚乙烯醇(Polyvinyl alcohol,PVA)、聚丙烯酸(poly acrylic acid,PAA)或其組合。In some embodiments of the invention, the polymer comprises polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyacrylic acid (PAA), or a combination thereof.

在本發明的一些實施例中,進行第一還原反應以及第二還原反應的反應溫度介於攝氏0度至攝氏250度之間。In some embodiments of the invention, the reaction temperature at which the first reduction reaction and the second reduction reaction are carried out is between 0 degrees Celsius and 250 degrees Celsius.

在本發明的一些實施例中,所述金屬外殼的材料包括金、銀、鈀、鉑、釕、銅、鎢、鎳、鋁或其組合。In some embodiments of the invention, the material of the metal outer casing comprises gold, silver, palladium, platinum, rhodium, copper, tungsten, nickel, aluminum, or a combination thereof.

基於上述,本發明的複合材料包括奈米纖維素內芯以及金屬外殼,其中金屬外殼包覆奈米纖維素內芯的表面。從結構的觀點來看,本發明的複合材料的尺寸可控制在奈米尺寸的範圍內,故可有效地降低因尺寸過大而造成的阻塞問題。又,在本發明的複合材料中,由於是由奈米纖維素做為內芯,其具有高結晶性,故可提升整體複合材料的機械強度。並且奈米纖維素的內芯可做為支持性的模板,能避免金屬融斷現象影響電性。而從製程的觀點來看,在本發明的複合材料的製造過程中,是藉由奈米纖維素內芯定義金屬外殼,後續不需要移除奈米纖維素內芯的步驟,故製程較為簡化。Based on the above, the composite material of the present invention comprises a nanocellulose inner core and a metal outer shell, wherein the metal outer shell covers the surface of the inner core of the nanocellulose. From the structural point of view, the size of the composite material of the present invention can be controlled within the range of nanometer size, so that the problem of clogging due to excessive size can be effectively reduced. Further, in the composite material of the present invention, since nano cellulose is used as the inner core, it has high crystallinity, so that the mechanical strength of the entire composite material can be improved. And the inner core of nano cellulose can be used as a supporting template to prevent metal melting from affecting electrical properties. From the viewpoint of the process, in the manufacturing process of the composite material of the present invention, the metal outer shell is defined by the inner core of the nano cellulose, and the subsequent step of removing the inner core of the nano cellulose is not required, so that the process is simplified.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1是依照本發明一些實施例所繪示之一種複合材料的示意圖。1 is a schematic illustration of a composite material in accordance with some embodiments of the present invention.

請參照圖1,本實施例的複合材料100可包括奈米纖維素內芯110以及金屬外殼120。金屬外殼120包覆奈米纖維素內芯110的表面。Referring to FIG. 1 , the composite material 100 of the present embodiment may include a nano cellulose inner core 110 and a metal outer casing 120 . The metal casing 120 covers the surface of the nanocellulose core 110.

<奈米纖維素內芯><Nano cellulose core>

奈米纖維素內芯110的材料例如包括植物、藻類或細菌為來源的纖維素奈米纖毛(cellulose nanofibrils,CNF)、纖維素奈米結晶(cellulose nanocrystals,CNC)、菌纖維素(bacterial cellulose,BC)或其組合。在一些實施例中,奈米纖維素內芯110的材料例如是結晶性纖維素。在一些實施例中,奈米纖維素內芯110的分子量例如介於500至500000之間。在一些實施例中,奈米纖維素內芯110的直徑例如介於2奈米至200奈米之間。在另一些實施例中,奈米纖維素內芯110的直徑例如小於5奈米。在一些實施例中,奈米纖維素內芯110的長度例如介於20奈米至20000奈米之間。在一些實施例中,奈米纖維素內芯110的長度與直徑的比例如介於10:1至1000:1之間。在另一些實施例中,奈米纖維素內芯110的長度與直徑的比例如是60:1,但本發明不限於此。纖維素的化學式如下: The material of the nano cellulose core 110 includes, for example, cellulose nanofibrils (CNF) derived from plants, algae or bacteria, cellulose nanocrystals (CNC), bacterial cellulose (bacterial cellulose, BC) or a combination thereof. In some embodiments, the material of the nanocellulose core 110 is, for example, crystalline cellulose. In some embodiments, the molecular weight of the nanocellulose core 110 is, for example, between 500 and 500,000. In some embodiments, the diameter of the nanocellulose core 110 is, for example, between 2 nanometers and 200 nanometers. In other embodiments, the nanocellulose core 110 has a diameter of, for example, less than 5 nanometers. In some embodiments, the length of the nanocellulose core 110 is, for example, between 20 nanometers and 20,000 nanometers. In some embodiments, the ratio of length to diameter of the nanocellulose core 110 is, for example, between 10:1 and 1000:1. In other embodiments, the ratio of length to diameter of the nanocellulose core 110 is, for example, 60:1, although the invention is not limited thereto. The chemical formula of cellulose is as follows:

<金屬外殼><metal casing>

金屬外殼120的材料例如包括貴金屬。在一些實施例中,金屬外殼120的材料例如包括金、銀、鈀、鉑、釕、銅、鎢、鎳、鋁或其組合。在一些實施例中,金屬外殼120的厚度例如介於2奈米至200奈米之間。The material of the metal casing 120 includes, for example, a precious metal. In some embodiments, the material of the metal outer casing 120 includes, for example, gold, silver, palladium, platinum, rhodium, copper, tungsten, nickel, aluminum, or a combination thereof. In some embodiments, the thickness of the metal outer casing 120 is, for example, between 2 nanometers and 200 nanometers.

<複合材料><composite material>

在一些實施例中,奈米纖維素內芯110以及金屬外殼120所形成的複合材料100的直徑例如介於2奈米至200奈米之間。在一些實施例中,複合材料100的長度例如介於50奈米至5000奈米之間。在一些實施例中,複合材料100的長度與直徑的比例如介於1.5:1至500:1之間。在另一些實施例中,複合材料100的長度與寬度的比例如是60:1,但本發明不限於此。In some embodiments, the nanocomposite core 110 and the metal shell 120 form a composite 100 having a diameter of, for example, between 2 nm and 200 nm. In some embodiments, the length of the composite material 100 is, for example, between 50 nanometers and 5000 nanometers. In some embodiments, the ratio of length to diameter of composite 100 is, for example, between 1.5:1 and 500:1. In other embodiments, the ratio of length to width of composite 100 is, for example, 60:1, although the invention is not limited thereto.

在一些實施例中,奈米纖維素內芯110可以為實心。也就是說,由於奈米纖維素內芯110為實心,可使整體複合材料100具有堅硬的結構。值得一提的是,由於複合材料100的表面由金屬外殼120所包覆,可使整體複合材料100具有導電的特性。In some embodiments, the nanocellulose core 110 can be solid. That is, since the nanocellulose core 110 is solid, the integral composite 100 can have a rigid structure. It is worth mentioning that since the surface of the composite material 100 is covered by the metal outer casing 120, the overall composite material 100 can have electrically conductive characteristics.

圖2A至圖2E是依照本發明一些實施例所繪示之一種複合材料的製造過程示意圖。圖3A至圖3E分別是圖2A至圖2E的複合材料的表面化學結構示意圖。圖4是依照本發明的一些實施例所繪示之一種複合材料的製造方法的流程示意圖。2A-2E are schematic views showing a manufacturing process of a composite material according to some embodiments of the present invention. 3A to 3E are schematic diagrams showing the surface chemical structures of the composite materials of Figs. 2A to 2E, respectively. 4 is a schematic flow chart of a method of manufacturing a composite material according to some embodiments of the present invention.

請參照圖2A至圖2E、圖3A至圖3E以及圖3,本發明的複合材料100的製造方法包括:提供奈米纖維素內芯110a(步驟S10);修飾奈米纖維素內芯110a(步驟S12);形成金屬晶種生成點之金屬離子120a於修飾後的奈米纖維素內芯110b的表面112b(步驟S14);進行第一還原反應,還原金屬晶種生成點之金屬離子120a以形成金屬晶種120b(步驟S16);以及進行第二還原反應,於金屬晶種處還原金屬晶種生成點之金屬離子120b以形成金屬外殼120包覆修飾後的奈米纖維素內芯的表面(步驟S18)。以下將更詳細說明上述步驟。2A to 2E, 3A to 3E, and 3, the manufacturing method of the composite material 100 of the present invention includes: providing a nanocellulose core 110a (step S10); and modifying the nanocellulose core 110a ( Step S12); forming a metal seed formation point metal ion 120a on the surface 112b of the modified nanocellulose inner core 110b (step S14); performing a first reduction reaction to reduce the metal ion generation point metal ion 120a to Forming a metal seed crystal 120b (step S16); and performing a second reduction reaction to reduce the metal ion 120b at the metal seed crystal formation point at the metal seed crystal to form a surface of the nano-cell core coated with the metal outer shell 120 (Step S18). The above steps will be explained in more detail below.

