TWI640434B - Composite separator and preparation method thereof - Google Patents
Composite separator and preparation method thereof Download PDFInfo
- Publication number
- TWI640434B TWI640434B TW106143925A TW106143925A TWI640434B TW I640434 B TWI640434 B TW I640434B TW 106143925 A TW106143925 A TW 106143925A TW 106143925 A TW106143925 A TW 106143925A TW I640434 B TWI640434 B TW I640434B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- composite separator
- nanofiber
- polymer electrolyte
- electrolyte membrane
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
Abstract
一種複合式隔離膜,包含一層奈米纖維層及兩層多孔聚合物電解質膜層。該奈米纖維層包括多個有機奈米纖維及多個分散於該等有機奈米纖維的奈米顆粒,該等奈米顆粒是經氮族四級鎓鹽官能基化的無機氧化物奈米顆粒。該兩層多孔聚合物電解質膜層分別形成在該奈米纖維層的兩相反面上,該等多孔聚合物電解質膜層包括二氟亞乙烯-六氟丙烯共聚物。本發明亦提供一種複合式隔離膜的製備方法。該複合式隔離膜製成的鋰離子電池在高功率與高溫環境中具有較佳的放電克電容量及充放電穩定性,有利於應用在高功率與高溫操作環境中的儲電及供電設備。A composite separator comprising a layer of nanofibers and two layers of porous polymer electrolyte membrane layers. The nanofiber layer comprises a plurality of organic nanofibers and a plurality of nanoparticles dispersed on the organic nanofibers, the nanoparticles being inorganic oxide nanocrystals functionalized by a nitrogen-based quaternary phosphonium salt Particles. The two layers of porous polymer electrolyte membrane layers are respectively formed on opposite sides of the nanofiber layer, and the porous polymer electrolyte membrane layers comprise a difluoroethylene-hexafluoropropylene copolymer. The invention also provides a preparation method of a composite separator. The lithium ion battery made of the composite isolation membrane has better discharge capacity and charge and discharge stability in high power and high temperature environments, and is favorable for storage and power supply equipment in high power and high temperature operation environments.
Description
本發明是有關於一種複合式隔離膜(composite separator),特別是指一種包含奈米纖維層及多孔聚合物電解質膜層的複合式隔離膜及其製備方法。The invention relates to a composite separator, in particular to a composite separator comprising a nanofiber layer and a porous polymer electrolyte membrane layer and a preparation method thereof.
鋰離子電池(Lithium-ion battery)因具備開路電壓(open circuit voltage)高、能量密度(energy density)高、充/放電速率快、充/放電循環壽命(cycle life)長、自放電(self-discharging)低及重量輕等特性,因此常用作消費電子產品及運輸設備的儲電及供電系統。Lithium-ion batteries have high open circuit voltage, high energy density, fast charge/discharge rate, long charge/discharge cycle life, and self-discharge (self- Discharging) Low and light weight characteristics, so it is often used as a storage and power supply system for consumer electronics and transportation equipment.
現有常見的鋰離子電池的結構包含:以鋰過渡金屬氧化物為材料的正極、以鋰金屬或碳為材料的負極及吸收有鋰鹽電解質溶液的隔離膜。理想的隔離膜應具有離子阻抗低、良好的機械與熱穩定性以及耐化學藥品性,一般市售的微孔聚烯烴(polyolefin)薄膜,例如:聚乙烯(PE)、聚丙烯(PP)或PP/PE/PP三層複合膜等已被廣泛使用。然而,這些市售隔離膜的親水性及熱穩定性不佳,在高功率(高電流密度)與高溫環境中的電性表現及穩定性也面臨挑戰。The structure of a conventional lithium ion battery includes: a positive electrode made of a lithium transition metal oxide, a negative electrode made of lithium metal or carbon, and a separator which absorbs a lithium salt electrolyte solution. The ideal separator should have low ionic resistance, good mechanical and thermal stability, and chemical resistance. Generally, commercially available microporous polyolefin films such as polyethylene (PE), polypropylene (PP) or PP/PE/PP three-layer composite film and the like have been widely used. However, these commercially available separators have poor hydrophilicity and thermal stability, and are also challenging in electrical performance and stability in high power (high current density) and high temperature environments.
因此,本發明之目的,即在提供一種複合式隔離膜,可以克服上述先前技術的缺點。Accordingly, it is an object of the present invention to provide a composite separator that overcomes the above-discussed shortcomings of the prior art.
於是,本發明複合式隔離膜,包含一層奈米纖維層(nanofiber layer)及兩層多孔聚合物電解質膜層(porous polymer electrolyte membrane layers)。該奈米纖維層包括多個有機奈米纖維(organic nanofibers)及多個分散於該等有機奈米纖維的奈米顆粒(nanoparticles),該等奈米顆粒是經氮族四級鎓鹽(nitrogen family quaternary onium salt)官能基化的無機氧化物(inorganic oxide)奈米顆粒。該兩層多孔聚合物電解質膜層分別形成在該奈米纖維層的兩相反面上,該等多孔聚合物電解質膜層包括二氟亞乙烯-六氟丙烯共聚物(PVDF-HFP)。Thus, the composite separator of the present invention comprises a layer of nanofiber layer and two layers of porous polymer electrolyte membrane layers. The nanofiber layer comprises a plurality of organic nanofibers and a plurality of nanoparticles dispersed in the organic nanofibers, the nano particles being nitrogen-based quaternary phosphonium salts (nitrogen) Family quaternary onium salt) functionalized inorganic oxide nanoparticles. The two layers of porous polymer electrolyte membrane layers are respectively formed on opposite sides of the nanofiber layer, and the porous polymer electrolyte membrane layers include a difluoroethylene-hexafluoropropylene copolymer (PVDF-HFP).
