TWI639725B - Method and apparatus for uniform metallization on a substrate - Google Patents
Method and apparatus for uniform metallization on a substrate Download PDFInfo
- Publication number
- TWI639725B TWI639725B TW103135385A TW103135385A TWI639725B TW I639725 B TWI639725 B TW I639725B TW 103135385 A TW103135385 A TW 103135385A TW 103135385 A TW103135385 A TW 103135385A TW I639725 B TWI639725 B TW I639725B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- ultrasonic
- megasonic
- holding device
- substrate holding
- Prior art date
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
本發明揭露了在基板上均勻金屬化的裝置和方法。根據本發明的一實施例,在基板上均勻金屬化的裝置包括:浸入式腔體、至少一個電極、基板固持裝置、至少一個超聲波或兆聲波裝置及反射板及第一驅動裝置。浸入式腔體盛放金屬鹽電解液。至少一個電極與至少一個電源相連接。基板固持裝置固持至少一塊基板,將基板可導電的一面面向一個電極,並且經基板固持裝置導電。至少一個超聲波或兆聲波裝置及反射板用於在浸入式腔體內形成駐波。第一驅動裝置帶動基板固持裝置周期性振動,使基板固持裝置經過整個駐波聲場區域,以使在累積時間內,基板表面獲得均勻的聲能強度分佈。 Apparatus and methods for uniform metallization on a substrate are disclosed. According to an embodiment of the invention, the apparatus for uniform metallization on the substrate comprises: an immersion cavity, at least one electrode, a substrate holding device, at least one ultrasonic or megasonic device, and a reflector and a first driving device. The immersion chamber holds the metal salt electrolyte. At least one electrode is coupled to at least one power source. The substrate holding device holds at least one substrate, and the conductive surface of the substrate faces one electrode and is electrically conducted through the substrate holding device. At least one ultrasonic or megasonic device and reflector are used to form a standing wave within the immersed cavity. The first driving device drives the substrate holding device to periodically vibrate, so that the substrate holding device passes through the entire standing wave sound field region, so that the substrate surface obtains a uniform sound energy intensity distribution during the accumulation time.
Description
本發明關於一種基板在電解液中金屬化的方法和裝置,尤其關於一種將至少一超聲波或兆聲波裝置應用在基板金屬化裝置中,並結合控制基板運動的動態控制機構,使基板表面獲得均勻的聲波能量,從而達成在電解液中超均勻沈積金屬薄膜,且薄膜沈積速率與傳統方法相比有顯著提高。 The invention relates to a method and a device for metallizing a substrate in an electrolyte, in particular to a method for applying at least one ultrasonic or megasonic device in a substrate metallization device and combining the dynamic control mechanism for controlling the movement of the substrate to obtain a uniform surface of the substrate. The sonic energy, so as to achieve ultra-uniform deposition of the metal film in the electrolyte, and the film deposition rate is significantly improved compared with the conventional method.
在超大型積體電路製造中,採用在超薄的大抗阻籽晶層上電化學沈積一層金屬膜層來形成電導線路,該沈積通常是在電解液環境中進行。這種沈積工藝可填充通孔結構、溝槽結構或兩種結構的混合結構。當這些結構被填充時,金屬銅連續地沈積並在半導體晶圓表面上形成一層膜。最終形成的銅膜均勻度至關重要,因為後續用來去除多餘銅的工藝步驟(通常是平坦化步驟CMP)要求銅膜有很高的均勻度,從而使最終產出的器件與器件之間獲得相同的電性能。 In the manufacture of ultra-large integrated circuits, a layer of metal film is electrochemically deposited on an ultra-thin large resist seed layer to form a conductive line, which is usually carried out in an electrolyte environment. This deposition process can fill a via structure, a trench structure, or a hybrid structure of both structures. When these structures are filled, metallic copper is continuously deposited and a film is formed on the surface of the semiconductor wafer. The resulting uniformity of the copper film is critical because the subsequent process steps to remove excess copper (usually the planarization step CMP) require a high degree of uniformity of the copper film, resulting in a final output between the device and the device. Get the same electrical performance.
目前,在電解液中進行金屬化也被應用在填充TSV(Through Silicon Via矽通孔技術),從而在3-D的 晶圓和晶圓之間製作垂直導通。在TSV應用中,孔口直徑為數個微米或更大,孔深為數百微米,TSV尺寸要比採用典型的雙大馬士革工藝的尺寸大幾個數量級。在如此高的縱寬比,且深度接近於晶圓自身厚度的孔中,填充孔結構成為一個難題。用於典型雙大馬士革工藝的金屬沈積系統的沈積速率較低,通常只有數千埃每分鐘,無法滿足TSV製造的效率。 Currently, metallization in the electrolyte is also applied to fill TSV (Through Silicon Via), thus in 3-D Vertical conduction is made between the wafer and the wafer. In TSV applications, the orifice diameter is a few microns or more, the hole depth is hundreds of microns, and the TSV size is orders of magnitude larger than the size of a typical dual damascene process. In such a high aspect ratio, and the depth is close to the thickness of the wafer itself, filling the pore structure becomes a problem. Metal deposition systems used in typical dual damascene processes have a low deposition rate, typically only a few thousand angstroms per minute, which does not meet the efficiency of TSV fabrication.
