TWI640953B - Cloud recommendation method, computer program product and system for nutrient dosage - Google Patents
Cloud recommendation method, computer program product and system for nutrient dosage Download PDFInfo
- Publication number
- TWI640953B TWI640953B TW105109964A TW105109964A TWI640953B TW I640953 B TWI640953 B TW I640953B TW 105109964 A TW105109964 A TW 105109964A TW 105109964 A TW105109964 A TW 105109964A TW I640953 B TWI640953 B TW I640953B
- Authority
- TW
- Taiwan
- Prior art keywords
- nutrient
- user
- body type
- classification model
- cloud
- Prior art date
Links
Landscapes
- Medical Treatment And Welfare Office Work (AREA)
Abstract
一種營養素用量的雲端推薦方法,配合複數用戶終端、一雲端資料庫及一管控平台使用。雲端資料庫連結管控平台並提供一訓練樣本,各用戶終端安裝有一應用程式,其中一用戶終端載入應用程式並執行包含下述步驟:向管控平台發送一待測體型資料以將待測體型資料輸入至一分類模型程式。分類模型程式係依據該訓練樣本中的不同體型資料的營養素用量的成效作為評分以對應各體型資料分類出各具有成效的營養素用量。然後,接收管控平台回傳一以該分類模型程式分類後符合該待測體型資料的營養素用量的推薦結果。 A cloud recommendation method for nutrient usage, combined with a plurality of user terminals, a cloud database, and a control platform. The cloud database is connected to the management platform and provides a training sample. Each user terminal is installed with an application program. One user terminal loads the application and executes the following steps: sending a body type data to be tested to the control platform to calculate the body type data to be tested Enter into a classification model program. The classification model program uses the results of the nutrient usage of different body type data in the training sample as a score to classify each effective nutrient dosage according to each body type data. Then, the receiving control platform returns a recommendation result that is classified by the classification model program and meets the nutrient dosage of the body type data to be tested.
Description
本發明是有關於一種運用雲端系統處理大數據的資訊處理方法及系統,特別是指一種以複數用戶終端的數據資料為運算基礎的營養素用量的雲端推薦方法及系統。 The invention relates to an information processing method and system for processing big data by using a cloud system, in particular to a cloud recommendation method and system for nutrient usage based on data of a plurality of user terminals.
許多人對於健康食品、藥物及飲水用量都非常講究,但忙碌的生活總是讓人容易忘記遵守這些用量攝取,難以持之以恆,甚至忽略這項重要的生活細節。有時也很難了解在不至於傷害到身體的狀況下,需要攝取多少用量才能達到健康的標準。另外,自己本身有疾病或其他特殊原因需要調整用量時,也需注意如何攝取這些健康食品。 Many people are very particular about healthy foods, drugs and drinking water, but busy life is always easy to forget to follow these intakes, it is difficult to persevere, and even ignore this important life details. Sometimes it's hard to know how much you need to get to a healthy standard without hurting your body. In addition, when you have a disease or other special reasons to adjust the dosage, you should also pay attention to how to take these healthy foods.
因此,需要一種能透過用戶目前的體型狀態(如:體重數值)推薦用戶應該食用的攝取量,且攝取量也能根據用戶本身習慣做配合,例如本身習慣用量、以往有特殊疾病或體質等背景來調整用量,藉此避免涉及中毒或其他特殊意外發生。 Therefore, there is a need for an intake that can be recommended by the user through the user's current body state (eg, weight value), and the intake can also be matched according to the user's own habits, such as the customary dosage, the previous special disease or constitution. To adjust the dosage to avoid poisoning or other special accidents.
本發明之其中一目的,即在提供一種解決先前技術缺失的營養素用量的雲端推薦方法及系統。 It is an object of the present invention to provide a cloud recommendation method and system that addresses the lack of nutrient usage in the prior art.