因此,本發明之另一目的,即在提供一種複合式隔離膜的製備方法,包含以下步驟:Therefore, another object of the present invention is to provide a method for preparing a composite separator comprising the following steps:
(a) 將一混合物分散於一第一溶劑以得到一電紡溶液,該混合物包括一有機聚合物及多個經氮族四級鎓鹽官能基化的無機氧化物奈米顆粒;(a) dispersing a mixture in a first solvent to obtain an electrospinning solution, the mixture comprising an organic polymer and a plurality of inorganic oxide nanoparticle functionalized by a nitrogen-based quaternary phosphonium salt;
(b) 將該電紡溶液進行靜電紡絲,以形成多個分散有該等無機氧化物奈米顆粒的有機奈米纖維;(b) electrospinning the electrospinning solution to form a plurality of organic nanofibers dispersed with the inorganic oxide nanoparticles;
(c) 乾燥該等有機奈米纖維以得到一奈米纖維層;(c) drying the organic nanofibers to obtain a layer of nanofibers;
(d) 將二氟亞乙烯-六氟丙烯共聚物溶解於一第二溶劑以得到一漿料(slurry);(d) dissolving the difluoroethylene-hexafluoropropylene copolymer in a second solvent to obtain a slurry;
(e) 將該漿料塗佈在一基板上,並將該奈米纖維層浸入該基板上的漿料,以分別在該奈米纖維層的兩面上各自形成一聚合物電解質膜預形成層;及(e) coating the slurry on a substrate, and dipping the nanofiber layer into the slurry on the substrate to form a polymer electrolyte film pre-forming layer on each of the two sides of the nanofiber layer ;and
(f) 乾燥該聚合物電解質膜預形成層以形成一多孔聚合物電解質膜層,並得到該複合式隔離膜。(f) drying the polymer electrolyte membrane pre-formed layer to form a porous polymer electrolyte membrane layer, and obtaining the composite separator.
本發明之功效在於:該複合式隔離膜製成的鋰離子電池在高功率與高溫環境中具有較佳的放電克電容量及充放電穩定性。The effect of the invention is that the lithium ion battery made of the composite separator has better discharge capacity and charge and discharge stability in a high power and high temperature environment.
以下將就本發明內容進行詳細說明:The contents of the present invention will be described in detail below:
較佳地,該氮族四級鎓鹽是具有3-(三甲基銨)丙基(3-(trimethylammonium)propyl)部分(moiety)的氯化物、具有四苯基鏻部分的氯化物或具有四甲基鏻部分的碘化物。Preferably, the nitrogen quaternary phosphonium salt is a chloride having a 3-(trimethylammonium)propyl moiety, a chloride having a tetraphenylphosphonium moiety or having Iodide of the tetramethylguanidine moiety.
較佳地,該等無機氧化物奈米顆粒是選自於二氧化矽奈米顆粒、氧化鋁奈米顆粒、石墨烯氧化物奈米顆粒或其組合。Preferably, the inorganic oxide nanoparticles are selected from the group consisting of cerium oxide nanoparticles, alumina nanoparticles, graphene oxide nanoparticles or a combination thereof.
較佳地,該等奈米顆粒的粒徑範圍為5~500 nm。更佳地,該等奈米顆粒的粒徑範圍為20~100 nm。Preferably, the nanoparticles have a particle size ranging from 5 to 500 nm. More preferably, the nanoparticles have a particle size ranging from 20 to 100 nm.
較佳地,該奈米纖維層是一奈米纖維非織物層(nanofiber nonwoven fabric layer),且該有機奈米纖維的材料是選自於聚對苯二甲酸乙二酯(PET)、聚二氟亞乙烯(PVDF)、聚乙烯醇(PVA)、聚丙烯腈(PAN)、聚醯亞胺(PI)、聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)或其組合。在本發明的具體實施例中,該有機奈米纖維的材料是聚對苯二甲酸乙二酯。Preferably, the nanofiber layer is a nanofiber nonwoven fabric layer, and the material of the organic nanofiber is selected from the group consisting of polyethylene terephthalate (PET) and poly Fluoroethylene (PVDF), polyvinyl alcohol (PVA), polyacrylonitrile (PAN), polyimine (PI), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP) or combinations thereof . In a specific embodiment of the invention, the material of the organic nanofiber is polyethylene terephthalate.
較佳地,該奈米纖維層的厚度範圍為10~100 μm。更佳地,該奈米纖維層的厚度範圍為10~60 μm。在本發明的具體實施例中,該奈米纖維層的厚度約為60 μm。Preferably, the nanofiber layer has a thickness ranging from 10 to 100 μm. More preferably, the nanofiber layer has a thickness ranging from 10 to 60 μm. In a particular embodiment of the invention, the nanofiber layer has a thickness of about 60 μm.
較佳地,每一層多孔聚合物電解質膜層的厚度範圍為10~300 μm。更佳地,每一層多孔聚合物電解質膜層的厚度範圍為10~50 μm。在本發明的具體實施例中,每一層多孔聚合物電解質膜層的厚度約為20 μm。Preferably, each layer of the porous polymer electrolyte membrane layer has a thickness ranging from 10 to 300 μm. More preferably, each layer of the porous polymer electrolyte membrane layer has a thickness ranging from 10 to 50 μm. In a specific embodiment of the invention, each layer of the porous polymer electrolyte membrane layer has a thickness of about 20 μm.
較佳地,每一層多孔聚合物電解質膜層的表面形成有多個孔徑範圍為0.5~1.8 μm的孔洞。Preferably, the surface of each layer of the porous polymer electrolyte membrane layer is formed with a plurality of pores having a pore diameter ranging from 0.5 to 1.8 μm.