為達成深孔中無孔隙,並且由底部至上的填孔,在電解液中加入多種有機添加劑來控制局部沈積速率。在沈積過程中,這些有機添加劑組分常常分解為副產物。分解的副產物聚集在電鍍液中並且降低了填充的性能。如果這些副產物作為雜質結合到電鍍膜中,它們會成為孔穴的形核核心,使得器件的可靠性失效。因此,在沈積工藝中,需要提高深孔附近的化學交換速率,加快新鮮活性成分的補充和分解後副產物的移除。此外,由於深孔具有高縱寬比,電解液從孔口流過,在孔內產生渦流。對流難以在電解液流體與渦流內進行,新鮮的化合物與分解後副產物在電解液主流體與孔隙底部的傳輸主要以擴散方式進行。對於諸如TSV的深孔,則具有更長的擴散路徑,進一步限制了化合物交換。並且,在TSV的長路徑中緩慢的擴散過程阻礙了沈積速率的提高,而生產製造常常需要採用高沈積速率來降低成本。在由質量傳遞控制的電化學方法中,最大沈積速率與極限電流密度相關,在一定電解液濃度條件下,極限電流密度與擴散二重層厚度成反比。 擴散二重層厚度越低,極限電流密度越高,沈積速率就可能越高。專利WO/2012/174732,PCT/CN2011/076262揭示了一種利用超聲波或兆聲波在半導體晶圓上沈積金屬薄膜的裝置和方法用以克服上述問題。 To achieve a void-free in the deep pores and a bottom-to-up fill hole, various organic additives are added to the electrolyte to control the local deposition rate. These organic additive components are often broken down into by-products during the deposition process. The by-products of decomposition are concentrated in the plating solution and the filling performance is lowered. If these by-products are incorporated as impurities into the plating film, they become the core of the nucleation of the holes, rendering the reliability of the device ineffective. Therefore, in the deposition process, it is necessary to increase the chemical exchange rate near the deep pores, and accelerate the removal of fresh active ingredients and the removal of by-products after decomposition. In addition, since the deep holes have a high aspect ratio, the electrolyte flows through the orifices, creating eddy currents in the pores. Convection is difficult to carry out in the electrolyte fluid and vortex, and the transport of fresh compounds and decomposition by-products at the bottom of the electrolyte main fluid and pores is mainly carried out in a diffusion manner. For deep wells such as TSVs, there is a longer diffusion path that further limits compound exchange. Moreover, the slow diffusion process in the long path of the TSV hinders the increase in deposition rate, and manufacturing often requires high deposition rates to reduce costs. In electrochemical methods controlled by mass transfer, the maximum deposition rate is related to the limiting current density. Under certain electrolyte concentrations, the limiting current density is inversely proportional to the thickness of the diffusion double layer. The lower the thickness of the diffusion double layer, the higher the limiting current density, and the higher the deposition rate. Patent WO/2012/174732, PCT/CN2011/076262 discloses an apparatus and method for depositing a thin metal film on a semiconductor wafer using ultrasonic or megasonic waves to overcome the above problems.
在使用了超聲波或兆聲波裝置的電鍍槽中,透過採用聲感測器和其他的光-聲檢測工具進行能量強度測試,發現沿著超聲波或兆聲波裝置長度方向的波的分佈不均勻。如果在這樣的電鍍槽中對半導體晶圓進行金屬化處理,那麽半導體晶圓上的每一點所獲得的聲波能量是不同的,從而導致半導體晶圓上沈積的金屬薄膜的均勻度降低。 In an electroplating bath using an ultrasonic or megasonic device, energy intensity testing was performed by using an acoustic sensor and other photo-acoustic detecting tools, and it was found that the distribution of waves along the length direction of the ultrasonic or megasonic device was uneven. If the semiconductor wafer is metallized in such a plating bath, the acoustic energy obtained at each point on the semiconductor wafer is different, resulting in a decrease in the uniformity of the deposited metal film on the semiconductor wafer.
此外,在具有聲場的電鍍槽中,波在傳播過程中,由於槽壁的吸收以及在添加劑和副產物周圍發生的衍射,導致波的能量損失。因此,在聲源附近區域的聲波能量強度與離聲源較遠區域的聲波能量強度不同。駐波形成在兩平行平面之間,並能將電鍍槽中的波的能量損失減小到最小,且能量轉移僅發生在駐波的節點和非節點之間。然而,波的能量強度在其節點和非節點處是不同的,從而導致聲波能量沒有均勻的施加到半導體晶圓上。再者,在沈積金屬薄膜的整個過程中,控制駐波的形成的難度較大,其原因在於很難調節兩個平面之間的平行度和間距。 Furthermore, in electroplating baths with sound fields, the wave energy is lost during propagation due to absorption of the walls of the trench and diffraction occurring around the additives and by-products. Therefore, the intensity of the acoustic energy in the vicinity of the sound source is different from the intensity of the acoustic energy in the region farther from the sound source. The standing wave is formed between two parallel planes and minimizes the energy loss of the waves in the plating bath, and the energy transfer occurs only between the nodes of the standing wave and the non-nodes. However, the energy intensity of the waves is different at their nodes and non-nodes, resulting in no uniform application of sonic energy to the semiconductor wafer. Furthermore, it is difficult to control the formation of the standing wave throughout the deposition of the metal thin film because the difficulty in adjusting the parallelism and the spacing between the two planes is difficult.