本發明營養素用量的雲端推薦方法在一些實施態樣中是配合複數用戶終端、一雲端資料庫及一管控平台使用。該雲端資料庫連結該管控平台並提供一訓練樣本。各該用戶終端安裝有一應用程式,其中一用戶終端載入該應用程式並執行包含下述步驟。用戶終端向該管控平台發送一待測體型資料以將該待測體型資料輸入至一分類模型程式,該分類模型程式係依據該訓練樣本中的不同體型資料的營養素用量的成效作為評分以對應各該體型資料分類出具有成效的營養素用量。然後,用戶終端接收該管控平台回傳一以該分類模型程式分類後符合該待測體型資料的營養素用量的推薦結果。 In some implementations, the cloud recommendation method for the nutrient dosage of the present invention is used in conjunction with a plurality of user terminals, a cloud database, and a control platform. The cloud database links the management platform and provides a training sample. Each user terminal is installed with an application, wherein a user terminal loads the application and performs the following steps. The user terminal sends a body shape data to be tested to the control platform to input the body shape data to be input to a classification model program, and the classification model program is scored according to the effect of the nutrient dosage of different body type data in the training sample. This type of data classifies the amount of nutrients that are effective. Then, the user terminal receives the recommended result of the management platform to return a nutrient dosage that matches the body type data after being classified by the classification model program.
在一些實施態樣中,其中一用戶終端載入該應用程式且配合一生理感測器還執行包括下述步驟:向該管控平台輸入多筆對應不同時序所服食的營養素用量,並以時序為索引記錄於該雲端資料庫對應的一用戶資料中;配合該生理感測器擷取該用戶對應所述時序服用營養素後的多筆數位化的生理參數,以時序為索引記錄於該雲端資料庫對應的該用戶資料中;及組配該管控平台向該分類模型程式輸入該等生理參數的成效作為評分以調整對應各該體型資料分類出的具有成效的營養素用量。 In some implementations, one of the user terminals loading the application and executing with the physiological sensor further comprises the steps of: inputting, to the control platform, a plurality of nutrient dosages corresponding to different timings, and timing The index is recorded in a user data corresponding to the cloud database; the physiological sensor is used to capture the plurality of digital physiological parameters of the user after taking the nutrient according to the timing, and the time data is recorded as an index in the cloud data. And corresponding to the user data of the library; and the effect of the management platform inputting the physiological parameters to the classification model program as a score to adjust the effective nutrient dosage corresponding to each body type data.
在一些實施態樣中,該分類模型程式係採用一向量空間模型進行分類,藉由計算與該訓練樣本的相似度評估該用戶終端的分類以進行推薦。 In some implementations, the classification model is classified using a vector space model, and the classification of the user terminal is evaluated by performing similarity with the training sample for recommendation.
在一些實施態樣中,本發明的電腦程式產品是當電腦載入該應用程式並執行後,可完成如前述的方法。 In some implementations, the computer program product of the present invention can perform the method as described above after the computer is loaded into the application and executed.
本發明營養素用量的雲端推薦系統在一些實施態樣中是配合複數用戶終端及一雲端資料庫使用。 In some implementations, the cloud recommendation system for the nutrient dosage of the present invention is used in conjunction with a plurality of user terminals and a cloud database.
該雲端推薦系統包含一統計平台及一管控平台。該統計平台依據該雲端資料庫蒐集到的各該用戶終端的一體型資料、一營養素用量及一服用成效作為一訓練樣本進行統計及分類以得到一分類模型程式,該分類模型程式係對應各該體型資料分類出具有成效的營養素用量。該管控平台電性連接該統計平台,接收其中一用戶終端以一待測體型資料進行查詢,並將該待測體型資料輸入至該分類模型程式,藉此產生一符合該待測體型資料的營養素用量的推薦結果提供給該用戶終端。 The cloud recommendation system includes a statistical platform and a control platform. The statistical platform performs statistics and classification on the integrated data of each user terminal collected by the cloud database, a nutrient dosage and a taking effect as a training sample to obtain a classification model program, and the classification model program corresponds to each Body type data classify effective nutrient dosages. The control platform is electrically connected to the statistical platform, and one of the user terminals is queried by using a body shape data to be tested, and the body shape data to be tested is input to the classification model program, thereby generating a nutrient that conforms to the body shape data to be tested. The recommended result of the usage is provided to the user terminal.