較佳地,在該奈米纖維層中,該等奈米顆粒與該等有機奈米纖維的重量比例範圍為5:100~10:100。在本發明的具體實施例中,該等奈米顆粒與該等有機奈米纖維的重量比例為10:100。Preferably, in the nanofiber layer, the weight ratio of the nano particles to the organic nano fibers ranges from 5:100 to 10:100. In a particular embodiment of the invention, the weight ratio of the nanoparticles to the organic nanofibers is 10:100.
較佳地,該有機奈米纖維的直徑範圍為500~900 nm。Preferably, the organic nanofibers have a diameter ranging from 500 to 900 nm.
較佳地,在該步驟(b)中,該靜電紡絲的電壓為5.0~30.0 kV。在本發明的具體實施例中,該靜電紡絲的電壓為9.0 kV。Preferably, in the step (b), the voltage of the electrospinning is 5.0 to 30.0 kV. In a specific embodiment of the invention, the electrospinning voltage is 9.0 kV.
較佳地,在該步驟(b)中,該電紡溶液進行靜電紡絲的流速範圍為0.045~0.065 mL/min。在本發明的具體實施例中,該電紡溶液進行靜電紡絲的流速為0.06 mL/min。Preferably, in the step (b), the electrospinning solution is subjected to electrospinning at a flow rate ranging from 0.045 to 0.065 mL/min. In a specific embodiment of the invention, the electrospinning solution is subjected to electrospinning at a flow rate of 0.06 mL/min.
較佳地,在該步驟(b)中,該電紡溶液進行靜電紡絲的紡絲距離範圍為10~20 cm。在本發明的具體實施例中,該電紡溶液進行靜電紡絲的紡絲距離為15 cm。Preferably, in the step (b), the spinning distance of the electrospinning solution for electrospinning ranges from 10 to 20 cm. In a specific embodiment of the invention, the electrospinning solution is electrospun at a spinning distance of 15 cm.
較佳地,在該步驟(e)中,該漿料的塗佈厚度範圍為50~300 μm。更佳地,該漿料的塗佈厚度範圍為100~200 μm。在本發明的具體實施例中,該漿料的塗佈厚度為200 μm。Preferably, in the step (e), the coating thickness of the slurry ranges from 50 to 300 μm. More preferably, the slurry has a coating thickness in the range of 100 to 200 μm. In a particular embodiment of the invention, the slurry has a coating thickness of 200 μm.
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.
本發明將就以下實施例來作進一步說明,但應瞭解的是,該實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。The present invention will be further illustrated by the following examples, but it should be understood that this embodiment is intended to be illustrative only and not to be construed as limiting.
[[ 實施例]Example] 複合式隔離膜S E Composite insulation membrane S E
參閱圖1,本發明複合式隔離膜之一實施例包含一層聚對苯二甲酸乙二酯(PET)奈米纖維層1及兩層多孔二氟亞乙烯-六氟丙烯共聚物(PVDF-HFP)電解質膜層2。Referring to Figure 1, an embodiment of the composite separator of the present invention comprises a layer of polyethylene terephthalate (PET) nanofiber layer 1 and two layers of porous difluoroethylene-hexafluoropropylene copolymer (PVDF-HFP). ) Electrolyte film layer 2.
該PET奈米纖維層1包括多個PET奈米纖維11及多個分散於該等PET奈米纖維11的奈米顆粒12。在本實施例中,該等奈米顆粒12是經3-(三甲基銨)丙基(3-(trimethylammonium)propyl)的氯化物官能基化的二氧化矽奈米顆粒。The PET nanofiber layer 1 includes a plurality of PET nanofibers 11 and a plurality of nanoparticles 12 dispersed in the PET nanofibers 11. In this embodiment, the nanoparticles 12 are chloride-functionalized cerium oxide nanoparticles granulated with 3-(trimethylammonium)propyl.
該兩層多孔PVDF-HFP電解質膜層2分別形成在該PET奈米纖維層1的兩相反面上。The two-layer porous PVDF-HFP electrolyte membrane layer 2 is formed on the opposite faces of the PET nanofiber layer 1, respectively.
參閱圖2,該實施例可由包含以下步驟的方法製得:Referring to Figure 2, this embodiment can be made by a method comprising the following steps:
(a) 將18 g PET溶解於82 g三氟乙酸(TFA)與二氯甲烷(DCM)的混合溶劑(重量比為3:2)中,再加入1.8 g經3-(三甲基銨)丙基的氯化物官能基化的二氧化矽奈米顆粒(Q-SiO 2,購自於Sigma-Aldrich,平均粒徑為40 nm),在室溫中攪拌至均勻分散,以得到一電紡溶液。 (a) 18 g of PET was dissolved in a mixed solvent of 82 g of trifluoroacetic acid (TFA) and dichloromethane (DCM) (weight ratio of 3:2), and then added 1.8 g of 3-(trimethylammonium) a propyl chloride-functionalized cerium oxide nanoparticle (Q-SiO 2 , purchased from Sigma-Aldrich, having an average particle size of 40 nm), stirred at room temperature until uniformly dispersed to obtain an electrospinning Solution.
(b) 將該電紡溶液填充至注射針筒中,利用注射泵以0.06 mL/min的流速注入一靜電紡絲儀(購自於日本MECC公司,型號為SNAN系列)的針頭(內徑為0.26 mm),以進行靜電紡絲(直流電壓為9.0 kV,距離收集處15 cm),在收集面積約為675 cm 2的不鏽鋼上收集所形成的PET纖維(收集時間約為80 min)。 (b) The electrospinning solution was filled into a syringe, and a needle of an electrospinning machine (purchased from MECC, Japan, model SNAN series) was injected at a flow rate of 0.06 mL/min using a syringe pump (inner diameter of 0.26). Mm), for electrospinning (DC voltage 9.0 kV, 15 cm from the collection), the PET fibers were collected on stainless steel with a collection area of approximately 675 cm 2 (collection time approx. 80 min).