<步驟S10><Step S10>

請參照圖2A、圖3A和圖4,首先,進行步驟S10,提供奈米纖維素內芯110a。在一些實施例中,奈米纖維素內芯110a的形成方法例如包括物理方法、化學方法或其組合。舉例來說,在一些實施例中,奈米纖維素內芯110a的形成方法例如是先以物理方法處理,接著以化學方法處理,以得到具有高度結晶的奈米纖維素內芯110a。在一些實施例中,物理方法例如包括使用粉碎機(grinder)、均質機(homogenizer)、微射流均質機(microfluidizer)等處理;化學方法例如是經過單步驟或多步驟之水解反應,例如硫酸水解或鹽酸水解等。奈米纖維素內芯110a的直徑、長度、材料等條件如前述奈米纖維素內芯110,於此不再贅述。經水解反應後,奈米纖維素內芯110a的碳上具有羥基。在一具體實施例中,奈米纖維素內芯110a經水解反應後,其6位上的碳(C6)的羥基(-OH)例如為一級羥基(-CH 2OH)。也就是說,奈米纖維素內芯110a的表面112a上具有多個奈米纖維素內芯的6位上的碳(C6)的羥基(以C6-OH代表)可供後續反應進行,但本發明不限於此。在本文中,為便於說明,是以奈米纖維素內芯110a的6位上的碳的羥基舉例說明,但本發明並不限於此。 Referring to FIG. 2A, FIG. 3A and FIG. 4, first, step S10 is performed to provide a nanocellulose core 110a. In some embodiments, the method of forming the nanocellulose core 110a includes, for example, physical methods, chemical methods, or a combination thereof. For example, in some embodiments, the method of forming the nanocellulose core 110a is, for example, physically treated first, followed by chemical treatment to obtain a nanocrystalline core 110a having a high degree of crystallization. In some embodiments, the physical method includes, for example, a treatment using a grinder, a homogenizer, a microfluidizer, or the like; the chemical method is, for example, a single-step or multi-step hydrolysis reaction, such as sulfuric acid hydrolysis. Or hydrochloric acid hydrolysis. The diameter, length, material and the like of the nanocellulose core 110a are as described above for the nanocellulose core 110, and will not be described herein. After the hydrolysis reaction, the nanocellulose core 110a has a hydroxyl group on the carbon. In a specific embodiment, after the hydrolysis reaction of the nanocellulose core 110a, the hydroxyl group (-OH) of the carbon (C6) at the 6-position is, for example, a primary hydroxyl group (-CH 2 OH). That is, the surface 112a of the nanocellulose core 110a has a plurality of carbon (C6) hydroxyl groups (represented by C6-OH) at the 6 position of the inner core of the nanocellulose for subsequent reaction, but The invention is not limited to this. Here, for convenience of explanation, the hydroxyl group of carbon at the 6-position of the nanocellulose core 110a is exemplified, but the present invention is not limited thereto.

<步驟S12><Step S12>

請參照圖2B、圖3B和圖4,進行步驟S12,修飾奈米纖維素內芯110a。在一些實施例中,修飾奈米纖維素內芯110a的方法例如是使用金屬的氫氧化物(M(OH) n,其中M為金屬,例如是K,n為金屬的價數)溶液處理奈米纖維素內芯110a的表面112a,使其6位上的碳的羥基(C6-OH)的氫被金屬的氫氧化物的金屬(M)取代,而形成OM基團。也就是說,修飾後的奈米纖維素內芯110b的表面112b具有OM基團,且OM基團是接在修飾後的奈米纖維素內芯110b的6位上的碳(C6)上(以C6-OM代表)。 OM基團例如是OK。 Referring to FIG. 2B, FIG. 3B and FIG. 4, step S12 is performed to modify the nanocellulose core 110a. In some embodiments, the method of modifying the nanocellulose core 110a is, for example, treating a solution of a metal hydroxide (M(OH) n , wherein M is a metal, such as K, n is the valence of the metal) solution. The surface 112a of the rice cellulose inner core 110a is substituted with a metal (M) of a metal hydroxide (C6-OH) at the 6-position to form an OM group. That is, the surface 112b of the modified nanocellulose core 110b has an OM group, and the OM group is attached to the carbon (C6) at the 6 position of the modified nanocellulose core 110b ( Represented by C6-OM). The OM group is for example OK.

在一些實施例中,金屬的氫氧化物(M(OH) n例如包括氫氧化鉀(KOH)。在一具體實施例中,修飾奈米纖維素內芯110a例如是以氫氧化鉀處理奈米纖維素內芯110a的表面112a,使其6位上的碳的羥基(C6-OH)取代為OK基團,但本發明不限於此。在一些實施例中,修飾奈米纖維素內芯110a並非對奈米纖維素內芯110a的全部羥基進行取代反應,也就是說,僅部分奈米纖維素內芯110a的羥基經取代反應而形成OM基團,但本發明不限於此。 In some embodiments, the metal hydroxide (M(OH) n includes, for example, potassium hydroxide (KOH). In a specific embodiment, the modified nanocellulose core 110a is treated, for example, with potassium hydroxide. The surface 112a of the cellulose inner core 110a is substituted with a hydroxyl group (C6-OH) of carbon at the 6-position to an OK group, but the invention is not limited thereto. In some embodiments, the modified nanocellulose core 110a is modified. The substitution reaction of all the hydroxyl groups of the nanocellulose core 110a is not performed, that is, only the hydroxyl group of the partial nanocellulose core 110a is substituted to form an OM group, but the present invention is not limited thereto.