在一些實施態樣中,各該用戶終端載入該應用程式且配合一生理感測器還執行包括下述步驟:該管控平台接收該等用戶終端輸入多筆對應不同時序所服食的營養素用量,並以時序為索引記錄於該雲端資料庫對應的各該用戶終端的一用戶資料中;該管控平台配合該生理感測器擷取該用戶對應所述時序服用營養素後的 多筆數位化的生理參數,以時序為索引記錄於該雲端資料庫對應的各該用戶資料中;及該管控平台向該分類模型程式輸入該等生理參數的成效作為評分以調整對應各該體型資料分類出的具有成效的營養素用量。 In some implementations, each of the user terminals loading the application and executing with the physiological sensor further includes the steps of: receiving, by the user control terminal, the plurality of nutrient dosages corresponding to the different timings of the user terminals And recording, by using the time series as an index, in a user data of each user terminal corresponding to the cloud database; the control platform cooperates with the physiological sensor to capture the user's corresponding time sequence after taking the nutrient The plurality of digitized physiological parameters are recorded in the user data corresponding to the cloud database by using the time series as an index; and the control platform inputs the effects of the physiological parameters into the classification model program as a score to adjust the corresponding body shape. The data is classified as a productive nutrient dosage.
在一些實施態樣中,該分類模型程式係採用一向量空間模型進行分類,藉由計算與該訓練樣本的相似度評估該用戶終端的分類以進行推薦。 In some implementations, the classification model is classified using a vector space model, and the classification of the user terminal is evaluated by performing similarity with the training sample for recommendation.
本發明至少具有以下功效:當用戶開啟應用程式輸入體重數值後,通過分類模型程式能夠自動推薦應該攝取的營養素用量,由管控平台根據體重數值給定初步的推薦用量到用戶終端。假設不滿意推薦結果,也能夠回饋系統以調整用量,系統可記錄不同用戶的營養素用量,以備後續推薦較為合適的營養素用量。 The invention has at least the following effects: when the user opens the application to input the weight value, the classification model program can automatically recommend the amount of nutrients that should be ingested, and the control platform gives the preliminary recommended dosage to the user terminal according to the weight value. If you are not satisfied with the recommendation results, you can also feedback the system to adjust the dosage. The system can record the nutrient dosage of different users, in order to recommend the appropriate nutrient dosage.
1‧‧‧用戶終端 1‧‧‧User terminal
10‧‧‧處理模組 10‧‧‧Processing module
100‧‧‧雲端推薦系統 100‧‧‧Cloud recommendation system
101‧‧‧應用程式 101‧‧‧Application
11‧‧‧輸入模組 11‧‧‧Input module
12‧‧‧記憶模組 12‧‧‧Memory Module
13‧‧‧通訊模組 13‧‧‧Communication module
14‧‧‧輸出模組 14‧‧‧Output module
201‧‧‧分類模型程式 201‧‧‧Classification model program
21‧‧‧雲端資料庫 21‧‧‧Cloud database
22‧‧‧統計平台 22‧‧‧Statistical platform
23‧‧‧管控平台 23‧‧‧Control platform
3‧‧‧通訊網路 3‧‧‧Communication network
5‧‧‧生理感測器 5‧‧‧ Physiological sensor
S201~S203‧‧‧步驟 S201~S203‧‧‧Steps
S301~S305‧‧‧步驟 S301~S305‧‧‧Steps
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是本發明的營養素用量的雲端推薦系統的一實施例的一系統方塊圖;圖2是該實施例的一管控平台執行方法的一流程圖;圖3是該實施例的一用戶終端執行方法的一流程圖。 Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: Figure 1 is a system block diagram of an embodiment of a nutrient dosage cloud recommendation system of the present invention; A flowchart of a method for executing a control platform of an embodiment; FIG. 3 is a flowchart of a method for executing a user terminal of the embodiment.