(c) 在室溫中乾燥收集到的PET纖維,以得到一PET奈米纖維非織物層L E。 (c) drying the collected PET fibers at room temperature, to obtain a PET nonwoven fabric layer nanofiber L E.
(d) 將18 g PVDF-HFP (HFP含量為6 mol%)加入87.4 g二甲基甲醯胺(DMF)/丙酮混合液(重量比為1:3)及4.6 g N-甲基吡咯啶酮(NMP),在80℃水浴中攪拌2小時,溶解後以得到一漿料。 (d) Add 18 g of PVDF-HFP (HFP content of 6 mol%) to 87.4 g of dimethylformamide (DMF)/acetone mixture (weight ratio 1:3) and 4.6 g of N -methylpyrrolidine The ketone (NMP) was stirred in a water bath at 80 ° C for 2 hours to dissolve to obtain a slurry.
(e) 將該漿料在室溫中冷卻,同時慢速攪拌以去除漿料內的氣泡。利用往復式塗佈機將冷卻後的漿料塗佈在一玻璃基板上(塗佈厚度為200 μm),並將該PET奈米纖維非織物層L E浸入該玻璃基板上的漿料,以分別在該PET奈米纖維非織物層L E的兩面上各自形成一PVDF-HFP電解質膜預形成層。 (e) The slurry was cooled at room temperature while stirring slowly to remove bubbles in the slurry. The cooled slurry is coated on a glass substrate (coating thickness: 200 μm) by a reciprocating coater, and the PET nanofiber non-woven layer L E is immersed in the slurry on the glass substrate to A PVDF-HFP electrolyte membrane pre-formed layer was formed on each of the sides of the PET nanofiber nonwoven fabric layer L E.
(f) 在室溫中乾燥該PVDF-HFP電解質膜預形成層以形成一多孔PVDF-HFP電解質膜層,並輥壓得到三明治結構的PVDF-HFP/PET/PVDF-HFP複合式隔離膜S E(厚度約為100 μm)。 (f) drying the PVDF-HFP electrolyte membrane pre-formed layer at room temperature to form a porous PVDF-HFP electrolyte membrane layer, and rolling to obtain a sandwich structure PVDF-HFP/PET/PVDF-HFP composite separator S E (thickness of about 100 μm).
[[ 應用例]Application example] 鋰離子電池LIB E Lithium-ion battery LIB E
正極極片—將LiH 2PO 4、FeC 2O 4·2H 2O、葡萄糖、酒石酸以45:45:5:5的重量比混合,再加入丙酮進行球磨,接著在氫氣存在下燒結得到LFP(LiFePO 4)樣品。以LFP樣品為100 wt%,額外添加1 wt%碳黑(用水當分散液,購自於美國Cabot公司,平均粒徑為10 nm,表面積為1500 m 2/g)及5 wt%葡萄糖(水溶液)進行噴霧乾燥,接著在氬氣環境下以600℃燒結5 h,得到LFP/C複合粉末。分別緩緩依序將0.4 g導電碳黑Super P ®(購自於瑞士TIMCAL公司,平均粒徑為30 nm,表面積為50 m 2/g)、5.4 g PVDF (7 wt%的NMP溶液)、3 g LFP/C複合粉末(相當於導電碳黑Super P ®、PVDF、LFP/C複合粉末的重量比約為10:10:80)加入4 g NMP中攪拌至均勻混合,去除氣泡後,再利用塗佈機將其塗佈於厚度為20 μm的鋁箔上(濕膜厚度為200 μm),並在60℃烘箱中烘乾,以去除溶劑,接著在120℃烘箱中烘烤2小時,進一步去除殘餘的溶劑及水氣,再利用輥壓機(roller)輾壓整平至極片厚度約為40~45 μm(壓實密度約為1.8~2.1 g/cm 3),最後裁切成直徑為13 mm的圓形極片。 Positive electrode tab - LiH 2 PO 4 , FeC 2 O 4 · 2H 2 O, glucose, tartaric acid are mixed in a weight ratio of 45:45:5:5, and then acetone is added for ball milling, followed by sintering in the presence of hydrogen to obtain LFP ( LiFePO 4 ) sample. 100 wt% of LFP sample, additional 1 wt% carbon black (water as dispersion, purchased from Cabot, USA, average particle size 10 nm, surface area 1500 m 2 /g) and 5 wt% glucose (aqueous solution) Spray drying was carried out, followed by sintering at 600 ° C for 5 h under an argon atmosphere to obtain an LFP/C composite powder. 0.4 g of conductive carbon black Super P ® (purchased from TIMCAL, Switzerland, average particle size 30 nm, surface area 50 m 2 /g), 5.4 g PVDF (7 wt% NMP solution), 3 g LFP/C composite powder (equivalent to conductive carbon black Super P ® , PVDF, LFP/C composite powder weight ratio of about 10:10:80), added to 4 g of NMP, stirred until evenly mixed, after removing bubbles, It was coated on an aluminum foil having a thickness of 20 μm by a coater (wet film thickness of 200 μm), and dried in an oven at 60 ° C to remove the solvent, followed by baking in an oven at 120 ° C for 2 hours. The residual solvent and moisture are removed, and then rolled and flattened by a roller to a thickness of about 40 to 45 μm (the compaction density is about 1.8 to 2.1 g/cm 3 ), and finally cut into a diameter. 13 mm round pole piece.