綜上,需找到一種透過控制聲波能量密度分佈均勻性進而控制金屬薄膜沈積均勻性的方法,且要求電鍍槽中聲波的能量損失達到最小。 In summary, it is necessary to find a method for controlling the uniformity of metal film deposition by controlling the uniformity of the energy density distribution of sound waves, and the energy loss of sound waves in the plating bath is required to be minimized.
本發明的目的是將至少一超聲波或兆聲波裝置應用在基板金屬化裝置中,以達到在電解液中高均勻度金屬薄膜沈積,且薄膜沈積速率與傳統方法相比有顯著提高。在本發明中,基板被動態控制,所以,在基板的每個運動周期內,基板上的每個點均經過整個聲場區域,從而使基板上的每個點在一累積時間內所獲得的總聲能相同,在沈積膜快速生長的同時,其沈積厚度均勻。 It is an object of the present invention to apply at least one ultrasonic or megasonic device to a substrate metallization apparatus to achieve high uniformity metal film deposition in an electrolyte, and the film deposition rate is significantly improved compared to conventional methods. In the present invention, the substrate is dynamically controlled, so that each point on the substrate passes through the entire sound field region during each motion period of the substrate, so that each point on the substrate is obtained during an accumulation time. The total sound energy is the same, and the deposition thickness is uniform while the deposited film grows rapidly.
根據本發明的一個實施例,提出的在基板上均勻金屬化的裝置包括:浸入式腔體、至少一個電極、基板固持裝置、至少一個超聲波或兆聲波裝置及反射板及第一驅動裝置。浸入式腔體盛放金屬鹽電解液。至少一個電極與至少一個電源相連接。基板固持裝置固持至少一塊基板,將基板可導電的一面面向一個電極,並且經基板固持裝置導電。至少一個超聲波或兆聲波裝置及反射板用於在浸入式腔體內形成駐波。第一驅動裝置帶動基板固持裝置周期性振動,使基板固持裝置經過整個駐波聲場區域,以使在累積時間內,基板表面獲得均勻的聲能強度分佈。 According to an embodiment of the invention, the proposed device for uniform metallization on a substrate comprises: an immersion cavity, at least one electrode, a substrate holding device, at least one ultrasonic or megasonic device, and a reflector and a first driving device. The immersion chamber holds the metal salt electrolyte. At least one electrode is coupled to at least one power source. The substrate holding device holds at least one substrate, and the conductive surface of the substrate faces one electrode and is electrically conducted through the substrate holding device. At least one ultrasonic or megasonic device and reflector are used to form a standing wave within the immersed cavity. The first driving device drives the substrate holding device to periodically vibrate, so that the substrate holding device passes through the entire standing wave sound field region, so that the substrate surface obtains a uniform sound energy intensity distribution during the accumulation time.
根據本發明的一個實施例,提出的在基板上均勻金屬化的裝置包括:浸入式腔體、至少一個電極、基板固持裝置、至少一個超聲波或兆聲波裝置及第一驅動裝置。浸入式腔體盛放金屬鹽電解液。至少一個電極與至少一個電源相連接。基板固持裝置固持至少一塊基板,將基板可導電的一面面向一個電極,並且經基板固持裝置導 電。至少一個超聲波或兆聲波裝置安裝在浸入式腔體的側壁上,用以在浸入式腔體內形成聲場。第一驅動裝置,帶動基板固持裝置周期性振動,使基板固持裝置經過整個聲場區域,以使在累積時間內,基板表面獲得均勻的聲能強度分佈。 According to an embodiment of the invention, the proposed device for uniform metallization on a substrate comprises: an immersion cavity, at least one electrode, a substrate holding device, at least one ultrasonic or megasonic device, and a first driving device. The immersion chamber holds the metal salt electrolyte. At least one electrode is coupled to at least one power source. The substrate holding device holds at least one substrate, and the conductive side of the substrate faces one electrode, and is guided by the substrate holding device Electricity. At least one ultrasonic or megasonic device is mounted on the sidewall of the immersion cavity for forming a sound field within the immersion cavity. The first driving device drives the substrate holding device to periodically vibrate, so that the substrate holding device passes through the entire sound field region, so that the surface of the substrate obtains a uniform distribution of sound energy intensity during the accumulation time.