參閱圖1,本發明營養素用量的雲端推薦系統100的一實施例是配合複數用戶終端1及一雲端資料庫21使用。雲端推薦系統100包含一統計平台22及一管控平台23,且該等用戶終端1、雲端資料庫21、統計平台22及管控平台23電性連接一通訊網路3,該等用戶終端1、雲端資料庫21、統計平台22及管控平台23並通過通訊網路3彼此傳遞資訊。 Referring to FIG. 1, an embodiment of the cloud recommendation system 100 for nutrient usage of the present invention is used in conjunction with a plurality of user terminals 1 and a cloud database 21. The cloud recommendation system 100 includes a statistic platform 22 and a management platform 23, and the user terminals 1, the cloud database 21, the statistic platform 22, and the management platform 23 are electrically connected to a communication network 3, and the user terminals 1 and the cloud data are The library 21, the statistical platform 22, and the management platform 23 communicate information to each other through the communication network 3.
統計平台22依據雲端資料庫21蒐集到的各用戶終端1的一體型資料、一營養素用量及一服用成效作為一訓練樣本在一訓練階段進行統計及分類以得到一分類模型程式201。其中,體型資料可以是身體質量指數(Body Mass Index,BMI)指標、腰圍、年齡、特殊體質因子(高血壓、高膽固醇、高血脂等)、體重或身高等相關於描述身體狀態的數值。營養素可以是糖分、鹽分、油脂等維持身體正常機能運作所需的各種元素。服用成效可以是例如攝食某種營養素用量致使身體的生理參數為正常值或生理參數為異常值的身體反應的效果。該訓練樣本可以是擷取自各用戶終端1在網站或社交軟體等網路平台的發表資料。 The statistical platform 22 performs statistics and classification on a training sample according to the integrated data, a nutrient dosage and a performance of each user terminal 1 collected by the cloud database 21 in a training stage to obtain a classification model program 201. Among them, the body type data may be a body mass index (BMI) index, waist circumference, age, special physical factors (high blood pressure, high cholesterol, high blood fat, etc.), weight or height, etc., which are related to describing the state of the body. Nutrients can be various elements required to maintain normal functioning of the body such as sugar, salt, and oil. The effect of administration may be, for example, the effect of taking a certain nutrient amount such that the physiological parameter of the body is a normal value or the physiological parameter is an abnormal value. The training sample may be published from each user terminal 1 on a web platform such as a website or social software.
分類模型程式201係對應各體型資料分類出具有成效的營養素用量。本實施例中,該分類模型程式201可以是(但不限於) 採用一向量空間模型(vector space model;簡稱VSM)進行分類,藉由計算相似度的方式對該用戶終端1進行分類,相關名詞可參照國家教育研究院的雙語詞彙、學術名詞暨辭書資訊網。分類模型程式201會找出和輸入用戶的體型資料最相似的K個用戶的體型資料的有效營養素用量,並利用這K筆體型資料來對應給出有效營養素用量的建議數值。 The classification model program 201 classifies effective nutrient dosages for each body type data. In this embodiment, the classification model program 201 can be (but is not limited to) The vector space model (VSM) is used for classification, and the user terminal 1 is classified by calculating the similarity. The related nouns can refer to the bilingual vocabulary, academic nouns and dictionaries information network of the National Institute of Education. The classification model program 201 finds the effective nutrient dosage of the K user's body type data which is most similar to the user's body type data, and uses the K pen type data to correspond to the recommended value of the effective nutrient dosage.
管控平台23主要是在一應用階段取得該統計平台22訓練好的分類模型程式201進行後續應用,包括:接收其中一用戶終端1以一待測體型資料進行查詢,並將該待測體型資料輸入至該分類模型程式201,藉此產生一符合該待測體型資料的營養素用量的推薦結果提供給該用戶終端1。例如,當知道一查詢用戶的體重(或身高等相關資訊)後,找出和該查詢用戶的體型最相似的K個用戶的平日營養素用量資料,然後可以將這K個用戶的平日營養素用量的平均值,推薦給該查詢用戶當作系統推薦結果。 The control platform 23 is mainly used to obtain the classification model program 201 trained by the statistical platform 22 for subsequent application in an application stage, including: receiving one of the user terminals 1 to perform a query on the body type data to be tested, and inputting the body type data to be tested. To the classification model program 201, a recommendation result for generating a nutrient dosage corresponding to the body type data to be tested is provided to the user terminal 1. For example, when it is known to query the user's weight (or height and other related information), find the daily nutrient usage data of the K users most similar to the size of the querying user, and then the amount of the daily nutrients of the K users can be used. The average value is recommended for the query user as a system recommendation result.
