TWI640126B - Antenna structure and wireless communication device with same - Google Patents

Antenna structure and wireless communication device with same Download PDF

Info

Publication number
TWI640126B
TWI640126B TW106121491A TW106121491A TWI640126B TW I640126 B TWI640126 B TW I640126B TW 106121491 A TW106121491 A TW 106121491A TW 106121491 A TW106121491 A TW 106121491A TW I640126 B TWI640126 B TW I640126B
Authority
TW
Taiwan
Prior art keywords
antenna structure
metal
mode
electrically connected
switching
Prior art date
Application number
TW106121491A
Other languages
Chinese (zh)
Other versions
TW201806239A (en
Inventor
李承翰
許溢文
葉維軒
Original Assignee
群邁通訊股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群邁通訊股份有限公司 filed Critical 群邁通訊股份有限公司
Publication of TW201806239A publication Critical patent/TW201806239A/en
Application granted granted Critical
Publication of TWI640126B publication Critical patent/TWI640126B/en

Links

Abstract

一種天線結構,包括殼體、第一饋入源以及第一輻射體,所述殼體包括前框、背板以及邊框,所述邊框上開設有開槽,所述前框上開設有斷點,所述斷點與所述開槽連通並延伸至隔斷所述前框,所述開槽及所述斷點自所述殼體劃分出金屬長臂及金屬短臂,所述第一輻射體設置於所述殼體內,包括第一輻射部及第二輻射部,所述第一輻射部之一端電連接至所述第一饋入源,另一端與所述金屬長臂間隔耦合設置;所述第二輻射部之一端電連接至所述第一饋入源,另一端電連接至所述金屬短臂。An antenna structure includes a housing, a first feeding source, and a first radiator. The housing includes a front frame, a back plate, and a frame. The frame is provided with a slot, and the front frame is provided with a break point. The break point is in communication with the slot and extends to block the front frame, and the slot and the break point divide a metal long arm and a metal short arm from the housing, the first radiator The first radiating portion is electrically connected to the first feeding source, and the other end is spaced apart from the metal long arm. One end of the second radiating portion is electrically connected to the first feeding source, and the other end is electrically connected to the metal short arm.

Description

天線結構及具有該天線結構之無線通訊裝置Antenna structure and wireless communication device having the same

本發明涉及一種天線結構及具有該天線結構之無線通訊裝置。The invention relates to an antenna structure and a wireless communication device having the same.

隨著無線通訊技術之進步,無線通訊裝置不斷朝向輕薄趨勢發展,消費者對於產品外觀之要求亦越來越高。由於金屬殼體於外觀、機構強度、散熱效果等方面具有優勢,因此越來越多之廠商設計出具有金屬殼體,例如金屬背板之無線通訊裝置來滿足消費者之需求。然,金屬殼體容易干擾遮蔽設置於其內之天線所輻射之訊號,不容易達到寬頻設計,導致內置天線之輻射性能不佳。再者,所述背板上通常還設置有開槽及斷點,如此將影響背板之完整性與美觀性。With the advancement of wireless communication technology, wireless communication devices are constantly moving toward a thin and light trend, and consumers are increasingly demanding the appearance of products. Due to the advantages of the metal casing in terms of appearance, mechanism strength, heat dissipation effect, etc., more and more manufacturers have designed wireless communication devices with metal casings, such as metal back plates, to meet the needs of consumers. However, the metal casing easily interferes with the signal radiated by the antenna disposed therein, and the broadband design is not easily achieved, resulting in poor radiation performance of the built-in antenna. Moreover, the backing plate is usually provided with a slot and a break point, which will affect the integrity and aesthetics of the backboard.

有鑑於此,有必要提供一種天線結構及具有該天線結構之無線通訊裝置。In view of the above, it is necessary to provide an antenna structure and a wireless communication device having the same.

一種天線結構,包括殼體、第一饋入源以及第一輻射體,所述殼體包括前框、背板以及邊框,所述邊框夾設於所述前框與所述背板之間,所述邊框上開設有開槽,所述前框上開設有斷點,所述斷點與所述開槽連通並延伸至隔斷所述前框,所述開槽及所述斷點自所述殼體劃分出金屬長臂及金屬短臂,所述第一輻射體設置於所述殼體內,包括第一輻射部及第二輻射部,所述第一輻射部之一端電連接至所述第一饋入源,另一端與所述金屬長臂間隔耦合設置;所述第二輻射部之一端電連接至所述第一饋入源,另一端電連接至所述金屬短臂。An antenna structure includes a housing, a first feeding source, and a first radiator. The housing includes a front frame, a back plate, and a frame. The frame is sandwiched between the front frame and the back plate. a slot is formed in the frame, a break point is formed on the front frame, and the break point is connected to the slot and extends to block the front frame, the slot and the break point are from the The housing defines a metal long arm and a metal short arm, and the first radiator is disposed in the housing, and includes a first radiating portion and a second radiating portion, and one end of the first radiating portion is electrically connected to the first portion a feed source, the other end is spaced apart from the metal long arm; one end of the second radiating portion is electrically connected to the first feed source, and the other end is electrically connected to the metal short arm.

一種無線通訊裝置,包括上述項所述之天線結構。A wireless communication device comprising the antenna structure described in the above item.

上述天線結構及具有該天線結構之無線通訊裝置可涵蓋至低頻、中頻、高頻(LTE-A Band 40、Band41頻段)、WIFI 2.4/5GHz雙頻,頻率範圍較廣。另外,該天線結構之殼體上之開槽及斷點均設置於所述前框及邊框上,並未設置於所述背板上,使得所述背板構成全金屬結構,即所述背板上並沒有絕緣之開槽、斷線或斷點,使得所述背板可避免由於開槽、斷線或斷點之設置而影響背板之完整性與美觀性。The antenna structure and the wireless communication device having the antenna structure can cover low frequency, intermediate frequency, high frequency (LTE-A Band 40, Band 41 frequency band), WIFI 2.4/5 GHz dual frequency, and have a wide frequency range. In addition, the slot and the break point on the housing of the antenna structure are disposed on the front frame and the frame, and are not disposed on the backplane, so that the backboard constitutes an all-metal structure, that is, the back There are no insulating slots, broken wires or breakpoints on the board, so that the back board can avoid the integrity and aesthetics of the back board due to the setting of slotting, disconnection or breakpoint.

下面將結合本發明實施例中之附圖,對本發明實施例中之技術方案進行清楚、完整地描述,顯然,所描述之實施例僅僅是本發明一部分實施例,而不是全部之實施例。基於本發明中之實施例,所屬領域具有通常知識者於沒有做出創造性勞動前提下所獲得之所有其他實施例,均屬於本發明保護之範圍。The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without the creative work are all within the scope of the present invention.

需要說明之是,當一個元件被稱為“電連接”另一個元件,它可直接於另一個元件上或者亦可存在居中之元件。當一個元件被認為是“電連接”另一個元件,它可是接觸連接,例如,可是導線連接之方式,亦可是非接觸式連接,例如,可是非接觸式耦合之方式。It should be noted that when an element is referred to as "electrically connected" to another element, it can be directly on the other element or the element can be present. When an element is considered to be "electrically connected" to another element, it can be a contact connection, for example, a wire connection or a non-contact connection, for example, a non-contact coupling.

除非另有定義,本文所使用之所有之技術與科學術語與屬於所屬領域具有通常知識者通常理解之含義相同。本文中於本發明之說明書中所使用之術語僅是為描述具體之實施例之目不是旨在於限制本發明。本文所使用之術語“及/或”包括一個或多個相關之所列項目的任意之與所有之組合。Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art. The terminology used in the description of the invention herein is for the purpose of describing the particular embodiments. The term "and/or" used herein includes any and all combinations of one or more of the associated listed items.

下面結合附圖,對本發明之一些實施方式作詳細說明。於不衝突之情況下,下述之實施例及實施例中之特徵可相互組合。Some embodiments of the present invention are described in detail below with reference to the accompanying drawings. The features of the embodiments and examples described below may be combined with each other without conflict.

實施例1-2Example 1-2

請參閱圖1,本發明第一較佳實施方式提供一種天線結構100,其可應用於行動電話、個人數位助理等無線通訊裝置400中,用以發射、接收無線電波以傳遞、交換無線訊號。Referring to FIG. 1, a first preferred embodiment of the present invention provides an antenna structure 100 that can be applied to a wireless communication device 400 such as a mobile phone or a personal digital assistant to transmit and receive radio waves to transmit and exchange wireless signals.

請一併參閱圖2及圖3,所述天線結構100包括金屬件11、第一饋入源13、第二饋入源14及第一切換電路15。所述金屬件11可為所述無線通訊裝置400之外殼。所述金屬件11包括金屬前框111、金屬背板112及金屬邊框113。所述金屬前框111、金屬背板112及金屬邊框113可是一體成型。所述金屬前框111、金屬背板112以及金屬邊框113構成所述無線通訊裝置400之外殼。所述金屬前框111上設置有一開口(圖未標),用於容置所述無線通訊裝置400之顯示單元401。可理解,所述顯示單元401具有一顯示平面,該顯示平面裸露於該開口,且該顯示平面與所述金屬背板112大致平行設置。Referring to FIG. 2 and FIG. 3 , the antenna structure 100 includes a metal member 11 , a first feed source 13 , a second feed source 14 , and a first switching circuit 15 . The metal member 11 can be an outer casing of the wireless communication device 400. The metal member 11 includes a metal front frame 111, a metal back plate 112, and a metal frame 113. The metal front frame 111, the metal back plate 112, and the metal frame 113 may be integrally formed. The metal front frame 111, the metal back plate 112, and the metal frame 113 constitute an outer casing of the wireless communication device 400. An opening (not shown) is disposed on the metal front frame 111 for receiving the display unit 401 of the wireless communication device 400. It can be understood that the display unit 401 has a display plane exposed to the opening, and the display plane is disposed substantially parallel to the metal back plate 112.

所述金屬背板112與所述金屬前框111相對設置。所述金屬背板112為一體成型之單一金屬片,除了為顯露相機鏡頭402與閃光燈403等元件而設置之開孔404、405以外,其上並沒有設置任何絕緣之開槽、斷線或斷點(請參圖3)。所述金屬背板112相當於所述天線結構100之地。The metal back plate 112 is disposed opposite to the metal front frame 111. The metal back plate 112 is a single metal piece integrally formed. Except for the openings 404 and 405 provided for exposing the camera lens 402 and the flash 403 and the like, there is no insulating slot, disconnection or break. Point (see Figure 3). The metal back plate 112 corresponds to the ground of the antenna structure 100.

所述金屬邊框113夾設於所述金屬前框111與所述金屬背板112之間,且分別環繞所述金屬前框111及所述金屬背板112之周緣設置,以與所述顯示單元401、所述金屬前框111以及金屬背板112共同圍成一容置空間114。所述容置空間114用以容置所述無線通訊裝置400之電路板、處理單元等電子元件或電路模組於其內。The metal frame 113 is interposed between the metal front frame 111 and the metal back plate 112, and is disposed around the circumference of the metal front frame 111 and the metal back plate 112 respectively to form with the display unit. 401. The metal front frame 111 and the metal back plate 112 together form an accommodating space 114. The accommodating space 114 is configured to receive electronic components or circuit modules of the circuit board, the processing unit, and the like of the wireless communication device 400.

所述金屬邊框113至少包括頂部115、第一側部116以及第二側部117。所述頂部115連接所述金屬前框111與所述金屬背板112。所述第一側部116與所述第二側部117相對設置,兩者分別設置於所述頂部115之兩端,優選垂直設置。所述第一側部116與所述第二側部117亦連接所述金屬前框111與所述金屬背板112。所述金屬邊框113上還開設有開槽118,所述金屬前框111上開設有斷點119。於本實施例中,所述開槽118佈設於所述頂部115上,且分別延伸至所述第一側部116及第二側部117。可理解,於其他實施例中,所述開槽118亦可僅設置於所述頂部115,而未延伸至所述第一側部116及第二側部117中之任何一個,或者所述開槽118設置於所述頂部115,且僅沿延伸至所述第一側部116及第二側部117中之其中之一。The metal frame 113 includes at least a top portion 115, a first side portion 116, and a second side portion 117. The top portion 115 connects the metal front frame 111 and the metal back plate 112. The first side portion 116 is disposed opposite to the second side portion 117, and is disposed at two ends of the top portion 115, preferably vertically. The first side portion 116 and the second side portion 117 are also connected to the metal front frame 111 and the metal back plate 112. The metal frame 113 is further provided with a slot 118, and the metal front frame 111 is provided with a break point 119. In the embodiment, the slots 118 are disposed on the top portion 115 and extend to the first side portion 116 and the second side portion 117, respectively. It can be understood that in other embodiments, the slot 118 may also be disposed only on the top portion 115 without extending to any one of the first side portion 116 and the second side portion 117, or the opening A slot 118 is disposed in the top portion 115 and extends only along one of the first side portion 116 and the second side portion 117.

所述斷點119與所述開槽118連通,並延伸至隔斷所述金屬前框111。於本實施例中,所述斷點119鄰近所述第二側部117設置,如此所述斷點119將所述金屬前框111劃分出兩部分,即金屬長臂A1及金屬短臂A2。其中,所述斷點119一側之金屬前框111直至其延伸至與所述開槽118之其中一端點E1相對應之部分共同形成所述金屬長臂A1。所述斷點119另一側之金屬前框111直至其延伸至與所述開槽118之另一端點E2相對應之部分形成所述金屬短臂A2。於本實施例中,所述斷點119開設之位置並非對應到所述頂部115之中間,因此所述金屬長臂A1之長度大於金屬短臂A2之長度。The break point 119 is in communication with the slot 118 and extends to block the metal front frame 111. In the present embodiment, the break point 119 is disposed adjacent to the second side portion 117, such that the break point 119 divides the metal front frame 111 into two parts, namely a metal long arm A1 and a metal short arm A2. The metal front frame 111 on the side of the break point 119 extends to a portion corresponding to one of the end points E1 of the slot 118 to form the metal long arm A1. The metal front frame 111 on the other side of the break point 119 extends to a portion corresponding to the other end point E2 of the slot 118 to form the metal short arm A2. In this embodiment, the position where the break point 119 is opened does not correspond to the middle of the top portion 115, so the length of the metal long arm A1 is greater than the length of the metal short arm A2.

另外,所述開槽118及所述斷點119內均填充有絕緣材料(例如塑膠、橡膠、玻璃、木材、陶瓷等,但不以此為限),進而區隔所述金屬長臂A1、金屬短臂A2與所述金屬背板112。In addition, the slot 118 and the break point 119 are filled with an insulating material (for example, plastic, rubber, glass, wood, ceramic, etc., but not limited thereto), thereby separating the metal long arm A1. The metal short arm A2 and the metal back plate 112.

可理解,所述金屬前框111與金屬邊框113之上半部除了所述開槽118與斷點119以外沒有再設置其他絕緣之開槽、斷線或斷點,因此所述金屬前框111之上半部就僅有一個斷點119,沒有其他斷點。It can be understood that the upper portion of the metal front frame 111 and the metal frame 113 is not provided with other insulating slots, broken lines or break points except the slot 118 and the break point 119, so the metal front frame 111 There is only one breakpoint 119 in the top half, and there are no other breakpoints.

所述第一饋入源13可藉由匹配電路(圖未示)電連接至所述金屬長臂A1靠近所述第一側部116之一端,進而為所述金屬長臂A1饋入電流,使得所述金屬長臂A1激發一第一模態以產生第一頻段之輻射訊號。本實施例中,所述第一模態為一低頻模態,所述第一頻段為700-900MHz頻段。The first feed source 13 can be electrically connected to one end of the metal long arm A1 near the first side portion 116 by a matching circuit (not shown), thereby feeding current to the metal long arm A1. The metal long arm A1 is caused to excite a first mode to generate a radiation signal of the first frequency band. In this embodiment, the first mode is a low frequency mode, and the first frequency band is a frequency band of 700-900 MHz.

所述第二饋入源14可藉由匹配電路(圖未示)電連接至所述金屬短臂A2靠近所述斷點119之一端,進而為所述金屬短臂A2饋入電流,使得所述金屬短臂A2激發出相應之兩個模態,這兩個模態組成一寬頻帶共振之應用(即1710-2690MHz頻段),該寬頻帶可涵蓋至中頻、高頻以及WIFI 2.4GHz頻段。The second feed source 14 can be electrically connected to one end of the metal short arm A2 near the break point 119 by a matching circuit (not shown), thereby feeding current to the metal short arm A2. The metal short arm A2 excites two corresponding modes, which form a wideband resonance application (ie, the 1710-2690MHz band), which can cover the intermediate frequency, high frequency, and WIFI 2.4 GHz bands. .

請一併參閱圖4,所述第一切換電路15電連接至所述金屬長臂A1,其包括切換單元151及至少一切換元件153。所述切換元件153可為電感、電容、或者電感與電容之組合。所述切換元件153之間相互並聯,且其一端電連接至所述切換單元151,另一端電連接至金屬背板112。如此,藉由控制所述切換單元151之切換,可使得所述金屬長臂A1切換至不同之切換元件153。由於每一個切換元件153具有不同之阻抗,因此藉由所述切換單元151之切換,可調整所述金屬長臂A1之第一模態之頻段。項所述之調整頻段就是使該頻段往低頻偏移或往高頻偏移。Referring to FIG. 4 together, the first switching circuit 15 is electrically connected to the metal long arm A1, which includes a switching unit 151 and at least one switching element 153. The switching element 153 can be an inductor, a capacitor, or a combination of an inductor and a capacitor. The switching elements 153 are connected in parallel with each other, and one end thereof is electrically connected to the switching unit 151, and the other end is electrically connected to the metal backing plate 112. Thus, by controlling the switching of the switching unit 151, the metal long arm A1 can be switched to a different switching element 153. Since each of the switching elements 153 has a different impedance, the frequency band of the first mode of the metal long arm A1 can be adjusted by the switching of the switching unit 151. The adjustment band described in the item is to shift the band to a low frequency or to a high frequency.

可理解,請一併參閱圖5及圖6,所述第一切換電路15還可包括諧振電路155。請參閱圖5,於其中一實施例中,所述諧振電路155之數量為一個,所述諧振電路155包括相互串聯之電感L及電容C。所述諧振電路155電連接於所述金屬長臂A1及金屬背板112之間,且與所述切換單元151及至少一切換元件153並聯設置。It can be understood that, referring to FIG. 5 and FIG. 6 together, the first switching circuit 15 can further include a resonant circuit 155. Referring to FIG. 5, in one embodiment, the number of the resonant circuits 155 is one, and the resonant circuit 155 includes an inductor L and a capacitor C connected in series. The resonant circuit 155 is electrically connected between the metal long arm A1 and the metal back plate 112, and is disposed in parallel with the switching unit 151 and the at least one switching element 153.

請參閱圖6,於另外一實施例中,所述諧振電路155之數量與所述切換元件153之數量一致,即為多個。每一諧振電路155包括相互串聯之電感L及電容C。每一個所述諧振電路155分別電連接於切換單元151及金屬背板112之間,並與對應之切換元件153並聯設置。Referring to FIG. 6, in another embodiment, the number of the resonant circuits 155 is the same as the number of the switching elements 153, that is, a plurality. Each resonant circuit 155 includes an inductance L and a capacitance C connected in series with each other. Each of the resonant circuits 155 is electrically connected between the switching unit 151 and the metal backing plate 112, and is disposed in parallel with the corresponding switching element 153.

圖7為於圖5所示所述第一切換電路15之切換單元151一側並聯一個諧振電路155時,所述S參數(散射參數)與頻率之間之關係原理圖。其中,假設當所述第一切換電路15未增加圖4所示所述諧振電路155時,所述天線結構100工作於第一模態(請參曲線S51)。當所述第一切換電路15增加所述諧振電路155時,所述諧振電路155可使得所述金屬長臂A1額外共振出一窄頻模態(第二模態,請參曲線S52),以產生第二頻段之輻射訊號,即可有效增加所述天線結構100之應用頻段,達到多頻或寬頻應用。於一實施例中,所述第二頻段可是GPS頻段,所述第二模態亦就是GPS諧振模態。FIG. 7 is a schematic diagram showing the relationship between the S parameter (scattering parameter) and the frequency when a resonant circuit 155 is connected in parallel to the switching unit 151 side of the first switching circuit 15 shown in FIG. 5. Here, it is assumed that when the first switching circuit 15 does not increase the resonant circuit 155 shown in FIG. 4, the antenna structure 100 operates in the first mode (refer to curve S51). When the first switching circuit 15 increases the resonant circuit 155, the resonant circuit 155 may cause the metal long arm A1 to additionally resonate to a narrow frequency mode (second mode, please refer to curve S52) to By generating the radiation signal of the second frequency band, the application frequency band of the antenna structure 100 can be effectively increased to achieve multi-frequency or broadband application. In an embodiment, the second frequency band may be a GPS frequency band, and the second mode is also a GPS resonant mode.

圖8為於圖6所示所述第一切換電路15中每一切換元件153一側並聯一個諧振電路155時,所述S參數(散射參數)與頻率之間之關係原理圖。其中,假設當所述第一切換電路15未增加圖6所示所述諧振電路155時,所述天線結構100可工作於所述第一模態(請參曲線S61)。如此當所述第一切換電路15增加所述諧振電路155時,所述諧振電路155可使得所述金屬長臂A1額外共振出所述窄頻模態(請參曲線S62),亦就是GPS共振模態,即可有效增加所述天線結構100之應用頻段,達到多頻或寬頻應用。另外,藉由設置所述諧振電路155中電感L之電感值與所述電容C之電容值,可決定所述第一模態切換時所述窄頻模態之頻段。例如,於其中一個實施例中,例如圖8所示,可藉由設置所述諧振電路155中之電感值與電容值,使切換單元151切換至不同之切換元件153時,所述天線結構100之窄頻模態亦隨之切換,例如可由f1移動至fn,移動範圍十分廣泛。FIG. 8 is a schematic diagram showing the relationship between the S parameter (scattering parameter) and the frequency when one resonant circuit 155 is connected in parallel to the side of each switching element 153 in the first switching circuit 15 shown in FIG. 6. Here, it is assumed that when the first switching circuit 15 does not increase the resonant circuit 155 shown in FIG. 6, the antenna structure 100 can operate in the first mode (refer to curve S61). Thus, when the first switching circuit 15 increases the resonant circuit 155, the resonant circuit 155 can cause the metal long arm A1 to additionally resonate out of the narrow frequency mode (refer to curve S62), that is, GPS resonance. The modality can effectively increase the application frequency band of the antenna structure 100 to achieve multi-frequency or broadband applications. In addition, by setting the inductance value of the inductor L in the resonant circuit 155 and the capacitance value of the capacitor C, the frequency band of the narrowband mode at the first mode switching can be determined. For example, in one embodiment, as shown in FIG. 8, the antenna structure 100 can be switched when the switching unit 151 is switched to a different switching element 153 by setting the inductance value and the capacitance value in the resonant circuit 155. The narrow-band mode is also switched, for example, it can be moved from f1 to fn, and the range of motion is very wide.

可理解,於另一實施例中,還可藉由設置所述諧振電路155中之電感值與電容值而固定所述窄頻模態之頻段,從而使所述切換單元151無論切換至哪一個切換元件153,所述窄頻模態之頻段均固定不動。It can be understood that, in another embodiment, the frequency band of the narrowband mode can be fixed by setting the inductance value and the capacitance value in the resonant circuit 155, so that the switching unit 151 switches to which one. The switching element 153 has a fixed frequency band of the narrow frequency mode.

可理解之是,於其他實施例中,所述諧振電路155不局限於包括所述電感L及電容C,其還可由其他之諧振元件組成。It can be understood that in other embodiments, the resonant circuit 155 is not limited to include the inductor L and the capacitor C, and may also be composed of other resonant components.

圖9為所述天線結構100工作於低頻模態及GPS模態時之電流走向示意圖。顯然,當電流自所述第一饋入源13進入所述金屬長臂A1後,將流經所述金屬長臂A1,並流向所述斷點119(參路徑P1),進而激發出所述低頻模態。另外,由於所述天線結構100設置有第一切換電路15,因此可利用所述第一切換電路15切換所述金屬長臂A1之低頻模態。再者,由於所述第一切換電路15中諧振電路155之設置,因此可使得所述低頻模態與GPS模態同時存於。亦就是說,於本實施例中,所述GPS模態之電流是由兩部分貢獻,其中一部分為所述低頻模態激發(參路徑P1),另外一部分是由所述諧振電路155之電感L與電容C阻抗匹配調整後激發(參路徑P2)。其中,路徑P2之電流是從所述金屬短臂A2靠近所述第二饋入源14之一端流向所述金屬短臂A2遠離所述第二饋入源14之另一端。FIG. 9 is a schematic diagram of current flow when the antenna structure 100 operates in a low frequency mode and a GPS mode. Obviously, when current enters the metal long arm A1 from the first feed source 13, it will flow through the metal long arm A1 and flow to the break point 119 (refer to the path P1), thereby exciting the Low frequency mode. In addition, since the antenna structure 100 is provided with the first switching circuit 15, the low frequency mode of the metal long arm A1 can be switched by the first switching circuit 15. Moreover, due to the setting of the resonant circuit 155 in the first switching circuit 15, the low frequency mode and the GPS mode can be simultaneously present. That is to say, in the embodiment, the current of the GPS mode is contributed by two parts, one part is the low frequency mode excitation (refer to the path P1), and the other part is the inductance L of the resonant circuit 155. The excitation is matched with the capacitance of the capacitor C (refer to path P2). The current of the path P2 flows from the metal short arm A2 toward one end of the second feed source 14 to the other end of the metal short arm A2 away from the second feed source 14.

圖10為所述天線結構100工作於1710-2690MHz頻段時之電流走向示意圖。顯然,當電流自所述第二饋入源14進入所述金屬短臂A2後,電流將依次流經所述金屬前框111、第二側部117並流經至背面之金屬背板112(參路徑P3),進而激發出第三模態以產生第三頻段(即1710-2690MHz頻段)之輻射訊號,以涵蓋至中頻、高頻以及WIFI 2.4GHz頻段。顯然,結合圖4與圖10可知,所述金屬背板112相當於所述天線結構100之地。FIG. 10 is a schematic diagram of current flow when the antenna structure 100 operates in the 1710-2690 MHz frequency band. Obviously, when current enters the metal short arm A2 from the second feed source 14, current will sequentially flow through the metal front frame 111, the second side portion 117 and flow through the back metal back plate 112 ( Refer to path P3), which in turn excites the third mode to generate the third band (ie, the 1710-2690MHz band) radiated signals to cover the intermediate frequency, high frequency, and WIFI 2.4 GHz bands. It will be apparent from FIG. 4 and FIG. 10 that the metal backing plate 112 corresponds to the ground of the antenna structure 100.

圖11為所述天線結構100工作於低頻模態及GPS模態時之S參數(散射參數)曲線圖。其中,曲線S91為所述天線結構100工作於LTE Band 28頻段(703-803MHz)時之S11值。曲線S92為所述天線結構100工作於LTE Band 5頻段(869-894MHz)時之S11值。曲線S93為所述天線結構100工作於LTE Band 8頻段(925-926MHz)及GPS頻段(1.575GHz)時之S11值。顯然,曲線S91與S92分別對應兩個不同頻段,並分別對應所述切換電路15可切換之多個低頻模態之其中兩個。FIG. 11 is a graph of S parameters (scattering parameters) when the antenna structure 100 operates in a low frequency mode and a GPS mode. The curve S91 is the S11 value when the antenna structure 100 operates in the LTE Band 28 frequency band (703-803 MHz). Curve S92 is the S11 value when the antenna structure 100 operates in the LTE Band 5 band (869-894 MHz). Curve S93 is the S11 value when the antenna structure 100 operates in the LTE Band 8 band (925-926 MHz) and the GPS band (1.575 GHz). Obviously, the curves S91 and S92 respectively correspond to two different frequency bands, and respectively correspond to two of the plurality of low frequency modes that the switching circuit 15 can switch.