根據本發明的一個實施例,提出的在基板上均勻金屬化的裝置包括:浸入式腔體、基板固持裝置、至少一個超聲波或兆聲波裝置及第一驅動裝置。浸入式腔體盛放金屬鹽電解液。基板固持裝置固持至少一塊基板。至少一個超聲波或兆聲波裝置安裝在浸入式腔體的側壁上,用以在浸入式腔體內形成聲場。第一驅動裝置帶動基板固持裝置周期性振動,使基板固持裝置經過整個聲場區域,以使在累積時間內,基板表面獲得均勻的聲能強度分佈。 According to an embodiment of the invention, the proposed device for uniform metallization on a substrate comprises: an immersion cavity, a substrate holding device, at least one ultrasonic or megasonic device, and a first driving device. The immersion chamber holds the metal salt electrolyte. The substrate holding device holds at least one substrate. At least one ultrasonic or megasonic device is mounted on the sidewall of the immersion cavity for forming a sound field within the immersion cavity. The first driving device drives the substrate holding device to periodically vibrate, so that the substrate holding device passes through the entire sound field region, so that the surface of the substrate obtains a uniform distribution of sound energy intensity during the accumulation time.
根據本發明的一個實施例,提出的在基板上均勻金屬化的裝置包括:浸入式腔體、基板固持裝置、至少一個超聲波或兆聲波裝置及反射板及第一驅動裝置。浸入式腔體盛放金屬鹽電解液。基板固持裝置固持至少一塊基板。至少一個超聲波或兆聲波裝置及反射板,用以在浸入式腔體內形成駐波。第一驅動裝置,帶動基板固持裝置周期性振動,使基板固持裝置經過整個駐波聲場區域,以使在累積時間內,基板表面獲得均勻的聲能強度分佈。 According to an embodiment of the invention, the proposed device for uniform metallization on a substrate comprises: an immersion cavity, a substrate holding device, at least one ultrasonic or megasonic device, and a reflector and a first driving device. The immersion chamber holds the metal salt electrolyte. The substrate holding device holds at least one substrate. At least one ultrasonic or megasonic device and a reflector for forming a standing wave in the immersed cavity. The first driving device drives the substrate holding device to periodically vibrate, so that the substrate holding device passes through the entire standing wave sound field region, so that the substrate surface obtains a uniform sound energy intensity distribution during the accumulation time.
根據本發明的一個實施例,提出的在基板上均勻金屬化的方法包括:向浸入式腔體內引入金屬鹽電解液; 轉移至少一塊基板到基板固持裝置,使基板可導電的一面面向電極,該基板固持裝置具有導電性,與基板導電層電連通;給基板載入第一偏壓;載入一個電流至電極;打開超聲波或兆聲波裝置;帶動基板固持裝置周期性振動,使基板固持裝置經過整個聲場區域;周期性改變超聲波或兆聲波裝置與反射板之間的距離;關閉超聲波或兆聲波裝置,停止振動基板和改變超聲波或兆聲波裝置與反射板之間的距離;給基板載入第二偏壓;將基板移出金屬鹽電解液。 According to an embodiment of the invention, the proposed method for uniform metallization on a substrate comprises: introducing a metal salt electrolyte into the immersed cavity; Transferring at least one substrate to the substrate holding device such that the conductive side of the substrate faces the electrode, the substrate holding device has electrical conductivity and is in electrical communication with the conductive layer of the substrate; loading the substrate with a first bias; loading a current to the electrode; opening Ultrasonic or megasonic device; driving the substrate holding device to periodically vibrate, so that the substrate holding device passes through the entire sound field; periodically changing the distance between the ultrasonic or megasonic device and the reflecting plate; turning off the ultrasonic or megasonic device, stopping the vibrating substrate And changing the distance between the ultrasonic or megasonic device and the reflector; loading the substrate with a second bias; moving the substrate out of the metal salt electrolyte.
根據本發明的一個實施例,提出的在基板上均勻金屬化的方法包括:向浸入式腔體內引入金屬鹽電解液;轉移至少一塊基板到基板固持裝置,使基板可導電的一面面向電極,該基板固持裝置具有導電性,與基板導電層電連通;給基板載入第一偏壓;載入一個電流至電極;打開超聲波或兆聲波裝置;帶動基板固持裝置周期性振動,使基板固持裝置經過 整個聲場區域;關閉超聲波或兆聲波裝置,停止振動基板;給基板載入第二偏壓;將基板移出金屬鹽電解液。 According to an embodiment of the present invention, a method for uniformly metallizing on a substrate includes: introducing a metal salt electrolyte into the immersed cavity; transferring at least one substrate to the substrate holding device such that a conductive side of the substrate faces the electrode, The substrate holding device has electrical conductivity and is electrically connected to the conductive layer of the substrate; loading the substrate with a first bias voltage; loading a current to the electrode; opening the ultrasonic or megasonic device; driving the substrate holding device to periodically vibrate, causing the substrate holding device to pass The entire sound field area; the ultrasonic or megasonic device is turned off, the substrate is stopped; the second bias is applied to the substrate; and the substrate is removed from the metal salt electrolyte.
根據本發明的一個實施例,提出的在基板上均勻金屬化的方法包括:向浸入式腔體內引入金屬鹽電解液;轉移至少一塊基板到基板固持裝置;打開超聲波或兆聲波裝置;帶動基板固持裝置周期性振動,使基板固持裝置經過整個聲場區域;關閉超聲波或兆聲波裝置,停止振動基板;將基板移出金屬鹽電解液。 According to an embodiment of the invention, the proposed method for uniform metallization on a substrate comprises: introducing a metal salt electrolyte into the immersed cavity; transferring at least one substrate to the substrate holding device; opening the ultrasonic or megasonic device; driving the substrate to hold The device periodically vibrates to cause the substrate holding device to pass through the entire sound field region; the ultrasonic or megasonic device is turned off to stop vibrating the substrate; and the substrate is removed from the metal salt electrolyte.