用戶終端1具有一處理模組10、一輸入模組11、一記憶模組12、一通訊模組13及一輸出模組14。本實施例中,用戶終端1可以是一可用來上網的電子裝置,處理模組10載有一應用程式101以執行本發明營養素用量的雲端推薦方法。處理模組10電性連接輸入模組11、記憶模組12、通訊模組13及輸出模組14。通訊模組13用以通過通訊網路3連結管控平台23。輸入模組11供用戶輸入應用 程式101所需參數,應用程式101的作用主要是供用戶輸入查詢資料至雲端推薦系統100,並取得雲端推薦系統100以分類模型程式201運算後回傳的資料。記憶模組12記錄用戶輸入資料及回傳資料,輸出模組14則供用戶觀看管控平台23回傳的推薦結果。 The user terminal 1 has a processing module 10, an input module 11, a memory module 12, a communication module 13, and an output module 14. In this embodiment, the user terminal 1 can be an electronic device that can be used for Internet access, and the processing module 10 carries an application 101 to perform the cloud recommendation method for the nutrient dosage of the present invention. The processing module 10 is electrically connected to the input module 11, the memory module 12, the communication module 13, and the output module 14. The communication module 13 is used to connect the control platform 23 through the communication network 3. Input module 11 for user input application The function of the program 101 is mainly for the user to input the query data to the cloud recommendation system 100, and obtain the data returned by the cloud recommendation system 100 after the classification model program 201 is operated. The memory module 12 records the user input data and the returned data, and the output module 14 allows the user to view the recommendation result returned by the management platform 23.
為了更客觀地校正推薦結果,各用戶終端1還可配合一生理感測器5執行包括下述步驟:管控平台23接收該等用戶終端1輸入多筆對應不同時序所服食的營養素用量,並以時序為索引記錄於雲端資料庫21對應的各用戶終端1的一用戶資料中。管控平台23配合生理感測器5擷取該用戶對應所述時序服用營養素後的多筆數位化的生理參數,以時序為索引記錄於該雲端資料庫21對應的各用戶資料中。然後,管控平台23向分類模型程式201輸入該等生理參數的成效作為評分以調整對應各該體型資料分類出的具有成效的營養素用量。 In order to more objectively correct the recommendation result, each user terminal 1 can also cooperate with a physiological sensor 5 to perform the following steps: the management platform 23 receives the nutrient dosages of the user terminals 1 for inputting multiple times corresponding to different timings, and The time series is recorded in a user profile of each user terminal 1 corresponding to the cloud database 21 . The control platform 23 cooperates with the physiological sensor 5 to capture a plurality of digitized physiological parameters of the user after taking the nutrient corresponding to the time series, and records the time series as an index in each user data corresponding to the cloud database 21 . Then, the control platform 23 inputs the effects of the physiological parameters to the classification model program 201 as a score to adjust the effective nutrient dosages corresponding to the respective body type data.