圖12為所述天線結構100工作於低頻模態時之輻射效率圖。其中,曲線101為所述天線結構100工作於LTE Band 28頻段(703-803MHz)時之輻射效率。曲線S102為所述天線結構100工作於LTE Band 5頻段(869-894MHz)時之輻射效率。曲線S103為所述天線結構100工作於LTE Band 8頻段(925-926MHz)時之輻射效率。顯然,曲線S101、S102與S103分別對應三個不同頻段,並分別對應所述切換電路15可切換之多個低頻模態之其中三個。Figure 12 is a graph showing the radiation efficiency of the antenna structure 100 when operating in a low frequency mode. The curve 101 is the radiation efficiency when the antenna structure 100 operates in the LTE Band 28 frequency band (703-803 MHz). Curve S102 is the radiation efficiency of the antenna structure 100 when operating in the LTE Band 5 band (869-894 MHz). Curve S103 is the radiation efficiency of the antenna structure 100 when operating in the LTE Band 8 band (925-926 MHz). Obviously, the curves S101, S102 and S103 respectively correspond to three different frequency bands, and respectively correspond to three of the plurality of low frequency modes that the switching circuit 15 can switch.

圖13為所述天線結構100工作於GPS模態時之輻射效率圖。圖14為所述天線結構100工作於1710-2690MHz頻段(即中頻、高頻以及WIFI 2.4GHz頻段)時之S參數(散射參數)曲線圖。圖15為所述天線結構100工作於1710-2690MHz頻段(即中頻、高頻以及WIFI 2.4GHz頻段)時之輻射效率圖。Figure 13 is a graph showing the radiation efficiency of the antenna structure 100 when operating in a GPS mode. 14 is a graph of S-parameters (scattering parameters) when the antenna structure 100 operates in the 1710-2690 MHz frequency band (ie, the intermediate frequency, high frequency, and WIFI 2.4 GHz frequency bands). Figure 15 is a graph showing the radiation efficiency of the antenna structure 100 when operating in the 1710-2690 MHz band (i.e., the intermediate frequency, high frequency, and WIFI 2.4 GHz bands).

顯然,從圖11至圖15可知,所述天線結構100可工作於相應之低頻頻段,例如LTE Band 28頻段(703-803MHz)、LTE Band 5頻段(869-894MHz)、LTE Band 8頻段(925-926MHz)。另外,所述天線結構100還可工作於GPS頻段(1.575GHz)以及1710-2690MHz頻段,即涵蓋至低、中、高頻,頻率範圍較廣,且當所述天線結構100工作于上述頻段時,其工作頻率均可滿足天線工作設計要求,並具有較佳之輻射效率。Obviously, as can be seen from FIG. 11 to FIG. 15, the antenna structure 100 can operate in corresponding low frequency bands, such as LTE Band 28 (703-803 MHz), LTE Band 5 (869-894 MHz), and LTE Band 8 (925). -926MHz). In addition, the antenna structure 100 can also operate in the GPS frequency band (1.575 GHz) and the 1710-2690 MHz frequency band, that is, to cover low, medium, and high frequency, and have a wide frequency range, and when the antenna structure 100 operates in the above frequency band, The working frequency can meet the antenna working design requirements and has better radiation efficiency.

請一併參閱圖16,為本發明第二較佳實施例提供之天線結構200。所述天線結構200包括金屬件11、第一饋入源13、第二饋入源14以及第一切換電路15。所述金屬件11包括金屬前框111、金屬背板112及金屬邊框113。所述金屬邊框113至少包括頂部115、第一側部116以及第二側部117。所述金屬邊框113上還開設有開槽118,所述金屬前框111上還開設有斷點119。所述斷點119將所述金屬前框111劃分為兩部分,這兩部份分別包括金屬長臂A1及金屬短臂A2。Please refer to FIG. 16, which is an antenna structure 200 according to a second preferred embodiment of the present invention. The antenna structure 200 includes a metal member 11, a first feed source 13, a second feed source 14, and a first switching circuit 15. The metal member 11 includes a metal front frame 111, a metal back plate 112, and a metal frame 113. The metal frame 113 includes at least a top portion 115, a first side portion 116, and a second side portion 117. The metal frame 113 is further provided with a slot 118, and the metal front frame 111 is further provided with a break point 119. The break point 119 divides the metal front frame 111 into two parts, and the two parts respectively include a metal long arm A1 and a metal short arm A2.

可理解,所述天線結構200與天線結構100之區別在於,所述天線結構200還包括第一輻射體26、第三饋入源27、隔離部28、第二切換電路29、第二輻射體30以及第四饋入源31。It can be understood that the antenna structure 200 is different from the antenna structure 100 in that the antenna structure 200 further includes a first radiator 26, a third feed source 27, an isolation portion 28, a second switching circuit 29, and a second radiator. 30 and a fourth feed source 31.

所述第一輻射體26設置於所述金屬件11圍成之容置空間114內,且鄰近所述金屬短臂A2設置,並與所述金屬背板112間隔設置。於本實施例中,所述第一輻射體26大致呈直條狀,其與所述頂部215平行設置。所述第一輻射體26之一端連接至所述隔離部28,另一端朝向所述第一側部116延伸。所述第三饋入源27之一端用於藉由匹配電路(圖未示)電連接至所述第一輻射體26,另一端電連接至所述隔離部28,用於為第一輻射體26饋入電流。The first radiator 26 is disposed in the accommodating space 114 surrounded by the metal member 11 and disposed adjacent to the metal short arm A2 and spaced apart from the metal back plate 112. In the embodiment, the first radiator 26 is substantially straight and disposed parallel to the top 215. One end of the first radiator 26 is connected to the partition 28 and the other end extends toward the first side 116. One end of the third feed source 27 is electrically connected to the first radiator 26 by a matching circuit (not shown), and the other end is electrically connected to the isolation portion 28 for the first radiator 26 feed current.

可理解,於本實施例中,由於所述第二饋入源14與所述第三饋入源27各自共振之頻帶較接近,容易產生天線隔離度之困擾。因此,所述隔離部28用以使得兩個饋入源,即所述第二饋入源14與所述第三饋入源27之結構電流路徑延長,以提升金屬短臂A2與第一輻射體26之間之隔離度。It can be understood that, in this embodiment, since the frequency bands of the resonance of the second feed source 14 and the third feed source 27 are relatively close, the antenna isolation is easily caused. Therefore, the isolation portion 28 is configured to extend the structure current paths of the two feed sources, that is, the second feed source 14 and the third feed source 27, to lift the metal short arm A2 and the first radiation. The isolation between the bodies 26.

可理解,所述隔離部28可為任意形狀及尺寸,或者為一平面金屬片,僅需確保所述隔離部28可達到延長所述第二饋入源14與所述第三饋入源27之結構電流路徑,以提高金屬短臂A2與第一輻射體26之間之隔離度即可。例如,於本實施例中,所述隔離部28呈塊狀,其設置於所述金屬背板112上,且由所述第二側部117朝向所述第一側部116延伸而成。It can be understood that the partition portion 28 can be any shape and size, or is a flat metal piece, and only needs to ensure that the partition portion 28 can extend the second feed source 14 and the third feed source 27 The current path is structured to improve the isolation between the metal short arm A2 and the first radiator 26. For example, in the embodiment, the partition portion 28 has a block shape and is disposed on the metal back plate 112 and extends from the second side portion 117 toward the first side portion 116.

可理解,請一併參閱圖17,於其他實施例中,所述天線結構200還包括金屬框體32。所述金屬框體32設置於所述容置空間114內,且連接所述金屬件11。所述隔離部28呈塊狀,其設置於所述金屬背板112上,且由所述第二側部117朝向第一側部116延伸而成,並連接至所述金屬框體32。It can be understood that, referring to FIG. 17 , in other embodiments, the antenna structure 200 further includes a metal frame 32 . The metal frame 32 is disposed in the accommodating space 114 and connected to the metal member 11 . The partition portion 28 is formed in a block shape and is disposed on the metal back plate 112 and extends from the second side portion 117 toward the first side portion 116 and is connected to the metal frame 32.

可理解,請一併參閱圖18,於其他實施例中,所述天線結構200還包括金屬框體32。所述金屬框體32設置於所述容置空間114內,且連接所述金屬件11。所述隔離部28呈塊狀,其設置於所述金屬背板112上,且由所述第二側部117朝向第一側部116延伸而成,並與所述金屬框體32間隔設置。It can be understood that, referring to FIG. 18 , in other embodiments, the antenna structure 200 further includes a metal frame 32 . The metal frame 32 is disposed in the accommodating space 114 and connected to the metal member 11 . The partition portion 28 is formed in a block shape and is disposed on the metal back plate 112 and extends from the second side portion 117 toward the first side portion 116 and spaced apart from the metal frame body 32 .

可理解,請一併參閱圖19,於其他實施例中,所述天線結構200還包括金屬框體32。所述金屬框體32設置於所述容置空間114內,且連接所述金屬件11。所述隔離部28呈矩形片狀,其設置於所述金屬框體32之一側,且與所述第二側部117及所述金屬背板112均間隔設置。It can be understood that, referring to FIG. 19 , in other embodiments, the antenna structure 200 further includes a metal frame 32 . The metal frame 32 is disposed in the accommodating space 114 and connected to the metal member 11 . The partition portion 28 has a rectangular sheet shape and is disposed on one side of the metal frame 32 and spaced apart from the second side portion 117 and the metal back plate 112.

請再次參閱圖16,所述第二切換電路29之一端電連接至所述第一輻射體26,另一端連接至所述金屬背板112。所述第二切換電路29用於調整所述第一輻射體26之高頻模態之頻段,其具體電路結構及工作原理可參閱圖4之第一切換電路15之描述,於此不再贅述。Referring again to FIG. 16, one end of the second switching circuit 29 is electrically connected to the first radiator 26, and the other end is connected to the metal backing plate 112. The second switching circuit 29 is used to adjust the frequency band of the high frequency mode of the first radiator 26. The specific circuit structure and working principle can be referred to the description of the first switching circuit 15 of FIG. 4, and details are not described herein again.

可理解,所述第二輻射體30包括第一輻射部301及第二輻射部302。所述第一輻射部301大致呈U型,包括依次電連接之第一輻射段303、第二輻射段304以及第三輻射段305。所述第一輻射段303大致呈直條狀,且與所述頂部215平行設置。所述第二輻射段304呈直條狀,其一端垂直連接至所述第一輻射段303靠近所述第二側部117之端部,另一端沿平行所述第二側部117且靠近所述頂部215之方向延伸,進而與所述第一輻射段303構成一L型結構。所述第三輻射段305大致呈矩形條狀,其一端連接至所述第二輻射段304遠離所述第一輻射段303之一端,另一端沿平行所述第一輻射段303且靠近所述第一側部116之方向延伸,即所述第三輻射段305及所述第一輻射段303分別設置於所述第二輻射段304之同一側,且分別設置於所述第二輻射段304之兩端。It can be understood that the second radiator 30 includes a first radiating portion 301 and a second radiating portion 302. The first radiating portion 301 is substantially U-shaped, and includes a first radiating section 303, a second radiating section 304, and a third radiating section 305 electrically connected in sequence. The first radiating section 303 is substantially straight and disposed parallel to the top 215. The second radiating section 304 has a straight strip shape, one end of which is perpendicularly connected to the end of the first radiating section 303 near the second side portion 117, and the other end is parallel to the second side portion 117 and close to the The direction of the top portion 215 extends to form an L-shaped structure with the first radiating portion 303. The third radiating section 305 has a substantially rectangular strip shape, one end of which is connected to the second radiating section 304 away from one end of the first radiating section 303, and the other end is parallel to the first radiating section 303 and close to the The third radiating section 305 and the first radiating section 303 are respectively disposed on the same side of the second radiating section 304, and are respectively disposed on the second radiating section 304. Both ends.

所述第二輻射部302大致呈T型,其包括第一連接段306、第二連接段307以及第三連接段308。所述第一連接段306大致呈矩形條狀,其一端電連接至所述第一輻射段303遠離第二輻射段304之端部,另一端沿平行所述第二輻射段304且靠近所述第三輻射段305之方向延伸。所述第二連接段307大致呈直條狀,其一端垂直連接至所述第一連接段306遠離第一輻射段303之一端,另一端沿平行所述第一輻射段303且靠近所述第二輻射段304之方向延伸。所述第三連接段308大致呈直條狀,其連接至所述第一連接段306及第二連接段307之連接點,並沿平行所述第一輻射段303且靠近所述第一側部116之方向延伸,以與所述第二連接段307位於同一直線,直至與所述第一側部116前方之金屬前框111連接。The second radiating portion 302 is substantially T-shaped and includes a first connecting portion 306, a second connecting portion 307, and a third connecting portion 308. The first connecting section 306 has a substantially rectangular strip shape, one end of which is electrically connected to the end of the first radiating section 303 away from the second radiating section 304, and the other end is parallel to the second radiating section 304 and close to the The direction of the third radiating section 305 extends. The second connecting portion 307 is substantially straight, and one end thereof is perpendicularly connected to one end of the first connecting portion 306 away from the first radiating portion 303, and the other end is parallel to the first radiating portion 303 and close to the first portion. The direction of the second radiating section 304 extends. The third connecting section 308 is substantially straight and connected to the connection point of the first connecting section 306 and the second connecting section 307, and is parallel to the first radiating section 303 and close to the first side. The portion 116 extends in the same line as the second connecting portion 307 until it is connected to the metal front frame 111 in front of the first side portion 116.

所述第四饋入源31設置於所述金屬前框111上,且電連接至所述第一輻射段303與所述第一連接段306之連接點,用以分別饋入電流至所述第一輻射部301及第二輻射部302,進而激發相應之工作模態,例如WIFI 2.4GHz模態及WIFI 5GHz模態。The fourth feed source 31 is disposed on the metal front frame 111 and electrically connected to the connection point of the first radiating section 303 and the first connecting section 306 for respectively feeding current to the The first radiating portion 301 and the second radiating portion 302 further excite corresponding working modes, such as WIFI 2.4 GHz mode and WIFI 5 GHz mode.

可理解,當所述天線結構200工作於低頻模態及GPS模態時,其電流走向與所述天線結構100工作於低頻模態及GPS模態時之電流走向一致,具體可參閱圖9,於此不再贅述。It can be understood that when the antenna structure 200 operates in the low frequency mode and the GPS mode, the current direction is consistent with the current direction when the antenna structure 100 operates in the low frequency mode and the GPS mode. For details, refer to FIG. This will not be repeated here.

可理解,當所述天線結構200工作於中頻模態時,其電流走向與所述天線結構100工作於1710-2690MHz頻段時之電流走向一致,具體可參閱圖10,於此不再贅述。It can be understood that when the antenna structure 200 is operated in the intermediate frequency mode, the current direction of the antenna structure 200 is consistent with the current direction when the antenna structure 100 operates in the 1710-2690 MHz frequency band. For details, refer to FIG. 10 , and details are not described herein again.

請一併參閱20,為所述天線結構200工作於高頻模態時之電流走向示意圖。顯然,當電流自所述第三饋入源27進入第一輻射體26後,將流向所述第一輻射體26遠離所述第三饋入源27之一端(參路徑P4),進而激發出第四模態以產生第四頻段之輻射訊號。本實施例之第四模態為高頻模態。另外,由於所述天線結構200設置有接地之第二切換電路29,因此可利用所述第二切換電路29切換所述高頻模態,例如可使得所述天線結構200切換至LTE Band 40頻段(2300-2400MHz)或LTE Band 41頻段(2496-2690MHz),並使得所述高頻模態與所述中頻模態同時存於。Please refer to 20 for a schematic diagram of the current direction when the antenna structure 200 operates in a high frequency mode. Obviously, when the current enters the first radiator 26 from the third feed source 27, it flows to the first radiator 26 away from one end of the third feed source 27 (refer to the path P4), thereby exciting The fourth mode is to generate a radiation signal of the fourth frequency band. The fourth mode of this embodiment is a high frequency mode. In addition, since the antenna structure 200 is provided with a grounded second switching circuit 29, the high frequency mode can be switched by the second switching circuit 29, for example, the antenna structure 200 can be switched to the LTE Band 40 band (2300). - 2400 MHz) or LTE Band 41 band (2496-2690 MHz) and causes the high frequency mode to coexist with the intermediate frequency mode.

圖21為所述天線結構200工作於雙頻WIFI模態時之電流走向示意圖。顯然,當電流自所述第四饋入源31進入第二輻射體30後,電流將依次流經所述第一輻射段303、第二輻射段304以及第三輻射段305(參路徑P5),進而激發出相應之第五模態以產生第五頻段之輻射訊號。本實施例之第五模態為WIFI 2.4GHz模態。另外,電流從所述第四饋入源31進入第二輻射體30後,還將依次流經所述第一連接段306以及第二連接段307(參路徑P6),進而激發出相應之第六模態以產生第六頻段之輻射訊號。本實施例之第六模態為WIFI 5GHz模態。FIG. 21 is a schematic diagram of current flow when the antenna structure 200 operates in a dual-frequency WIFI mode. Obviously, when current enters the second radiator 30 from the fourth feed source 31, current will sequentially flow through the first radiation segment 303, the second radiation segment 304, and the third radiation segment 305 (refer to path P5). And inducing a corresponding fifth mode to generate a radiation signal of the fifth frequency band. The fifth mode of this embodiment is a WIFI 2.4 GHz mode. In addition, after the current enters the second radiator 30 from the fourth feed source 31, the current will also flow through the first connecting section 306 and the second connecting section 307 (refer to the path P6), thereby exciting the corresponding Six modes to generate the radiation signal of the sixth frequency band. The sixth mode of this embodiment is a WIFI 5 GHz mode.

可理解,當所述天線結構200工作於低頻模態及GPS模態時,其S參數(散射參數)曲線圖以及輻射效率圖均與所述天線結構100工作於低頻模態及GPS模態時之S參數(散射參數)曲線圖以及輻射效率圖一致,具體可參閱10、圖11以及圖12,於此不再贅述。It can be understood that when the antenna structure 200 operates in a low frequency mode and a GPS mode, its S parameter (scattering parameter) graph and the radiation efficiency map are both when the antenna structure 100 operates in a low frequency mode and a GPS mode. The S-parameter (scattering parameter) graph and the radiation efficiency graph are identical. For details, refer to FIG. 10, FIG. 11 and FIG. 12, and details are not described herein again.

圖22為所述天線結構200工作於中頻模態及高頻模態時之S參數(散射參數)曲線圖。其中曲線S201為所述天線結構200中第一切換電路15之所述切換元件153之電感值為0.13皮法(pf)時之S11值。曲線S202為所述天線結構200中第一切換電路15之所述切換元件153之電感值為0.15pf時之S11值。曲線S203為所述天線結構200中第一切換電路15之所述切換元件153之電感值為0.2pf時之S11值。曲線S204為所述天線結構200中第一切換電路15開路(即未切換至任何切換元件153)時之S11值。曲線S205為所述天線結構200中第二切換電路29之切換元件之電感值為0.13pf時之S11值。曲線S206為所述天線結構200中第二切換電路29之切換元件之電感值為0.15pf時之S11值。曲線S207為所述天線結構200中第二切換電路29之切換元件之電感值為0.2pf時之S11值。曲線S208為所述天線結構200中第二切換電路29開路(即未切換至任何切換元件)時之S11值。FIG. 22 is a graph of S parameters (scattering parameters) when the antenna structure 200 operates in an intermediate frequency mode and a high frequency mode. The curve S201 is an S11 value when the inductance of the switching element 153 of the first switching circuit 15 in the antenna structure 200 is 0.13 picofarads (pf). The curve S202 is an S11 value when the inductance value of the switching element 153 of the first switching circuit 15 in the antenna structure 200 is 0.15 pf. The curve S203 is an S11 value when the inductance value of the switching element 153 of the first switching circuit 15 in the antenna structure 200 is 0.2 pf. Curve S204 is the S11 value when the first switching circuit 15 in the antenna structure 200 is open (ie, not switched to any switching element 153). The curve S205 is an S11 value when the inductance of the switching element of the second switching circuit 29 in the antenna structure 200 is 0.13 pf. The curve S206 is an S11 value when the inductance of the switching element of the second switching circuit 29 in the antenna structure 200 is 0.15 pf. A curve S207 is an S11 value when the inductance of the switching element of the second switching circuit 29 in the antenna structure 200 is 0.2 pf. Curve S208 is the S11 value when the second switching circuit 29 in the antenna structure 200 is open (ie, not switched to any switching element).

圖23為所述天線結構200工作於中頻模態及高頻模態時之輻射效率圖。其中曲線S211為所述天線結構200中第一切換電路15之所述切換元件153之電感值為0.13皮法(pf)時之輻射效率。曲線S212為所述天線結構200中第一切換電路15之所述切換元件153之電感值為0.15pf時之輻射效率。曲線S213為所述天線結構200中第一切換電路15之所述切換元件153之電感值為0.2pf時之輻射效率。曲線S214為所述天線結構200中第一切換電路15開路(即未切換至任何切換元件153)時之輻射效率。曲線S215為所述天線結構200中第二切換電路29之切換元件之電感值為0.13pf時之輻射效率。曲線S216為所述天線結構200中第二切換電路29之切換元件之電感值為0.15pf時之輻射效率。曲線S217為所述天線結構200中第二切換電路29之切換元件之電感值為0.2pf時之輻射效率。曲線S218為所述天線結構200中第二切換電路29開路(即未切換至任何切換元件)時之輻射效率。FIG. 23 is a graph showing the radiation efficiency of the antenna structure 200 when operating in an intermediate frequency mode and a high frequency mode. The curve S211 is the radiation efficiency when the inductance of the switching element 153 of the first switching circuit 15 in the antenna structure 200 is 0.13 picofarads (pf). The curve S212 is the radiation efficiency when the inductance value of the switching element 153 of the first switching circuit 15 in the antenna structure 200 is 0.15 pf. The curve S213 is the radiation efficiency when the inductance value of the switching element 153 of the first switching circuit 15 in the antenna structure 200 is 0.2 pf. Curve S214 is the radiation efficiency of the first switching circuit 15 in the antenna structure 200 when it is open (ie, not switched to any switching element 153). The curve S215 is the radiation efficiency when the inductance of the switching element of the second switching circuit 29 in the antenna structure 200 is 0.13 pf. The curve S216 is the radiation efficiency when the inductance of the switching element of the second switching circuit 29 in the antenna structure 200 is 0.15 pf. A curve S217 is a radiation efficiency when the inductance of the switching element of the second switching circuit 29 in the antenna structure 200 is 0.2 pf. Curve S218 is the radiation efficiency of the second switching circuit 29 in the antenna structure 200 when it is open (ie, not switched to any switching element).

圖24為所述天線結構200工作於所述WIFI 2.4GHZ頻段及WIFI 5GHz頻段時之S參數(散射參數)曲線圖。圖25為所述天線結構200工作於所述WIFI 2.4GHZ頻段時之輻射效率圖。圖26為所述天線結構200工作於所述WIFI 5GHz頻段時之輻射效率圖。FIG. 24 is a graph of S parameters (scattering parameters) when the antenna structure 200 operates in the WIFI 2.4 GHz band and the WIFI 5 GHz band. Figure 25 is a graph showing the radiation efficiency of the antenna structure 200 when operating in the WIFI 2.4 GHz band. Figure 26 is a graph showing the radiation efficiency of the antenna structure 200 when operating in the WIFI 5 GHz band.

顯然,從圖11至圖13,以及圖22至圖26可知,所述天線結構200可工作於相應之低頻頻段,例如LTE Band 28頻段(703-803MHz)、LTE Band 5頻段(869-894MHz)、LTE Band 8頻段(925-926MHz)。另外,所述天線結構100還可工作於GPS頻段(1.575GHz)、中頻頻段(1805-2170MHz)、高頻頻段(2300-2400MHz及2496-2690MHz)以及WIFI 2.4/5GHz雙頻段,即涵蓋至低、中、高頻、WIFI 2.4/5GHz雙頻,頻率範圍較廣,且當所述天線結構200工作于上述頻段時,其工作頻率均可滿足天線工作設計要求,並具有較佳之輻射效率。Obviously, from FIG. 11 to FIG. 13 and FIG. 22 to FIG. 26, the antenna structure 200 can operate in corresponding low frequency bands, such as LTE Band 28 (703-803 MHz) and LTE Band 5 (869-894 MHz). LTE Band 8 band (925-926MHz). In addition, the antenna structure 100 can also work in the GPS frequency band (1.575 GHz), the intermediate frequency band (1805-2170 MHz), the high frequency band (2300-2400 MHz and 2496-2690 MHz), and the WIFI 2.4/5 GHz dual band, that is, Low, medium, high frequency, WIFI 2.4/5GHz dual frequency, wide frequency range, and when the antenna structure 200 works in the above frequency band, its working frequency can meet the antenna working design requirements, and has better radiation efficiency.

如前面各實施例所述,金屬長臂A1可激發第一模態以產生低頻頻段之輻射訊號,金屬短臂A2可激發第三模態以產生中頻頻段與高頻頻段之輻射訊號,第一輻射體26可激發出第四模態以產生高頻頻段之輻射訊號。因此無線通訊裝置400可使用長期演進技術升級版(LTE-Advanced)之載波聚合(CA,Carrier Aggregation)技術同時於多個不同頻段接收或發送無線訊號以增加傳輸頻寬。更具體地說,無線通訊裝置400可使用所述載波聚合技術並使用第一輻射體26同時於多個不同頻段接收或發送無線訊號。無線通訊裝置400亦可使用所述載波聚合技術並使用金屬長臂A1、金屬短臂A2與第一輻射體26其中至少兩者同時於多個不同頻段接收或發送無線訊號。As described in the foregoing embodiments, the metal long arm A1 can excite the first mode to generate a radiation signal in a low frequency band, and the metal short arm A2 can excite the third mode to generate a radiation signal in the intermediate frequency band and the high frequency band. A radiator 26 can excite the fourth mode to generate a radiation signal in the high frequency band. Therefore, the wireless communication device 400 can simultaneously receive or transmit wireless signals in a plurality of different frequency bands to increase the transmission bandwidth by using Carrier Aggregation (CA) technology of LTE-Advanced. More specifically, the wireless communication device 400 can use the carrier aggregation technique and use the first radiator 26 to simultaneously receive or transmit wireless signals in a plurality of different frequency bands. The wireless communication device 400 can also use the carrier aggregation technique and use the metal long arm A1, the metal short arm A2, and the first radiator 26 to receive or transmit wireless signals simultaneously in a plurality of different frequency bands.

可理解,於其他實施例中,所述第一輻射體26以及所述第二切換電路29與所述第二輻射體30之位置可互換,而所述隔離部28之位置不變。具體地,所述第一輻射體26之一端連接至所述金屬前框111,另一端朝所述第二側部117之方向延伸。所述第二切換電路29之一端電連接至所述第一輻射體26,另一端連接至所述金屬背板112。所述第三饋入源27設置於所述金屬前框111上,且電連接至所述第一輻射體26。所述第二輻射體30設置於所述金屬件11圍成之容置空間114內,且鄰近所述金屬短臂A2設置。所述第二輻射體30中第三連接段308連接至所述金屬前框111之一端更換至電連接至所述隔離部28。所述第四饋入源31之一端電連接至所述第一輻射段303與所述第一連接段306之連接點,另一端電連接至所述隔離部28。It can be understood that in other embodiments, the positions of the first radiator 26 and the second switching circuit 29 and the second radiator 30 are interchangeable, and the position of the isolation portion 28 is unchanged. Specifically, one end of the first radiator 26 is connected to the metal front frame 111, and the other end extends in the direction of the second side portion 117. One end of the second switching circuit 29 is electrically connected to the first radiator 26, and the other end is connected to the metal backing plate 112. The third feed source 27 is disposed on the metal front frame 111 and electrically connected to the first radiator 26 . The second radiator 30 is disposed in the accommodating space 114 surrounded by the metal member 11 and disposed adjacent to the metal short arm A2. The third connecting portion 308 of the second radiator 30 is connected to one end of the metal front frame 111 to be electrically connected to the partition portion 28. One end of the fourth feed source 31 is electrically connected to a connection point of the first radiating section 303 and the first connecting section 306, and the other end is electrically connected to the isolation portion 28.