負極極片—直徑為16 mm、厚度為200 μm的鋰箔。Negative electrode tab - a lithium foil with a diameter of 16 mm and a thickness of 200 μm.
隔離膜及電解質溶液—將上述實施例製得的複合式隔離膜S E裁切成直徑為18 mm的圓形,浸泡於1 M LiPF 6的碳酸伸乙酯(ethylene carbonate, EC)及碳酸二乙酯(diethyl carbonate, DEC)溶液(EC、DEC的體積比為1:1)中。 Isolation film and electrolyte solution—The composite separator S E obtained in the above embodiment was cut into a circle having a diameter of 18 mm, and immersed in 1 M LiPF 6 of ethylene carbonate (EC) and carbonic acid. A solution of diethyl carbonate (DEC) (volume ratio of EC and DEC is 1:1).
在氬氣操作環境中,將上述正極極片、負極極片、經浸泡電解質溶液的隔離膜及上蓋、下蓋、簧片、墊片封裝成一鈕扣型鋰離子電池LIB E。 In the argon operating environment, the positive electrode tab, the negative electrode tab, the separator coated with the electrolyte solution, and the upper cover, the lower cover, the reed, and the gasket are packaged into a button type lithium ion battery LIB E .
[[ 比較應用例]Comparative application example] 鋰離子電池LIB CE Lithium-ion battery LIB CE
比較應用例的製程與上述應用例相似,差異之處在於以聚乙烯(PE)隔離膜S CE(購自於日本旭化成株式会社,厚度為16 μm)取代上述實施例製得的複合式隔離膜S E,封裝成一鈕扣型鋰離子電池LIB CE。 The process of the comparative application example is similar to the above-mentioned application example, except that a polyethylene (PE) separator S CE (available from Asahi Kasei Co., Ltd., Japan, thickness: 16 μm) is used instead of the composite separator obtained in the above embodiment. S E , packaged into a button type lithium ion battery LIB CE .
[[ 隔離膜結構的觀測]Observation of the structure of the isolation membrane]
利用掃描式電子顯微鏡分別觀測上述實施例的PET奈米纖維非織物層L E、複合式隔離膜S E及上述比較應用例的PE隔離膜S CE,結果分別如圖3(A)~3(B)、圖4(A)~4(B)及圖5所示。 The PET nanofiber non-woven fabric layer L E and the composite separator S E of the above embodiment and the PE separator S CE of the above comparative application were respectively observed by a scanning electron microscope, and the results are shown in Fig. 3(A) to 3, respectively. B), Figure 4 (A) ~ 4 (B) and Figure 5.
由圖3(A)~3(B)可以看出,實施例的PET奈米纖維非織物層L E包括多個直徑約為500~900 nm的PET奈米纖維,且在PET奈米纖維上分散有多個經3-(三甲基銨)丙基的氯化物官能基化的二氧化矽奈米顆粒[如圖3(B)箭頭所指]。 As can be seen from Figures 3(A) to 3(B), the PET nanofiber nonwoven fabric layer L E of the embodiment comprises a plurality of PET nanofibers having a diameter of about 500 to 900 nm, and on the PET nanofibers. A plurality of chloride-functionalized cerium oxide nanoparticles having a 3-(trimethylammonium)propyl group are dispersed [as indicated by the arrow in Fig. 3(B)].
由圖4(A)可以看出,實施例的複合式隔離膜S E表面形成有多個平均孔徑約為1.1 μm的孔洞。由圖4(B)可以看出,實施例的複合式隔離膜S E橫截面顯示其為三明治結構,且其厚度約為100 μm;其中,該PET奈米纖維非織物層L E的厚度約為60 μm,每一多孔PVDF-HFP電解質膜層的厚度約為20 μm。 As can be seen from Fig. 4(A), the surface of the composite separator S E of the embodiment is formed with a plurality of pores having an average pore diameter of about 1.1 μm. As can be seen in FIG. 4 (B), compound of formula S E cross-section an embodiment of the insulating film which is a sandwich structure of the display, and a thickness of approximately 100 μm; wherein a thickness of the PET non-woven layer L E about nanofiber At 60 μm, each porous PVDF-HFP electrolyte membrane layer has a thickness of about 20 μm.
由圖5可以看出,比較應用例的PE隔離膜S CE表面形成有多個平均孔徑約為80 nm的孔洞。 As can be seen from Fig. 5, the surface of the PE separator S CE of the comparative application example is formed with a plurality of pores having an average pore diameter of about 80 nm.
[[ 接觸角的量測]Contact angle measurement]
以去離子水滴分別量測在上述比較應用例的PE隔離膜S CE、未分散有奈米顆粒的PET奈米纖維非織物層L PET及上述實施例分散有奈米顆粒的PET奈米纖維非織物層L E之表面上去離子水液滴接觸角隨時間的變化,結果如圖6所示。 The PE separator S CE in the above comparative application, the PET nanofiber non-fabric layer L PET in which the nanoparticles are not dispersed, and the PET nanofiber in which the nanoparticles are dispersed in the above embodiment are respectively measured by deionized water droplets. The contact angle of the deionized water droplets on the surface of the fabric layer L E changes with time, and the result is shown in FIG.