<步驟S14><Step S14>

請參照圖2C、3C和圖4,進行步驟S14,形成金屬晶種生成點之金屬離子120a於修飾後的奈米纖維素內芯110b的表面112b。在一些實施例中,當修飾後的奈米纖維素內芯110b的表面112b具有OM基團,可使用含有金屬前驅物(M’)的溶液處理修飾後的奈米纖維素內芯110b的表面112b,使其表面112b的OM基團被置換為OM’基團。也就是說,此時,奈米纖維素內芯110c的表面112c具有OM’基團,且OM’基團是接在奈米纖維素內芯110c的6位上的碳(C6)上(以C6-OM’代表),此OM’基團可做為後續金屬晶種成長的生成點之金屬離子來源。OM’基團例如是OAg。Referring to FIGS. 2C, 3C and 4, step S14 is performed to form metal ions 120a at the metal seed generation point on the surface 112b of the modified nanocellulose core 110b. In some embodiments, when the surface 112b of the modified nanocellulose core 110b has an OM group, the surface of the modified nanocellulose core 110b may be treated with a solution containing a metal precursor (M'). 112b, the OM group of its surface 112b is replaced with an OM' group. That is, at this time, the surface 112c of the nanocellulose core 110c has an OM' group, and the OM' group is attached to the carbon (C6) at the 6 position of the nanocellulose core 110c ( C6-OM' stands for), this OM' group can be used as a source of metal ions for the generation point of subsequent metal seed growth. The OM' group is, for example, OAg.

在一些示範實施例中,M例如為鉀(K),M’例如為銀(Ag)。在一些實施例中,含有金屬前驅物M’ 的溶液例如包括硝酸銀(AgNO 3)、亞硝酸銀(AgNO 2)、硫酸銀(Ag 2SO 4)、氯化銀(AgCl)、過氯酸銀(AgClO 4)、氰酸銀(AgOCN)、碳酸銀(Ag 2CO 3)、醋酸銀(AgC 2H 3O 2)、亞硫酸金(Au(SO 3) 2 2-)、氯金酸(HAuCl 4)、氯鉑酸(H 2PtCl 6)、硝酸銅(Cu(NO 3) 2)、硫酸銅(CuSO 4)、氯化銅(CuCl 2)、硫酸鎳(NiSO 4)或其組合。在一具體實施例中,修飾後的奈米纖維素內芯110b的表面112b具有OK基團,接著,可使用例如是硝酸銀處理修飾後的奈米纖維素內芯110b的表面112b,使其表面的OK基團置換為OAg基團,但本發明不限於此。 In some exemplary embodiments, M is, for example, potassium (K), and M' is, for example, silver (Ag). In some embodiments, the solution containing the metal precursor M' includes, for example, silver nitrate (AgNO 3 ), silver nitrite (AgNO 2 ), silver sulfate (Ag 2 SO 4 ), silver chloride (AgCl), silver perchlorate. (AgClO 4 ), silver cyanate (AgOCN), silver carbonate (Ag 2 CO 3 ), silver acetate (AgC 2 H 3 O 2 ), gold sulfite (Au(SO 3 ) 2 2- ), chloroauric acid ( HAuCl 4 ), chloroplatinic acid (H 2 PtCl 6 ), copper nitrate (Cu(NO 3 ) 2 ), copper sulfate (CuSO 4 ), copper chloride (CuCl 2 ), nickel sulfate (NiSO 4 ) or a combination thereof. In a specific embodiment, the surface 112b of the modified nanocellulose core 110b has an OK group, and then the surface 112b of the modified nanocellulose core 110b may be treated with, for example, silver nitrate to have a surface thereof. The OK group is replaced with an OAg group, but the invention is not limited thereto.

<步驟S16><Step S16>

請參照圖2D、圖3D和圖4,進行步驟S16,進行第一還原反應,還原金屬晶種生成點之金屬離子120a以形成金屬(原子)晶種120b。也就是說,奈米纖維素內芯110d的表面112d具有多個金屬晶種120b。在一些示範實施例中,多個金屬晶種120b例如是銀原子晶種。Referring to FIG. 2D, FIG. 3D and FIG. 4, step S16 is performed to perform a first reduction reaction to reduce the metal ion 120a of the metal seed crystal formation point to form a metal (atomic) seed crystal 120b. That is, the surface 112d of the nanocellulose core 110d has a plurality of metal seed crystals 120b. In some exemplary embodiments, the plurality of metal seed crystals 120b are, for example, silver atomic seeds.