另外,該天線結構100/200藉由設置所述金屬件11,且所述金屬件11上之開槽118及斷點119均設置於所述金屬前框111及金屬邊框113上,並未設置於所述金屬背板112上,使得所述金屬背板112構成全金屬結構,即所述金屬背板112上並沒有絕緣之開槽、斷線或斷點,使得所述金屬背板112可避免由於開槽、斷線或斷點之設置而影響金屬背板112之完整性與美觀性。In addition, the antenna structure 100/200 is provided with the metal member 11, and the slot 118 and the break point 119 of the metal member 11 are disposed on the metal front frame 111 and the metal frame 113, and are not disposed. On the metal backing plate 112, the metal backing plate 112 forms an all-metal structure, that is, the metal backing plate 112 has no insulating slots, broken lines or break points, so that the metal backing plate 112 can be Avoid affecting the integrity and aesthetics of the metal backing plate 112 due to the provision of slots, breaks, or breakpoints.

實施例3-5Example 3-5

請參閱圖27,本發明第三較佳實施方式提供一種天線結構500,其可應用於行動電話、個人數位助理等無線通訊裝置600中,用以發射、接收無線電波以傳遞、交換無線訊號。Referring to FIG. 27, a third preferred embodiment of the present invention provides an antenna structure 500, which can be applied to a wireless communication device 600 such as a mobile phone or a personal digital assistant for transmitting and receiving radio waves to transmit and exchange wireless signals.

請一併參閱圖28及圖29,所述天線結構500包括殼體51、第一饋入源53、第二饋入源54、第一切換電路55及第二切換電路57。所述殼體51可為所述無線通訊裝置600之外殼。於本實施例中,所述殼體51由金屬材料製成。所述殼體51包括前框511、背板512及邊框513。所述前框511、背板512及邊框513可是一體成型。所述前框511、背板512以及邊框513構成所述無線通訊裝置600之外殼。所述前框511上設置有一開口(圖未標),用於容置所述無線通訊裝置600之顯示單元601。可理解,所述顯示單元601具有一顯示平面,該顯示平面裸露於該開口,且該顯示平面與所述背板512大致平行設置。Referring to FIG. 28 and FIG. 29 together, the antenna structure 500 includes a housing 51, a first feed source 53, a second feed source 54, a first switching circuit 55, and a second switching circuit 57. The housing 51 can be an outer casing of the wireless communication device 600. In the present embodiment, the housing 51 is made of a metal material. The housing 51 includes a front frame 511, a back plate 512, and a frame 513. The front frame 511, the back plate 512 and the frame 513 may be integrally formed. The front frame 511, the back plate 512, and the bezel 513 constitute an outer casing of the wireless communication device 600. An opening (not shown) is disposed on the front frame 511 for receiving the display unit 601 of the wireless communication device 600. It can be understood that the display unit 601 has a display plane, the display plane is exposed to the opening, and the display plane is disposed substantially parallel to the back plate 512.

所述背板512與所述前框511相對設置。所述背板512與邊框513直接連接,所述背板512與邊框513之間沒有空隙。所述背板512為一體成型之單一金屬片,為顯露相機鏡頭604與閃光燈605等元件而設置開孔606、607。所述背板512其上並沒有設置任何用於分割所述背板512之絕緣之開槽、斷線或斷點(請參圖29)。所述背板512可作為所述天線結構500與所述無線通訊裝置600之地。The back plate 512 is disposed opposite to the front frame 511. The back plate 512 is directly connected to the frame 513, and there is no gap between the back plate 512 and the frame 513. The back plate 512 is an integrally formed single metal piece, and openings 606, 607 are provided for exposing the camera lens 604 and the flash 605 and the like. The backing plate 512 is not provided with any slot, broken or broken point for separating the insulation of the backing plate 512 (refer to FIG. 29). The backplane 512 can serve as the antenna structure 500 and the ground of the wireless communication device 600.

於另一實施例中,於所述顯示單元601朝向所述背板512那一面可設置用於屏蔽電磁干擾之屏蔽罩(shielding mask)或支撐所述顯示單元601之中框。所述屏蔽罩或中框以金屬材料製作。所述屏蔽罩或中框可與所述背板512相連接以作為所述天線結構500與所述無線通訊裝置600之地。In another embodiment, a shielding mask for shielding electromagnetic interference or supporting a frame in the display unit 601 may be disposed on a side of the display unit 601 facing the backplane 512. The shield or the middle frame is made of a metal material. The shield or middle frame can be coupled to the back plate 512 to serve as the antenna structure 500 and the wireless communication device 600.

所述邊框513夾設於所述前框511與所述背板512之間,且分別環繞所述前框511及所述背板512之周緣設置,以與所述顯示單元601、所述前框511以及背板512共同圍成一容置空間514。所述容置空間514用以容置所述無線通訊裝置600之電路板、處理單元等電子元件或電路模組於其內。The frame 513 is disposed between the front frame 511 and the back plate 512, and is disposed around the periphery of the front frame 511 and the back plate 512 to be opposite to the display unit 601 and the front The frame 511 and the back plate 512 together define an accommodating space 514. The accommodating space 514 is configured to receive electronic components or circuit modules of the circuit board, the processing unit, and the like of the wireless communication device 600.

所述邊框513至少包括末端部515、第一側部516以及第二側部517。於本實施例中,所述末端部515為所述無線通訊裝置600之底端。所述末端部515連接所述前框511與所述背板512。所述第一側部516與所述第二側部517相對設置,兩者分別設置於所述末端部515之兩端,優選垂直設置。所述第一側部516與所述第二側部517亦連接所述前框511與所述背板512。The frame 513 includes at least a tip portion 515, a first side portion 516, and a second side portion 517. In the embodiment, the end portion 515 is the bottom end of the wireless communication device 600. The end portion 515 connects the front frame 511 and the back plate 512. The first side portion 516 is disposed opposite to the second side portion 517, and is disposed at two ends of the end portion 515, preferably vertically. The first side portion 516 and the second side portion 517 are also connected to the front frame 511 and the back plate 512.

所述邊框513上還開設有端口518及開槽519,所述前框511上開設有斷點520。所述端口518開設於所述末端部515之中部位置,且貫通所述末端部515。所述無線通訊裝置600還包括電子元件603。於本實施例中,所述電子元件603為一USB模組,其設置於所述容置空間514內,且與所述端口518相對應,以使得所述電子元件603從所述端口518部分露出。如此使用者將一USB設備藉由所述端口518插入,進而與所述電子元件603建立電性連接。A port 518 and a slot 519 are defined in the frame 513, and a break point 520 is defined in the front frame 511. The port 518 is opened at a position of the end portion 515 and penetrates the end portion 515. The wireless communication device 600 also includes an electronic component 603. In this embodiment, the electronic component 603 is a USB module disposed in the accommodating space 514 and corresponding to the port 518 such that the electronic component 603 is from the port 518. Exposed. Thus, the user inserts a USB device through the port 518 to establish an electrical connection with the electronic component 603.

於本實施例中,所述開槽519佈設於所述末端部515上,且連通所述端口518,並且分別延伸至所述第一側部516及第二側部517。可理解,於其他實施例中,所述開槽519亦可僅設置於所述末端部515,而未延伸至所述第一側部516及第二側部517中之任何一個,或者所述開槽519設置於所述末端部515,且僅沿延伸至所述第一側部516及第二側部517中之其中之一。In the present embodiment, the slot 519 is disposed on the end portion 515 and communicates with the port 518 and extends to the first side portion 516 and the second side portion 517, respectively. It can be understood that in other embodiments, the slot 519 may also be disposed only at the end portion 515 without extending to any one of the first side portion 516 and the second side portion 517, or A slot 519 is disposed in the end portion 515 and extends only along one of the first side portion 516 and the second side portion 517.

所述斷點520與所述開槽519連通,並延伸至隔斷所述前框511。於本實施例中,所述斷點520鄰近所述第二側部517設置,如此所述斷點520將所述前框511劃分出兩部分,即金屬長臂T1及金屬短臂T2。其中,所述斷點520一側之前框511直至其延伸至與所述開槽519之其中一端點E1相對應之部分共同形成所述金屬長臂T1。所述斷點520另一側之前框511直至其延伸至與所述開槽519之另一端點E2相對應之部分形成所述金屬短臂T2。於本實施例中,所述斷點520開設之位置並非對應到所述末端部515之中間,因此所述金屬長臂T1之長度大於金屬短臂T2之長度。另外,所述開槽519及所述斷點520內均填充有絕緣材料(例如塑膠、橡膠、玻璃、木材、陶瓷等,但不以此為限),進而區隔所述金屬長臂T1、金屬短臂T2與所述背板512。The break point 520 is in communication with the slot 519 and extends to block the front frame 511. In the present embodiment, the break point 520 is disposed adjacent to the second side portion 517, such that the break point 520 divides the front frame 511 into two parts, namely a metal long arm T1 and a metal short arm T2. The portion 511 of the break point 520 is extended to a portion corresponding to one of the end points E1 of the slot 519 to form the metal long arm T1. The other side of the breakpoint 520 has a front frame 511 until it extends to a portion corresponding to the other end point E2 of the slot 519 to form the metal short arm T2. In this embodiment, the position where the breakpoint 520 is opened does not correspond to the middle of the end portion 515, so the length of the metal long arm T1 is greater than the length of the metal short arm T2. In addition, the slot 519 and the break point 520 are filled with an insulating material (for example, plastic, rubber, glass, wood, ceramic, etc., but not limited thereto), thereby separating the metal long arm T1. The metal short arm T2 and the back plate 512.

可理解,於本實施例中,所述開槽519開設於所述邊框513靠近所述背板512之一端,並延伸至所述前框511,以使得所述金屬長臂T1與金屬短臂T2完全由部分所述前框511構成。當然,於其他實施例中,所述開槽519之開設位置亦可根據具體需求進行調整。例如,所述開槽519開設於所述邊框513靠近所述背板512之一端,並朝所述前框511所在方向延伸,以使得所述金屬長臂T1與金屬短臂T2由部分所述前框511及部分所述邊框513構成。It can be understood that, in this embodiment, the slot 519 is defined in the frame 513 near one end of the back plate 512 and extends to the front frame 511 such that the metal long arm T1 and the metal short arm T2 is completely constituted by a part of the front frame 511. Of course, in other embodiments, the opening position of the slot 519 can also be adjusted according to specific needs. For example, the slot 519 is defined in the frame 513 near one end of the back plate 512 and extends toward the front frame 511 such that the metal long arm T1 and the metal short arm T2 are partially described. The front frame 511 and a part of the frame 513 are formed.

可理解,所述前框511與邊框513之下半部除了所述端口518、開槽519與斷點520以外沒有再設置其他絕緣之開槽、斷線或斷點,因此所述前框511之下半部就僅有一個斷點520,沒有其他斷點。It can be understood that the front frame 511 and the lower half of the frame 513 are not provided with other insulating slots, broken lines or break points except the port 518, the slot 519 and the break point 520, so the front frame 511 There is only one breakpoint 520 in the lower half, and there are no other breakpoints.

所述第一饋入源53可藉由匹配電路59(請參圖27與圖31)電連接至所述金屬長臂T1靠近所述第一側部516之一端,進而為所述金屬長臂T1饋入電流,使得所述金屬長臂T1激發一第一模態以產生第一頻段之輻射訊號。The first feed source 53 can be electrically connected to one end of the metal long arm T1 near the first side portion 516 by a matching circuit 59 (see FIG. 27 and FIG. 31), thereby being the metal long arm. T1 feeds current such that the metal long arm T1 excites a first mode to generate a radiation signal of the first frequency band.

所述第二饋入源54可藉由匹配電路(圖未示)電連接至所述金屬短臂T2靠近所述斷點520之一端,進而為所述金屬短臂T2饋入電流,使得所述金屬短臂T2激發一第二模態以產生第二頻段之輻射訊號。The second feed source 54 can be electrically connected to one end of the metal short arm T2 near the break point 520 by a matching circuit (not shown), thereby feeding current to the metal short arm T2. The metal short arm T2 excites a second mode to generate a radiation signal of the second frequency band.

請一併參閱圖30,所述第一切換電路55電連接至所述金屬長臂T1之中部位置,其包括第一切換單元551及至少一第一切換元件553。所述第一切換單元551電連接至所述金屬長臂T1。所述第一切換元件553可為電感、電容、或者電感與電容之組合。所述第一切換元件553之間相互並聯,且其一端電連接至所述第一切換單元551,另一端電連接至背板512,即接地。Referring to FIG. 30 together, the first switching circuit 55 is electrically connected to the middle position of the metal long arm T1, and includes a first switching unit 551 and at least one first switching element 553. The first switching unit 551 is electrically connected to the metal long arm T1. The first switching element 553 can be an inductor, a capacitor, or a combination of an inductor and a capacitor. The first switching elements 553 are connected in parallel with each other, and one end thereof is electrically connected to the first switching unit 551, and the other end is electrically connected to the backing plate 512, that is, grounded.

請一併參閱圖27及圖31,所述匹配電路59之一端電連接至金屬長臂T1,所述匹配電路59之另一端電連接至第一饋入源53。所述第二切換電路57之一端電連接至所述匹配電路59,另一端電連接至背板512,即接地。於本實施例中,所述第二切換電路57包括第二切換單元571及至少一第二切換元件573。所述第二切換單元571電連接至所述匹配電路59,以藉由所述匹配電路59電連接至所述金屬長臂T1。所述第二切換元件573可為電感、電容、或者電感與電容之組合。所述第二切換元件573之間相互並聯,且其一端電連接至所述第二切換單元571,另一端電連接至背板512,即接地。如此,藉由控制所述第一切換單元551及第二切換單元571之切換,可使得所述金屬長臂T1切換至不同之第一切換元件553及/或第二切換元件573。由於每一個第一切換元件553及第二切換元件573具有不同之阻抗,因此藉由所述第一切換單元551及第二切換單元571之切換,可調整所述金屬長臂T1之第一模態之頻段。項所述之調整頻段就是使該頻段往低頻偏移或往高頻偏移。Referring to FIG. 27 and FIG. 31 together, one end of the matching circuit 59 is electrically connected to the metal long arm T1, and the other end of the matching circuit 59 is electrically connected to the first feed source 53. One end of the second switching circuit 57 is electrically connected to the matching circuit 59, and the other end is electrically connected to the backing plate 512, that is, grounded. In the embodiment, the second switching circuit 57 includes a second switching unit 571 and at least one second switching element 573. The second switching unit 571 is electrically connected to the matching circuit 59 to be electrically connected to the metal long arm T1 by the matching circuit 59. The second switching element 573 can be an inductor, a capacitor, or a combination of an inductor and a capacitor. The second switching elements 573 are connected in parallel with each other, and one end thereof is electrically connected to the second switching unit 571, and the other end is electrically connected to the backing plate 512, that is, grounded. Thus, by controlling the switching between the first switching unit 551 and the second switching unit 571, the metal long arm T1 can be switched to different first switching elements 553 and/or second switching elements 573. Since each of the first switching element 553 and the second switching element 573 has different impedances, the first mode of the metal long arm T1 can be adjusted by switching between the first switching unit 551 and the second switching unit 571. The frequency band of the state. The adjustment band described in the item is to shift the band to a low frequency or to a high frequency.

圖32為所述天線結構500之電流走向示意圖。其中,當電流自所述第一饋入源53進入所述金屬長臂T1後,將流經所述金屬長臂T1,並流向所述斷點520(參路徑I1),進而激發出所述第一模態以產生第一頻段之輻射訊號。當電流自所述第二饋入源54進入所述金屬短臂T2後,電流將依次流經所述前框511、第二側部517並流經至背面之背板512(參路徑I2),進而激發出所述第二模態以產生第二頻段之輻射訊號。本實施例中,所述第一模態為一低頻模態,所述第一頻段為704-960MHz頻段。所述第二模態為一中高頻模態,所述第二頻段為1710-2690MHz頻段。由於所述天線結構500設置有第一切換電路55及第二切換電路57,因此可利用所述第一切換電路55及第二切換電路57之相互配合,進而切換所述金屬長臂T1之低頻模態,同時不影響中、高頻之操作。32 is a schematic diagram of current flow of the antenna structure 500. Wherein, when a current enters the metal long arm T1 from the first feed source 53, it will flow through the metal long arm T1 and flow to the break point 520 (refer to the path I1), thereby exciting the The first mode is to generate a radiation signal of the first frequency band. When a current enters the metal short arm T2 from the second feed source 54, current will sequentially flow through the front frame 511, the second side portion 517, and flow to the back plate 512 (refer to path I2). And exciting the second mode to generate a radiation signal of the second frequency band. In this embodiment, the first mode is a low frequency mode, and the first frequency band is a frequency band of 704-960 MHz. The second mode is a medium-high frequency mode, and the second frequency band is a frequency band of 1710-2690 MHz. Since the antenna structure 500 is provided with the first switching circuit 55 and the second switching circuit 57, the first switching circuit 55 and the second switching circuit 57 can cooperate with each other to switch the low frequency of the metal long arm T1. Modal, without affecting the operation of medium and high frequencies.

請參閱圖33,於其中一實施例中,所述天線結構500還包括諧振電路58,所述諧振電路58之數量為一個,所述諧振電路58包括相互串聯之電感L及電容C。所述諧振電路58電連接於所述金屬長臂T1及背板512之間,且與所述第一切換單元551及至少一第一切換元件553並聯設置。Referring to FIG. 33, in one embodiment, the antenna structure 500 further includes a resonant circuit 58, the number of the resonant circuits 58 is one, and the resonant circuit 58 includes an inductor L and a capacitor C connected in series. The resonant circuit 58 is electrically connected between the metal long arm T1 and the back plate 512 and is disposed in parallel with the first switching unit 551 and the at least one first switching element 553.

請參閱圖34,於另外一實施例中,所述諧振電路58之數量與所述第一切換元件553之數量一致,即為多個。每一諧振電路58包括相互串聯之電感L1-Ln及電容C1-Cn。每一個所述諧振電路58分別電連接於第一切換單元551及背板512之間,並與對應之第一切換元件553並聯設置。可理解,於圖30、圖31、圖33與圖34中,所述屏蔽罩或中框可取代所述背板512以供所述第一切換電路55與/或第二切換電路57接地。Referring to FIG. 34, in another embodiment, the number of the resonant circuits 58 is the same as the number of the first switching elements 553, that is, a plurality. Each of the resonant circuits 58 includes inductors L1-Ln and capacitors C1-Cn connected in series with each other. Each of the resonant circuits 58 is electrically connected between the first switching unit 551 and the backing plate 512, and is disposed in parallel with the corresponding first switching element 553. It can be understood that in FIG. 30, FIG. 31, FIG. 33 and FIG. 34, the shield or the middle frame can replace the back plate 512 for the first switching circuit 55 and/or the second switching circuit 57 to be grounded.

圖35為於圖33所示所述第一切換電路55一側並聯一個諧振電路58時,所述S參數(散射參數)與頻率之間之關係原理圖。其中,假設當所述天線結構500未增加圖33所示所述諧振電路58時,所述天線結構500工作於第一模態(請參曲線S351)。當所述天線結構500增加所述諧振電路58時,所述諧振電路58可使得所述金屬長臂T1額外共振出一窄頻模態(即第三模態,請參曲線S352),以產生第三頻段之輻射訊號,即可有效增加所述天線結構500之應用頻段,達到多頻或寬頻應用。35 is a schematic diagram showing the relationship between the S parameter (scattering parameter) and the frequency when one resonant circuit 58 is connected in parallel to the side of the first switching circuit 55 shown in FIG. Here, it is assumed that when the antenna structure 500 does not increase the resonant circuit 58 shown in FIG. 33, the antenna structure 500 operates in the first mode (refer to curve S351). When the antenna structure 500 increases the resonant circuit 58, the resonant circuit 58 can cause the metal long arm T1 to additionally resonate to a narrow frequency mode (ie, a third mode, see curve S352) to generate The radiation signal of the third frequency band can effectively increase the application frequency band of the antenna structure 500 to achieve multi-frequency or broadband application.

圖36為於圖34所示所述第一切換電路55中每一第一切換元件553一側並聯一個諧振電路58時,所述S參數(散射參數)與頻率之間之關係原理圖。其中,假設當所述天線結構500未增加圖34所示所述諧振電路58時,所述天線結構500可工作於所述第一模態(請參曲線S361)。如此當所述天線結構500增加所述諧振電路58時,所述諧振電路58可使得所述金屬長臂T1額外共振出所述窄頻模態(請參曲線S362),即可有效增加所述天線結構500之應用頻段,達到多頻或寬頻應用。另外,藉由設置所述諧振電路58中電感L1-Ln之電感值與所述電容C1-Cn之電容值,可決定所述第一模態切換時所述窄頻模態之頻段。例如,於其中一個實施例中,例如圖36所示,可藉由設置所述諧振電路58中之電感值與電容值,使第一切換單元551切換至不同之第一切換元件553時,所述天線結構500之窄頻模態亦隨之切換,例如可由f1移動至fn,移動範圍十分廣泛。FIG. 36 is a schematic diagram showing the relationship between the S parameter (scattering parameter) and the frequency when one resonant circuit 58 is connected in parallel to the first switching element 553 side of the first switching circuit 55 shown in FIG. Here, it is assumed that when the antenna structure 500 does not increase the resonant circuit 58 shown in FIG. 34, the antenna structure 500 can operate in the first mode (refer to curve S361). Thus, when the antenna structure 500 increases the resonant circuit 58, the resonant circuit 58 can cause the metal long arm T1 to additionally resonate out of the narrow frequency mode (refer to curve S362), thereby effectively increasing the The application frequency band of the antenna structure 500 can reach multi-frequency or broadband applications. In addition, by setting the inductance value of the inductance L1-Ln in the resonant circuit 58 and the capacitance value of the capacitance C1-Cn, the frequency band of the narrow-band mode when the first mode is switched can be determined. For example, in one embodiment, for example, as shown in FIG. 36, when the first switching unit 551 is switched to a different first switching element 553 by setting the inductance value and the capacitance value in the resonant circuit 58 The narrowband mode of the antenna structure 500 is also switched, for example, from f1 to fn, and the range of motion is very wide.

可理解,於另一實施例中,還可藉由設置所述諧振電路58中之電感值與電容值而固定所述窄頻模態之頻段,從而使所述第一切換單元551無論切換至哪一個第一切換元件553,所述窄頻模態之頻段均固定不動。It can be understood that, in another embodiment, the frequency band of the narrowband mode can be fixed by setting the inductance value and the capacitance value in the resonant circuit 58, so that the first switching unit 551 is switched to Which first switching element 553, the frequency band of the narrowband mode is fixed.

當然,可理解之是,於其他實施例中,所述諧振電路58不局限於包括所述電感L及電容C,其還可由其他之諧振元件組成。Of course, it can be understood that in other embodiments, the resonant circuit 58 is not limited to include the inductor L and the capacitor C, and may also be composed of other resonant components.

圖37為所述天線結構500設置有所述諧振電路58且工作於低頻模態時之電流走向示意圖。顯然,當電流自所述第一饋入源53進入所述金屬長臂T1後,將流經所述金屬長臂T1,並流向所述斷點520(參路徑I3),進而激發出所述第一模態以產生第一頻段之輻射訊號。另外,由於所述天線結構500設置有第一切換電路55及第二切換電路57,因此可利用所述第一切換電路55及第二切換電路57之相互配合,進而切換所述金屬長臂T1之低頻模態,同時不影響中、高頻之操作。於本實施例中,所述第一模態為一低頻模態,所述第一頻段為704-960MHz頻段。37 is a schematic diagram of current flow when the antenna structure 500 is provided with the resonant circuit 58 and operates in a low frequency mode. Obviously, when current enters the metal long arm T1 from the first feed source 53, it will flow through the metal long arm T1 and flow to the break point 520 (refer to the path I3), thereby exciting the The first mode is to generate a radiation signal of the first frequency band. In addition, since the antenna structure 500 is provided with the first switching circuit 55 and the second switching circuit 57, the first switching circuit 55 and the second switching circuit 57 can cooperate with each other to switch the metal long arm T1. The low frequency mode does not affect the operation of medium and high frequencies. In this embodiment, the first mode is a low frequency mode, and the first frequency band is a frequency band of 704-960 MHz.

圖38為所述天線結構500設置有所述諧振電路58且工作於中高頻頻段時之電流走向示意圖。顯然,當電流自所述第二饋入源54進入所述金屬短臂T2後,電流將依次流經所述前框511、第二側部517並流經至背面之背板512(參路徑I4),進而激發出第二模態以產生第二頻段之輻射訊號。同時當電流自所述第二饋入源54進入所述金屬短臂T2後,所述電流將經該斷點520耦合至所述金屬長臂T1,並流經至所述第一切換電路55內之諧振電路58,最終流向背面之背板512(參路徑I5)。如此藉由所述斷點520之耦合作用,並搭配所述諧振電路58,進而激發出所述第三模態以產生第三頻段之輻射訊號。於本實施例中,所述第二模態為一中頻模態,所述第二頻段為1710-2400MHz頻段。所述第三模態為一高頻模態,所述第三頻段為2400-2690MHz頻段。38 is a schematic diagram of current flow when the antenna structure 500 is provided with the resonant circuit 58 and operates in a medium-high frequency band. Obviously, when current enters the metal short arm T2 from the second feed source 54, current will sequentially flow through the front frame 511, the second side portion 517, and flow to the back plate 512 of the back surface (reference path I4), in turn, exciting the second mode to generate a radiation signal of the second frequency band. At the same time, when a current enters the metal short arm T2 from the second feed source 54, the current will be coupled to the metal long arm T1 via the breakpoint 520 and flow to the first switching circuit 55. The internal resonant circuit 58 eventually flows to the backing plate 512 (see path I5). Thus, by the coupling of the breakpoint 520, and in conjunction with the resonant circuit 58, the third mode is excited to generate a third band of radiation signals. In this embodiment, the second mode is an intermediate frequency mode, and the second frequency band is a frequency band of 1710-2400 MHz. The third mode is a high frequency mode, and the third frequency band is a frequency band of 2400-2690 MHz.

圖39為所述天線結構500工作於低頻模態時之S參數(散射參數)曲線圖。其中,曲線S391為所述天線結構500工作於704-746MHz頻段時之S11值。曲線S392為所述天線結構500工作於746-787MHz時之S11值。曲線S393為所述天線結構500工作於824-894MHz頻段時之S11值。曲線S394為所述天線結構500工作於880-960MHz頻段時之S11值。顯然,曲線S391-S394分別對應四個不同頻段,並分別對應所述第一切換電路55及第二切換電路57可切換之多個低頻模態之其中四個。39 is a graph of S-parameters (scattering parameters) when the antenna structure 500 operates in a low frequency mode. The curve S391 is the S11 value when the antenna structure 500 operates in the 704-746 MHz frequency band. Curve S392 is the S11 value at which the antenna structure 500 operates at 746-787 MHz. Curve S393 is the S11 value when the antenna structure 500 operates in the 824-894 MHz band. Curve S394 is the S11 value when the antenna structure 500 operates in the 880-960 MHz band. Obviously, the curves S391-S394 respectively correspond to four different frequency bands, and respectively correspond to four of the plurality of low frequency modes that the first switching circuit 55 and the second switching circuit 57 can switch.

圖40為所述天線結構500工作於低頻模態時之輻射效率圖。其中,曲線S401為所述天線結構500工作於704-746MHz頻段時之輻射效率。曲線S402為所述天線結構500工作於746-787MHz時之輻射效率。曲線S403為所述天線結構500工作於824-894MHz頻段時之輻射效率。曲線S404為所述天線結構500工作於880-960MHz頻段時之輻射效率。顯然,曲線S401-S404分別對應四個不同頻段,並分別對應所述第一切換電路55及第二切換電路57可切換之多個低頻模態之其中四個。40 is a graph showing the radiation efficiency of the antenna structure 500 when operating in a low frequency mode. The curve S401 is the radiation efficiency when the antenna structure 500 operates in the 704-746 MHz frequency band. Curve S402 is the radiation efficiency of the antenna structure 500 operating at 746-787 MHz. Curve S403 is the radiation efficiency of the antenna structure 500 operating in the 824-894 MHz band. Curve S404 is the radiation efficiency of the antenna structure 500 operating in the 880-960 MHz band. Obviously, the curves S401-S404 respectively correspond to four different frequency bands, and respectively correspond to four of the plurality of low frequency modes that the first switching circuit 55 and the second switching circuit 57 can switch.