由圖6可以看出,在1 s時(初始階段),在比較應用例的PE隔離膜S CE及未分散有奈米顆粒的PET奈米纖維非織物層L PET之表面上的液滴接觸角分別約為123°及131°,而在實施例分散有奈米顆粒的PET奈米纖維非織物層L E之表面上的液滴接觸角約為120°;經過10 min後,在比較應用例的PE隔離膜S CE及未分散有奈米顆粒的PET奈米纖維非織物層L PET之表面上的液滴接觸角約為114°,而在實施例分散有奈米顆粒的PET奈米纖維非織物層L E之表面上的液滴接觸角約為110°,顯示實施例分散有奈米顆粒的PET奈米纖維非織物層L E之表面的親水性相對較高。 As can be seen from Figure 6, at the time of 1 s (initial stage), L droplets on the surface of the PET PE and PET separator S CE nanofiber nonwoven layers are not dispersed nano-particles of Comparative Application Example contacting The angles are about 123° and 131°, respectively, and the droplet contact angle on the surface of the PET nanofiber nonwoven layer L E in which the nanoparticles are dispersed is about 120°; after 10 minutes, in the comparative application. The contact angle of the droplets on the surface of the PE separator S CE and the PET nanofiber non-fabric layer L PET on which the nanoparticles are not dispersed is about 114°, and in the embodiment, the PET nanoparticles in which the nanoparticles are dispersed are used. The droplet contact angle on the surface of the fibrous nonwoven fabric layer L E was about 110°, indicating that the surface of the PET nanofiber nonwoven fabric layer L E in which the nanoparticles were dispersed was relatively hydrophilic.
另以含1 M LiClO 4的DMSO電解質液滴分別量測在上述比較應用例的PE隔離膜S CE及上述實施例的複合式隔離膜S E之表面上液滴接觸角隨時間的變化。 Further, the droplet contact angle of the PE separator S CE of the above comparative application example and the composite separator S E of the above-described embodiment was measured with time by the DMSO electrolyte droplets containing 1 M LiClO 4 .
結果顯示,在1 s時(初始階段),在比較應用例的PE隔離膜S CE之表面上的液滴接觸角為78.5°,而在實施例的複合式隔離膜S E之表面上的液滴接觸角為49.5°;經過10 min後,在比較應用例的PE隔離膜S CE之表面上的液滴接觸角為76.2°,而在實施例的複合式隔離膜S E之表面上的液滴接觸角為2.9°,顯示實施例的複合式隔離膜S E之表面的親水性明顯較高,且電解質液滴可隨著時間滲入實施例的複合式隔離膜S E。 The results showed that at 1 s (initial stage), the droplet contact angle on the surface of the PE separator S CE of the comparative application example was 78.5°, and the liquid on the surface of the composite separator S E of the example The droplet contact angle was 49.5°; after 10 minutes, the droplet contact angle on the surface of the PE separator S CE of the comparative application example was 76.2°, and the liquid on the surface of the composite separator S E of the example The dropping contact angle was 2.9°, which showed that the hydrophilicity of the surface of the composite separator S E of the example was remarkably high, and the electrolyte droplets could infiltrate into the composite separator S E of the example over time.
[[ 熱穩定性的量測]Thermal stability measurement]
以熱重分析法(thermogravimetric analysis method)分別量測上述比較應用例的PE隔離膜S CE、未分散有奈米顆粒的PET奈米纖維非織物層L PET及上述實施例分散有奈米顆粒的PET奈米纖維非織物層L E之重量隨溫度的變化,結果如圖7所示。 The PE separator S CE of the above comparative application, the PET nanofiber non-fabric layer L PET not dispersed with the nanoparticles, and the nanoparticle dispersed in the above embodiment were respectively measured by a thermogravimetric analysis method. The weight of the PET nanofiber non-woven fabric layer L E changes with temperature, and the result is shown in FIG.
由圖7可以看出,從200℃升溫至600℃的過程中,比較應用例的PE隔離膜S CE及未分散有奈米顆粒的PET奈米纖維非織物層L PET之重量損失率分別約為99.6%及79.1%,而實施例的PET奈米纖維非織物層L E之重量損失率僅約為72.7%,顯示實施例分散有奈米顆粒的PET奈米纖維非織物層L E之熱穩定性相對較佳。 It can be seen from Fig. 7 that in the process of heating from 200 ° C to 600 ° C, the weight loss rates of the PE separator S CE of the comparative application example and the PET nanofiber non-woven layer L PET of the non-dispersed nanoparticles are respectively about The weight loss rate of the PET nanofiber non-woven fabric layer L E of the example was only about 72.7%, which shows the heat of the PET nanofiber non-woven layer L E of the embodiment in which the nanoparticle was dispersed. The stability is relatively good.
另對於相同尺寸的上述比較應用例的PE隔離膜S CE及上述實施例的複合式隔離膜S E進行150℃加熱30 min,分別量測其受熱後的面積收縮率。 Further, the PE separator S CE of the above comparative application of the same size and the composite separator S E of the above-described embodiment were heated at 150 ° C for 30 min, and the area shrinkage after heating was measured.
結果顯示,比較應用例的PE隔離膜S CE受熱後的面積收縮率為92%,且由白色轉變成透明,而實施例的複合式隔離膜S E受熱後的面積收縮率僅為8%,且維持白色不透光,顯示實施例的複合式隔離膜S E之熱穩定性明顯較佳。 The results show that the area shrinkage of the PE separator S CE of the comparative application is 92% after heating, and it changes from white to transparent, and the area shrinkage of the composite separator S E of the embodiment after heating is only 8%. And maintaining white opacity, it is shown that the thermal stability of the composite separator S E of the embodiment is remarkably better.
[[ 鋰離子電池電性的量測]Lithium-ion battery electrical measurement]
利用電池測試設備(購自於佳優科技,型號為BAT-750B)分別量測上述比較應用例的鋰離子電池LIB CE及上述實施例的鋰離子電池LIB E的放電克電容量(discharge specific capacity, Q sp),測試條件:環境溫度為55℃、1C=170 mAh/g,並以如下數學式1計算其放電電容維持率(capacity retention, CR),充放電條件及結果如下表1所示。 The battery test equipment (purchased from Jiayou Technology, model BAT-750B) was used to measure the discharge specific capacity of the lithium ion battery LIB CE of the above comparative application and the lithium ion battery LIB E of the above embodiment. , Q sp ), test conditions: ambient temperature is 55 ° C, 1 C = 170 mAh / g, and the discharge capacity retention (CR) is calculated by the following mathematical formula 1, charge and discharge conditions and results are shown in Table 1 below .