參閱圖2,並配合圖1,本發明的管控平台23的執行程序之一實施例說明如下。首先,管控平台23接收用戶終端1輸入多筆對應不同時序所服食的營養素用量,並以時序為索引記錄於雲端資料庫21(步驟S201)。然後,管控平台23配合生理感測器5擷取該用戶對應所述時序服用營養素後的多筆數位化的生理參數,以時序為索引記錄於該雲端資料庫21對應的該用戶資料中(步驟S202);最後,將分類模型程式201輸入該等生理參數的成效作為 評分以調整對應各該體型資料分類出的具有成效的營養素用量(步驟S203)。 Referring to Figure 2, and in conjunction with Figure 1, an embodiment of the execution procedure of the control platform 23 of the present invention is illustrated below. First, the management platform 23 receives the nutrient usage of the user terminal 1 for inputting a plurality of times corresponding to different timings, and records them in the cloud database 21 with the time series as an index (step S201). Then, the control platform 23 cooperates with the physiological sensor 5 to capture the plurality of digitized physiological parameters of the user after taking the nutrient corresponding to the time series, and records the time sequence as the index in the user data corresponding to the cloud database 21 (steps) S202); Finally, the effect of inputting the classification model program 201 into the physiological parameters is taken as The score is adjusted to adjust the amount of nutrient used corresponding to each of the body type data (step S203).
例如用戶希望以攝食適當的糖份用量以控制身體血糖為例,以用戶終端1輸入每餐攝食的糖分份量及配合之餐前/餐後輸入生理感測器5量測的血糖值資料,生理感測器5可以是例如一種基於代謝熱及光學感測的非侵入式血糖測量儀,運用例如專利公開號EP 1656065 B1的測量技術以取得用戶的血糖值。然後,在訓練階段將其上傳至雲端資料庫21當作訓練樣本之一,提供統計平台22依據內建的一判斷準則以刪除異常血糖值資料及對應的糖分用量,並留存正常血糖值資料及對應的糖分用量當作訓練樣本調整分類模型程式201,該判斷準則可以是參照表1,但不以此為限。 For example, the user wants to take the appropriate amount of sugar to control the blood sugar of the body. For example, the user terminal 1 inputs the sugar content of each meal and the blood glucose value measured by the physiological sensor 5 before and after the meal. The sensor 5 can be, for example, a non-invasive blood glucose meter based on metabolic heat and optical sensing, using a measurement technique such as Patent Publication No. EP 1656065 B1 to obtain the user's blood glucose level. Then, it is uploaded to the cloud database 21 as one of the training samples in the training stage, and the statistical platform 22 is provided according to a built-in criterion to delete the abnormal blood sugar value data and the corresponding sugar amount, and retain the normal blood sugar value data and The corresponding sugar dosage is used as a training sample adjustment classification model program 201, which may be referred to Table 1, but not limited thereto.
當管控平台23收到下一用戶輸入的體型資料進行推薦查詢時,再藉由分類模型程式201取得有控制血糖成效的之攝食糖分份量當作推薦結果給該用戶做為其體型合適攝取糖分用量的參 考值。類似的營養素及生理參數,例如鹽分和血壓值的關係等,也可類推適用,不以本實施例所述內容為限制。 When the control platform 23 receives the body type data input by the next user for the recommendation query, the classification model program 201 obtains the amount of the sugar component that controls the blood sugar effect as the recommendation result, and gives the user the appropriate amount of sugar intake for the user. Reference Test value. Similar nutrients and physiological parameters, such as the relationship between salt and blood pressure values, can also be applied analogously, and are not limited by the contents described in this embodiment.
參閱圖3,並配合圖1,本發明的用戶終端1載入該應用程式101的執行程序之一實施例說明如下,其中的步驟S301~303屬於訓練階段,步驟S304及S305則屬於應用階段。 Referring to FIG. 3, with reference to FIG. 1, an embodiment of the execution program of the user terminal 1 of the present invention loaded into the application 101 is described as follows. Steps S301-303 belong to the training phase, and steps S304 and S305 belong to the application phase.
在訓練階段時,用戶終端1向管控平台23輸入多筆對應不同時序所服食的營養素用量,並以時序為索引記錄於雲端資料庫21(步驟S301)。配合生理感測器5擷取用戶對應所述時序服用營養素後的多筆數位化的生理參數,以時序為索引記錄於雲端資料庫21(步驟S302)。管控平台23向分類模型程式201輸入該等生理參數的成效作為評分以調整對應各體型資料分類出的具有成效的營養素用量(步驟S303)。 During the training phase, the user terminal 1 inputs a plurality of nutrient usages corresponding to different timings to the management platform 23, and records them in the cloud database 21 in time series (step S301). The physiological sensor 5 is used to capture a plurality of digitized physiological parameters after the user takes the nutrient corresponding to the time series, and is recorded in the cloud database 21 with the time series as an index (step S302). The management platform 23 inputs the effects of the physiological parameters to the classification model program 201 as scores to adjust the effective nutrient usages corresponding to the respective body type data (step S303).