在一些實施例中,還原金屬晶種生成點之金屬離子120a的還原劑例如是抗壞血酸(ascorbic acid )、聯氨(hydrazine)、氫硼酸鈉(sodium borohydride)、甲醛、葡萄糖、檸檬酸鈉、尿素、二乙醇胺、三乙醇胺、甲醇、乙醇、乙二醇、甘油或其組合。在一些實施例中,還原金屬晶種生成點之金屬離子120a的反應溫度例如是介於攝氏0度至攝氏250度之間,例如於冰浴、加熱環境或室溫下進行還原反應。In some embodiments, the reducing agent for reducing the metal ion 120a of the metal seed generation point is, for example, ascorbic acid, hydrazine, sodium borohydride, formaldehyde, glucose, sodium citrate, urea , diethanolamine, triethanolamine, methanol, ethanol, ethylene glycol, glycerol or a combination thereof. In some embodiments, the reaction temperature of the metal ion 120a at the point of reduction of the metal seed crystal formation point is, for example, between 0 degrees Celsius and 250 degrees Celsius, for example, in an ice bath, a heating environment, or a room temperature.

在一具體示例性實施例中,是以氫氧化鉀處理奈米纖維素內芯110a的表面112a,使其羥基(C6-OH)取代為OK基團(步驟S12)。接著,以硝酸銀溶液處理修飾後的奈米纖維素內芯110b的表面112b,使其表面112b的OK基團被置換為OAg基團(步驟S14)。之後,以抗壞血酸做為還原劑,將OAg基團還原成Ag原子,以做為Ag金屬晶種(步驟S16)。In a specific exemplary embodiment, the surface 112a of the nanocellulose core 110a is treated with potassium hydroxide, and its hydroxyl group (C6-OH) is substituted with an OK group (step S12). Next, the surface 112b of the modified nanocellulose core 110b is treated with a silver nitrate solution, and the OK group of the surface 112b is replaced with an OAg group (step S14). Thereafter, ascorbic acid is used as a reducing agent, and the OAg group is reduced to an Ag atom to serve as an Ag metal seed crystal (step S16).

<步驟S18><Step S18>

請參照圖2E、圖3E和圖4,進行步驟S18,進行第二還原反應,還原金屬晶種120b以形成金屬外殼120包覆修飾後的奈米纖維素內芯的表面,也就是說,此時奈米纖維素內芯110d的表面112e包覆有金屬外殼120。詳細而言,進行第二還原反應是將金屬晶種120b做為成長點,藉由金屬前驅物與還原劑進行第二次的金屬成長,金屬前驅物和還原劑的種類以及還原反應的溫度如上所述,於此不再贅述。在一些實施例中,第二還原反應可額外加入聚合物,例如聚乙烯吡咯烷酮(Polyvinylpyrrolidone,PVP)、聚乙烯醇(Polyvinyl alcohol,PVA)、聚丙烯酸(poly acrylic acid,PAA)或其組合。金屬外殼120的厚度、材料等條件如上所述,於此不再贅述。Referring to FIG. 2E, FIG. 3E and FIG. 4, step S18 is performed to perform a second reduction reaction to reduce the metal seed crystal 120b to form a metal outer shell 120 to coat the surface of the modified nanocellulose inner core, that is, this The surface 112e of the nanocellulose inner core 110d is coated with a metal outer casing 120. In detail, the second reduction reaction is performed by using the metal seed crystal 120b as a growth point, and the second metal growth is performed by the metal precursor and the reducing agent, the kinds of the metal precursor and the reducing agent, and the temperature of the reduction reaction are as above. The details are not described herein. In some embodiments, the second reduction reaction may additionally include a polymer such as polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyacrylic acid (PAA), or a combination thereof. The thickness, material, and the like of the metal casing 120 are as described above, and will not be described herein.

本發明的複合材料例如可做為導電墨水中的材料。值得一提的是,本發明的複合材料可藉由控制奈米纖維素內芯的尺寸(直徑、長度等),而使整體複合材料形成在所欲形成的尺寸範圍內。舉例來說,可將複合材料的長度控制在50奈米至5000奈米之間,故可有效地解決導電墨水在列印過程中噴嘴阻塞的問題。又,在本發明的複合材料中,是以奈米纖維素做為內芯,由於奈米纖維素具有高結晶性,故可提升整體複合材料的機械強度。並且奈米纖維素的內芯可做為支持性的模板,能避免金屬融斷現象影響電性。The composite material of the present invention can be used, for example, as a material in conductive ink. It is worth mentioning that the composite material of the present invention can be formed into a desired size range by controlling the size (diameter, length, etc.) of the inner core of the nanocellulose. For example, the length of the composite material can be controlled between 50 nm and 5000 nm, so that the problem of nozzle clogging of the conductive ink during printing can be effectively solved. Further, in the composite material of the present invention, nano cellulose is used as the inner core, and since the nano cellulose has high crystallinity, the mechanical strength of the entire composite material can be improved. And the inner core of nano cellulose can be used as a supporting template to prevent metal melting from affecting electrical properties.