另以交流電阻抗譜法(AC impedance spectroscopy)分別測量其電阻(R b及R ct),並以如下數學式2計算其總電阻差(ΔR t),充放電條件及結果如下表1所示。 【數學式1】 CR=[(Q sp) 循環後/(Q sp) 循環前]×100% 【數學式2】 ΔR t=(R b+R ct) 第 200 次循環後-(R b+R ct) 第 100 次循環後【表1】 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> 充電0.2C 放電10C 循環3次 </td><td> 充電0.1C 放電0.1C 循環60次 </td><td> 充電1C 放電1C 循環200次 </td><td> 充電1C 放電1C 循環200次 </td></tr><tr><td> Q<sub>sp</sub> (mAh/g) </td><td> CR </td><td> CR </td><td> ΔR<sub>t</sub> (Ω) </td></tr><tr><td> LIB<sub>CE</sub></td><td> 115±0.8 </td><td> 92.0% </td><td> 64.2% </td><td> +6 </td></tr><tr><td> LIB<sub>E</sub></td><td> 132±0.3 </td><td> 96.3% </td><td> 84.6% </td><td> -18 </td></tr></TBODY></TABLE>The resistance (R b and R ct ) were measured by AC impedance spectroscopy, and the total resistance difference (ΔR t ) was calculated by the following mathematical formula 2. The charge and discharge conditions and results are shown in Table 1 below. [Math 1] CR = [(Q sp ) cycle / before (Q sp ) cycle ] × 100% [Math 2] ΔR t = (R b + R ct ) after the 200th cycle - (R b + R ct ) After the 100th cycle [Table 1] <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td></td><td> Charging 0.2 C discharge 10C cycle 3 times</td><td> charge 0.1C discharge 0.1C cycle 60 times</td><td> charge 1C discharge 1C cycle 200 times</td><td> charge 1C discharge 1C cycle 200 times </td></tr><tr><td>Q<sub>sp</sub> (mAh/g) </td><td> CR </td><td> CR </td><td >ΔR<sub>t</sub> (Ω) </td></tr><tr><td>LIB<sub>CE</sub></td><td> 115±0.8 </td><td> 92.0% </td><td> 64.2% </td><td> +6 </td></tr><tr><td>LIB<sub>E</sub></td><td> 132±0.3 </td><td> 96.3% </td><td> 84.6% </td><td> -18 </td></tr></TBODY></TABLE>
由表1可以看出,在55℃的環境中,相較於比較應用例的鋰離子電池LIB CE: As can be seen from Table 1, in the environment of 55 ° C, compared to the lithium ion battery LIB CE of the comparative application:
(1) 實施例的鋰離子電池LIB E以高速(高電流密度)(10C)放電時,其放電克電容量約高出15%,且較穩定。 (1) When the lithium ion battery LIB E of the embodiment is discharged at a high speed (high current density) (10C), its discharge gram capacity is about 15% higher and is more stable.
(2) 無論以低速(0.1C)充放電或較高速(1C)充放電,在多次充放電循環後,實施例的鋰離子電池LIB E的放電電容維持率皆較高。 (2) whether a low speed (0.1C) or a higher speed charge and discharge (1C) charge and discharge, after repeated charge and discharge cycles, the discharge capacity retention embodiments the lithium ion battery according to the LIB E are high.
(3) 在200次充放電循環後,實施例的鋰離子電池LIB E仍能有效抑制電池的電阻增加。 (3) after 200 charge-discharge cycles, the lithium ion battery LIB E embodiment embodiment can still effectively suppress an increase in resistance of the battery.
綜上所述,本發明複合式隔離膜藉由該奈米纖維層中的奈米顆粒,可提高其親水性及熱穩定性,且能提供其製成的鋰離子電池在高速(10C)與高溫(55℃)的環境中較佳的放電克電容量及充放電穩定性(較佳的放電電容維持率),有利於應用在高功率與高溫操作環境中的儲電及供電設備,故確實能達成本發明之目的。In summary, the composite separator of the present invention can improve the hydrophilicity and thermal stability of the nanoparticle in the nanofiber layer, and can provide the lithium ion battery thereof at high speed (10C). The high discharge (55 ° C) environment in the preferred discharge capacity and charge and discharge stability (preferred discharge capacity maintenance rate), is conducive to the application of high-power and high-temperature operating environment in the storage and power supply equipment, so it is true The object of the invention can be achieved.
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與官能基化,皆仍屬本發明專利涵蓋之範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and the simple equivalent change and functionalization according to the scope of the patent application and the patent specification of the present invention are It is still within the scope of the invention patent.