圖41為所述天線結構500工作于中、高頻段(即1710-2690MHz)時之S參數(散射參數)曲線圖。圖42為所述天線結構500工作于中、高頻段(即1710-2690MHz)時之輻射效率圖。41 is a graph of S-parameters (scattering parameters) when the antenna structure 500 operates in the middle and high frequency bands (ie, 1710-2690 MHz). Figure 42 is a graph showing the radiation efficiency of the antenna structure 500 when operating in the middle and high frequency bands (i.e., 1710-2690 MHz).

顯然,從圖39至圖42可知,所述天線結構500可工作於相應之低頻頻段,例如704-746MHz頻段、746-787MHz頻段、824-894MHz頻段以及880-960MHz頻段。另外,所述天線結構500還可工作于中、高頻段(1710-2690MHz),即涵蓋至低、中、高頻,頻率範圍較廣,且當所述天線結構500工作于上述頻段時,其工作頻率均可滿足天線工作設計要求,並具有較佳之輻射效率。Obviously, as can be seen from FIG. 39 to FIG. 42, the antenna structure 500 can operate in corresponding low frequency bands, such as the 704-746 MHz band, the 746-787 MHz band, the 824-894 MHz band, and the 880-960 MHz band. In addition, the antenna structure 500 can also operate in the medium and high frequency bands (1710-2690 MHz), that is, cover low to medium, high frequency, wide frequency range, and when the antenna structure 500 operates in the above frequency band, The operating frequency can meet the antenna design requirements and has better radiation efficiency.

請一併參閱圖43,為本發明第四較佳實施例提供之天線結構500a。所述天線結構500a包括殼體51、第一饋入源53、第二饋入源54、第一切換電路55及第二切換電路57。所述殼體51包括前框511、背板512及邊框513。所述邊框513至少包括末端部515、第一側部516以及第二側部517。所述邊框513上還開設有開槽519,所述前框511上還開設有斷點520。所述斷點520將所述前框511劃分為兩部分,這兩部分包括金屬長臂T1及金屬短臂T2。Please refer to FIG. 43 as an antenna structure 500a according to a fourth preferred embodiment of the present invention. The antenna structure 500a includes a housing 51, a first feed source 53, a second feed source 54, a first switching circuit 55, and a second switching circuit 57. The housing 51 includes a front frame 511, a back plate 512, and a frame 513. The frame 513 includes at least a tip portion 515, a first side portion 516, and a second side portion 517. The frame 513 is further provided with a slot 519, and the front frame 511 is further provided with a break point 520. The break point 520 divides the front frame 511 into two parts, and the two parts include a metal long arm T1 and a metal short arm T2.

可理解,所述天線結構500a與天線結構500之區別在於,所述天線結構500a還包括第一輻射體61、第三饋入源62、隔離部63、第二輻射體64以及第四饋入源65。It can be understood that the antenna structure 500a is different from the antenna structure 500 in that the antenna structure 500a further includes a first radiator 61, a third feed source 62, a partition 63, a second radiator 64, and a fourth feed. Source 65.

可理解,所述第一輻射體61設置於所述殼體51圍成之容置空間514內,且鄰近所述金屬短臂T2設置,並與所述背板512間隔設置。所述第一輻射體61包括第一輻射部610、第二輻射部611及第三輻射部612。所述第一輻射部610大致呈L型,其包括第一輻射臂613及第二輻射臂614。所述第一輻射臂613大致呈直條狀,其一端電連接至所述隔離部63,並沿平行所述末端部515與平行所述背板512且靠近所述第一側部516之方向延伸。所述第二輻射臂614大致呈直條狀,其與所述第一輻射臂613非共面設置。具體地,所述第二輻射臂614垂直連接至所述第一輻射臂613靠近所述第一側部516之端部,並沿垂直且遠離所述背板512之方向延伸。It can be understood that the first radiator 61 is disposed in the accommodating space 514 surrounded by the casing 51 and disposed adjacent to the metal short arm T2 and spaced apart from the back plate 512. The first radiator 61 includes a first radiating portion 610, a second radiating portion 611, and a third radiating portion 612. The first radiating portion 610 is substantially L-shaped and includes a first radiating arm 613 and a second radiating arm 614. The first radiating arm 613 has a substantially straight strip shape, one end of which is electrically connected to the partition portion 63, and is parallel to the end portion 515 and parallel to the back plate 512 and adjacent to the first side portion 516. extend. The second radiating arm 614 is substantially straight and is disposed non-coplanar with the first radiating arm 613. Specifically, the second radiating arm 614 is vertically connected to an end of the first radiating arm 613 near the first side portion 516 and extends in a direction perpendicular and away from the back plate 512.

所述第二輻射部611大致呈U型,包括依次電連接之第一輻射段615、第二輻射段616以及第三輻射段617。所述第一輻射段615、第二輻射段616以及第三輻射段617共面設置,且設置於與所述第一輻射臂613所在平面平行之平面內。所述第一輻射段615大致呈直條狀,且與所述末端部515平行設置。所述第一輻射段615之一端垂直連接至所述第二輻射臂614遠離所述第一輻射臂613之端部,並沿靠近所述第一側部516之方向延伸。所述第二輻射段616呈直條狀,其一端垂直連接至所述第一輻射段615遠離所述第二輻射臂614之端部,另一端沿平行所述第二側部517且遠離所述末端部515之方向延伸,進而與所述第一輻射段615構成一L型結構。所述第三輻射段617大致呈矩形條狀,其一端連接至所述第二輻射段616遠離所述第一輻射段615之一端,另一端沿平行所述第一輻射段615且靠近所述第二側部517之方向延伸,即所述第三輻射段617及所述第一輻射段615分別設置於所述第二輻射段616之同一側,且分別設置於所述第二輻射段616之兩端。The second radiating portion 611 is substantially U-shaped, and includes a first radiating section 615, a second radiating section 616, and a third radiating section 617 that are electrically connected in sequence. The first radiating section 615, the second radiating section 616, and the third radiating section 617 are disposed coplanarly and disposed in a plane parallel to a plane in which the first radiating arm 613 is located. The first radiating section 615 is substantially straight and disposed parallel to the end portion 515. One end of the first radiating section 615 is perpendicularly connected to an end of the second radiating arm 614 away from the first radiating arm 613 and extends in a direction close to the first side portion 516. The second radiating section 616 has a straight strip shape, one end of which is perpendicularly connected to the end of the first radiating section 615 away from the second radiating arm 614, and the other end is parallel to the second side 517 and away from the The end portion 515 extends in the direction of the end portion 515, and further forms an L-shaped structure with the first radiating portion 615. The third radiating section 617 has a substantially rectangular strip shape, one end of which is connected to the second radiating section 616 away from one end of the first radiating section 615, and the other end is parallel to the first radiating section 615 and close to the The second radiating section 517 and the first radiating section 615 are respectively disposed on the same side of the second radiating section 616, and are respectively disposed on the second radiating section 616. Both ends.

所述第三輻射部612大致呈L型,其包括第一連接段618及第二連接段619。所述第一連接段618大致呈矩形條狀,其一端電連接至所述第二輻射臂614與第一輻射段615之連接處,另一端沿平行所述第二輻射段616且靠近所述第三輻射段617之方向延伸,直至越過所述第三輻射段617。所述第二連接段619大致呈直條狀,其一端垂直連接至所述第一連接段618遠離第一輻射段615之一端,另一端沿平行所述第一輻射段615且靠近所述第二輻射段616之方向延伸,直至與所述第三輻射段617之末端大致平齊。The third radiating portion 612 is substantially L-shaped and includes a first connecting portion 618 and a second connecting portion 619. The first connecting section 618 has a substantially rectangular strip shape, one end of which is electrically connected to the junction of the second radiating arm 614 and the first radiating section 615, and the other end of which is parallel to the second radiating section 616 and close to the The direction of the third radiant section 617 extends until the third radiant section 617 is crossed. The second connecting section 619 is substantially straight, and one end thereof is perpendicularly connected to the first connecting section 618 away from one end of the first radiating section 615, and the other end is parallel to the first radiating section 615 and close to the first The direction of the second radiant section 616 extends until it is substantially flush with the end of the third radiant section 617.

所述第三饋入源62之一端用於藉由匹配電路(圖未示)電連接至所述第一輻射體61,例如所述第一輻射體61之第一連接段618,另一端電連接至所述隔離部63,用以分別饋入電流至所述第二輻射部611及第三輻射部612,進而激發相應之工作模態,例如WIFI 2.4GHz模態及WIFI 5GHz模態。One end of the third feed source 62 is for electrically connecting to the first radiator 61 by a matching circuit (not shown), for example, the first connecting portion 618 of the first radiator 61, and the other end is electrically Connected to the isolation portion 63 for respectively feeding current to the second radiating portion 611 and the third radiating portion 612, thereby exciting corresponding operating modes, such as WIFI 2.4 GHz mode and WIFI 5 GHz mode.

可理解,於本實施例中,由於所述第二饋入源54與所述第三饋入源62各自共振之頻帶較接近,容易產生天線隔離度之困擾。因此,所述隔離部63用以使得兩個饋入源,即所述第二饋入源54與所述第三饋入源62之結構電流路徑延長,以提升金屬短臂T2與第一輻射體61之間之隔離度。It can be understood that, in this embodiment, since the frequency bands of the resonance of the second feed source 54 and the third feed source 62 are relatively close, the antenna isolation is easily caused. Therefore, the isolation portion 63 is configured to extend the structure current paths of the two feed sources, that is, the second feed source 54 and the third feed source 62, to raise the metal short arm T2 and the first radiation. The isolation between the bodies 61.

可理解,所述隔離部63可為任意形狀及尺寸,或者為一平面金屬片,亦可為金屬殼等形狀,僅需確保所述隔離部63可達到延長所述第二饋入源54與所述第三饋入源62之結構電流路徑,以提高金屬短臂T2與第一輻射體61之間之隔離度即可。例如,於本實施例中,所述隔離部63呈塊狀,其設置於所述背板512上,且由所述第二側部517朝向所述第一側部516延伸而成。於其他實施例中,所述隔離部63可設置於所述中框上。It can be understood that the partition portion 63 can be any shape and size, or a flat metal piece, or a metal shell or the like, and only needs to ensure that the partition portion 63 can extend the second feed source 54 and The current path of the third feed source 62 is configured to improve the isolation between the metal short arm T2 and the first radiator 61. For example, in the embodiment, the partition portion 63 has a block shape and is disposed on the back plate 512 and extends from the second side portion 517 toward the first side portion 516. In other embodiments, the partition 63 may be disposed on the middle frame.

所述第二輻射體64設置於所述殼體51圍成之容置空間514內,且鄰近所述金屬長臂T1設置,並與所述背板512間隔設置。於本實施例中,所述第二輻射體64大致呈直條狀,其與所述末端部515平行設置。所述第二輻射體64之一端連接至所述前框511靠近所述第一饋入源53之位置,另一端朝向所述第二側部517延伸。所述第四饋入源65設置於所述前框511上,且電連接至所述第二輻射體64,用於為第二輻射體64饋入電流。The second radiator 64 is disposed in the accommodating space 514 surrounded by the casing 51 and disposed adjacent to the metal long arm T1 and spaced apart from the back plate 512. In the present embodiment, the second radiator 64 is substantially straight and is disposed in parallel with the end portion 515. One end of the second radiator 64 is connected to a position of the front frame 511 near the first feed source 53 and the other end extends toward the second side portion 517. The fourth feed source 65 is disposed on the front frame 511 and electrically connected to the second radiator 64 for feeding current to the second radiator 64.

可理解,當所述天線結構500a工作於低頻模態時,其電流走向與所述天線結構500工作於低頻模態時之電流走向一致,具體可參閱圖37,於此不再贅述。It can be understood that when the antenna structure 500a is operated in the low-frequency mode, the current direction is consistent with the current direction when the antenna structure 500 operates in the low-frequency mode. For details, refer to FIG. 37, and details are not described herein again.

可理解,圖44為所述天線結構500a工作於1710-2400MHz頻段時之電流走向示意圖。顯然,當電流自所述第二饋入源54進入所述金屬短臂T2後,電流將依次流經所述前框511、第二側部517並流經至背面之背板512(參路徑I6),進而激發出第二模態以產生第二頻段之輻射訊號。同時當電流自所述第二饋入源54進入所述金屬短臂T2後,所述電流將經該斷點520耦合至所述金屬長臂T1,並流經至所述第一切換電路55內之諧振電路58,最終流向背面之背板512(參路徑I7)。如此藉由所述斷點520之耦合作用,並搭配所述諧振電路58,進而激發出所述第三模態以產生第三頻段之輻射訊號。本實施例中,所述第二模態為一中頻模態,所述第二頻段為1710-2170MHz頻段。所述第三模態為一高頻模態,所述第三頻段為2300-2400MHz頻段(即LTE-A Band 40頻段)。It can be understood that FIG. 44 is a schematic diagram of current flow when the antenna structure 500a operates in the 1710-2400 MHz frequency band. Obviously, when current enters the metal short arm T2 from the second feed source 54, current will sequentially flow through the front frame 511, the second side portion 517, and flow to the back plate 512 of the back surface (reference path I6), in turn exciting the second mode to generate a radiation signal of the second frequency band. At the same time, when a current enters the metal short arm T2 from the second feed source 54, the current will be coupled to the metal long arm T1 via the breakpoint 520 and flow to the first switching circuit 55. The internal resonant circuit 58 eventually flows to the backing plate 512 (see path I7). Thus, by the coupling of the breakpoint 520, and in conjunction with the resonant circuit 58, the third mode is excited to generate a third band of radiation signals. In this embodiment, the second mode is an intermediate frequency mode, and the second frequency band is a frequency band of 1710-2170 MHz. The third mode is a high frequency mode, and the third frequency band is a frequency band of 2300-2400 MHz (ie, LTE-A Band 40 band).

圖45為所述天線結構500a工作於雙頻WIFI模態時之電流走向示意圖。顯然,當電流自所述第三饋入源62進入第一輻射體61後,電流將依次流經所述第一輻射段615、第二輻射段616以及第三輻射段617(參路徑I8),進而激發出相應之第四模態以產生第四頻段之輻射訊號。於本實施例中,所述第四模態為WIFI 2.4GHz模態。另外,電流從所述第三饋入源62進入第一輻射體61後,還將依次流經所述第一連接段618以及第二連接段619(參路徑I9),進而激發出相應之第五模態以產生第五頻段之輻射訊號。於本實施例中,所述第五模態為WIFI 5GHz模態。45 is a schematic diagram of current flow when the antenna structure 500a operates in a dual-frequency WIFI mode. Obviously, when current enters the first radiator 61 from the third feed source 62, current will sequentially flow through the first radiation segment 615, the second radiation segment 616, and the third radiation segment 617 (refer to path I8). And inducing a corresponding fourth mode to generate a radiation signal of the fourth frequency band. In this embodiment, the fourth mode is a WIFI 2.4 GHz mode. In addition, after the current enters the first radiator 61 from the third feed source 62, it will also flow through the first connection segment 618 and the second connection segment 619 (refer to the path I9), thereby exciting the corresponding Five modes to generate the radiation signal of the fifth frequency band. In this embodiment, the fifth mode is a WIFI 5 GHz mode.

請一併參閱46,為所述天線結構500a工作於2496-2690MHz頻段時之電流走向示意圖。顯然,當電流自所述第四饋入源65進入所述第二輻射體64後,將流向所述第二輻射體64遠離所述第四饋入源65之一端(參路徑I10),進而激發出第六模態以產生第六頻段之輻射訊號。於本實施例中,所述第六模態為高頻模態。Please refer to 46 for a schematic diagram of the current trend when the antenna structure 500a operates in the 2496-2690 MHz frequency band. Obviously, when the current enters the second radiator 64 from the fourth feed source 65, it flows to the second radiator 64 away from one end of the fourth feed source 65 (refer to the path I10), and further The sixth mode is excited to generate a radiation signal of the sixth frequency band. In this embodiment, the sixth mode is a high frequency mode.

可理解,當所述天線結構500a工作於低頻模態時,其S參數(散射參數)曲線圖以及輻射效率圖均與所述天線結構500工作於低頻模態時之S參數(散射參數)曲線圖以及輻射效率圖一致,具體可參閱39以及圖40,於此不再贅述。It can be understood that when the antenna structure 500a operates in a low frequency mode, its S parameter (scattering parameter) graph and the radiation efficiency map are both S parameter (scattering parameter) curve when the antenna structure 500 operates in a low frequency mode. The figure and the radiation efficiency diagram are consistent. For details, refer to FIG. 39 and FIG. 40, and details are not described herein again.

圖47為所述天線結構500a工作於1710-2170MHz頻段及2300-2400MHz頻段(即LTE-A中頻以及Band 40頻段)時之S參數(散射參數)曲線圖。圖48為所述天線結構500a工作於1710-2170MHz頻段及2300-2400頻段(即LTE-A中頻及Band 40頻段)時之輻射效率圖。47 is a graph of S-parameters (scattering parameters) when the antenna structure 500a operates in the 1710-2170 MHz band and the 2300-2400 MHz band (ie, the LTE-A intermediate frequency band and the Band 40 band). 48 is a graph showing the radiation efficiency of the antenna structure 500a when it operates in the 1710-2170 MHz band and the 2300-2400 band (ie, the LTE-A intermediate frequency band and the Band 40 band).

圖49為所述天線結構500a工作於所述WIFI 2.4GHZ頻段及WIFI 5GHz頻段時之S參數(散射參數)曲線圖。圖50為所述天線結構500a工作於所述WIFI 2.4GHZ頻段及WIFI 5GHz頻段時之輻射效率圖。FIG. 49 is a graph of S parameters (scattering parameters) when the antenna structure 500a operates in the WIFI 2.4 GHz band and the WIFI 5 GHz band. Figure 50 is a graph showing the radiation efficiency of the antenna structure 500a when operating in the WIFI 2.4 GHz band and the WIFI 5 GHz band.

圖51為所述天線結構500a工作於LTE-A Band41模態(2496-2690MHz)時之S參數(散射參數)曲線圖。圖52為所述天線結構500a工作於LTE-A Band41模態(2496-2690MHz)時之輻射效率圖。Figure 51 is a graph of S-parameters (scattering parameters) when the antenna structure 500a operates in the LTE-A Band 41 mode (2496-2690 MHz). Figure 52 is a graph showing the radiation efficiency of the antenna structure 500a when operating in the LTE-A Band 41 mode (2496-2690 MHz).

顯然,從圖39至圖40,以及圖47至圖52可知,所述天線結構500a可工作於相應之低頻頻段,例如704-746MHz頻段、746-787MHz頻段、824-894MHz頻段以及880-960MHz頻段。另外,所述天線結構500a還可工作於中頻段(1710-2170MHz)、高頻頻段(2300-2400MHz及2496-2690MHz)以及WIFI 2.4/5GHz雙頻段,即涵蓋至低、中、高頻、WIFI 2.4/5GHz雙頻,頻率範圍較廣,且當所述天線結構500a工作于上述頻段時,其工作頻率均可滿足天線工作設計要求,並具有較佳之輻射效率。Obviously, from FIG. 39 to FIG. 40, and FIG. 47 to FIG. 52, the antenna structure 500a can operate in corresponding low frequency bands, such as the 704-746 MHz band, the 746-787 MHz band, the 824-894 MHz band, and the 880-960 MHz band. . In addition, the antenna structure 500a can also operate in the middle frequency band (1710-2170MHz), the high frequency frequency band (2300-2400MHz and 2496-2690MHz), and the WIFI 2.4/5GHz dual frequency band, that is, cover to low, medium, high frequency, WIFI. The 2.4/5 GHz dual frequency has a wide frequency range, and when the antenna structure 500a operates in the above frequency band, its operating frequency can meet the antenna working design requirements and has better radiation efficiency.

請一併參閱圖53,為本發明第五較佳實施例提供之天線結構500b。所述天線結構500b包括殼體51、第一饋入源53、第二饋入源54、第一切換電路55、第二切換電路57、第一輻射體61、第三饋入源62、隔離部63、第二輻射體64、第四饋入源65以及第三切換電路66。所述殼體51包括前框511、背板512及邊框513。所述邊框513至少包括末端部515、第一側部516以及第二側部517。所述邊框513上還開設有開槽519,所述前框511上還開設有斷點520。所述斷點520將所述前框511劃分為兩部分,這兩部分包括金屬長臂T1及金屬短臂T2。Please refer to FIG. 53, which is an antenna structure 500b according to a fifth preferred embodiment of the present invention. The antenna structure 500b includes a housing 51, a first feed source 53, a second feed source 54, a first switching circuit 55, a second switching circuit 57, a first radiator 61, a third feed source 62, and isolation. The portion 63, the second radiator 64, the fourth feed source 65, and the third switching circuit 66. The housing 51 includes a front frame 511, a back plate 512, and a frame 513. The frame 513 includes at least a tip portion 515, a first side portion 516, and a second side portion 517. The frame 513 is further provided with a slot 519, and the front frame 511 is further provided with a break point 520. The break point 520 divides the front frame 511 into two parts, and the two parts include a metal long arm T1 and a metal short arm T2.

可理解,所述天線結構500b與天線結構500a之區別在於,所述天線結構500b還包括第三切換電路66。所述第三切換電路66之一端電連接至所述第二輻射體64,另一端電連接至所述背板512,即接地。所述第三切換電路66用於調整所述第二輻射體64之高頻模態之頻段,其具體電路結構及工作原理可參閱圖30之第一切換電路55之描述,於此不再贅述。It can be understood that the antenna structure 500b is different from the antenna structure 500a in that the antenna structure 500b further includes a third switching circuit 66. One end of the third switching circuit 66 is electrically connected to the second radiator 64, and the other end is electrically connected to the backing plate 512, that is, grounded. The third switching circuit 66 is used to adjust the frequency band of the high frequency mode of the second radiator 64. For the specific circuit structure and working principle, refer to the description of the first switching circuit 55 of FIG. 30, and details are not described herein.

可理解,當所述天線結構500b工作於低頻模態時,其電流走向與所述天線結構500工作於低頻模態時之電流走向一致,具體可參閱圖37,於此不再贅述It can be understood that when the antenna structure 500b is operated in the low frequency mode, the current direction is consistent with the current direction when the antenna structure 500 operates in the low frequency mode. For details, refer to FIG. 37, and details are not described herein.

可理解,圖54為所述天線結構500b工作於1710-2170MHz頻段時之電流走向示意圖。顯然,當電流自所述第二饋入源54進入所述金屬短臂T2後,電流將依次流經所述前框511、第二側部517並流經至背面之背板512(參路徑I11),進而激發出第二模態以產生第二頻段之輻射訊號。同時當電流自所述第二饋入源54進入所述金屬短臂T2後,所述電流將經該斷點520耦合至所述金屬長臂T1,並流經至所述第一切換電路55內之諧振電路58,最終流向背面之背板512(參路徑I12)。如此藉由所述斷點520之耦合作用,並搭配所述諧振電路58,進而激發出所述第三模態以產生第三頻段之輻射訊號。本實施例中,所述第二模態為一中頻模態,所述第二頻段為1710-1990MHz頻段。所述第三模態為一中頻模態,所述第三頻段為2110-2170MHz頻段。It can be understood that FIG. 54 is a schematic diagram of current flow when the antenna structure 500b operates in the 1710-2170 MHz frequency band. Obviously, when current enters the metal short arm T2 from the second feed source 54, current will sequentially flow through the front frame 511, the second side portion 517, and flow to the back plate 512 of the back surface (reference path I11), which in turn excites the second mode to generate a radiation signal of the second frequency band. At the same time, when a current enters the metal short arm T2 from the second feed source 54, the current will be coupled to the metal long arm T1 via the breakpoint 520 and flow to the first switching circuit 55. The internal resonant circuit 58 eventually flows to the backing plate 512 (see path I12). Thus, by the coupling of the breakpoint 520, and in conjunction with the resonant circuit 58, the third mode is excited to generate a third band of radiation signals. In this embodiment, the second mode is an intermediate frequency mode, and the second frequency band is a 1710-1990 MHz frequency band. The third mode is an intermediate frequency mode, and the third frequency band is a frequency band of 2110-2170 MHz.

可理解,當所述天線結構500b工作於雙頻WIFI模態時,其電流走向與所述天線結構500a工作於雙頻WIFI模態時之電流走向一致,具體可參閱圖45,於此不再贅述。It can be understood that when the antenna structure 500b operates in the dual-frequency WIFI mode, the current direction is consistent with the current direction when the antenna structure 500a operates in the dual-frequency WIFI mode. For details, refer to FIG. 45, Narration.

請一併參閱55,為所述天線結構500b工作於2300-2400MHz及2496-2690MHz頻段時之電流走向示意圖。顯然,當電流自所述第四饋入源65進入所述第二輻射體64後,將流向所述第二輻射體64遠離所述第四饋入源65之一端(參路徑I13),進而激發出第六模態以產生第六頻段之輻射訊號。於本實施例中,所述第六模態為高頻模態。另外,由於所述天線結構500b設置有接地之第三切換電路66,因此可利用所述第三切換電路66切換所述高頻模態,例如可使得所述天線結構500b切換至2300-2400MHz頻段及/或LTE-A Band 41頻段(2496-2690MHz),並使得所述高頻模態與所述中頻模態及LTE-A Band 40模態同時存於。Please refer to 55 for a schematic diagram of current flow when the antenna structure 500b operates in the 2300-2400 MHz and 2496-2690 MHz frequency bands. Obviously, when the current enters the second radiator 64 from the fourth feed source 65, it flows to the second radiator 64 away from one end of the fourth feed source 65 (refer to the path I13), and further The sixth mode is excited to generate a radiation signal of the sixth frequency band. In this embodiment, the sixth mode is a high frequency mode. In addition, since the antenna structure 500b is provided with a grounded third switching circuit 66, the high frequency mode can be switched by the third switching circuit 66, for example, the antenna structure 500b can be switched to the 2300-2400 MHz frequency band and/or Or the LTE-A Band 41 band (2496-2690 MHz), and the high frequency mode is coexisted with the intermediate frequency mode and the LTE-A Band 40 mode.

可理解,當所述天線結構500b工作於低頻模態時,其S參數(散射參數)曲線圖以及輻射效率圖均與所述天線結構500工作於低頻模態時之S參數(散射參數)曲線圖以及輻射效率圖一致,具體可參閱39以及圖40,於此不再贅述。It can be understood that when the antenna structure 500b operates in a low frequency mode, its S parameter (scattering parameter) graph and the radiation efficiency map are both S parameter (scattering parameter) curve when the antenna structure 500 operates in a low frequency mode. The figure and the radiation efficiency diagram are consistent. For details, refer to FIG. 39 and FIG. 40, and details are not described herein again.

圖56為所述天線結構500b工作於1710-2170MHz頻段時之S參數(散射參數)曲線圖。圖57為所述天線結構500b工作於1710-2170MHz頻段時之輻射效率圖。Figure 56 is a graph of S-parameter (scattering parameters) when the antenna structure 500b operates in the 1710-2170 MHz band. Figure 57 is a graph showing the radiation efficiency of the antenna structure 500b operating in the 1710-2170 MHz band.

可理解,當所述天線結構500b工作於WIFI 2.4GHZ頻段及WIFI 5GHz頻段時,其S參數(散射參數)曲線圖以及輻射效率圖均與所述天線結構500a工作於WIFI 2.4GHZ頻段及WIFI 5GHz頻段時之S參數(散射參數)曲線圖以及輻射效率圖一致,具體可參閱49以及圖50,於此不再贅述。It can be understood that when the antenna structure 500b operates in the WIFI 2.4 GHz band and the WIFI 5 GHz band, the S parameter (scattering parameter) graph and the radiation efficiency map are both working with the antenna structure 500a in the WIFI 2.4 GHz band and the WIFI 5 GHz. The S-parameter (scattering parameter) graph and the radiation efficiency graph are consistent in the frequency band. For details, refer to FIG. 49 and FIG. 50, and details are not described herein again.

圖58為所述天線結構500b工作於2300-2400MHz及2496-2690MHz頻段時之S參數(散射參數)曲線圖。圖59為所述天線結構500b工作於2300-2400MHz及2496-2690MHz頻段時之輻射效率圖。Figure 58 is a graph of S-parameters (scattering parameters) of the antenna structure 500b operating in the 2300-2400 MHz and 2496-2690 MHz bands. Figure 59 is a graph showing the radiation efficiency of the antenna structure 500b operating in the 2300-2400 MHz and 2496-2690 MHz bands.