根據本發明的一個實施例,提出的在基板上均勻金屬化的方法包括:向浸入式腔體內引入金屬鹽電解液;轉移至少一塊基板到基板固持裝置;打開超聲波或兆聲波裝置;帶動基板固持裝置周期性振動,使基板固持裝置經過整個聲場區域;周期性改變超聲波或兆聲波裝置與反射板之間的距離;關閉超聲波或兆聲波裝置,停止振動基板及停止改變超聲波或兆聲波裝置與反射板之間的距離; 將基板移出金屬鹽電解液。 According to an embodiment of the invention, the proposed method for uniform metallization on a substrate comprises: introducing a metal salt electrolyte into the immersed cavity; transferring at least one substrate to the substrate holding device; opening the ultrasonic or megasonic device; driving the substrate to hold The device periodically vibrates to cause the substrate holding device to pass through the entire sound field; periodically change the distance between the ultrasonic or megasonic device and the reflector; turn off the ultrasonic or megasonic device, stop vibrating the substrate, and stop changing the ultrasonic or megasonic device The distance between the reflectors; The substrate is removed from the metal salt electrolyte.
1004‧‧‧超聲波裝置 1004‧‧‧ ultrasonic device
2001a‧‧‧基板 2001a‧‧‧Substrate
2001b‧‧‧基板 2001b‧‧‧Substrate
2002a‧‧‧電極 2002a‧‧‧Electrode
2002b‧‧‧電極 2002b‧‧‧Electrode
2003‧‧‧基板固持裝置 2003‧‧‧Substrate holding device
2004‧‧‧超聲波或兆聲波裝置 2004‧‧‧Ultrasonic or megasonic devices
2011a‧‧‧滲透層 2011a‧‧‧ permeable layer
2011b‧‧‧滲透層 2011b‧‧‧ permeable layer
2012‧‧‧豎職移動驅動裝置 2012‧‧‧ Vertical mobile drive
2013‧‧‧豎直振動驅動裝置 2013‧‧‧Vertical vibration drive
2020‧‧‧金屬鹽電解液 2020‧‧‧Metal salt electrolyte
2021‧‧‧浸入式腔體 2021‧‧‧Immersion cavity
2024a‧‧‧電源 2024a‧‧‧Power supply
2024b‧‧‧電源 2024b‧‧‧Power supply
2040‧‧‧聲波吸收層 2040‧‧‧Sonic absorption layer
3001‧‧‧基板 3001‧‧‧Substrate
3003‧‧‧基板固持裝置 3003‧‧‧Substrate holding device
3004‧‧‧超聲波或兆聲波裝置 3004‧‧‧Ultrasonic or megasonic devices
3017‧‧‧旋轉驅動裝置 3017‧‧‧Rotary drive
3020‧‧‧金屬鹽電解液 3020‧‧‧Metal salt electrolyte
3021‧‧‧浸入式腔體 3021‧‧‧Immersion cavity
3040‧‧‧聲波吸收層 3040‧‧‧Sonic absorption layer
4001‧‧‧基板 4001‧‧‧Substrate
4003‧‧‧基板固持裝置 4003‧‧‧Substrate holding device
4004‧‧‧超聲波或兆聲波裝置 4004‧‧‧Ultrasonic or megasonic devices
4020‧‧‧金屬鹽電解液 4020‧‧‧Metal salt electrolyte
4021‧‧‧浸入式腔體 4021‧‧‧Immersion cavity
4040‧‧‧坡面 4040‧‧‧ slope
5001‧‧‧基板 5001‧‧‧Substrate
5004‧‧‧超聲波或兆聲波裝置 5004‧‧‧Ultrasonic or megasonic devices
5005‧‧‧反射板 5005‧‧‧reflector
6001a‧‧‧基板 6001a‧‧‧Substrate
6001b‧‧‧基板 6001b‧‧‧Substrate
6002a‧‧‧電極 6002a‧‧‧electrode
6002b‧‧‧電極 6002b‧‧‧electrode
6003‧‧‧基板固持裝置 6003‧‧‧Sheet holding device
6004‧‧‧超聲波或兆聲波裝置 6004‧‧‧Ultrasonic or megasonic devices
6005‧‧‧反射板 6005‧‧‧reflector
6012‧‧‧豎職移動驅動裝置 6012‧‧‧Vertical mobile drive
6013‧‧‧豎直振動驅動裝置 6013‧‧‧Vertical vibration drive
6020‧‧‧金屬鹽電解液 6020‧‧‧Metal salt electrolyte
6021‧‧‧浸入式腔體 6021‧‧‧Immersion cavity
6024a‧‧‧電源 6024a‧‧‧Power supply
6024b‧‧‧電源 6024b‧‧‧Power supply