1‧‧‧PET奈米纖維層
11‧‧‧PET奈米纖維
12‧‧‧奈米顆粒
2‧‧‧PVDF-HFP電解質膜層1‧‧‧PET nanofiber layer
11‧‧‧PET nanofiber
12‧‧‧Nano granules
2‧‧‧PVDF-HFP electrolyte membrane
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: [圖1]是本發明複合式隔離膜的實施例的立體剖視示意圖; [圖2]是本發明複合式隔離膜的製備方法的實施例的流程圖; [圖3]是本發明複合式隔離膜的實施例的(A)PET奈米纖維非織物層與(B)分散有經3-(三甲基銨)丙基的氯化物官能基化的二氧化矽奈米顆粒的PET奈米纖維的掃描式電子顯微鏡照片; [圖4]是本發明複合式隔離膜的實施例的(A)上視與(B)剖視掃描式電子顯微鏡照片; [圖5]是一比較應用例的PE隔離膜的掃描式電子顯微鏡照片; [圖6]是在該比較應用例的PE隔離膜、未分散有奈米顆粒的PET奈米纖維非織物層及該實施例分散有奈米顆粒的PET奈米纖維非織物層之表面上去離子水液滴接觸角對時間關係圖;及 [圖7]是該比較應用例的PE隔離膜、未分散有奈米顆粒的PET奈米纖維非織物層及該實施例分散有奈米顆粒的PET奈米纖維非織物層的熱重曲線圖。Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: FIG. 1 is a perspective, cross-sectional view showing an embodiment of the composite separator of the present invention; [FIG. 2] is A flow chart of an embodiment of a method for preparing a composite separator; [Fig. 3] is a (A) PET nanofiber nonwoven layer and (B) dispersed with 3-(3) of the composite separator of the present invention; Scanning electron micrograph of PET nanofiber of chloride-functionalized cerium oxide nanoparticle of trimethylammonium) propyl; [Fig. 4] (A) of the embodiment of the composite separator of the present invention Top view and (B) cross-sectional scanning electron micrograph; [Fig. 5] is a scanning electron micrograph of a PE separator of a comparative application example; [Fig. 6] is a PE separator in the comparative application example, Contact angle of the deionized water droplets on the surface of the PET nanofiber non-woven layer in which the nanoparticles are dispersed and the PET nanofiber non-woven layer in which the nanoparticles are dispersed; and [Fig. 7] The PE separator of the comparative application example, P which is not dispersed with nanoparticles Thermogravimetric graph of the ET nanofiber nonwoven layer and the PET nanofiber nonwoven layer in which the nanoparticles are dispersed in this example.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106143925A TWI640434B (en) | 2017-12-14 | 2017-12-14 | Composite separator and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106143925A TWI640434B (en) | 2017-12-14 | 2017-12-14 | Composite separator and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI640434B true TWI640434B (en) | 2018-11-11 |
TW201927541A TW201927541A (en) | 2019-07-16 |
Family
ID=65034473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106143925A TWI640434B (en) | 2017-12-14 | 2017-12-14 | Composite separator and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI640434B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102791789A (en) * | 2010-03-09 | 2012-11-21 | 凸版印刷株式会社 | Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body |
TW201510201A (en) * | 2013-08-23 | 2015-03-16 | Diamond Innovations Inc | Lapping slurry having a cationic surfactant |
TW201637265A (en) * | 2015-04-13 | 2016-10-16 | 國立中央大學 | Electrolyte membrane |
-
2017
- 2017-12-14 TW TW106143925A patent/TWI640434B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102791789A (en) * | 2010-03-09 | 2012-11-21 | 凸版印刷株式会社 | Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body |
TW201510201A (en) * | 2013-08-23 | 2015-03-16 | Diamond Innovations Inc | Lapping slurry having a cationic surfactant |
TW201637265A (en) * | 2015-04-13 | 2016-10-16 | 國立中央大學 | Electrolyte membrane |
Also Published As
Publication number | Publication date |
---|---|
TW201927541A (en) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10497916B2 (en) | Separator for electrochemical cell and method for its manufacture | |
Wang et al. | Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes for high-voltage lithium-ion batteries | |
Jiang et al. | Core–shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries | |
CN106159173B (en) | Polymer composite membrane and preparation method thereof, polymer composite membrane prepared by method, gel electrolyte and lithium ion battery | |
Li et al. | Effects of an electrospun fluorinated poly (ether ether ketone) separator on the enhanced safety and electrochemical properties of lithium ion batteries | |
Carol et al. | Preparation and characterization of electrospun poly (acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries | |
Yanilmaz et al. | SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries | |
Zhai et al. | Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium ion batteries | |
Wu et al. | PVDF-HFP/PET/PVDF-HFP composite membrane for lithium-ion power batteries | |
Zhang et al. | Poly (vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries | |
He et al. | A gel polymer electrolyte based on Polyacrylonitrile/organic montmorillonite membrane exhibiting dense structure for lithium ion battery | |
Xiao et al. | PVA-ZrO2 multilayer composite separator with enhanced electrolyte property and mechanical strength for lithium-ion batteries | |
Xiao et al. | Preparation and performance of poly (vinyl alcohol) porous separator for lithium-ion batteries | |
Yanilmaz et al. | Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques | |
Raghavan et al. | Novel electrospun poly (vinylidene fluoride-co-hexafluoropropylene)–in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries | |
Raghavan et al. | Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly (vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers | |
Kim et al. | Preparation of a trilayer separator and its application to lithium-ion batteries | |
Lee et al. | Partially oxidized polyacrylonitrile nanofibrous membrane as a thermally stable separator for lithium ion batteries | |
Xiao et al. | Preparation and electrochemical performance of ZrO2 nanoparticle-embedded nonwoven composite separator for lithium-ion batteries | |
KR20190001566A (en) | Positive Electrodes for lithium secondary battery and Lithium secondary battery comprising the same | |
WO2011063132A1 (en) | Composite separator for electrochemical cell and method for its manufacture | |
Yang et al. | A core–shell structured polyacrylonitrile@ poly (vinylidene fluoride-hexafluoro propylene) microfiber complex membrane as a separator by co-axial electrospinning | |
Padmaraj et al. | Electrochemical studies of electrospun organic/inorganic hybrid nanocomposite fibrous polymer electrolyte for lithium battery | |
KR101865393B1 (en) | Micro porous separator, method for manufacturing the same and electrochemical device containing the same | |
CN104508874B (en) | Lithium rechargeable battery |