如前面各實施例所述,金屬長臂T1可激發第一模態以產生低頻頻段之輻射訊號,金屬短臂T2可激發第二模態及第三模態以產生中頻頻段與高頻頻段之輻射訊號,第二輻射體64可激發出第六模態以產生高頻頻段之輻射訊號。因此無線通訊裝置600可使用長期演進技術升級版(LTE-Advanced)之載波聚合(CA,Carrier Aggregation)技術同時於多個不同頻段接收或發送無線訊號以增加傳輸頻寬。更具體地說,無線通訊裝置600可使用所述載波聚合技術並使用所述金屬長臂T1、金屬短臂T2與第二輻射體64其中至少兩者同時於多個不同頻段接收或發送無線訊號。As described in the foregoing embodiments, the metal long arm T1 can excite the first mode to generate a radiation signal in a low frequency band, and the metal short arm T2 can excite the second mode and the third mode to generate an intermediate frequency band and a high frequency band. The radiation signal, the second radiator 64 can excite the sixth mode to generate a radiation signal in the high frequency band. Therefore, the wireless communication device 600 can simultaneously receive or transmit wireless signals in a plurality of different frequency bands to increase the transmission bandwidth by using Carrier Aggregation (CA) technology of LTE-Advanced. More specifically, the wireless communication device 600 can use the carrier aggregation technology and use the metal long arm T1, the metal short arm T2 and the second radiator 64 to receive or transmit wireless signals simultaneously in a plurality of different frequency bands. .

可理解,於其他實施例中,所述第一輻射體61與所述第二輻射體64以及所述第三切換電路66之位置可互換,而所述隔離部63之位置不變。具體地,所述第一輻射體61設置於所述殼體51圍成之容置空間514內,其形狀與圖17所示左右對稱(左右翻轉),且鄰近所述金屬長臂T1設置。所述第一輻射體61中第一輻射臂613電連接至所述隔離部63之一端更換至電連接至所述前框511。所述第三饋入源62設置於所述金屬前框511上,且電連接至所述第一輻射體61之第一連接段618。It can be understood that in other embodiments, the positions of the first radiator 61 and the second radiator 64 and the third switching circuit 66 are interchangeable, and the position of the isolation portion 63 is unchanged. Specifically, the first radiator 61 is disposed in the accommodating space 514 surrounded by the casing 51, and has a shape that is bilaterally symmetrical (left and right) as shown in FIG. 17 and disposed adjacent to the metal long arm T1. The first radiating arm 613 of the first radiator 61 is electrically connected to one end of the partition portion 63 to be electrically connected to the front frame 511. The third feed source 62 is disposed on the metal front frame 511 and electrically connected to the first connecting portion 618 of the first radiator 61.

所述第二輻射體64之一端連接至所述隔離部63,另一端朝向所述第一側部516延伸。所述第四饋入源65之一端用於藉由匹配電路(圖未示)電連接至所述第二輻射體64,另一端電連接至所述隔離部63,用於為第二輻射體64饋入電流。所述第三切換電路66之一端電連接至所述第二輻射體64,另一端連接至所述背板512。One end of the second radiator 64 is connected to the partition 63 and the other end extends toward the first side 516. One end of the fourth feed source 65 is electrically connected to the second radiator 64 by a matching circuit (not shown), and the other end is electrically connected to the isolation portion 63 for the second radiator 64 feed current. One end of the third switching circuit 66 is electrically connected to the second radiator 64, and the other end is connected to the backing plate 512.

另外,所述殼體51上之開槽519及斷點520均設置於所述前框511及邊框513上,並未設置於所述背板512上,使得所述背板512構成全金屬結構,即所述背板512上並沒有絕緣之開槽、斷線或斷點,使得所述背板512可避免由於開槽、斷線或斷點之設置而影響背板512之完整性與美觀性。In addition, the slot 519 and the break point 520 of the housing 51 are disposed on the front frame 511 and the frame 513, and are not disposed on the back plate 512, so that the back plate 512 forms an all-metal structure. That is, there is no insulating slot, break or break point on the back plate 512, so that the back plate 512 can avoid the integrity and beauty of the back plate 512 due to the setting of slotting, disconnection or breakpoint. Sex.

實施例6-7Example 6-7

請參閱圖60,本發明第六較佳實施方式提供一種天線結構700,其可應用於行動電話、個人數位助理等無線通訊裝置800中,用以發射、接收無線電波以傳遞、交換無線訊號。Referring to FIG. 60, a sixth preferred embodiment of the present invention provides an antenna structure 700 that can be applied to a wireless communication device 800 such as a mobile phone or a personal digital assistant for transmitting and receiving radio waves to transmit and exchange wireless signals.

請一併參閱圖61及圖62,所述天線結構700包括殼體71、第一饋入源S1、第一輻射體73、第一切換電路75、第二切換電路76、第二輻射體78、第二饋入源S2以及第三切換電路79。所述殼體71可為所述無線通訊裝置800之外殼。於本實施例中,所述殼體71由金屬材料製成。所述殼體71包括前框711、背板712及邊框713。所述前框711、背板712及邊框713可是一體成型。所述前框711、背板712以及邊框713構成所述無線通訊裝置800之外殼。所述前框711上設置有一開口(圖未標),用於容置所述無線通訊裝置800之顯示單元801。可理解,所述顯示單元801具有一顯示平面,該顯示平面裸露於該開口,且該顯示平面與所述背板712大致平行設置。Referring to FIG. 61 and FIG. 62 together, the antenna structure 700 includes a housing 71, a first feed source S1, a first radiator 73, a first switching circuit 75, a second switching circuit 76, and a second radiator 78. The second feed source S2 and the third switching circuit 79. The housing 71 can be the outer casing of the wireless communication device 800. In the present embodiment, the housing 71 is made of a metal material. The housing 71 includes a front frame 711, a back plate 712, and a frame 713. The front frame 711, the back plate 712 and the frame 713 may be integrally formed. The front frame 711, the back plate 712, and the bezel 713 constitute an outer casing of the wireless communication device 800. The front frame 711 is provided with an opening (not labeled) for accommodating the display unit 801 of the wireless communication device 800. It can be understood that the display unit 801 has a display plane exposed to the opening, and the display plane is disposed substantially parallel to the back plate 712.

所述背板712與所述前框711相對設置。所述背板712與邊框713直接連接,所述背板712與邊框713之間沒有空隙。所述背板712為一體成型之單一金屬片,所述背板712為顯露相機鏡頭804與閃光燈805等元件而設置開孔806、807,所述背板712其上並沒有設置任何用於分割所述背板712之絕緣之開槽、斷線或斷點(請參圖62)。所述背板712可作為所述天線結構700與所述無線通訊裝置800之地。The back plate 712 is disposed opposite to the front frame 711. The back plate 712 is directly connected to the frame 713, and there is no gap between the back plate 712 and the frame 713. The back plate 712 is an integrally formed single metal piece. The back plate 712 is provided with openings 806 and 807 for exposing components such as the camera lens 804 and the flash 805. The back plate 712 is not provided with any for dividing. The insulation of the backing plate 712 is slotted, broken or broken (see Figure 62). The backplane 712 can serve as the ground structure 700 and the wireless communication device 800.

於另一實施例中,於所述顯示單元801朝向所述背板712那一面可設置用於屏蔽電磁干擾之屏蔽罩(shielding mask)或支撐所述顯示單元801之中框。所述屏蔽罩或中框以金屬材料製作。所述屏蔽罩或中框可與所述背板712相連接以作為所述天線結構700與所述無線通訊裝置800之地。In another embodiment, a shielding mask for shielding electromagnetic interference or supporting a frame in the display unit 801 may be disposed on a side of the display unit 801 facing the backing plate 712. The shield or the middle frame is made of a metal material. The shield or middle frame can be coupled to the backplane 712 to serve as the ground structure 700 and the wireless communication device 800.

所述邊框713夾設於所述前框711與所述背板712之間,且分別環繞所述前框711及所述背板712之周緣設置,以與所述顯示單元801、所述前框711以及背板712共同圍成一容置空間714。所述容置空間714用以容置所述無線通訊裝置800之電路板、處理單元等電子元件或電路模組於其內。The frame 713 is disposed between the front frame 711 and the back plate 712, and is disposed around the periphery of the front frame 711 and the back plate 712 to be opposite to the display unit 801 and the front The frame 711 and the back plate 712 together form an accommodating space 714. The accommodating space 714 is configured to receive electronic components or circuit modules of the circuit board, the processing unit, and the like of the wireless communication device 800.

所述邊框713至少包括末端部715、第一側部716以及第二側部717。於本實施例中,所述末端部715為所述無線通訊裝置800之底端。所述末端部715連接所述前框711與所述背板712。所述第一側部716與所述第二側部717相對設置,兩者分別設置於所述末端部715之兩端,優選垂直設置。所述第一側部716與所述第二側部717亦連接所述前框711與所述背板712。The bezel 713 includes at least a tip end portion 715, a first side portion 716, and a second side portion 717. In the embodiment, the end portion 715 is the bottom end of the wireless communication device 800. The distal end portion 715 connects the front frame 711 and the back plate 712. The first side portion 716 is disposed opposite to the second side portion 717, and is disposed at two ends of the end portion 715, preferably vertically. The first side portion 716 and the second side portion 717 are also connected to the front frame 711 and the back plate 712.

所述邊框713上還開設有端口718及開槽719,所述前框711上開設有斷點720。所述端口718開設於所述末端部715之中部位置,且貫通所述末端部715。所述無線通訊裝置800還包括電子元件803。於本實施例中,所述電子元件803為一USB模組,其設置於所述容置空間714內,且與所述端口718相對應,以使得所述電子元件803從所述端口718部分露出。如此使用者可將一USB設備藉由所述端口718插入,進而與所述電子元件803建立電性連接。The frame 713 is further provided with a port 718 and a slot 719, and the front frame 711 is provided with a break point 720. The port 718 is opened at a position intermediate the end portion 715 and penetrates the end portion 715. The wireless communication device 800 also includes an electronic component 803. In this embodiment, the electronic component 803 is a USB module disposed in the accommodating space 714 and corresponding to the port 718 such that the electronic component 803 is from the port 718 portion. Exposed. Thus, the user can insert a USB device through the port 718 to establish an electrical connection with the electronic component 803.

於本實施例中,所述開槽719佈設於所述末端部715上,且連通所述端口718,並且分別延伸至所述第一側部716及第二側部717。可理解,於其他實施例中,所述開槽719亦可僅設置於所述末端部715,而未延伸至所述第一側部716及第二側部717中之任何一個,或者所述開槽719設置於所述末端部715,且僅沿延伸至所述第一側部716及第二側部717中之其中之一。In the embodiment, the slot 719 is disposed on the end portion 715 and communicates with the port 718 and extends to the first side portion 716 and the second side portion 717, respectively. It can be understood that in other embodiments, the slot 719 can also be disposed only at the end portion 715 without extending to any one of the first side portion 716 and the second side portion 717, or A slot 719 is disposed in the end portion 715 and extends only along one of the first side portion 716 and the second side portion 717.

所述斷點720與所述開槽719連通,並延伸至隔斷所述前框711。於本實施例中,所述斷點720鄰近所述第二側部717設置,如此所述斷點720將所述前框711劃分出兩部分,即金屬長臂F1及金屬短臂F2。其中,所述斷點720一側之前框711直至其延伸至與所述開槽719之其中一端點D1相對應之部分共同形成所述金屬長臂F1。所述斷點720另一側之前框711直至其延伸至與所述開槽719之另一端點D2相對應之部分形成所述金屬短臂F2。於本實施例中,所述斷點720開設之位置並非對應到所述末端部715之中間,因此所述金屬長臂F1之長度大於金屬短臂F2之長度。另外,所述開槽719及所述斷點720內均填充有絕緣材料(例如塑膠、橡膠、玻璃、木材、陶瓷等,但不以此為限),進而區隔所述金屬長臂F1、金屬短臂F2與所述背板712。The break point 720 is in communication with the slot 719 and extends to block the front frame 711. In the present embodiment, the break point 720 is disposed adjacent to the second side portion 717, such that the break point 720 divides the front frame 711 into two parts, namely a metal long arm F1 and a metal short arm F2. The portion 711 of the break point 720 is extended to a portion corresponding to one of the end points D1 of the slot 719 to form the metal long arm F1. The other side of the breakpoint 720 is preceded by the frame 711 until it extends to a portion corresponding to the other end D2 of the slot 719 to form the metal short arm F2. In this embodiment, the position where the break point 720 is opened does not correspond to the middle of the end portion 715, so the length of the metal long arm F1 is greater than the length of the metal short arm F2. In addition, the slot 719 and the break point 720 are filled with an insulating material (for example, plastic, rubber, glass, wood, ceramic, etc., but not limited thereto), thereby separating the metal long arm F1. The metal short arm F2 and the back plate 712.

可理解,於本實施例中,所述開槽719開設於所述邊框713靠近所述背板712之一端,並延伸至所述前框711,以使得所述金屬長臂F1與金屬短臂F2完全由部分所述前框711構成。當然,於其他實施例中,所述開槽719之開設位置亦可根據具體需求進行調整。例如,所述開槽719開設於所述邊框713靠近所述背板712之一端,並朝所述前框711所在方向延伸,以使得所述金屬長臂F1與金屬短臂F2由部分所述前框711及部分所述邊框713構成。It can be understood that, in this embodiment, the slot 719 is defined in the frame 713 near one end of the back plate 712 and extends to the front frame 711 such that the metal long arm F1 and the metal short arm F2 is completely constituted by a part of the front frame 711. Of course, in other embodiments, the opening position of the slot 719 can also be adjusted according to specific needs. For example, the slot 719 is opened at one end of the frame 713 near the back plate 712 and extends toward the front frame 711 such that the metal long arm F1 and the metal short arm F2 are partially described. The front frame 711 and a part of the frame 713 are formed.

可理解,所述前框711與邊框713之下半部除了所述端口718、開槽719與斷點720以外沒有再設置其他絕緣之開槽、斷線或斷點,因此所述前框711之下半部就僅有一個斷點720,沒有其他斷點。It can be understood that the front frame 711 and the lower half of the frame 713 are not provided with other insulating slots, broken lines or break points except the port 718, the slot 719 and the break point 720, so the front frame 711 There is only one breakpoint 720 in the lower half, and there are no other breakpoints.

於本實施例中,所述第一饋入源S1設置於所述容置空間714內,且位於所述電子元件803與第二側部717之間。所述第一饋入源S1與所述第一輻射體73電連接,用以為所述第一輻射體73饋入電流。In the embodiment, the first feed source S1 is disposed in the accommodating space 714 and located between the electronic component 803 and the second side portion 717. The first feed source S1 is electrically connected to the first radiator 73 for feeding current to the first radiator 73.

所述第一輻射體73設置於所述容置空間714內,且位於所述電子元件803與第二側部717之間。所述第一輻射體73包括第一輻射部731及第二輻射部733。所述第一輻射部731之一端藉由匹配電路81電連接至所述第一饋入源S1,另一端與所述金屬長臂F1間隔耦合設置。如此,當電流自所述第一饋入源S1饋入後,電流將流過所述所述匹配電路81及第一輻射部731,進而耦合至所述金屬長臂F1。所述第一輻射部731與所述金屬長臂F1構成一耦合結構,以相互耦合進而共振激發一第一模態以產生第一頻段之輻射訊號。本實施例中,所述第一模態為LTE-A低頻模態,所述第一頻段為704-960MHz頻段。The first radiator 73 is disposed in the accommodating space 714 and located between the electronic component 803 and the second side portion 717. The first radiator 73 includes a first radiating portion 731 and a second radiating portion 733. One end of the first radiating portion 731 is electrically connected to the first feeding source S1 by a matching circuit 81, and the other end is spaced apart from the metal long arm F1. Thus, when a current is fed from the first feed source S1, current will flow through the matching circuit 81 and the first radiating portion 731, and then to the metal long arm F1. The first radiating portion 731 and the metal long arm F1 form a coupling structure to couple with each other to resonantly excite a first mode to generate a radiation signal of the first frequency band. In this embodiment, the first mode is an LTE-A low frequency mode, and the first frequency band is a 704-960 MHz frequency band.

於本實施例中,所述第一輻射部731包括第一輻射段734、第二輻射段735以及第三輻射段736。所述第一輻射段734、第二輻射段735以及第三輻射段736共面設置。所述第一輻射段734大致呈矩形條狀,其一端藉由所述匹配電路電連接至所述第一饋入源S1,另一端沿平行所述末端部715且靠近所述電子元件803之方向延伸,直至越過所述斷點720。所述第二輻射段735大致呈矩形條狀,其一端垂直連接至所述第一輻射段734遠離所述第一饋入源S1之一端,另一端沿平行所述第二側部717且靠近所述金屬長臂F1之方向延伸,進而與所述第一輻射段734構成L形結構。所述第三輻射段736大致呈矩形條狀。所述第三輻射段736與所述金屬長臂F1間隔且平行設置。所述第三輻射段736垂直連接至所述第二輻射段735遠離所述第一輻射段734之端部,並分別沿靠近所述第一側部716及第二側部717之方向延伸,進而與所述第二輻射段735構成大致呈T型之結構。In the embodiment, the first radiating portion 731 includes a first radiating section 734, a second radiating section 735, and a third radiating section 736. The first radiating section 734, the second radiating section 735, and the third radiating section 736 are disposed in a coplanar manner. The first radiating section 734 has a substantially rectangular strip shape, one end of which is electrically connected to the first feeding source S1 by the matching circuit, and the other end is parallel to the end portion 715 and close to the electronic component 803. The direction extends until the breakpoint 720 is crossed. The second radiating section 735 has a substantially rectangular strip shape, one end of which is vertically connected to the first radiating section 734 away from one end of the first feeding source S1, and the other end is parallel to the second side part 717 and close to The metal long arm F1 extends in the direction, and further forms an L-shaped structure with the first radiating section 734. The third radiant section 736 is substantially rectangular strip-shaped. The third radiating section 736 is spaced apart from and parallel with the metal long arm F1. The third radiating section 736 is perpendicularly connected to the end of the second radiating section 735 away from the first radiating section 734 and extends in a direction close to the first side portion 716 and the second side portion 717, respectively. Further, the second radiating section 735 is configured to have a substantially T-shaped structure.

於本實施例中,所述第二輻射部733為一電容。所述第二輻射部733之一端電連接至所述第一饋入源S1之匹配電路與所述第一輻射段734之連接處,另一端電連接至所述金屬短臂F2。如此,當電流自所述第一饋入源S1饋入後,電流將流過所述第二輻射部733,進而流入所述金屬短臂F2,使得所述金屬短臂F2激發一第二模態以產生第二頻段之輻射訊號。本實施例中,所述第二模態為LTE-A中頻模態,所述第二頻段為1710-1990MHz頻段。另外,流過所述第二輻射部733及所述金屬短臂F2之電流還將藉由所述斷點720耦合至所述金屬長臂F1,進而激發一第三模態以產生第三頻段之輻射訊號。於本實施例中,所述第三模態為另一LTE-A中頻模態,所述第三頻段為2110-2170MHz頻段。如此,所述第二模態及第三模態將組成一寬頻帶共振之應用,即1710-2170頻段。In this embodiment, the second radiating portion 733 is a capacitor. One end of the second radiating portion 733 is electrically connected to the junction of the matching circuit of the first feeding source S1 and the first radiating section 734, and the other end is electrically connected to the metal short arm F2. Thus, when a current is fed from the first feed source S1, a current will flow through the second radiating portion 733, and then flow into the metal short arm F2, so that the metal short arm F2 excites a second mode. State to generate a radiation signal of the second frequency band. In this embodiment, the second mode is an LTE-A intermediate frequency mode, and the second frequency band is a 1710-1990 MHz frequency band. In addition, a current flowing through the second radiating portion 733 and the metal short arm F2 is also coupled to the metal long arm F1 by the break point 720, thereby exciting a third mode to generate a third frequency band. Radiation signal. In this embodiment, the third mode is another LTE-A intermediate frequency mode, and the third frequency band is a 2110-2170 MHz frequency band. As such, the second mode and the third mode will constitute a wideband resonance application, namely the 1710-2170 band.

請一併參閱圖63,所述第一切換電路75電連接至所述金屬長臂F1之中部位置,其包括第一切換單元751及至少一第一切換元件753。所述第一切換單元751電連接至所述金屬長臂F1。所述第一切換元件753可為電感、電容、或者電感與電容之組合。所述第一切換元件753之間相互並聯,且其一端電連接至所述第一切換單元751,另一端電連接至背板712,即接地。Referring to FIG. 63 together, the first switching circuit 75 is electrically connected to the middle position of the metal long arm F1, and includes a first switching unit 751 and at least one first switching element 753. The first switching unit 751 is electrically connected to the metal long arm F1. The first switching element 753 can be an inductor, a capacitor, or a combination of an inductor and a capacitor. The first switching elements 753 are connected in parallel with each other, and one end thereof is electrically connected to the first switching unit 751, and the other end is electrically connected to the backing plate 712, that is, grounded.

請一併參閱圖64,所述匹配電路81之一端電連接至所述第一饋入源S1,所述匹配電路81之另一端電連接至所述第一輻射部731。所述第二切換電路76之一端電連接至所述匹配電路81,另一端電連接至背板712,即接地。於本實施例中,所述第二切換電路76包括第二切換單元761及至少一第二切換元件763。所述第二切換單元761電連接至所述匹配電路81,以藉由所述匹配電路81電連接至所述第一輻射部81。所述第二切換元件763可為電感、電容、或者電感與電容之組合。所述第二切換元件763之間相互並聯,且其一端電連接至所述第二切換單元761,另一端電連接至背板712,即接地。如此,藉由控制所述第一切換單元751及第二切換單元761之切換,可使得所述金屬長臂F1切換至不同之第一切換元件753及/或第二切換元件763。由於每一個第一切換元件753及第二切換元件763具有不同之阻抗,因此藉由所述第一切換單元751及第二切換單元761之切換,可調整所述金屬長臂F1之第一模態之頻段。項所述之調整頻段就是使該頻段往低頻偏移或往高頻偏移。可理解,所述第一切換電路75及第二切換電路76可單獨切換或一起切換。Referring to FIG. 64, one end of the matching circuit 81 is electrically connected to the first feeding source S1, and the other end of the matching circuit 81 is electrically connected to the first radiating portion 731. One end of the second switching circuit 76 is electrically connected to the matching circuit 81, and the other end is electrically connected to the backplane 712, that is, grounded. In the embodiment, the second switching circuit 76 includes a second switching unit 761 and at least one second switching element 763. The second switching unit 761 is electrically connected to the matching circuit 81 to be electrically connected to the first radiating portion 81 by the matching circuit 81. The second switching element 763 can be an inductor, a capacitor, or a combination of an inductor and a capacitor. The second switching elements 763 are connected in parallel with each other, and one end thereof is electrically connected to the second switching unit 761, and the other end is electrically connected to the backing plate 712, that is, grounded. Thus, by controlling the switching between the first switching unit 751 and the second switching unit 761, the metal long arm F1 can be switched to different first switching elements 753 and/or second switching elements 763. Since each of the first switching element 753 and the second switching element 763 has different impedances, the first mode of the metal long arm F1 can be adjusted by switching between the first switching unit 751 and the second switching unit 761. The frequency band of the state. The adjustment band described in the item is to shift the band to a low frequency or to a high frequency. It can be understood that the first switching circuit 75 and the second switching circuit 76 can be switched individually or together.

可理解,請一併參閱圖65,於其中一實施例中,所述第一切換電路75還包括諧振電路77,所述諧振電路77之數量為一個,所述諧振電路77包括相互串聯之電感L及電容C。所述諧振電路77電連接於所述金屬長臂F1及背板712之間,且與所述第一切換單元751及至少一第一切換元件753並聯設置。請參閱圖66,於另外一實施例中,所述諧振電路77之數量與所述第一切換元件753之數量一致,即為多個。每一諧振電路77包括相互串聯之電感L1-Ln及電容C1-Cn。每一個所述諧振電路77分別電連接至所述第一切換單元751及背板712,並與對應之第一切換元件753並聯設置。As can be understood, referring to FIG. 65, in one embodiment, the first switching circuit 75 further includes a resonant circuit 77. The number of the resonant circuits 77 is one, and the resonant circuit 77 includes inductors connected in series. L and capacitor C. The resonant circuit 77 is electrically connected between the metal long arm F1 and the back plate 712, and is disposed in parallel with the first switching unit 751 and the at least one first switching element 753. Referring to FIG. 66, in another embodiment, the number of the resonant circuits 77 is the same as the number of the first switching elements 753, that is, a plurality. Each of the resonant circuits 77 includes inductors L1-Ln and capacitors C1-Cn connected in series with each other. Each of the resonant circuits 77 is electrically connected to the first switching unit 751 and the backplane 712, respectively, and is disposed in parallel with the corresponding first switching element 753.

於圖63、圖64、圖65與圖66中,所述屏蔽罩或中框可取代所述背板712以供所述第一切換電路75與/或第二切換電路76接地。In FIGS. 63, 64, 65, and 66, the shield or middle frame may replace the back plate 712 for grounding the first switching circuit 75 and/or the second switching circuit 76.

圖67為於圖65所示所述第一切換電路75之第一切換單元751與第一切換元件753一側並聯一個諧振電路77時,所述S參數(散射參數)與頻率之間之關係原理圖。其中,假設當所述天線結構700未增加圖65所示所述諧振電路77時,所述天線結構700工作於第一模態(請參曲線S671)。當所述天線結構700增加所述諧振電路77時,所述諧振電路77可使得所述金屬長臂F1配合所述斷點720而額外共振出一窄頻模態(第三模態,即2110-2170MHz頻段,請參曲線S672),以產生第三頻段之輻射訊號,即可有效增加所述天線結構700之應用頻段,達到多頻或寬頻應用。67 is a relationship between the S parameter (scattering parameter) and the frequency when the first switching unit 751 of the first switching circuit 75 shown in FIG. 65 has a resonant circuit 77 connected in parallel with the first switching element 753 side. Schematic. Here, it is assumed that when the antenna structure 700 does not increase the resonant circuit 77 shown in FIG. 65, the antenna structure 700 operates in the first mode (refer to curve S671). When the antenna structure 700 increases the resonant circuit 77, the resonant circuit 77 may cause the metal long arm F1 to cooperate with the breakpoint 720 to additionally resonate to a narrow frequency mode (third mode, ie, 2110) -2170MHz frequency band, please refer to curve S672) to generate the third frequency band radiation signal, which can effectively increase the application frequency band of the antenna structure 700 to achieve multi-frequency or broadband application.

圖68為於圖66所示所述第一切換電路75中每一第一切換元件753一側並聯一個諧振電路77時,所述S參數(散射參數)與頻率之間之關係原理圖。其中,假設當所述天線結構700未增加圖66所示所述諧振電路77時,所述天線結構700可工作於所述第一模態(請參曲線S681)。如此當所述天線結構700增加所述諧振電路77時,所述諧振電路77可使得所述金屬長臂F1配合所述斷點720而額外共振出所述窄頻模態(請參曲線S682),亦就是2110-2170MHz頻段,即可有效增加所述天線結構700之應用頻段,達到多頻或寬頻應用。68 is a schematic diagram showing the relationship between the S parameter (scattering parameter) and the frequency when one resonant circuit 77 is connected in parallel to the first switching element 753 side of the first switching circuit 75 shown in FIG. Here, it is assumed that when the antenna structure 700 does not increase the resonant circuit 77 shown in FIG. 66, the antenna structure 700 can operate in the first mode (refer to curve S681). Thus, when the antenna structure 700 increases the resonant circuit 77, the resonant circuit 77 can cause the metal long arm F1 to cooperate with the breakpoint 720 to additionally resonate the narrow frequency mode (refer to curve S682). That is, the 2110-2170MHz frequency band can effectively increase the application frequency band of the antenna structure 700 to achieve multi-frequency or broadband applications.