在應用階段時,用戶終端1向管控平台23發送一待測體型資料以將該待測體型資料輸入至分類模型程式201(步驟S304),該分類模型程式201係依據該訓練樣本中的不同體型資料的營養素用量的成效作為評分以對應各該體型資料分類出具有成效的營養素用量。然後,用戶終端1接收該管控平台23回傳一以該分類模型程式201分類後符合該待測體型資料的營養素用量的推薦結果(步驟S305)。 In the application phase, the user terminal 1 sends a body shape data to be tested to the control platform 23 to input the body shape data to be tested into the classification model program 201 (step S304), and the classification model program 201 is based on different body types in the training sample. The effectiveness of the nutrient usage of the data was scored to classify the effective nutrient dosage for each of the body type data. Then, the user terminal 1 receives the recommendation result of the management platform 23 to return a nutrient dosage amount that matches the body shape data after classification by the classification model program 201 (step S305).
以體型資料係一體重訊息為例進行說明,當管控平台 23收到體重訊息後,會根據體重數值上傳至分類模型程式201找出目前該體重的用戶所服用的營養素用量,並輸出成初步的推薦結果。用戶根據此推薦結果會給出是否滿意的回覆,假如用戶滿意此結果,分類模型程式201會將視此數值為最後推薦結果;假如用戶不滿意此結果,可以針對此營養素用量另外做調整,輸入想調整的營養素用量後上傳到雲端資料庫21,分類模型程式201將參考雲端資料庫21更新後的資料數值,有近似體型條件的下一用戶需要被推薦用量時,分類模型程式201會根據上次調整紀錄進行該次推薦營養素用量的調整,給予較合適的推薦結果。 Take the weight information of the body data system as an example to illustrate, when the control platform After receiving the weight information, the weight information is uploaded to the classification model program 201 to find out the amount of nutrients taken by the user who is currently weighing, and output the preliminary recommendation result. According to the recommendation result, the user will give a satisfactory reply. If the user is satisfied with the result, the classification model program 201 will regard this value as the final recommendation result; if the user is not satisfied with the result, another adjustment can be made for the nutrient dosage, and the input is made. After the nutrient dosage to be adjusted is uploaded to the cloud database 21, the classification model program 201 will refer to the updated data value of the cloud database 21, and when the next user with the approximate body condition needs to be recommended, the classification model program 201 will be based on The adjustment record is used to adjust the recommended nutrient dosage, and a more appropriate recommendation result is given.
綜上所述,本發明至少具有以下功效:當用戶開啟應用程式101輸入體重數值後,通過分類模型程式201能夠自動推薦應該攝取的營養素用量,由管控平台23根據體重數值給定初步的推薦用量到用戶終端1。假設不滿意推薦結果,也能夠回饋並可記錄不同用戶的營養素用量,以對於後續用戶推薦較為合適的營養素用量,故確實能達成本發明之目的。 In summary, the present invention has at least the following effects: when the user opens the application 101 to input the weight value, the classification model program 201 can automatically recommend the amount of nutrients that should be ingested, and the control platform 23 gives the preliminary recommended amount according to the weight value. Go to user terminal 1. Assuming that the recommendation result is not satisfactory, it is also possible to feed back and record the nutrient dosage of different users, so as to recommend a suitable nutrient dosage for subsequent users, it is indeed possible to achieve the object of the present invention.