7001‧‧‧基板 7001‧‧‧Substrate
7003‧‧‧基板固持裝置 7003‧‧‧Substrate holding device
7004‧‧‧超聲波或兆聲波裝置 7004‧‧‧ Ultrasonic or megasonic devices
7005‧‧‧反射板 7005‧‧‧reflector
7013‧‧‧豎直振動驅動裝置 7013‧‧‧Vertical vibration drive
7020‧‧‧金屬鹽電解液 7020‧‧‧Metal salt electrolyte
7021‧‧‧浸入式腔體 7021‧‧‧Immersion cavity
8001‧‧‧基板 8001‧‧‧Substrate
8003‧‧‧基板固持裝置 8003‧‧‧Substrate holding device
8004‧‧‧超聲波或兆聲波裝置 8004‧‧‧ Ultrasonic or megasonic devices
8005‧‧‧反射板 8005‧‧‧reflector
8013‧‧‧豎直振動驅動裝置 8013‧‧‧Vertical vibration drive
8015‧‧‧振動驅動裝置 8015‧‧‧Vibration drive
8020‧‧‧金屬鹽電解液 8020‧‧‧Metal salt electrolyte
8021‧‧‧浸入式腔體 8021‧‧‧Immersion cavity
9001‧‧‧基板 9001‧‧‧Substrate
9002‧‧‧電極 9002‧‧‧electrode
9003‧‧‧基板固持裝置 9003‧‧‧Substrate holding device
9004‧‧‧超聲波或兆聲波裝置 9004‧‧‧ Ultrasonic or megasonic devices
9005‧‧‧反射板 9005‧‧‧reflector
9013‧‧‧豎直振動驅動裝置 9013‧‧‧Vertical vibration drive
9020‧‧‧金屬鹽電解液 9020‧‧‧Metal salt electrolyte
9021‧‧‧浸入式腔體 9021‧‧‧Immersion cavity
9024‧‧‧電源 9024‧‧‧Power supply
9030‧‧‧連接元件 9030‧‧‧Connecting components
9033‧‧‧旋轉致動器 9033‧‧‧Rotary actuator
9036‧‧‧旋轉元件 9036‧‧‧Rotating components
9038‧‧‧氣體管道 9038‧‧‧ gas pipeline
10004‧‧‧超聲波或兆聲波裝置 10004‧‧‧ Ultrasonic or megasonic devices
10005‧‧‧反射板 10005‧‧‧reflector
11001‧‧‧基板 11001‧‧‧Substrate
11004‧‧‧超聲波或兆聲波裝置 11004‧‧‧Ultrasonic or megasonic devices
11005‧‧‧反射板 11005‧‧‧reflector
12001a‧‧‧基板 12001a‧‧‧Substrate
12001b‧‧‧基板 12001b‧‧‧Substrate
12002a‧‧‧電極 12002a‧‧‧electrode
12002b‧‧‧電極 12002b‧‧‧Electrode
12003‧‧‧基板固持裝置 12003‧‧‧Substrate holding device
12004‧‧‧超聲波或兆聲波裝置 12004‧‧‧Ultrasonic or megasonic devices
12005‧‧‧反射板 12005‧‧‧reflector
12006‧‧‧振動驅動器 12006‧‧‧Vibration driver
12007‧‧‧波紋管元件 12007‧‧‧ Bellows components
12013‧‧‧豎直振動驅動裝置 12013‧‧‧Vertical vibration drive
12020‧‧‧金屬鹽電解液 12020‧‧‧Metal salt electrolyte
12021‧‧‧浸入式腔體 12021‧‧‧Immersion cavity
12024a‧‧‧電源 12024a‧‧‧Power supply
12024b‧‧‧電源 12024b‧‧‧Power supply
13004‧‧‧超聲波或兆聲波裝置 13004‧‧‧ Ultrasonic or megasonic devices
13005‧‧‧反射板 13005‧‧‧reflector
13006‧‧‧振動驅動器 13006‧‧‧Vibration driver
13007‧‧‧波紋管元件 13007‧‧‧ Bellows components
14005‧‧‧反射板 14005‧‧‧reflector
14050‧‧‧固體板 14050‧‧‧solid board
14051‧‧‧空氣隙 14051‧‧‧Air gap
14052‧‧‧固體板 14052‧‧‧solid board
14053‧‧‧密封圈 14053‧‧‧ sealing ring
15001a‧‧‧基板 15001a‧‧‧Substrate
15001b‧‧‧基板 15001b‧‧‧Substrate
15003‧‧‧基板固持裝置 15003‧‧‧Substrate holding device
15004‧‧‧超聲波或兆聲波裝置 15004‧‧‧Ultrasonic or megasonic devices
15013‧‧‧豎直振動驅動裝置 15013‧‧‧Vertical vibration drive
15020‧‧‧金屬鹽電解液 15020‧‧‧Metal salt electrolyte
15021‧‧‧浸入式腔體 15021‧‧‧Immersion cavity
圖1揭示了超聲波裝置前方聲區域中的聲能強度分佈示意圖。 Figure 1 discloses a schematic diagram of the distribution of acoustic energy intensity in the acoustic region in front of the ultrasonic device.