另外,藉由設置所述諧振電路77中電感L1-Ln之電感值與所述電容C1-Cn之電容值,可決定所述第一模態切換時所述窄頻模態之頻段。例如,於其中一個實施例中,例如圖68所示,可藉由設置所述諧振電路77中之電感值與電容值,使第一切換單元751切換至不同之第一切換元件753時,所述天線結構700之窄頻模態亦隨之切換,例如可由f1移動至fn,移動範圍十分廣泛。In addition, by setting the inductance value of the inductance L1-Ln in the resonant circuit 77 and the capacitance value of the capacitance C1-Cn, the frequency band of the narrow-band mode at the first mode switching can be determined. For example, in one embodiment, as shown in FIG. 68, when the first switching unit 751 is switched to a different first switching element 753 by setting the inductance value and the capacitance value in the resonant circuit 77, The narrow-band mode of the antenna structure 700 is also switched, for example, from f1 to fn, and the range of motion is very wide.

可理解,於另一實施例中,還可藉由設置所述諧振電路77中之電感值與電容值而固定所述窄頻模態之頻段,從而使所述第一切換單元751無論切換至哪一個第一切換元件753,所述窄頻模態之頻段均固定不動。It can be understood that, in another embodiment, the frequency band of the narrowband mode can be fixed by setting the inductance value and the capacitance value in the resonant circuit 77, so that the first switching unit 751 is switched to Which first switching element 753, the frequency band of the narrowband mode is fixed.

當然,可理解之是,於其他實施例中,所述諧振電路77不局限於包括所述電感L及電容C,其還可由其他之諧振元件組成。Of course, it can be understood that in other embodiments, the resonant circuit 77 is not limited to include the inductor L and the capacitor C, and may also be composed of other resonant components.

於本實施例中,所述第二輻射體78設置於所述殼體71圍成之容置空間714內,且鄰近所述金屬長臂F1設置,並與所述背板712間隔設置。於本實施例中,所述第二輻射體78大致呈直條狀,其與所述末端部715平行設置。所述第二輻射體78之一端連接至所述前框711靠近所述端部D1之位置,另一端朝向所述第二側部717延伸。所述第二饋入源S2設置於所述前框711上,且電連接至所述第二輻射體78,用於為第二輻射體78饋入電流。如此,當電流自所述第二饋入源S2進入後,將流過所述第二輻射體78,進而使得所述第二輻射體78激發一第四模態以產生第四頻段之輻射訊號。於本實施例中,所述第四模態為LTE-A高頻模態,所述第四頻段為2300-2400MHz頻段及2496-2690MHz頻段。In the embodiment, the second radiator 78 is disposed in the accommodating space 714 surrounded by the casing 71 and disposed adjacent to the metal long arm F1 and spaced apart from the back plate 712. In the present embodiment, the second radiator 78 is substantially straight and is disposed in parallel with the end portion 715. One end of the second radiator 78 is connected to a position of the front frame 711 near the end portion D1, and the other end extends toward the second side portion 717. The second feed source S2 is disposed on the front frame 711 and electrically connected to the second radiator 78 for feeding current to the second radiator 78. As such, when the current enters from the second feed source S2, it will flow through the second radiator 78, thereby causing the second radiator 78 to excite a fourth mode to generate a radiation signal of the fourth frequency band. . In this embodiment, the fourth mode is an LTE-A high frequency mode, and the fourth frequency band is a 2300-2400 MHz frequency band and a 2496-2690 MHz frequency band.

所述第三切換電路79之一端電連接至所述第二輻射體78之中部位置,另一端電連接至所述背板712,或電連接至所述屏蔽罩或中框,即接地。所述第三切換電路79用於調整所述第二輻射體78之高頻模態之頻段,其具體電路結構及工作原理可參閱圖63之第一切換電路75之描述,於此不再贅述。One end of the third switching circuit 79 is electrically connected to the middle of the second radiator 78, the other end is electrically connected to the back plate 712, or is electrically connected to the shield or the middle frame, that is, grounded. The third switching circuit 79 is used to adjust the frequency band of the high frequency mode of the second radiator 78. The specific circuit structure and working principle can be referred to the description of the first switching circuit 75 of FIG. 63, and details are not described herein again.

圖69為所述天線結構700工作於低頻模態時之電流走向示意圖。顯然,當電流自所述第一饋入源S1進入後,將依次流經所述第一輻射部731之第一輻射段734、第二輻射段735以及第三輻射段736,並經所述第三輻射段736耦合至所述金屬長臂F1,再從所述金屬長臂F1流過所述第一側部716,最後流向所述背面之背板712(參路徑J1),進而激發出所述第一模態以產生第一頻段之輻射訊號。另外,由於所述天線結構700設置有第一切換電路75及第二切換電路76,因此可利用所述第一切換電路75及第二切換電路76之相互配合,進而切換所述金屬長臂F1之低頻模態,同時不影響中、高頻之操作。FIG. 69 is a schematic diagram of current flow when the antenna structure 700 operates in a low frequency mode. Obviously, when current enters from the first feed source S1, it will sequentially flow through the first radiating section 734, the second radiating section 735, and the third radiating section 736 of the first radiating portion 731, and The third radiating section 736 is coupled to the metal long arm F1, flows from the metal long arm F1 through the first side portion 716, and finally flows to the back side back plate 712 (refer to path J1), thereby exciting The first mode is to generate a radiation signal of the first frequency band. In addition, since the antenna structure 700 is provided with the first switching circuit 75 and the second switching circuit 76, the first switching circuit 75 and the second switching circuit 76 can cooperate with each other to switch the metal long arm F1. The low frequency mode does not affect the operation of medium and high frequencies.

圖70為所述天線結構700工作於中頻模態(1710-2170MHz頻段及2110-2170MHz頻段)時之電流走向示意圖。顯然,當電流自所述第一饋入源S1進入後,電流將經所述第二輻射部733直接流入所述金屬短臂F2,再流經所述第二側部717,最後流入背面之背板712(參路徑J2),進而激發出第二模態以產生第二頻段之輻射訊號。同時當電流自所述第一饋入源S1進入後,電流將經所述第二輻射部733流入所述金屬短臂F2,再經該斷點720耦合至所述金屬長臂F1,並流經至所述第一切換電路75內之諧振電路77,最終流向背面之背板712(參路徑J3)。如此藉由所述斷點720之耦合作用,並搭配所述諧振電路77,進而使得所述金屬長臂F1激發出所述第三模態以產生第三頻段之輻射訊號。顯然,結合圖63與圖70可知,所述背板712相當於所述天線結構700之地。FIG. 70 is a schematic diagram of current flow when the antenna structure 700 operates in an intermediate frequency mode (1710-2170 MHz band and 2110-2170 MHz band). Obviously, when a current enters from the first feed source S1, current will flow directly into the metal short arm F2 via the second radiating portion 733, flow through the second side portion 717, and finally flow into the back side. The backplane 712 (refer to path J2) in turn excites the second mode to generate a radiation signal of the second frequency band. At the same time, when current enters from the first feed source S1, current will flow into the metal short arm F2 via the second radiating portion 733, and then coupled to the metal long arm F1 via the break point 720, and flow. The resonant circuit 77 in the first switching circuit 75 finally flows to the back plate 712 on the back side (refer to path J3). Thus, by the coupling of the breakpoint 720 and the resonant circuit 77, the metal long arm F1 is excited to excite the third mode to generate a radiation signal of the third frequency band. It will be apparent from FIG. 63 and FIG. 70 that the backing plate 712 corresponds to the ground of the antenna structure 700.

圖71為所述天線結構700工作於高頻模態(2300-2400MHz頻段及2496-2690MHz頻段)時之電流走向示意圖。其中,當電流自所述第二饋入源S2進入所述第二輻射體78後,將流向所述第二輻射體78遠離所述第二饋入源S2之一端(參路徑J4),進而激發出第四模態以產生第四頻段之輻射訊號。另外,由於所述天線結構700設置有接地之第三切換電路79,因此可利用所述第三切換電路79切換所述高頻模態之頻率。71 is a schematic diagram of current flow when the antenna structure 700 operates in a high frequency mode (2300-2400 MHz band and 2496-2690 MHz band). When the current enters the second radiator 78 from the second feeding source S2, the current is directed to the second radiator 78 away from one end of the second feeding source S2 (refer to the path J4), and then The fourth mode is excited to generate a radiation signal of the fourth frequency band. In addition, since the antenna structure 700 is provided with a grounded third switching circuit 79, the third switching circuit 79 can be used to switch the frequency of the high frequency mode.

圖72為所述天線結構700工作於低頻模態時之S參數(散射參數)曲線圖。其中,曲線S721為所述天線結構700工作於704-746MHz(LTE Band17頻段)時之S11值。曲線S722為所述天線結構700工作於746-787MHz(LTE Band13頻段)時之S11值。曲線S723為所述天線結構700工作於824-894MHz(LTE Band5頻段)時之S11值。曲線S724為所述天線結構700工作於880-960MHz(LTE Band8頻段)時之S11值。顯然,曲線S721-S724分別對應四個不同頻段,並分別對應所述第一切換電路75及第二切換電路76可切換之多個低頻模態之其中四個。72 is a graph of S-parameters (scattering parameters) when the antenna structure 700 operates in a low frequency mode. The curve S721 is the S11 value when the antenna structure 700 operates at 704-746 MHz (LTE Band 17 band). Curve S722 is the S11 value when the antenna structure 700 operates at 746-787 MHz (LTE Band 13 band). Curve S723 is the S11 value when the antenna structure 700 operates at 824-894 MHz (LTE Band 5 band). Curve S724 is the S11 value when the antenna structure 700 operates at 880-960 MHz (LTE Band 8 band). Obviously, the curves S721-S724 respectively correspond to four different frequency bands, and respectively correspond to four of the plurality of low frequency modes that the first switching circuit 75 and the second switching circuit 76 can switch.

圖73為所述天線結構700工作於低頻模態時之輻射效率圖。其中,曲線S731為所述天線結構700工作於704-746MHz(LTE Band17頻段)時之輻射效率。曲線S732為所述天線結構700工作於746-787MHz(LTE Band13頻段)時之輻射效率。曲線S733為所述天線結構700工作於824-894MHz(LTE Band5頻段)時之輻射效率。曲線S734為所述天線結構700工作於880-960MHz(LTE Band8頻段)時之輻射效率。顯然,曲線S731-S734分別對應四個不同頻段,並分別對應所述第一切換電路75及第二切換電路76可切換之多個低頻模態之其中四個。Figure 73 is a graph showing the radiation efficiency of the antenna structure 700 when operating in a low frequency mode. The curve S731 is the radiation efficiency when the antenna structure 700 operates at 704-746 MHz (LTE Band 17 band). Curve S732 is the radiation efficiency of the antenna structure 700 operating at 746-787 MHz (LTE Band 13 band). Curve S733 is the radiation efficiency of the antenna structure 700 operating at 824-894 MHz (LTE Band 5 band). Curve S734 is the radiation efficiency when the antenna structure 700 operates at 880-960 MHz (LTE Band 8 band). Obviously, the curves S731-S734 respectively correspond to four different frequency bands, and respectively correspond to four of the plurality of low frequency modes that the first switching circuit 75 and the second switching circuit 76 can switch.

圖74為所述天線結構700工作於中頻段(即1710-1990MHz頻段及2110-2170MHz頻段)時之S參數(散射參數)曲線圖。圖75為所述天線結構700工作於中頻段(即1710-1990MHz頻段及2110-2170MHz頻段)時之輻射效率圖。74 is a graph of S-parameters (scattering parameters) when the antenna structure 700 operates in the mid-band (ie, the 1710-1990 MHz band and the 2110-2170 MHz band). Figure 75 is a graph showing the radiation efficiency of the antenna structure 700 when operating in the mid-band (i.e., the 1710-1990 MHz band and the 2110-2170 MHz band).

圖76為所述天線結構700工作于高頻段(即2300-2400MHz頻段及2496-2690MHz頻段)時之S參數(散射參數)曲線圖。圖77為所述天線結構700工作于高頻段(即2300-2400MHz頻段及2496-2690MHz頻段)時之輻射效率圖。顯然,當所述天線結構700中之第三切換電路79中之切換單元切換至不同之切換元件(例如四個不同之切換元件)時,由於每一個切換元件具有不同之阻抗,因此藉由切換單元之切換,可有效調整所述天線結構700於高頻之頻率,進而得到較佳之操作頻寬。76 is a graph of S-parameters (scattering parameters) when the antenna structure 700 operates in a high frequency band (ie, a 2300-2400 MHz band and a 2496-2690 MHz band). 77 is a graph showing the radiation efficiency of the antenna structure 700 when operating in a high frequency band (ie, the 2300-2400 MHz band and the 2496-2690 MHz band). Obviously, when the switching unit in the third switching circuit 79 of the antenna structure 700 switches to a different switching element (for example, four different switching elements), since each switching element has a different impedance, by switching The switching of the unit can effectively adjust the frequency of the antenna structure 700 at a high frequency, thereby obtaining a better operating bandwidth.

顯然,從圖72至圖77可知,所述天線結構700可工作於相應之低頻頻段,例如LTE Band17/13/5/8頻段。另外,所述天線結構700還可工作於中頻段(1710-1990MHz、2110-2170MHz頻段)以及高頻段(即2300-2400MHz、2496-2690MHz頻段),即涵蓋至低、中、高頻,頻率範圍較廣,且當所述天線結構700工作于上述頻段時,其工作頻率均可滿足天線工作設計要求,並具有較佳之輻射效率。Obviously, as can be seen from FIG. 72 to FIG. 77, the antenna structure 700 can operate in a corresponding low frequency band, such as the LTE Band 17/13/5/8 band. In addition, the antenna structure 700 can also operate in the middle frequency band (1710-1990MHz, 2110-2170MHz frequency band) and the high frequency band (ie 2300-2400MHz, 2496-2690MHz frequency band), that is, cover to low, medium, high frequency, frequency range It is wider, and when the antenna structure 700 operates in the above frequency band, its operating frequency can meet the antenna working design requirements and has better radiation efficiency.

亦就是說,於本實施例中,所述天線結構700藉由設置所述第一輻射體73,且使得所述第一輻射體73中之第一輻射部731與所述金屬長臂F1構成耦合結構,而所述第二輻射部733直接與所述金屬短臂F2電連接。即所述第一輻射體73與所述金屬長臂F1及金屬短臂F2構成半耦合式饋入結構,使得所述金屬長臂F1及金屬短臂F2分別激發出相應之第一模態及第二模態。該半耦合式饋入結構之設置可使得所述天線結構700具有較靈活之調整性,且可有效減少所述天線結構所需之非金屬範圍。另外,所述天線結構700藉由所述第一切換電路75及第二切換電路76之設置,可有效調整及切換所述第一模態(即低頻模態),且由於諧振電路77之設置,使得所述金屬長臂F1額外共振出一中頻模態(即第三模態)。再者,所述天線結構700藉由所述第二輻射體78及第三切換電路79之設置,可使得所述天線結構700激發出相應之高頻模態,並可有效調整所述天線結構700於高頻之頻率,進而得到較佳之操作頻寬。That is, in the embodiment, the antenna structure 700 is configured by disposing the first radiator 73 and forming the first radiating portion 731 of the first radiator 73 and the metal long arm F1. The coupling structure, and the second radiating portion 733 is directly electrically connected to the metal short arm F2. That is, the first radiator 73 and the metal long arm F1 and the metal short arm F2 form a semi-coupled feeding structure, so that the metal long arm F1 and the metal short arm F2 respectively excite the corresponding first mode and The second mode. The arrangement of the semi-coupled feed structure allows the antenna structure 700 to be more flexible and can effectively reduce the non-metallic range required for the antenna structure. In addition, the antenna structure 700 can effectively adjust and switch the first mode (ie, low frequency mode) by the setting of the first switching circuit 75 and the second switching circuit 76, and the setting of the resonant circuit 77 So that the metal long arm F1 additionally resonates to an intermediate frequency mode (ie, the third mode). Furthermore, the antenna structure 700 can be configured to activate the corresponding high frequency mode by the arrangement of the second radiator 78 and the third switching circuit 79, and the antenna structure 700 can be effectively adjusted. The frequency of the high frequency, in turn, gives a better operating bandwidth.

請一併參閱圖78,為本發明第七較佳實施例提供之天線結構700a。所述天線結構700a包括殼體71、第一饋入源S1、第一輻射體83、第一切換電路75、第二切換電路76、諧振電路77、第二輻射體78、第二饋入源S2以及第三切換電路79。所述殼體71包括前框711、背板712及邊框713。所述邊框713至少包括末端部715、第一側部716以及第二側部717。所述邊框713上還開設有開槽719,所述前框711上還開設有斷點720。所述斷點720將所述前框711劃分為兩部分,這兩部分包括金屬長臂F1及金屬短臂F2。Please refer to FIG. 78, which is an antenna structure 700a according to a seventh preferred embodiment of the present invention. The antenna structure 700a includes a housing 71, a first feed source S1, a first radiator 83, a first switching circuit 75, a second switching circuit 76, a resonant circuit 77, a second radiator 78, and a second feed source. S2 and a third switching circuit 79. The housing 71 includes a front frame 711, a back plate 712, and a frame 713. The bezel 713 includes at least a tip end portion 715, a first side portion 716, and a second side portion 717. The frame 713 is further provided with a slot 719, and the front frame 711 is further provided with a break point 720. The break point 720 divides the front frame 711 into two parts, and the two parts include a metal long arm F1 and a metal short arm F2.

所述第一輻射體83包括第一輻射部731及第二輻射部831。所述第一輻射部731包括第一輻射段734、第二輻射段735及第三輻射段736。所述第三輻射段736與所述金屬長臂F1間隔耦合設置,以使得所述第一輻射部731與所述金屬長臂F1構成耦合結構。The first radiator 83 includes a first radiating portion 731 and a second radiating portion 831. The first radiating portion 731 includes a first radiating section 734, a second radiating section 735, and a third radiating section 736. The third radiating section 736 is spaced apart from the metal long arm F1 so that the first radiating portion 731 and the metal long arm F1 form a coupling structure.

可理解,所述天線結構700a與天線結構700之區別在於,所述天線結構700a中所述第二輻射部831之具體結構與天線結構700中之第二輻射部733之具體結構並不相同,且所述第二輻射部831與所述金屬短臂F2之連接關係與天線結構700中所述第二輻射部733與所述金屬短臂F2之連接關係不相同。It can be understood that the antenna structure 700a is different from the antenna structure 700 in that the specific structure of the second radiating portion 831 in the antenna structure 700a is different from the specific structure of the second radiating portion 733 in the antenna structure 700. The connection relationship between the second radiating portion 831 and the metal short arm F2 is different from the connection relationship between the second radiating portion 733 and the metal short arm F2 in the antenna structure 700.

具體於本實施例中,所述第二輻射部831與所述第一輻射部731相對所述第一饋入源S1對稱設置。所述第二輻射部831包括第一耦合段832、第二耦合段833以及第三耦合段834。所述第一耦合段832、第二耦合段833以及第三耦合段834共面設置。所述第一耦合段832大致呈矩形條狀,其一端電連接至所述第一輻射段734與第一饋入源S1之匹配電路81,並沿平行所述末端部715且靠近所述第二側部717之方向延伸,以與所述第一輻射段734位於同一直線上。所述第二耦合段833大致呈矩形條狀,其一端垂直連接至所述第一耦合段832遠離所述第一饋入源S1之一端,並沿平行所述第二輻射段735且靠近所述末端部715之方向延伸,進而與所述第一輻射段734、第二輻射段735、第一耦合段832共同構成一Π型結構。所述第三耦合段834大致呈矩形條狀,其與所述金屬短臂F2間隔且平行設置。所述第三耦合段834電連接至所述第二耦合段833遠離第一耦合段832之一端,並分別沿靠近所述第一側部716及第二側部717之方向延伸,進而與所述第二耦合段833構成大致呈T型之結構。Specifically, in the embodiment, the second radiating portion 831 and the first radiating portion 731 are symmetrically disposed with respect to the first feeding source S1. The second radiating portion 831 includes a first coupling section 832, a second coupling section 833, and a third coupling section 834. The first coupling section 832, the second coupling section 833, and the third coupling section 834 are disposed in a coplanar manner. The first coupling section 832 has a substantially rectangular strip shape, one end of which is electrically connected to the matching circuit 81 of the first radiating section 734 and the first feeding source S1, and is parallel to the end portion 715 and close to the first The two side portions 717 extend in the same line as the first radiating portion 734. The second coupling section 833 has a substantially rectangular strip shape, one end of which is perpendicularly connected to the first coupling section 832 away from one end of the first feeding source S1, and is parallel to the second radiating section 735 and close to the The direction of the end portion 715 extends to form a Π-shaped structure together with the first radiant section 734, the second radiant section 735, and the first coupling section 832. The third coupling section 834 has a substantially rectangular strip shape which is spaced apart from and parallel with the metal short arm F2. The third coupling section 834 is electrically connected to the second coupling section 833 away from one end of the first coupling section 832 and extends in a direction close to the first side portion 716 and the second side portion 717, respectively. The second coupling section 833 constitutes a substantially T-shaped structure.

可理解,當所述天線結構700a工作於低頻模態時,其電流走向與所述天線結構700工作於低頻模態時之電流走向一致,具體可參閱圖69,於此不再贅述。It can be understood that when the antenna structure 700a is operated in the low frequency mode, the current direction of the antenna structure 700a is consistent with the current direction when the antenna structure 700 operates in the low frequency mode. For details, refer to FIG. 69, and details are not described herein again.

圖79為所述天線結構700a工作於中頻模態(1710-2170MHz、2110-2170MHz頻段)時之電流走向示意圖。顯然,當電流自所述第一饋入源S1進入後,電流將依次流經所述第二輻射部831之第一耦合段832、第二耦合段833以及第三耦合段834,並經所述第三耦合段834耦合至所述金屬短臂F2,再從所述金屬短臂F2流過所述第二側部717,最後流向所述背面之背板712(參路徑J5),進而激發出所述第二模態以產生第二頻段之輻射訊號。同時當電流自所述第一饋入源S1進入後,電流將經所述第三耦合段834耦合至所述金屬短臂F2,再經該斷點720耦合至所述金屬長臂F1,並流經至所述第一切換電路75內之諧振電路77,最終流向背面之背板712(參路徑J6)。如此藉由所述斷點720之耦合作用,並搭配所述諧振電路77,進而激發出所述第三模態以產生第三頻段之輻射訊號。79 is a schematic diagram of current flow when the antenna structure 700a operates in an intermediate frequency mode (1710-2170 MHz, 2110-2170 MHz frequency band). Obviously, when the current enters from the first feed source S1, the current will sequentially flow through the first coupling section 832, the second coupling section 833 and the third coupling section 834 of the second radiating portion 831, and The third coupling section 834 is coupled to the metal short arm F2, flows from the metal short arm F2 through the second side portion 717, and finally flows to the back surface of the back plate 712 (refer to path J5), thereby exciting The second mode is derived to generate a radiation signal of the second frequency band. At the same time, when current enters from the first feed source S1, current will be coupled to the metal short arm F2 via the third coupling section 834, and coupled to the metal long arm F1 via the breakpoint 720, and The resonant circuit 77 flowing through the first switching circuit 75 finally flows to the back plate 712 on the back side (refer to path J6). Thus, by the coupling of the breakpoint 720, and in conjunction with the resonant circuit 77, the third mode is excited to generate a radiation signal of the third frequency band.

可理解,當所述天線結構700a工作於高頻模態時,其電流走向與所述天線結構700工作於高頻模態時之電流走向一致,具體可參閱圖71,於此不再贅述。It can be understood that when the antenna structure 700a is operated in a high-frequency mode, the current direction thereof is consistent with the current direction when the antenna structure 700 operates in a high-frequency mode. For details, refer to FIG. 71, and details are not described herein again.

圖80為所述天線結構700a工作於低頻模態時之S參數(散射參數)曲線圖。其中,曲線S801為所述天線結構700a工作於704-746MHz(LTE Band17頻段)時之S11值。曲線S802為所述天線結構700a工作於746-787MHz(LTE Band13頻段)時之S11值。曲線S803為所述天線結構700a工作於824-894MHz(LTE Band5頻段)時之S11值。曲線S804為所述天線結構700a工作於880-960MHz(LTE Band8頻段)時之S11值。顯然,曲線S801-S804分別對應四個不同頻段,並分別對應所述第一切換電路75及第二切換電路76可切換之多個低頻模態之其中四個。Figure 80 is a graph of S-parameter (scattering parameters) when the antenna structure 700a operates in a low frequency mode. The curve S801 is the S11 value when the antenna structure 700a operates at 704-746 MHz (LTE Band 17 band). Curve S802 is the S11 value when the antenna structure 700a operates at 746-787 MHz (LTE Band 13 band). Curve S803 is the S11 value when the antenna structure 700a operates at 824-894 MHz (LTE Band 5 band). Curve S804 is the S11 value when the antenna structure 700a operates at 880-960 MHz (LTE Band 8 band). Obviously, the curves S801-S804 respectively correspond to four different frequency bands, and respectively correspond to four of the plurality of low frequency modes that the first switching circuit 75 and the second switching circuit 76 can switch.

圖81為所述天線結構700a工作於低頻模態時之輻射效率圖。其中,曲線S811為所述天線結構700a工作於704-746MHz(LTE Band17頻段)時之輻射效率。曲線S812為所述天線結構700a工作於746-787MHz(LTE Band13頻段)時之輻射效率。曲線S8123為所述天線結構700a工作於824-894MHz(LTE Band5頻段)時之輻射效率。曲線S814為所述天線結構700a工作於880-960MHz(LTE Band8頻段)時之輻射效率。顯然,曲線S811-S814分別對應四個不同頻段,並分別對應所述第一切換電路75及第二切換電路76可切換之多個低頻模態之其中四個。Figure 81 is a graph showing the radiation efficiency of the antenna structure 700a when operating in a low frequency mode. The curve S811 is the radiation efficiency when the antenna structure 700a operates at 704-746 MHz (LTE Band 17 band). Curve S812 is the radiation efficiency when the antenna structure 700a operates at 746-787 MHz (LTE Band 13 band). Curve S8123 is the radiation efficiency when the antenna structure 700a operates at 824-894 MHz (LTE Band 5 band). Curve S814 is the radiation efficiency when the antenna structure 700a operates at 880-960 MHz (LTE Band 8 band). Obviously, the curves S811-S814 respectively correspond to four different frequency bands, and respectively correspond to four of the plurality of low frequency modes that the first switching circuit 75 and the second switching circuit 76 can switch.

圖82為所述天線結構700a工作於中頻段(即1710-1990MHz頻段及2110-2170MHz頻段)時之S參數(散射參數)曲線圖。圖83為所述天線結構700a工作於中頻段(即1710-1990MHz頻段及2110-2170MHz頻段)時之輻射效率圖。82 is a graph of S-parameters (scattering parameters) when the antenna structure 700a operates in the mid-band (ie, the 1710-1990 MHz band and the 2110-2170 MHz band). Figure 83 is a graph showing the radiation efficiency of the antenna structure 700a when it operates in the mid-band (i.e., the 1710-1990 MHz band and the 2110-2170 MHz band).

所述天線結構700a工作于高頻段(即2300-2400MHz頻段及2496-2690MHz頻段)時之S參數(散射參數)與輻射效率與所述天線結構700相同,前面之圖76與圖77已經說明過。The S-parameter (scattering parameter) and the radiation efficiency of the antenna structure 700a operating in the high frequency band (ie, the 2300-2400 MHz frequency band and the 2496-2690 MHz frequency band) are the same as the antenna structure 700. The foregoing FIG. 76 and FIG. 77 have already explained .