此外,在本發明的複合材料的製造過程中,在形成奈米纖維素內芯之後,接著,於奈米纖維素內芯的表面包覆金屬外殼,爾後不需要移除奈米纖維素內芯的步驟。也就是說,若將本發明的複合材料做為導電墨水的材料,可直接噴印形成導電線路,後續不需再移除奈米纖維素內芯,故可簡化製程。Further, in the manufacturing process of the composite material of the present invention, after forming the inner core of the nanocellulose, the metal shell is coated on the surface of the inner core of the nanocellulose, and then the nanocellulose core is not required to be removed. A step of. That is to say, if the composite material of the present invention is used as a material of the conductive ink, the conductive line can be directly printed to form a conductive line, and the nano cellulose core is not required to be removed later, so that the process can be simplified.

綜上所述,本發明的複合材料包括奈米纖維素內芯以及金屬外殼,其中金屬外殼包覆奈米纖維素內芯的表面。從結構的觀點來看,本發明的複合材料的尺寸可控制在奈米尺寸的範圍內,故可有效地降低因尺寸過大而造成的阻塞問題。又,在本發明的複合材料中,由於是由奈米纖維素做為內芯,其具有高結晶性,故可提升整體複合材料的機械強度。並且奈米纖維素的內芯可做為支持性的模板,能避免金屬融斷現象影響電性。而從製程的觀點來看,在本發明的複合材料的製造過程中,是藉由奈米纖維素內芯定義金屬外殼,後續不需要移除奈米纖維素內芯的步驟,故製程較為簡化。In summary, the composite material of the present invention comprises a nanocellulose inner core and a metal outer shell, wherein the metal outer shell covers the surface of the inner core of the nanocellulose. From the structural point of view, the size of the composite material of the present invention can be controlled within the range of nanometer size, so that the problem of clogging due to excessive size can be effectively reduced. Further, in the composite material of the present invention, since nano cellulose is used as the inner core, it has high crystallinity, so that the mechanical strength of the entire composite material can be improved. And the inner core of nano cellulose can be used as a supporting template to prevent metal melting from affecting electrical properties. From the viewpoint of the process, in the manufacturing process of the composite material of the present invention, the metal outer shell is defined by the inner core of the nano cellulose, and the subsequent step of removing the inner core of the nano cellulose is not required, so that the process is simplified.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧複合材料100‧‧‧Composite materials

S10、S12、S14、S16、S18‧‧‧步驟 S10, S12, S14, S16, S18‧‧ steps

110、110a、110b、110c、110d‧‧‧奈米纖維素內芯 110, 110a, 110b, 110c, 110d‧‧‧ nano cellulose core

112a、112b、112c、112d、112e‧‧‧表面 112a, 112b, 112c, 112d, 112e‧‧‧ surface

120‧‧‧金屬外殼 120‧‧‧Metal casing

120a‧‧‧金屬晶種生成點之金屬離子 120a‧‧‧ Metal ions at the point of formation of metal seeds

120b‧‧‧金屬晶種 120b‧‧‧metal seed crystal

圖1是依照本發明一些實施例所繪示之一種複合材料的示意圖。 圖2A至圖2E是依照本發明一些實施例所繪示之一種複合材料的製造過程示意圖。 圖3A至圖3E分別是圖2A至圖2E的複合材料的表面化學結構示意圖。 圖4是依照本發明的一些實施例所繪示之一種複合材料的製造方法的流程示意圖。1 is a schematic illustration of a composite material in accordance with some embodiments of the present invention. 2A-2E are schematic views showing a manufacturing process of a composite material according to some embodiments of the present invention. 3A to 3E are schematic diagrams showing the surface chemical structures of the composite materials of Figs. 2A to 2E, respectively. 4 is a schematic flow chart of a method of manufacturing a composite material according to some embodiments of the present invention.