圖2A和圖2B揭示了在基板上均勻金屬化裝置的一實施例的示意圖。 2A and 2B show schematic views of an embodiment of a uniform metallization apparatus on a substrate.
圖3揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。 Figure 3 discloses a schematic diagram of yet another embodiment of a uniform metallization apparatus on a substrate.
圖4揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。 Figure 4 discloses a schematic diagram of yet another embodiment of a uniform metallization apparatus on a substrate.
圖5A和圖5B揭示了超聲波或兆聲波裝置與反射板之間聲區域中的聲能強度分佈示意圖,圖5C揭示了超聲波或兆聲波裝置與反射板之間聲區域中的任一點的聲能強度示意圖。 5A and 5B show a schematic diagram of the distribution of the intensity of the acoustic energy in the acoustic region between the ultrasonic or megasonic device and the reflector, and FIG. 5C reveals the acoustic energy at any point in the acoustic region between the ultrasonic or megasonic device and the reflector. Schematic diagram of the intensity.
圖6A和圖6B揭示了在基板上均勻金屬化裝置的一實施例的示意圖。 6A and 6B show schematic views of an embodiment of a uniform metallization apparatus on a substrate.
圖7揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。 Figure 7 discloses a schematic diagram of yet another embodiment of a uniform metallization apparatus on a substrate.
圖8揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。 Figure 8 discloses a schematic diagram of yet another embodiment of a uniform metallization apparatus on a substrate.
圖9揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。 Figure 9 discloses a schematic view of yet another embodiment of a uniform metallization device on a substrate.
圖10A揭示了超聲波或兆聲波裝置與反射板之間聲區域中的聲能強度隨著超聲波或兆聲波裝置與反射板之間距離的改變而改變示意圖,圖10B揭示了當超聲波或兆聲波裝置與反射板之間的距離改變時,超聲波或兆聲波裝置與反射板之間聲區域中的任一點的聲能強度示意圖。 Fig. 10A discloses a schematic diagram of the change of the acoustic energy intensity in the acoustic region between the ultrasonic or megasonic device and the reflector as the distance between the ultrasonic or megasonic device and the reflector changes, and Fig. 10B discloses the ultrasonic or megasonic device. A schematic representation of the acoustic energy intensity at any point in the acoustic region between the ultrasonic or megasonic device and the reflector when the distance between the reflector and the reflector is changed.
圖11A和圖11B揭示了基板沿Z軸運動和反射板沿X’方向運動的示意圖。 11A and 11B are schematic views showing the movement of the substrate along the Z axis and the movement of the reflecting plate in the X' direction.
圖12A至圖12C揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。 12A through 12C illustrate schematic views of yet another embodiment of a uniform metallization apparatus on a substrate.
圖13揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。 Figure 13 discloses a schematic diagram of yet another embodiment of a uniform metallization apparatus on a substrate.
圖14揭示了反射板的一實施例的示意圖。 Figure 14 discloses a schematic view of an embodiment of a reflector.
圖15揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。 Figure 15 discloses a schematic view of yet another embodiment of a uniform metallization apparatus on a substrate.
為詳細說明本發明的技術內容、構造特徵、所達成目的及效果,下面將結合實施例並配合圖式予以詳細說明。 The details of the technical contents, structural features, objects and effects of the present invention will be described in detail below with reference to the embodiments.
圖1揭示了超聲波裝置前方聲區域中的聲能強度分佈示意圖。該超聲波裝置1004呈條狀。圖1所示的聲能強度分佈示意圖是透過水聽器測試獲得,其中,暗區域代表高聲能強度,亮區域代表低聲能強度。從超聲波裝置1004的中心到超聲波裝置1004的邊緣的聲能強度分佈是 不均勻的。沿垂直於超聲波裝置1004表面的D方向的聲能強度分佈同樣也是不均勻的。靠近超聲波裝置1004的區域的聲能強度較高,而遠離超聲波裝置1004的區域的聲能強度較低。 Figure 1 discloses a schematic diagram of the distribution of acoustic energy intensity in the acoustic region in front of the ultrasonic device. The ultrasonic device 1004 has a strip shape. The schematic diagram of the acoustic energy intensity distribution shown in Fig. 1 is obtained by a hydrophone test in which a dark area represents a high sound energy intensity and a bright area represents a low sound energy intensity. The distribution of the acoustic energy intensity from the center of the ultrasonic device 1004 to the edge of the ultrasonic device 1004 is Uneven. The distribution of the intensity of the acoustic energy along the D direction perpendicular to the surface of the ultrasonic device 1004 is also non-uniform. The intensity of the acoustic energy near the region of the ultrasonic device 1004 is higher, and the intensity of the acoustic energy at a region remote from the ultrasonic device 1004 is lower.