可理解,於本實施例中,所述天線結構700a藉由設置所述第一輻射體83,且使得所述第一輻射體83中之第一輻射部731與所述金屬長臂F1構成耦合結構,所述第二輻射部831與所述金屬短臂F2構成耦合結構。即所述第一輻射體83與所述金屬長臂F1及金屬短臂F2構成全耦合式饋入結構,使得所述金屬長臂F1及金屬短臂F2分別激發出相應之第一模態及第二模態。該全耦合式饋入結構之設置可使得所述天線結構700具有較靈活之調整性,且可有效減少所述天線結構700a所需之非金屬範圍。另外,所述天線結構700a藉由所述第一切換電路75及第二切換電路76之設置,可有效調整及切換所述第一模態(即低頻模態),且由於諧振電路77之設置,使得所述金屬長臂F1額外共振出一中頻模態(即第三模態)。再者,所述天線結構700a藉由所述第二輻射體78及第三切換電路79之設置,可使得所述天線結構700a激發出相應之高頻模態,並可有效調整所述天線結構700a於高頻之頻率,進而得到較佳之操作頻寬。It can be understood that, in this embodiment, the antenna structure 700a is configured by coupling the first radiator 83 and the first radiating portion 731 of the first radiator 83 to the metal long arm F1. The second radiating portion 831 and the metal short arm F2 form a coupling structure. That is, the first radiator 83 and the metal long arm F1 and the metal short arm F2 form a fully coupled feed structure, so that the metal long arm F1 and the metal short arm F2 respectively excite the corresponding first mode and The second mode. The arrangement of the fully coupled feed structure allows the antenna structure 700 to be more flexible and can effectively reduce the non-metallic range required for the antenna structure 700a. In addition, the antenna structure 700a can effectively adjust and switch the first mode (ie, low frequency mode) by the setting of the first switching circuit 75 and the second switching circuit 76, and is set by the resonant circuit 77. So that the metal long arm F1 additionally resonates to an intermediate frequency mode (ie, the third mode). Furthermore, the antenna structure 700a can be configured to activate the corresponding high frequency mode by the arrangement of the second radiator 78 and the third switching circuit 79, and the antenna structure 700a can be effectively adjusted. The frequency of the high frequency, in turn, gives a better operating bandwidth.

如前面各實施例所述,所述第一輻射體73/83藉由與所述金屬長臂F1耦合設置,進而使得所述金屬長臂F1可激發第一模態以產生低頻頻段之輻射訊號。同時所述第一輻射體73/83藉由與所述金屬短臂F2耦合設置或直接電性連接,進而使得所述金屬短臂F2激發第二模態以產生中頻頻段之輻射訊號。即所述第一輻射體73/83可與所述金屬長臂F1及金屬短臂F2構成半耦合饋入結構或全耦合饋入結構,進而使得所述金屬長臂F1及金屬短臂F2共同激發第一模態及第二模態。同時,所述金屬長臂F1與所述金屬短臂F2可藉由所述斷點720耦合設置,並搭配所述諧振電路77,進而使得所述金屬長臂F1額外激發出相應之第三模態以產生中頻頻段之輻射訊號,第二輻射體78可激發出第四模態以產生高頻頻段之輻射訊號。因此無線通訊裝置800可使用長期演進技術升級版(LTE-Advanced)之載波聚合(CA,Carrier Aggregation)技術同時於多個不同頻段接收或發送無線訊號以增加傳輸頻寬。更具體地說,無線通訊裝置800可使用所述載波聚合技術並使用金屬長臂F1、金屬短臂F2、第一輻射體73/83與第二輻射體78其中至少兩者同時於多個不同頻段接收或發送無線訊號。As described in the foregoing embodiments, the first radiator 73/83 is coupled to the metal long arm F1, so that the metal long arm F1 can excite the first mode to generate a radiation signal in a low frequency band. . At the same time, the first radiator 73/83 is coupled or directly electrically connected to the metal short arm F2, so that the metal short arm F2 excites the second mode to generate a radiation signal of the intermediate frequency band. That is, the first radiator 73/83 can form a semi-coupling feed structure or a full-coupling feed structure with the metal long arm F1 and the metal short arm F2, so that the metal long arm F1 and the metal short arm F2 are common. Exciting the first mode and the second mode. At the same time, the metal long arm F1 and the metal short arm F2 can be coupled by the break point 720 and matched with the resonant circuit 77, so that the metal long arm F1 additionally excites the corresponding third mode. In order to generate a radiation signal in the intermediate frequency band, the second radiator 78 can excite the fourth mode to generate a radiation signal in the high frequency band. Therefore, the wireless communication device 800 can simultaneously receive or transmit wireless signals in multiple different frequency bands to increase the transmission bandwidth by using Carrier Aggregation (CA) technology of LTE-Advanced. More specifically, the wireless communication device 800 can use the carrier aggregation technique and use the metal long arm F1, the metal short arm F2, the first radiator 73/83 and the second radiator 78, at least two of which are simultaneously different. The band receives or transmits wireless signals.

本發明第一較佳實施例之天線結構100、本發明第二較佳實施例之天線結構200、本發明第三較佳實施例之天線結構500、本發明第四較佳實施例之天線結構500a、本發明第五較佳實施例之天線結構500b、本發明第六較佳實施例之天線結構700、以及本發明第七較佳實施例之天線結構700a可應用於同一個無線通訊裝置。例如將天線結構100或200設置於該無線通訊裝置之上端作為副天線,並將天線結構500、500a、500b、700或700a設置於該無線通訊裝置之下端作為主天線。當該無線通訊裝置發送無線訊號時,該無線通訊裝置使用所述主天線發送無線訊號。當該無線通訊裝置接收無線訊號時,該無線通訊裝置使用所述主天線與所述副天線一起接收無線訊號。The antenna structure 100 of the first preferred embodiment of the present invention, the antenna structure 200 of the second preferred embodiment of the present invention, the antenna structure 500 of the third preferred embodiment of the present invention, and the antenna structure of the fourth preferred embodiment of the present invention The antenna structure 500b of the fifth preferred embodiment of the present invention, the antenna structure 700 of the sixth preferred embodiment of the present invention, and the antenna structure 700a of the seventh preferred embodiment of the present invention are applicable to the same wireless communication device. For example, the antenna structure 100 or 200 is disposed at the upper end of the wireless communication device as a secondary antenna, and the antenna structure 500, 500a, 500b, 700 or 700a is disposed at a lower end of the wireless communication device as a primary antenna. When the wireless communication device transmits a wireless signal, the wireless communication device transmits the wireless signal using the primary antenna. When the wireless communication device receives the wireless signal, the wireless communication device uses the primary antenna to receive the wireless signal together with the secondary antenna.

以上所述,僅為本發明的較佳實施例,並非是對本發明作任何形式上的限定。另外,本領域技術人員還可在本發明精神內做其它變化,當然,這些依據本發明精神所做的變化,都應包含在本發明所要求保護的範圍之內。The above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention in any way. In addition, those skilled in the art can make other changes in the spirit of the present invention. Of course, the changes made in accordance with the spirit of the present invention should be included in the scope of the present invention.

100、200、500、500a、500b、700、700a‧‧‧天線結構 100, 200, 500, 500a, 500b, 700, 700a‧‧‧ antenna structures

11‧‧‧金屬件 11‧‧‧Metal parts

111‧‧‧金屬前框 111‧‧‧Metal front frame

112‧‧‧金屬背板 112‧‧‧Metal backplane

113‧‧‧金屬邊框 113‧‧‧Metal border

51、71‧‧‧殼體 51, 71‧‧‧ shell

511、711‧‧‧前框 511, 711‧‧‧ front box

512、712‧‧‧背板 512, 712‧‧‧ backplane

513、713‧‧‧邊框 513, 713‧‧‧ border

114、514、714‧‧‧容置空間 114, 514, 714‧‧‧ accommodating space

115‧‧‧頂部 115‧‧‧ top

515、715‧‧‧末端部 515, 715‧‧ ‧ end

116、516、716‧‧‧第一側部 116, 516, 716‧‧‧ first side

117、517、717‧‧‧第二側部 117, 517, 717‧‧‧ second side

518、718‧‧‧端口 518, 718‧‧‧ ports

118、519、719‧‧‧開槽 118, 519, 719‧‧‧ slotting

119、520、720‧‧‧斷點 119, 520, 720‧‧‧ breakpoints

A1、T1、F1‧‧‧金屬長臂 A1, T1, F1‧‧‧ metal long arm

A2、T2、F2‧‧‧金屬短臂 A2, T2, F2‧‧‧ metal short arm

E1、E2、D1、D2‧‧‧端點 E1, E2, D1, D2‧‧‧ endpoints

13、53、S1‧‧‧第一饋入源 13, 53, S1‧‧‧ first feed source

14、54、S2‧‧‧第二饋入源 14, 54, S2‧‧‧ second feed source

15、55、75‧‧‧第一切換電路 15, 55, 75‧‧‧ first switching circuit

151‧‧‧切換單元 151‧‧‧Switch unit

153‧‧‧切換元件 153‧‧‧Switching components

551、751‧‧‧第一切換單元 551, 751‧‧‧ first switching unit

553、753‧‧‧第一切換元件 553, 753‧‧‧ first switching element

57、29、76‧‧‧第二切換電路 57, 29, 76‧‧‧ second switching circuit

571、761‧‧‧第二切換單元 571, 761‧‧‧Second switching unit

573、763‧‧‧第二切換元件 573, 763‧‧‧ second switching element

155、58、77‧‧‧諧振電路 155, 58, 77‧‧‧ resonant circuit

L、L1-Ln‧‧‧電感 L, L1-Ln‧‧‧Inductors

C、C1-Cn‧‧‧電容 C, C1-Cn‧‧‧ capacitor

59、81‧‧‧匹配電路 59, 81‧‧‧ Matching circuit

26、61、73‧‧‧第一輻射體 26, 61, 73‧‧‧ first radiator

610、731‧‧‧第一輻射部 610, 731‧‧‧ First Radiation Department

611、733、831‧‧‧第二輻射部 611, 733, 831 ‧ ‧ Second Radiation Department

612‧‧‧第三輻射部 612‧‧‧ Third Radiation Department

613‧‧‧第一輻射臂 613‧‧‧First Radiation Arm

614‧‧‧第二輻射臂 614‧‧‧second radiation arm

615、734‧‧‧第一輻射段 615, 734‧‧‧First radiant section

616、735‧‧‧第二輻射段 616, 735‧‧‧second radiant section

617、736‧‧‧第三輻射段 617, 736‧‧‧ third radiant section

618‧‧‧第一連接段 618‧‧‧First connection segment

619‧‧‧第二連接段 619‧‧‧Second connection

27、62‧‧‧第三饋入源 27, 62‧‧‧ third feed source

28、63‧‧‧隔離部 28, 63‧‧ ‧Isolation Department

30、64、78‧‧‧第二輻射體 30, 64, 78‧‧‧ second radiator

301‧‧‧第一輻射部 301‧‧‧First Radiation Department

302‧‧‧第二輻射部 302‧‧‧Second Radiation Department

303‧‧‧第一輻射段 303‧‧‧First radiant section

304‧‧‧第二輻射段 304‧‧‧second radiant section

305‧‧‧第三輻射段 305‧‧‧The third radiant section

306‧‧‧第一連接段 306‧‧‧First connection segment

307‧‧‧第二連接段 307‧‧‧Second connection

308‧‧‧第三連接段 308‧‧‧ third connection

832‧‧‧第一耦合段 832‧‧‧First coupling section

833‧‧‧第二耦合段 833‧‧‧Second coupling section

834‧‧‧第三耦合段 834‧‧‧ Third coupling section

31、65‧‧‧第四饋入源 31, 65‧‧‧ fourth feed source

32‧‧‧金屬框體 32‧‧‧Metal frame

66、79‧‧‧第三切換電路 66, 79‧‧‧ third switching circuit

400、600、800‧‧‧無線通訊裝置 400, 600, 800‧‧‧ wireless communication devices

401、601、801‧‧‧顯示單元 401, 601, 801‧‧‧ display unit

603、803‧‧‧電子元件 603, 803‧‧‧ Electronic components

402、604、804‧‧‧相機鏡頭 402, 604, 804‧‧‧ camera lens

403、605、805‧‧‧閃光燈 403, 605, 805 ‧ ‧ flash

404、405、606、607、806、807‧‧‧開孔 404, 405, 606, 607, 806, 807‧‧‧ openings

圖1為本發明第一較佳實施例之天線結構應用至無線通訊裝置之示意圖。 圖2為圖1所示無線通訊裝置之組裝示意圖。 圖3為圖2所示無線通訊裝置另一角度下之組裝示意圖。 圖4為圖1所示天線結構中第一切換電路之電路圖。 圖5為圖4所示第一切換電路設置有諧振電路之電路圖。 圖6為圖4所示第一切換電路設置有諧振電路之另一電路圖。 圖7為當圖5所示第一切換電路設置有諧振電路時產生窄頻模態之工作原理圖。 圖8為當圖6所示第一切換電路設置有諧振電路時產生窄頻模態之工作原理圖。 圖9為圖1所示天線結構工作於低頻模態及GPS模態時之電流走向圖。 圖10為圖1所示天線結構工作於1710-2690MHz頻段時之電流走向示意圖。 圖11為圖1所示天線結構工作於低頻模態及GPS模態時之S參數(散射參數)曲線圖。 圖12為圖1所示天線結構工作於低頻模態時之輻射效率圖。 圖13為圖1所示天線結構工作於GPS模態時之輻射效率圖。 圖14為圖1所示天線結構工作於1710-2690MHz頻段時之S參數(散射參數)曲線圖。 圖15為圖1所示天線結構工作於1710-2690MHz頻段時之輻射效率圖。 圖16為本發明第二較佳實施例之天線結構之結構示意圖。 圖17至圖19為圖16所示天線結構中隔離部之位置關係示意圖。 圖20為圖16所示天線結構工作於高頻模態時之電流走向示意圖。 圖21為圖16所示天線結構工作於雙頻WIFI模態時之電流走向示意圖。 圖22為圖16所示天線結構工作於中頻模態及高頻模態時之S參數(散射參數)曲線圖。 圖23為圖16所示天線結構工作於中頻模態及高頻模態時之輻射效率圖。 圖24為圖16所示天線結構工作於WIFI 2.4GHZ模態及WIFI 5GHz模態時之S參數(散射參數)曲線圖。 圖25為圖16所示天線結構工作於WIFI 2.4GHZ模態時之輻射效率圖。 圖26為圖16所示天線結構工作於WIFI 5GHz模態時之輻射效率圖。 圖27為本發明第三較佳實施例之天線結構應用至無線通訊裝置之示意圖。 圖28為圖27所示無線通訊裝置之組裝示意圖。 圖29為圖28所示無線通訊裝置另一角度下之組裝示意圖。 圖30為圖27所示天線結構中第一切換電路之電路圖。 圖31為圖27所示天線結構中第二切換電路之電路圖。 圖32為圖27所示天線結構之電流走向圖。 圖33為圖30所示第一切換電路設置有諧振電路之電路圖。 圖34為圖30所示第一切換電路設置有諧振電路之另一電路圖。 圖35為當圖33所示第一切換電路設置有諧振電路時產生窄頻模態之工作原理圖。 圖36為當圖34所示第一切換電路設置有諧振電路時產生窄頻模態之工作原理圖。 圖37為圖27所示天線結構設置有諧振電路且工作於低頻模態時之電流走向圖。 圖38為圖27所示天線結構設置有所述諧振電路且工作於1710-2690MHz頻段時之電流走向示意圖。 圖39為圖27所示天線結構工作於低頻模態時之S參數(散射參數)曲線圖。 圖40為圖27所示天線結構工作於低頻模態時之輻射效率圖。 圖41為圖27所示天線結構工作於1710-2690MHz頻段時之S參數(散射參數)曲線圖。 圖42為圖27所示天線結構工作於1710-2690MHz頻段時之輻射效率圖。 圖43為本發明第四較佳實施例之天線結構之結構示意圖。 圖44為圖43所示天線結構工作於1710-2400MHz頻段時之電流走向示意圖。 圖45為圖43所示天線結構工作於雙頻WIFI模態時之電流走向示意圖。 圖46為圖43所示天線結構工作於2496-2690MHz頻段時之電流走向示意圖。 圖47為圖43所示天線結構工作於1710-2400MHz頻段時之S參數(散射參數)曲線圖。 圖48為圖43所示天線結構工作於1710-2400MHz頻段時之輻射效率圖。 圖49為圖43所示天線結構工作於WIFI 2.4GHZ模態及WIFI 5GHz模態時之S參數(散射參數)曲線圖。 圖50為圖43所示天線結構工作於WIFI 2.4GHZ模態及WIFI 5GHz模態時之輻射效率圖。 圖51為圖43所示天線結構工作於2496-2690MHz頻段時之S參數(散射參數)曲線圖。 圖52為圖43所示天線結構工作於2496-2690MHz頻段時之輻射效率圖。 圖53為本發明第五較佳實施例之天線結構之結構示意圖。 圖54為圖53所示天線結構工作於1710-2170MHz頻段時之電流走向示意圖。 圖55為圖53所示天線結構工作於2300-2400MHz及2496-2690MHz頻段時之電流走向示意圖。 圖56為圖53所示天線結構工作於1710-2170MHz頻段時之S參數(散射參數)曲線圖。 圖57為圖53所示天線結構工作於1710-2170MHz頻段時之輻射效率圖。 圖58為圖53所示天線結構工作於2300-2400MHz及2496-2690MHz頻段時之S參數(散射參數)曲線圖。 圖59為圖53所示天線結構工作於2300-2400MHz及2496-2690MHz頻段時之輻射效率圖。 圖60為本發明第六較佳實施例之天線結構應用至無線通訊裝置之示意圖。 圖61為圖60所示無線通訊裝置之組裝示意圖。 圖62為圖61所示無線通訊裝置另一角度下之組裝示意圖。 圖63為圖60所示天線結構中第一切換電路之電路圖。 圖64為圖60所示天線結構中第二切換電路之電路圖。 圖65為圖63所示第一切換電路設置有諧振電路之電路圖。 圖66為圖63所示第一切換電路設置有諧振電路之另一電路圖。 圖67為當圖65所示第一切換電路設置有諧振電路時產生窄頻模態之工作原理圖。 圖68為當圖66所示第一切換電路設置有諧振電路時產生窄頻模態之工作原理圖。 圖69為圖60所示天線結構工作於低頻模態時之電流走向示意圖。 圖70為圖60所示天線結構工作於中頻模態時之電流走向示意圖。 圖71為圖60所示天線結構工作於高頻模態時之電流走向示意圖。 圖72為圖60所示天線結構工作於低頻模態時之S參數(散射參數)曲線圖。 圖73為圖60所示天線結構工作於低頻模態時之輻射效率圖。 圖74為圖60所示天線結構工作於中頻模態時之S參數(散射參數)曲線圖。 圖75為圖60所示天線結構工作於中頻模態時之輻射效率圖。 圖76為圖60所示天線結構工作於高頻模態時之S參數(散射參數)曲線圖。 圖77為圖60所示天線結構工作於高頻模態時之輻射效率圖。 圖78為本發明第七較佳實施例之天線結構之結構示意圖。 圖79為圖78所示天線結構工作於中頻模態時之電流走向示意圖。 圖80為圖78所示天線結構工作於低頻模態時之S參數(散射參數)曲線圖。 圖81為圖78所示天線結構工作於低頻模態時之輻射效率圖。 圖82為圖78所示天線結構工作於中頻模態時之S參數(散射參數)曲線圖。 圖83為圖78所示天線結構工作於中頻模態時之輻射效率圖。1 is a schematic diagram of an antenna structure applied to a wireless communication device according to a first preferred embodiment of the present invention. 2 is a schematic view showing the assembly of the wireless communication device shown in FIG. 1. 3 is a schematic view showing the assembly of the wireless communication device shown in FIG. 2 from another angle. 4 is a circuit diagram of a first switching circuit in the antenna structure shown in FIG. 1. FIG. 5 is a circuit diagram of the first switching circuit shown in FIG. 4 provided with a resonant circuit. FIG. 6 is another circuit diagram of the first switching circuit shown in FIG. 4 provided with a resonant circuit. FIG. 7 is a schematic diagram showing the operation of generating a narrow frequency mode when the first switching circuit shown in FIG. 5 is provided with a resonant circuit. FIG. 8 is a schematic diagram showing the operation of generating a narrow frequency mode when the first switching circuit shown in FIG. 6 is provided with a resonant circuit. FIG. 9 is a current trend diagram of the antenna structure shown in FIG. 1 when operating in a low frequency mode and a GPS mode. FIG. 10 is a schematic diagram of current flow when the antenna structure shown in FIG. 1 operates in the 1710-2690 MHz frequency band. FIG. 11 is a graph of S parameters (scattering parameters) of the antenna structure shown in FIG. 1 when operating in a low frequency mode and a GPS mode. Figure 12 is a graph showing the radiation efficiency of the antenna structure of Figure 1 when operating in a low frequency mode. Figure 13 is a graph showing the radiation efficiency of the antenna structure of Figure 1 when operating in a GPS mode. Figure 14 is a graph of S-parameter (scattering parameters) of the antenna structure of Figure 1 operating in the 1710-2690 MHz band. Figure 15 is a graph showing the radiation efficiency of the antenna structure of Figure 1 operating in the 1710-2690 MHz band. FIG. 16 is a schematic structural view of an antenna structure according to a second preferred embodiment of the present invention. 17 to 19 are schematic diagrams showing the positional relationship of the isolation portions in the antenna structure shown in Fig. 16. FIG. 20 is a schematic diagram showing the current flow of the antenna structure shown in FIG. 16 when operating in a high frequency mode. FIG. 21 is a schematic diagram showing the current flow of the antenna structure shown in FIG. 16 when operating in a dual-frequency WIFI mode. FIG. 22 is a graph showing an S parameter (scattering parameter) of the antenna structure shown in FIG. 16 when operating in an intermediate frequency mode and a high frequency mode. FIG. 23 is a graph showing the radiation efficiency of the antenna structure shown in FIG. 16 when operating in an intermediate frequency mode and a high frequency mode. FIG. 24 is a graph of S parameters (scattering parameters) of the antenna structure shown in FIG. 16 when operating in WIFI 2.4 GHz mode and WIFI 5 GHz mode. Figure 25 is a graph showing the radiation efficiency of the antenna structure shown in Figure 16 when operating in the WIFI 2.4 GHz mode. Figure 26 is a graph showing the radiation efficiency of the antenna structure of Figure 16 when operating in a WIFI 5 GHz mode. FIG. 27 is a schematic diagram of an antenna structure applied to a wireless communication device according to a third preferred embodiment of the present invention. 28 is a schematic view showing the assembly of the wireless communication device shown in FIG. 27. 29 is a schematic view showing the assembly of the wireless communication device shown in FIG. 28 from another angle. Figure 30 is a circuit diagram of a first switching circuit in the antenna structure shown in Figure 27. Figure 31 is a circuit diagram of a second switching circuit in the antenna structure shown in Figure 27. Figure 32 is a current flow diagram of the antenna structure shown in Figure 27. Figure 33 is a circuit diagram showing the first switching circuit shown in Figure 30 with a resonant circuit. FIG. 34 is another circuit diagram of the first switching circuit shown in FIG. 30 in which a resonant circuit is provided. Fig. 35 is a view showing the operation of generating a narrow frequency mode when the first switching circuit shown in Fig. 33 is provided with a resonance circuit. Figure 36 is a diagram showing the operation of generating a narrow frequency mode when the first switching circuit shown in Figure 34 is provided with a resonant circuit. 37 is a current flow diagram of the antenna structure of FIG. 27 provided with a resonant circuit and operating in a low frequency mode. 38 is a schematic diagram showing the current flow when the antenna structure shown in FIG. 27 is provided with the resonant circuit and operates in the 1710-2690 MHz frequency band. Fig. 39 is a graph showing an S parameter (scattering parameter) of the antenna structure shown in Fig. 27 when operating in a low frequency mode. Figure 40 is a graph showing the radiation efficiency of the antenna structure shown in Figure 27 when operating in a low frequency mode. 41 is a graph of S-parameter (scattering parameter) of the antenna structure shown in FIG. 27 operating in the 1710-2690 MHz band. Figure 42 is a graph showing the radiation efficiency of the antenna structure shown in Figure 27 operating in the 1710-2690 MHz band. Figure 43 is a schematic structural view of an antenna structure according to a fourth preferred embodiment of the present invention. 44 is a schematic diagram showing the current flow when the antenna structure shown in FIG. 43 operates in the 1710-2400 MHz frequency band. 45 is a schematic diagram of current flow when the antenna structure shown in FIG. 43 operates in a dual-frequency WIFI mode. FIG. 46 is a schematic diagram showing the current flow when the antenna structure shown in FIG. 43 operates in the frequency band of 2496-2690 MHz. Figure 47 is a graph showing the S parameter (scattering parameter) of the antenna structure shown in Figure 43 when operating in the 1710-2400 MHz band. Figure 48 is a graph showing the radiation efficiency of the antenna structure shown in Figure 43 when operating in the 1710-2400 MHz band. 49 is a graph showing S-parameters (scattering parameters) of the antenna structure shown in FIG. 43 when operating in WIFI 2.4 GHz mode and WIFI 5 GHz mode. Figure 50 is a graph showing the radiation efficiency of the antenna structure shown in Figure 43 when operating in WIFI 2.4 GHz mode and WIFI 5 GHz mode. Figure 51 is a graph of S-parameters (scattering parameters) of the antenna structure of Figure 43 operating in the 2496-2690 MHz band. Figure 52 is a graph showing the radiation efficiency of the antenna structure shown in Figure 43 when operating in the 2496-2690 MHz band. Figure 53 is a schematic structural view of an antenna structure according to a fifth preferred embodiment of the present invention. Figure 54 is a schematic diagram showing the current flow of the antenna structure shown in Figure 53 when operating in the 1710-2170 MHz band. 55 is a schematic diagram showing the current flow of the antenna structure shown in FIG. 53 when operating in the 2300-2400 MHz and 2496-2690 MHz bands. Figure 56 is a graph showing the S parameter (scattering parameter) of the antenna structure shown in Figure 53 when operating in the 1710-2170 MHz band. 57 is a graph showing the radiation efficiency of the antenna structure shown in FIG. 53 operating in the 1710-2170 MHz band. Figure 58 is a graph of S-parameters (scattering parameters) for the antenna structure of Figure 53 operating in the 2300-2400 MHz and 2496-2690 MHz bands. Figure 59 is a graph showing the radiation efficiency of the antenna structure shown in Figure 53 when operating in the 2300-2400 MHz and 2496-2690 MHz bands. 60 is a schematic diagram of an antenna structure applied to a wireless communication device according to a sixth preferred embodiment of the present invention. Figure 61 is a schematic view showing the assembly of the wireless communication device shown in Figure 60. Figure 62 is a schematic view showing the assembly of the wireless communication device shown in Figure 61 at another angle. Figure 63 is a circuit diagram of a first switching circuit in the antenna structure shown in Figure 60. Figure 64 is a circuit diagram of a second switching circuit in the antenna structure shown in Figure 60. Figure 65 is a circuit diagram showing the first switching circuit shown in Figure 63 with a resonant circuit. Figure 66 is another circuit diagram of the first switching circuit shown in Figure 63 provided with a resonant circuit. Fig. 67 is a view showing the operation of generating a narrow frequency mode when the first switching circuit shown in Fig. 65 is provided with a resonance circuit. Figure 68 is a diagram showing the operation of generating a narrow-band mode when the first switching circuit shown in Figure 66 is provided with a resonant circuit. Figure 69 is a schematic diagram showing the current flow of the antenna structure shown in Figure 60 when operating in a low frequency mode. Figure 70 is a schematic diagram showing the current flow of the antenna structure shown in Figure 60 when operating in an intermediate frequency mode. 71 is a schematic diagram showing the current flow when the antenna structure shown in FIG. 60 operates in a high frequency mode. Fig. 72 is a graph showing an S parameter (scattering parameter) of the antenna structure shown in Fig. 60 when operating in a low frequency mode. Figure 73 is a graph showing the radiation efficiency of the antenna structure shown in Figure 60 when operating in a low frequency mode. Fig. 74 is a graph showing an S parameter (scattering parameter) when the antenna structure shown in Fig. 60 operates in an intermediate frequency mode. Figure 75 is a graph showing the radiation efficiency of the antenna structure shown in Figure 60 when operating in an intermediate frequency mode. Figure 76 is a graph showing the S parameter (scattering parameter) of the antenna structure shown in Figure 60 when operating in a high frequency mode. Figure 77 is a graph showing the radiation efficiency of the antenna structure shown in Figure 60 when operating in a high frequency mode. 78 is a schematic structural view of an antenna structure according to a seventh preferred embodiment of the present invention. 79 is a schematic diagram of current flow when the antenna structure shown in FIG. 78 operates in an intermediate frequency mode. Fig. 80 is a graph showing an S parameter (scattering parameter) of the antenna structure shown in Fig. 78 when operating in a low frequency mode. Figure 81 is a graph showing the radiation efficiency of the antenna structure shown in Figure 78 when operating in a low frequency mode. Fig. 82 is a graph showing an S parameter (scattering parameter) when the antenna structure shown in Fig. 78 operates in an intermediate frequency mode. Figure 83 is a graph showing the radiation efficiency of the antenna structure shown in Figure 78 when operating in an intermediate frequency mode.