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the equivalent equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still The scope of the invention is covered.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105109964A TWI640953B (en) | 2016-03-30 | 2016-03-30 | Cloud recommendation method, computer program product and system for nutrient dosage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105109964A TWI640953B (en) | 2016-03-30 | 2016-03-30 | Cloud recommendation method, computer program product and system for nutrient dosage |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201734938A TW201734938A (en) | 2017-10-01 |
TWI640953B true TWI640953B (en) | 2018-11-11 |
Family
ID=61021642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105109964A TWI640953B (en) | 2016-03-30 | 2016-03-30 | Cloud recommendation method, computer program product and system for nutrient dosage |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI640953B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200604893A (en) * | 2004-05-13 | 2006-02-01 | Fonterra Co Operative Group | Customised nutritional food and beverage dispensing system |
TW200919357A (en) * | 2006-07-06 | 2009-05-01 | Fonterra Co Operative Group | Method and apparatus for formulating individualised doses of nutrition |
CN102507859A (en) * | 2011-09-28 | 2012-06-20 | 聚信科技有限公司 | Method and device for determining matter content in products |
TW201428668A (en) * | 2013-01-09 | 2014-07-16 | Zhang bing xiang | Health analysis management system |
-
2016
- 2016-03-30 TW TW105109964A patent/TWI640953B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200604893A (en) * | 2004-05-13 | 2006-02-01 | Fonterra Co Operative Group | Customised nutritional food and beverage dispensing system |
TW200919357A (en) * | 2006-07-06 | 2009-05-01 | Fonterra Co Operative Group | Method and apparatus for formulating individualised doses of nutrition |
CN102507859A (en) * | 2011-09-28 | 2012-06-20 | 聚信科技有限公司 | Method and device for determining matter content in products |
TW201428668A (en) * | 2013-01-09 | 2014-07-16 | Zhang bing xiang | Health analysis management system |
Also Published As
Publication number | Publication date |
---|---|
TW201734938A (en) | 2017-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12131816B2 (en) | Health tracking device | |
Rahman et al. | Predicting" about-to-eat" moments for just-in-time eating intervention | |
Yom-Tov et al. | Postmarket drug surveillance without trial costs: discovery of adverse drug reactions through large-scale analysis of web search queries | |
CN103646366B (en) | A kind of interactive type autonomous heath management system and method | |
CN111902878A (en) | System and method for food analysis, personalized recommendation and health management | |
Liang et al. | Computer vision-based food calorie estimation: dataset, method, and experiment | |
CN107658001B (en) | Household oil health management method and system | |
CN109545328A (en) | A kind of individual inferior health interference method and system based on big data and artificial intelligence | |
US20220230730A1 (en) | Recipe recommendation method and device, computing device and storage medium | |
US11295860B2 (en) | Using at home measures to predict clinical state and improving the accuracy of at home measurements/predictions data associated with circadian rhythm and meal timing | |
WO2023130598A1 (en) | Insulin recommendation method and device and system for monitoring blood sugar level | |
CN109712712A (en) | A kind of health evaluating method, health evaluating device and computer readable storage medium | |
CN110379487A (en) | Nutritional regimen management system | |
KR20190063954A (en) | Method for predicting change of nutrient metabolism by artificial intelligence cloud and method for measuring nutrient metabolism by artificial intelligence cloud and method managing diease by using it | |
KR20210052122A (en) | System and method for providing user-customized food information service | |
Batterham et al. | Data mining: Potential applications in research on nutrition and health | |
CN113436738A (en) | Method, device, equipment and storage medium for managing risk users | |
M. Silva et al. | Investigating preferred food description practices in digital food journaling | |
CN109785964A (en) | A kind of health evaluating method, health evaluating device and computer readable storage medium | |
WO2023111668A1 (en) | Dietary recommendation method, apparatus and system, and storage medium, and electronic device | |
Bosch et al. | Integrated database system for mobile dietary assessment and analysis | |
KR102055717B1 (en) | Method and Apparatus for Managing Pain | |
CN112967807A (en) | System, device and storage medium for predicting cerebral apoplexy based on eating behavior | |
TWI640953B (en) | Cloud recommendation method, computer program product and system for nutrient dosage | |
KR20210052123A (en) | Method for providing user-customized food information service and server using the same |