Claims (18)

一種複合材料,包括:奈米纖維素內芯;以及金屬外殼,包覆所述奈米纖維素內芯的表面,其中所述複合材料的長度介於50奈米至5000奈米之間。 A composite material comprising: a nanocellulose inner core; and a metal outer shell covering a surface of the nanocellulose inner core, wherein the composite material has a length of between 50 nanometers and 5000 nanometers. 如申請專利範圍第1項所述的複合材料,其中所述複合材料的長度與直徑的比介於1.5:1至500:1之間。 The composite of claim 1, wherein the composite has a length to diameter ratio of between 1.5:1 and 500:1. 如申請專利範圍第1項所述的複合材料,其中所述複合材料的直徑介於2奈米至200奈米之間。 The composite material of claim 1, wherein the composite material has a diameter of between 2 nm and 200 nm. 如申請專利範圍第1項所述的複合材料,其中所述奈米纖維素內芯的材料包括纖維素奈米纖毛、纖維素奈米結晶、菌纖維素或其組合。 The composite material according to claim 1, wherein the material of the nanocellulose core comprises cellulose nanofilament, cellulose nanocrystal, cellulose cellulose or a combination thereof. 如申請專利範圍第1項所述的複合材料,其中所述奈米纖維素內芯為實心。 The composite material of claim 1, wherein the nanocellulose core is solid. 如申請專利範圍第1項所述的複合材料,其中所述奈米纖維素內芯的直徑介於2奈米至200奈米之間。 The composite material according to claim 1, wherein the nanocellulose inner core has a diameter of between 2 nm and 200 nm. 如申請專利範圍第1項所述的複合材料,其中所述金屬外殼的材料包括金、銀、鈀、鉑、釕、銅、鎢、鎳、鋁或其組合。 The composite material according to claim 1, wherein the material of the metal casing comprises gold, silver, palladium, platinum, rhodium, copper, tungsten, nickel, aluminum or a combination thereof. 如申請專利範圍第1項所述的複合材料,其中所述金屬外殼的厚度介於2奈米至200奈米之間。 The composite material of claim 1, wherein the metal outer shell has a thickness of between 2 nm and 200 nm. 一種複合材料的製造方法,包括:提供奈米纖維素內芯; 修飾所述奈米纖維素內芯;形成金屬晶種生成點之金屬離子於修飾後的奈米纖維素內芯的表面;進行第一還原反應,還原所述金屬晶種生成點之金屬離子以形成金屬晶種;以及進行第二還原反應,於所述金屬晶種處還原所述金屬晶種生成點之金屬離子以形成金屬外殼包覆所述修飾後的奈米纖維素內芯的所述表面。 A method of manufacturing a composite material comprising: providing a nanofiber inner core; Modifying the inner core of the nanocellulose; forming a metal ion to form a metal ion on the surface of the modified nanocellulose core; performing a first reduction reaction to reduce metal ions at the metal seed formation point Forming a metal seed; and performing a second reduction reaction, reducing the metal ions at the metal seed formation point at the metal seed to form a metal shell covering the modified nanocellulose core surface. 如申請專利範圍第9項所述的複合材料的製造方法,其中修飾所述奈米纖維素內芯的步驟是以金屬對所述奈米纖維素內芯的碳上的羥基進行取代反應以形成經金屬取代之羥基。 The method for producing a composite material according to claim 9, wherein the step of modifying the inner core of the nanocellulose is by a metal substitution reaction with a hydroxyl group on the carbon of the inner core of the nanocellulose to form A hydroxyl group substituted with a metal. 如申請專利範圍第10項所述的複合材料的製造方法,其中所述金屬晶種生成點之金屬離子是形成於所述經金屬取代之羥基上。 The method for producing a composite material according to claim 10, wherein the metal ion forming point metal ion is formed on the metal-substituted hydroxyl group. 如申請專利範圍第9項所述的複合材料的製造方法,其中修飾所述奈米纖維素內芯的步驟包括以氫氧化鉀對所述奈米纖維素內芯進行取代反應。 The method for producing a composite material according to claim 9, wherein the step of modifying the inner core of the nanocellulose comprises subjecting the nanocellulose core to a substitution reaction with potassium hydroxide. 如申請專利範圍第9項所述的複合材料的製造方法,其中進行所述第一還原反應以及所述第二還原反應的還原劑包括抗壞血酸、聯氨、氫硼酸鈉、甲醛、葡萄糖、檸檬酸鈉、尿素、二乙醇胺、三乙醇胺、甲醇、乙醇、乙二醇、甘油或其組合。 The method for producing a composite material according to claim 9, wherein the reducing agent for performing the first reduction reaction and the second reduction reaction comprises ascorbic acid, hydrazine, sodium borohydride, formaldehyde, glucose, citric acid. Sodium, urea, diethanolamine, triethanolamine, methanol, ethanol, ethylene glycol, glycerol or a combination thereof. 如申請專利範圍第9項所述的複合材料的製造方法,其中形成所述金屬晶種生成點之金屬離子以及進行所述第二還原反應的金屬前驅物包括硝酸銀、亞硝酸銀、硫酸銀、氯化銀、過氯酸銀、氰酸銀、碳酸銀、醋酸銀、亞硫酸金、氯金酸、氯鉑酸、硝酸銅、硫酸銅、氯化銅、硫酸鎳或其組合。 The method for producing a composite material according to claim 9, wherein the metal ions forming the metal seed crystal formation point and the metal precursor for performing the second reduction reaction include silver nitrate, silver nitrite, silver sulfate, Silver chloride, silver perchlorate, silver cyanate, silver carbonate, silver acetate, gold sulfite, chloroauric acid, chloroplatinic acid, copper nitrate, copper sulfate, copper chloride, nickel sulfate or a combination thereof. 如申請專利範圍第9項所述的複合材料的製造方法,其中進行所述第二還原反應更包括加入聚合物。 The method of producing a composite material according to claim 9, wherein the performing the second reduction reaction further comprises adding a polymer. 如申請專利範圍第15項所述的複合材料的製造方法,其中所述聚合物包括聚乙烯吡咯烷酮、聚乙烯醇、聚丙烯酸或其組合。 The method of producing a composite material according to claim 15, wherein the polymer comprises polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid or a combination thereof. 如申請專利範圍第9項所述的複合材料的製造方法,其中進行所述第一還原反應以及所述第二還原反應的反應溫度介於攝氏0度至攝氏250度之間。 The method for producing a composite material according to claim 9, wherein the reaction temperature of the first reduction reaction and the second reduction reaction is between 0 ° C and 250 ° C. 如申請專利範圍第9項所述的複合材料的製造方法,其中所述金屬外殼的材料包括金、銀、鈀、鉑、釕、銅、鎢、鎳、鋁或其組合。 The method of manufacturing a composite material according to claim 9, wherein the material of the metal casing comprises gold, silver, palladium, platinum, rhodium, copper, tungsten, nickel, aluminum or a combination thereof.
TW106120502A 2017-06-20 2017-06-20 Composite material and method of manufacturing the same TWI641477B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106120502A TWI641477B (en) 2017-06-20 2017-06-20 Composite material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106120502A TWI641477B (en) 2017-06-20 2017-06-20 Composite material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI641477B true TWI641477B (en) 2018-11-21
TW201904758A TW201904758A (en) 2019-02-01