no

Claims (17)

一種天線結構,包括殼體、第一饋入源以及第一輻射體,所述殼體包括前框、背板以及邊框,所述邊框夾設於所述前框與所述背板之間,所述邊框上開設有開槽,所述前框上開設有斷點,所述斷點與所述開槽連通並延伸至隔斷所述前框,所述開槽及所述斷點自所述殼體劃分出金屬長臂及金屬短臂,所述第一輻射體設置於所述殼體內,包括第一輻射部及第二輻射部,所述第一輻射部之一端電連接至所述第一饋入源,另一端與所述金屬長臂間隔耦合設置;所述第二輻射部之一端電連接至所述第一饋入源,另一端電連接至所述金屬短臂。An antenna structure includes a housing, a first feeding source, and a first radiator. The housing includes a front frame, a back plate, and a frame. The frame is sandwiched between the front frame and the back plate. a slot is formed in the frame, a break point is formed on the front frame, and the break point is connected to the slot and extends to block the front frame, the slot and the break point are from the The housing defines a metal long arm and a metal short arm, and the first radiator is disposed in the housing, and includes a first radiating portion and a second radiating portion, and one end of the first radiating portion is electrically connected to the first portion a feed source, the other end is spaced apart from the metal long arm; one end of the second radiating portion is electrically connected to the first feed source, and the other end is electrically connected to the metal short arm. 如申請專利範圍第1項所述之天線結構,其中所述開槽及所述斷點內均填充有絕緣材料。The antenna structure of claim 1, wherein the slot and the breakpoint are filled with an insulating material. 如申請專利範圍第1項所述之天線結構,其中所述邊框至少包括末端部、第一側部以及第二側部,所述第一側部與所述第二側部分別連接所述末端部之兩端,所述第一輻射部包括第一輻射段、第二輻射段以及第三輻射段,所述第一輻射段一端電連接至所述第一饋入源,另一端沿平行所述末端部且靠近所述第一側部之方向延伸,直至越過所述斷點,所述第二輻射段一端垂直連接至所述第一輻射段遠離所述第一饋入源之一端,另一端沿平行所述第二側部且靠近所述金屬長臂之方向延伸,進而與所述第一輻射段構成L形結構,所述第三輻射段與所述金屬長臂間隔且平行設置,所述第三輻射段垂直連接至所述第二輻射段遠離所述第一輻射段之端部,並分別沿靠近所述第一側部及第二側部之方向延伸,進而與所述第二輻射段構成呈T型之結構。The antenna structure of claim 1, wherein the frame comprises at least a tip end portion, a first side portion and a second side portion, the first side portion and the second side portion respectively connecting the end portion The first radiating portion includes a first radiating portion, a second radiating portion and a third radiating portion, the first radiating portion has one end electrically connected to the first feeding source and the other end being parallel Extending the end portion and extending in the direction of the first side portion until the break point is reached, one end of the second radiating portion is perpendicularly connected to the first radiating portion away from one end of the first feeding source, and One end extends in a direction parallel to the second side portion and adjacent to the metal long arm, and further forms an L-shaped structure with the first radiating portion, and the third radiating portion is spaced apart from the metal long arm and arranged in parallel. The third radiating section is vertically connected to the end of the second radiating section away from the first radiating section, and extends in a direction close to the first side and the second side, respectively, and further The two radiating segments form a T-shaped structure. 如申請專利範圍第3項所述之天線結構,其中所述斷點一側之所述前框直至其延伸至與所述開槽之其中一端點相對應之部分共同形成所述金屬長臂,當電流自所述第一饋入源進入後,將依次流經所述第一輻射段、第二輻射段以及第三輻射段,並經所述第三輻射段耦合至所述金屬長臂,再從所述金屬長臂流過所述第一側部,最後流向所述背板,以激發出第一模態以產生第一頻段之輻射訊號。The antenna structure of claim 3, wherein the front frame on one side of the breakpoint extends to a portion corresponding to one of the ends of the slot to form the metal long arm, When current enters from the first feed source, it will sequentially flow through the first radiant section, the second radiant section, and the third radiant section, and be coupled to the metal long arm via the third radiant section. Then flowing from the long arm of the metal through the first side portion and finally to the back plate to excite the first mode to generate a radiation signal of the first frequency band. 如申請專利範圍第4項所述之天線結構,其中所述天線結構還包括第一切換電路及第二切換電路,所述第一切換電路包括第一切換單元及多個第一切換元件,所述第一切換單元電連接至所述金屬長臂,所述多個第一切換元件之間相互並聯,且其一端電連接至所述第一切換單元,另一端電連接至所述背板,所述第二切換電路包括第二切換單元及多個第二切換元件,所述第一饋入源藉由匹配電路電連接至所述第一輻射段,所述第二切換單元電連接至所述匹配電路,所述第二切換元件之間相互並聯,且其一端電連接至所述第二切換單元,另一端電連接至所述背板,藉由控制所述第一切換單元及/或第二切換單元之切換,使得所述第一切換單元及第二切換單元切換至不同之第一切換元件與/或第二切換元件,進而調整所述第一頻段。The antenna structure of claim 4, wherein the antenna structure further includes a first switching circuit and a second switching circuit, the first switching circuit comprising a first switching unit and a plurality of first switching elements, The first switching unit is electrically connected to the metal long arm, and the plurality of first switching elements are connected in parallel with each other, and one end thereof is electrically connected to the first switching unit, and the other end is electrically connected to the backboard. The second switching circuit includes a second switching unit and a plurality of second switching elements, the first feeding source is electrically connected to the first radiating section by a matching circuit, and the second switching unit is electrically connected to the In the matching circuit, the second switching elements are connected in parallel with each other, and one end thereof is electrically connected to the second switching unit, and the other end is electrically connected to the backplane, by controlling the first switching unit and/or The switching of the second switching unit causes the first switching unit and the second switching unit to switch to different first switching elements and/or second switching elements to adjust the first frequency band. 如申請專利範圍第5項所述之天線結構,其中所述第二輻射部為一電容,所述第二輻射部之一端電連接至所述第一饋入源,另一端電連接至所述金屬短臂。The antenna structure of claim 5, wherein the second radiating portion is a capacitor, one end of the second radiating portion is electrically connected to the first feeding source, and the other end is electrically connected to the Metal short arm. 如申請專利範圍第5項所述之天線結構,其中所述斷點另一側之前框直至其延伸至與所述開槽之另一端點相對應之部分共同形成所述金屬短臂,所述金屬長臂之長度大於所述金屬短臂之長度,當電流自所述第一饋入源進入後,電流將經所述第二輻射部直接流入所述金屬短臂,再流經所述第二側部,最後流入所述背板,進而激發出第二模態以產生第二頻段之輻射訊號,所述第二頻段之頻率高於所述第一頻段之頻率,同時當電流自所述第一饋入源進入後,電流經所述第二輻射部流入所述金屬短臂,再經該斷點耦合至所述金屬長臂,並流經至所述第一切換電路,最終流向所述背板,進而激發出第三模態以產生第三頻段之輻射訊號,所述第三頻段之頻率高於所述第二頻段之頻率。The antenna structure of claim 5, wherein the other side of the breakpoint has a front frame until it extends to a portion corresponding to the other end of the slot to form the metal short arm, The length of the metal long arm is greater than the length of the metal short arm. When a current enters from the first feed source, current flows directly into the metal short arm through the second radiating portion, and then flows through the first Two sides, finally flowing into the backplane, thereby exciting a second mode to generate a radiation signal of the second frequency band, the frequency of the second frequency band being higher than the frequency of the first frequency band, and when the current is from the After the first feed source enters, a current flows into the metal short arm through the second radiating portion, and is coupled to the metal long arm via the break point, and flows to the first switching circuit, and finally flows to the The backplane further excites a third mode to generate a third frequency band of radiation signals, the third frequency band having a higher frequency than the second frequency band. 如申請專利範圍第7項所述之天線結構,其中所述第一切換電路還包括諧振電路,所述諧振電路之數量為一個,所述諧振電路之一端電連接至所述金屬長臂,另一端電連接至所述背板。The antenna structure of claim 7, wherein the first switching circuit further comprises a resonant circuit, the number of the resonant circuits is one, one end of the resonant circuit is electrically connected to the metal long arm, and the other One end is electrically connected to the backboard. 如申請專利範圍第7項所述之天線結構,其中所述第一切換電路還包括諧振電路,所述諧振電路之數量與所述第一切換元件之數量一致,每一所述諧振電路分別電連接於所述第一切換單元與所述背板之間,且與相應之所述第一切換元件並聯,所述諧振電路用以當所述第一頻段被調整時,使所述第三頻段維持不變。The antenna structure of claim 7, wherein the first switching circuit further comprises a resonant circuit, the number of the resonant circuits is consistent with the number of the first switching elements, and each of the resonant circuits is separately Connected between the first switching unit and the backplane, and in parallel with the corresponding first switching component, the resonant circuit is configured to enable the third frequency band when the first frequency band is adjusted stay the same. 如申請專利範圍第7項所述之天線結構,其中所述第一切換電路還包括諧振電路,所述諧振電路之數量與所述第一切換元件之數量一致,每一所述諧振電路分別電連接於所述第一切換單元與所述背板之間,且與相應之所述第一切換元件並聯,所述諧振電路用以當所述第一頻段被調整時,對應調整所述第三頻段。The antenna structure of claim 7, wherein the first switching circuit further comprises a resonant circuit, the number of the resonant circuits is consistent with the number of the first switching elements, and each of the resonant circuits is separately Connected between the first switching unit and the backplane, and in parallel with the corresponding first switching component, the resonant circuit is configured to adjust the third correspondingly when the first frequency band is adjusted Frequency band. 如申請專利範圍第1項所述之天線結構,其中所述天線結構還包括第二輻射體及第二饋入源,所述第二輻射體鄰近所述金屬長臂設置,所述第二輻射體為直條狀片體,所述第二輻射體之一端電連接至所述前框,另一端朝向所述第二側部延伸,所述第二饋入源設置於所述前框上,且電連接至所述第一輻射體,當電流自所述第二饋入源進入後,將流經所述第二輻射體,進而激發出第四模態以產生第四頻段之輻射訊號。The antenna structure of claim 1, wherein the antenna structure further comprises a second radiator and a second feed source, the second radiator being disposed adjacent to the metal long arm, the second radiation The body is a straight strip, one end of the second radiator is electrically connected to the front frame, the other end extends toward the second side, and the second feeding source is disposed on the front frame. And electrically connected to the first radiator, when a current enters from the second feed source, it will flow through the second radiator, thereby exciting a fourth mode to generate a radiation signal of the fourth frequency band. 如申請專利範圍第11項所述之天線結構,其中所述天線結構還包括第三切換電路,所述第三切換電路之一端電連接至所述第二輻射體,所述第三切換電路之另一端電連接至所述背板,用以調整所述第四頻段。The antenna structure of claim 11, wherein the antenna structure further includes a third switching circuit, one end of the third switching circuit is electrically connected to the second radiator, and the third switching circuit is The other end is electrically connected to the backplane for adjusting the fourth frequency band. 如申請專利範圍第1項所述之天線結構,其中無線通訊裝置使用載波聚合技術並使用所述第一輻射體、所述金屬長臂以及金屬短臂其中至少兩者同時於多個不同頻段接收或發送無線訊號。The antenna structure of claim 1, wherein the wireless communication device uses carrier aggregation technology and uses at least two of the first radiator, the metal long arm, and the metal short arm to receive simultaneously in a plurality of different frequency bands. Or send a wireless signal. 如申請專利範圍第1項所述之天線結構,其中所述背板為一體成型之單一金屬片,所述背板與邊框直接連接,所述背板與邊框之間沒有空隙,所述背板上並無設置任何用於分割所述背板之絕緣之開槽、斷線或斷點。The antenna structure of claim 1, wherein the backboard is a single metal piece integrally formed, the backboard is directly connected to the frame, and there is no gap between the backboard and the frame, the backboard There are no slots, broken wires or breakpoints for separating the insulation of the backplane. 一種無線通訊裝置,包括如申請專利範圍第1-14項中任一項所述之天線結構。A wireless communication device comprising the antenna structure of any one of claims 1-14. 如申請專利範圍第15項所述之無線通訊裝置,其中所述無線通訊裝置還包括顯示單元,所述前框、背板以及邊框構成所述無線通訊裝置之外殼,所述前框設置有開口用於容置所述顯示單元,所述顯示單元具有顯示平面,該顯示平面裸露於該開口,且該顯示平面與所述背板平行設置。The wireless communication device of claim 15, wherein the wireless communication device further comprises a display unit, the front frame, the back panel and the frame constitute a casing of the wireless communication device, and the front frame is provided with an opening The display unit has a display plane, the display plane is exposed to the opening, and the display plane is disposed in parallel with the backboard. 如申請專利範圍第15項所述之無線通訊裝置,其中所述無線通訊裝置還包括USB模組,所述邊框上還開設有端口,所述端口與所述USB模組相對應,用以使得所述USB模組從所述端口部分露出。The wireless communication device of claim 15, wherein the wireless communication device further comprises a USB module, wherein the frame further has a port, the port corresponding to the USB module, The USB module is exposed from the port portion.
TW106121491A 2016-07-19 2017-06-27 Antenna structure and wireless communication device with same TWI640126B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662364303P 2016-07-19 2016-07-19
US62/364303 2016-07-19

Publications (2)

Publication Number Publication Date
TW201806239A TW201806239A (en) 2018-02-16
TWI640126B true TWI640126B (en) 2018-11-01

Family

ID=57972950

Family Applications (8)

Application Number Title Priority Date Filing Date
TW105211947U TWM556941U (en) 2016-07-19 2016-08-06 Antenna structure and wireless communication device with same
TW105125082A TWI626785B (en) 2016-07-19 2016-08-06 Antenna structure and wireless communication device with same
TW105213307U TWM559003U (en) 2016-07-19 2016-08-31 Antenna structure and wireless communication device with same
TW105127985A TWI626786B (en) 2016-07-19 2016-08-31 Antenna structure and wireless communication device with same
TW106121314A TWI650902B (en) 2016-07-19 2017-06-26 Antenna structure and wireless communication device with same
TW106121491A TWI640126B (en) 2016-07-19 2017-06-27 Antenna structure and wireless communication device with same
TW106121676A TWI651887B (en) 2016-07-19 2017-06-28 Antenna structure and wireless communication device with same
TW106121685A TWI651888B (en) 2016-07-19 2017-06-29 Antenna structure and wireless communication device with same

Family Applications Before (5)

Application Number Title Priority Date Filing Date
TW105211947U TWM556941U (en) 2016-07-19 2016-08-06 Antenna structure and wireless communication device with same
TW105125082A TWI626785B (en) 2016-07-19 2016-08-06 Antenna structure and wireless communication device with same
TW105213307U TWM559003U (en) 2016-07-19 2016-08-31 Antenna structure and wireless communication device with same
TW105127985A TWI626786B (en) 2016-07-19 2016-08-31 Antenna structure and wireless communication device with same
TW106121314A TWI650902B (en) 2016-07-19 2017-06-26 Antenna structure and wireless communication device with same

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW106121676A TWI651887B (en) 2016-07-19 2017-06-28 Antenna structure and wireless communication device with same
TW106121685A TWI651888B (en) 2016-07-19 2017-06-29 Antenna structure and wireless communication device with same

Country Status (2)

Country Link
CN (8) CN107634310A (en)
TW (8) TWM556941U (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM556941U (en) * 2016-07-19 2018-03-11 群邁通訊股份有限公司 Antenna structure and wireless communication device with same
US10879588B2 (en) * 2016-12-27 2020-12-29 Htc Corporation Mobile device and manufacturing method thereof
US10559871B2 (en) 2017-02-24 2020-02-11 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN108511904B (en) * 2017-02-24 2021-12-07 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
US10944151B2 (en) 2017-02-24 2021-03-09 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN108963433A (en) * 2017-05-23 2018-12-07 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with the antenna structure
CN109390693B (en) * 2017-08-05 2021-12-07 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
WO2019029478A1 (en) * 2017-08-07 2019-02-14 Oppo广东移动通信有限公司 Backplate, front housing, and electronic device
CN107394354B (en) * 2017-08-07 2020-06-23 Oppo广东移动通信有限公司 Backplate, preceding shell and electronic equipment
CN107910641B (en) * 2017-10-30 2021-08-10 捷开通讯(深圳)有限公司 Broadband wireless device
CN109802236B (en) * 2017-11-17 2021-07-20 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
US10468754B2 (en) 2017-12-07 2019-11-05 Futurewei Technologies, Inc. Bifurcated multi-mode ring antenna for a wireless communication device
CN109921174B (en) * 2017-12-12 2022-03-22 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
CN108232421B (en) * 2017-12-29 2021-04-02 瑞声精密制造科技(常州)有限公司 Antenna system and mobile terminal
CN108336483B (en) * 2018-02-02 2021-03-02 Oppo广东移动通信有限公司 Antenna assembly, electronic equipment and antenna switching method
CN110137670A (en) 2018-02-09 2019-08-16 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with the antenna structure
CN110137671B (en) 2018-02-09 2020-11-24 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
CN108323061B (en) * 2018-03-09 2019-07-30 Oppo广东移动通信有限公司 A kind of center, electronic device and center production method
CN108417980B (en) * 2018-03-19 2022-02-18 Oppo广东移动通信有限公司 Electronic device
CN108565561B (en) * 2018-04-16 2021-04-02 Oppo广东移动通信有限公司 Antenna assembly and electronic equipment
CN108631048B (en) * 2018-04-20 2020-12-18 Oppo广东移动通信有限公司 Antenna assembly and electronic device
CN108631041B (en) * 2018-04-25 2020-04-03 Oppo广东移动通信有限公司 Antenna assembly and electronic device
WO2019218125A1 (en) * 2018-05-14 2019-11-21 华为技术有限公司 Antenna structure and terminal device
CN108963425A (en) * 2018-07-23 2018-12-07 Oppo广东移动通信有限公司 Terminal device with multifrequency antenna
CN110767980B (en) 2018-07-27 2021-11-02 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
EP3830896A1 (en) * 2018-07-31 2021-06-09 Sony Corporation Antenna frame for use with a millimeter wave antenna
CN110828979B (en) * 2018-08-09 2021-12-28 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
CN109119752B (en) * 2018-08-13 2022-03-04 瑞声科技(新加坡)有限公司 Antenna system and mobile terminal
CN110838612B (en) * 2018-08-17 2021-12-28 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
CN111092292B (en) * 2018-10-24 2022-10-11 荷兰移动驱动器公司 Antenna structure and wireless communication device with same
TWI678027B (en) * 2018-11-30 2019-11-21 群邁通訊股份有限公司 Antenna structure and wireless communication device employing same
TWI686995B (en) * 2018-12-05 2020-03-01 啓碁科技股份有限公司 Antenna structure and mobile device
CN109546343B (en) * 2018-12-18 2020-06-30 珠海格力电器股份有限公司 Antenna structure and method for enhancing antenna directivity and temperature controller
CN109616750B (en) * 2018-12-29 2023-06-27 普尔思(苏州)无线通讯产品有限公司 Antenna structure
CN111916889B (en) * 2019-05-09 2023-04-28 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
TWI712219B (en) * 2019-05-09 2020-12-01 群邁通訊股份有限公司 Antenna structure and wireless communication device employing same
CN111129728A (en) * 2019-12-10 2020-05-08 维沃移动通信有限公司 Electronic equipment
CN113078444A (en) * 2020-01-06 2021-07-06 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
CN113078449B (en) * 2020-01-06 2023-03-24 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
TWI724738B (en) * 2020-01-06 2021-04-11 群邁通訊股份有限公司 Antenna structure and wireless communication device with same
TWI724754B (en) * 2020-01-17 2021-04-11 群邁通訊股份有限公司 Antenna structure and wireless communication device with same
CN113948863A (en) * 2020-07-16 2022-01-18 深圳富泰宏精密工业有限公司 Signal feed-in assembly, antenna module and electronic equipment
TWI743971B (en) * 2020-08-28 2021-10-21 群邁通訊股份有限公司 Antenna structure and electronic device with same
CN114122710A (en) 2020-08-28 2022-03-01 深圳富泰宏精密工业有限公司 Antenna structure and electronic equipment with same
CN111987433A (en) * 2020-09-14 2020-11-24 维沃移动通信有限公司 Antenna structure and electronic equipment
CN112531342B (en) * 2020-12-07 2023-06-09 Oppo广东移动通信有限公司 Antenna module and electronic equipment
CN113612013B (en) * 2021-08-10 2023-10-24 上海乔一仪器有限公司 Miniaturized aviation six-frequency active antenna convenient to install on flight carrier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140292598A1 (en) * 2013-03-27 2014-10-02 Apple Inc. Antenna System With Tuning From Coupled Antenna
US20140347227A1 (en) * 2013-05-24 2014-11-27 Microsoft Corporation Side face antenna for a computing device case
CN204289710U (en) * 2014-11-17 2015-04-22 惠州硕贝德无线科技股份有限公司 A kind of LTE metal edge frame antenna
US20150255857A1 (en) * 2011-04-14 2015-09-10 Samsung Electronics Co., Ltd. Antenna apparatus for portable terminal
US20150372372A1 (en) * 2014-06-23 2015-12-24 Samsung Electronics Co., Ltd. Electronic device with antenna having ring-type structure
US20160064820A1 (en) * 2014-09-02 2016-03-03 Samsung Electronics Co., Ltd. Antenna using exterior metal frame and electronic device utilizing the same

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60231842D1 (en) * 2002-10-15 2009-05-14 Hitachi Ltd SMALL MULTIMODE ANTENNA AND THIS USING HIGH-FREQUENCY MODULE
CN201781061U (en) * 2010-08-13 2011-03-30 惠州Tcl移动通信有限公司 Built-in multi-band antenna and mobile terminal
US9350069B2 (en) * 2012-01-04 2016-05-24 Apple Inc. Antenna with switchable inductor low-band tuning
TWI505562B (en) * 2012-01-09 2015-10-21 Wistron Neweb Corp Wideband antenna
US9337528B2 (en) * 2012-01-27 2016-05-10 Blackberry Limited Mobile wireless communications device including electrically conductive portable housing sections defining an antenna
KR101321195B1 (en) * 2012-03-26 2013-10-23 아우덴 테크노 코포레이션 Multi-band antenna structure
TWI581498B (en) * 2012-06-15 2017-05-01 群邁通訊股份有限公司 Antenna and wireless communication device using the same
US8907853B2 (en) * 2012-07-26 2014-12-09 Sony Corporation Wireless electronic devices with multiple curved antennas along an end portion, and related antenna systems
US9142879B2 (en) * 2012-11-13 2015-09-22 Sony Corporation Wireless electronic devices with a metal perimeter including a plurality of antennas
US9559433B2 (en) * 2013-03-18 2017-01-31 Apple Inc. Antenna system having two antennas and three ports
CN103236583B (en) * 2013-04-25 2016-06-08 上海安费诺永亿通讯电子有限公司 A kind of novel LTE metal frame antenna strengthening bandwidth
US9160068B2 (en) * 2013-05-09 2015-10-13 Google Technology Holdings LLC Systems and methods for antenna arrangements in an electronic device
CN104425898B (en) * 2013-08-22 2019-05-21 深圳富泰宏精密工业有限公司 The wireless communication device of antenna structure and the application antenna structure
CN104425882B (en) * 2013-08-26 2019-08-16 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with the antenna structure
TW201508990A (en) * 2013-08-28 2015-03-01 Acer Inc Electronic device
CN104518273B (en) * 2013-10-01 2017-06-23 华硕电脑股份有限公司 Wearable electronic installation
US20150123871A1 (en) * 2013-11-06 2015-05-07 Acer Incorporated Mobile device and antenna structure with conductive frame
CN104733861A (en) * 2013-12-20 2015-06-24 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
CN104752822B (en) * 2013-12-31 2019-11-22 深圳富泰宏精密工业有限公司 The wireless communication device of antenna structure and the application antenna structure
CN105024160B (en) * 2014-04-30 2019-05-21 深圳富泰宏精密工业有限公司 The wireless communication device of antenna structure and the application antenna structure
CN203883129U (en) * 2014-05-23 2014-10-15 信维创科通信技术(北京)有限公司 Dual-band WIFI antenna based on metal outer shell, and portable device thereof
TWM495681U (en) * 2014-08-15 2015-02-11 Wistron Neweb Corp Wireless communication device
CN105720382B (en) * 2014-12-05 2021-08-17 深圳富泰宏精密工业有限公司 Antenna structure and wireless communication device with same
CN105322280B (en) * 2015-05-28 2019-07-26 维沃移动通信有限公司 A kind of antenna and mobile device of mobile device
CN205039250U (en) * 2015-07-23 2016-02-17 广东欧珀移动通信有限公司 Antenna device and have this antenna device's mobile terminal
CN105514624B (en) * 2015-12-23 2018-06-22 广东欧珀移动通信有限公司 A kind of mobile terminal antenna system and mobile terminal
CN105742812B (en) * 2016-03-23 2019-05-10 深圳市万普拉斯科技有限公司 Mobile terminal and its antenna structure
TWM556941U (en) * 2016-07-19 2018-03-11 群邁通訊股份有限公司 Antenna structure and wireless communication device with same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150255857A1 (en) * 2011-04-14 2015-09-10 Samsung Electronics Co., Ltd. Antenna apparatus for portable terminal
US20140292598A1 (en) * 2013-03-27 2014-10-02 Apple Inc. Antenna System With Tuning From Coupled Antenna
US20140347227A1 (en) * 2013-05-24 2014-11-27 Microsoft Corporation Side face antenna for a computing device case
US20150372372A1 (en) * 2014-06-23 2015-12-24 Samsung Electronics Co., Ltd. Electronic device with antenna having ring-type structure
US20160064820A1 (en) * 2014-09-02 2016-03-03 Samsung Electronics Co., Ltd. Antenna using exterior metal frame and electronic device utilizing the same
CN204289710U (en) * 2014-11-17 2015-04-22 惠州硕贝德无线科技股份有限公司 A kind of LTE metal edge frame antenna

Also Published As

Publication number Publication date
TW201804669A (en) 2018-02-01
CN206098677U (en) 2017-04-12
CN107634314A (en) 2018-01-26
TW201804672A (en) 2018-02-01
CN107634311A (en) 2018-01-26
TW201804667A (en) 2018-02-01
TWI626786B (en) 2018-06-11
CN107634314B (en) 2020-12-08
TWI651887B (en) 2019-02-21
TWI651888B (en) 2019-02-21
TW201806232A (en) 2018-02-16
TWM559003U (en) 2018-04-21
CN205960191U (en) 2017-02-15
TWI650902B (en) 2019-02-11
CN107634305A (en) 2018-01-26
TW201806239A (en) 2018-02-16
TW201804666A (en) 2018-02-01
CN107634310A (en) 2018-01-26
CN107634316A (en) 2018-01-26
TWM556941U (en) 2018-03-11
TWI626785B (en) 2018-06-11
CN107634334A (en) 2018-01-26

Similar Documents

Publication Publication Date Title
TWI640126B (en) Antenna structure and wireless communication device with same
TWI640127B (en) Antenna structure and wireless communication device with same
TWI691119B (en) Antenna structure and wireless communication device with same
TWI650900B (en) Antenna structure and wireless communication device with same
TWI658643B (en) Antenna structure and wireless communication device with same
TWI656689B (en) Antenna structure and wireless communication device having the same
TWI762267B (en) Antenna structure and electronc device with same
TW201806234A (en) Antenna structure and wireless communication device using same
TWI646730B (en) Mobile device
TW202021191A (en) Multi-band antenna
TW201712945A (en) Antenna module and wireless communication device using the same
TW202119696A (en) Antenna structure and wireless communication device with same
TW202005166A (en) Antenna structure and wireless communication device with same
TWI724738B (en) Antenna structure and wireless communication device with same
TW201911644A (en) Antenna structure and wireless communication device with same
TWI712219B (en) Antenna structure and wireless communication device employing same
TWI663783B (en) Antenna structure and wireless communication device with same
TWI727597B (en) Antenna structure and wireless communication device with same
TWI724737B (en) Antenna structure and wireless communication device with same
TWI661608B (en) Antenna structure and wireless communication device with same