Family

ID=65034621

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106120502A TWI641477B (en) 2017-06-20 2017-06-20 Composite material and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI641477B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150240388A1 (en) * 2012-09-17 2015-08-27 Cornell University Reinforcing nanofiber additives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150240388A1 (en) * 2012-09-17 2015-08-27 Cornell University Reinforcing nanofiber additives

Also Published As

Publication number Publication date
TW201904758A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
EP2632850B1 (en) Nano wire and method for manufacturing the same
JP5347964B2 (en) Semiconductor device using carbon nanotube film and method for manufacturing the same
TWI484065B (en) Method for making flexible transparent conductive film
Yan et al. Recent research progress on preparation of silver nanowires by soft solution method, preparation of gold nanotubes and Pt nanotubes from resultant silver nanowires and their applications in conductive adhesive
US20070059928A1 (en) Methods for synthesis of metal nanowires
KR20150145892A (en) Silver Coated Copper Nano Wire and Method for Manufacturing Thereof
KR101599103B1 (en) Method for manufacturing metal particles with core-shell structure
Jing et al. Preparation of nickel–silver core–shell nanoparticles by liquid-phase reduction for use in conductive paste
Jiu et al. Ag nanowires: large-scale synthesis via a trace-salt-assisted solvothermal process and application in transparent electrodes
KR101630533B1 (en) Manufacturing method of hyghly dispersible reduced graphene oxide based metal nanoparticle dispersion and metal nanoparticle film using thereof
KR101999144B1 (en) Methods of preparing metal nanoplates and metal nanoplates prepared by using the same
CN102051689A (en) Preparation method of metal/alloy nanoparticle-semiconductor nanowire or nanorod composite nano system
CN104923803A (en) Method for synthesizing copper nanowire ink with high stability and high conductivity by one-step method
TWI641477B (en) Composite material and method of manufacturing the same
US10156015B2 (en) Method for coating of carbon nanomaterials
Cao et al. Cu-based materials: Design strategies (hollow, core-shell, and LDH), sensing performance optimization, and applications in small molecule detection
KR102302548B1 (en) Preparing method of surface-treated metal nanowire
Li et al. Controllable growth of superfine silver nanowires by self-seeding polyol process
TWI568666B (en) Method of fabricating nano wire and nano wire complex
CN109093110B (en) Composite material and method for producing same
TWI552171B (en) Conductive film and manufacturing method for preparing the same
CN113649558B (en) Nano silver wire and preparation method thereof
KR20190038780A (en) Methods of preparing metal nanoplates and metal nanoplates prepared by using the same
JP5844839B2 (en) Manufacturing method of nano metal wire and nano wire
KR101599104B1 (en) Method for manufacturing metal particles with core-shell structure