圖2A和圖2B揭示了在基板上均勻金屬化裝置的一實施例的示意圖。該裝置包括浸入式腔體2021、兩個電極2002a、2002b、導電的基板固持裝置2003、超聲波或兆聲波裝置2004及豎直振動驅動裝置2013。浸入式腔體2021盛放至少一種金屬鹽電解液2020。電極2002a、2002b分別與獨立的電源2024a、2024b相連接。導電的基板固持裝置2003固持兩塊基板2001a、2001b,使基板2001a、2001b可導電的一面面向電極2002a、2002b且經導電的基板固持裝置2003導電。豎直振動驅動裝置2013又被命名為第一驅動裝置帶動導電的基板固持裝置2003及電極2002a、2002b經過超聲波或兆聲波區域及非超聲波或兆聲波區域。該裝置能夠同時加工兩塊基板2001a、2001b或僅加工其中一塊基板。金屬鹽電解液2020從浸入式腔體2021的底部流向頂部。浸入式腔體2021設置有至少一個進口和一個出口,用於金屬鹽電解液2020循環。超聲波或兆聲波裝置2004安裝在浸入式腔體2021的側壁上,超聲波或兆聲波裝置2004的表面浸入金屬鹽電解液2020中。超聲波或兆聲波發生器與超聲波或兆聲波裝置2004相連接,用以產生頻率為20KHz-10MHz,聲能強度為0.01-3W/cm2的聲波。超聲波或兆聲波裝置2004由至少一片壓電晶體製成。超聲 波或兆聲波裝置2004前方形成有聲場,圖2B中,區域B為具有超聲波或兆聲波區域,區域A和區域C為非超聲波或兆聲波區域。聲波吸收層2040正對著超聲波或兆聲波裝置2004佈置,用以防止駐波的形成。獨立的電源2024a、2024b分別與電極2002a、2002b連接,可按程式設定的波形,以電壓控制模式或電流控制模式工作,並可按時間需求在這兩種模式之間切換。載入電流可以是DC模式或雙脈衝模式,脈衝周期為5ms至2s。每個電極2002a、2002b可以由一片或多片電極組成,且每片電極與獨立的電源連接。具有一層或多層的滲透膜2011a、2011b設置在電極2002a、2002b和基板2001a、2001b之間。導電的基板固持裝置2003與豎直移動驅動裝置2012連接,該豎直移動驅動裝置2012驅使基板2001a、2001b移進浸入式腔體2021或移出浸入式腔體2021。豎直移動驅動裝置2012和電極2002a、2002b均與豎直振動驅動裝置2013連接,豎直振動驅動裝置2013的振動振幅為1-300mm,振動頻率為0.001-0.5Hz。豎直振動驅動裝置2013帶動電極2002a、2002b和基板2001a、2001b沿Z軸周期性上下振動,Z軸垂直於聲波傳播方向,以確保基板2001a、2001b上的每個點經過整個聲場區域,也就是區域B。豎直振動驅動裝置2013帶動電極2002a、2002b和基板2001a、2001b由聲場區域B振動至非聲場區域A,然後返回聲場區域B,由聲場區域B振動至非聲場區域C,然後返回聲場區域B。這樣,基板2001a、2001b上的每個點在工藝過程中所獲得的聲波 能量相同。 2A and 2B show schematic views of an embodiment of a uniform metallization apparatus on a substrate. The apparatus includes an immersion cavity 2021, two electrodes 2002a, 2002b, a conductive substrate holding device 2003, an ultrasonic or megasonic device 2004, and a vertical vibration drive device 2013. The immersion chamber 2021 holds at least one metal salt electrolyte 2020. The electrodes 2002a, 2002b are connected to separate power sources 2024a, 2024b, respectively. The conductive substrate holding device 2003 holds the two substrates 2001a, 2001b such that the conductive sides of the substrates 2001a, 2001b face the electrodes 2002a, 2002b and are electrically conducted via the conductive substrate holding device 2003. The vertical vibration drive device 2013 is again named as the first drive device that drives the conductive substrate holding device 2003 and the electrodes 2002a, 2002b through ultrasonic or megasonic regions and non-ultrasonic or megasonic regions. The device is capable of simultaneously processing two substrates 2001a, 2001b or processing only one of the substrates. The metal salt electrolyte 2020 flows from the bottom of the immersion chamber 2021 to the top. The immersion chamber 2021 is provided with at least one inlet and one outlet for the metal salt electrolyte 2020 cycle. An ultrasonic or megasonic device 2004 is mounted on the sidewall of the immersion cavity 2021, and the surface of the ultrasonic or megasonic device 2004 is immersed in the metal salt electrolyte 2020. An ultrasonic or megasonic generator is coupled to the ultrasonic or megasonic device 2004 for generating acoustic waves having a frequency of 20 kHz to 10 MHz and an acoustic energy intensity of 0.01 to 3 W/cm 2 . The ultrasonic or megasonic device 2004 is made of at least one piece of piezoelectric crystal. A sound field is formed in front of the ultrasonic or megasonic device 2004. In Fig. 2B, the region B has an ultrasonic or megasonic region, and the region A and the region C are non-ultrasonic or megasonic regions. The acoustic wave absorbing layer 2040 is disposed opposite the ultrasonic or megasonic device 2004 to prevent the formation of standing waves. The independent power supplies 2024a, 2024b are respectively connected to the electrodes 2002a, 2002b, and can operate in a voltage control mode or a current control mode according to a programmed waveform, and can switch between the two modes according to time requirements. The loading current can be either DC mode or dual pulse mode with a pulse period of 5ms to 2s. Each of the electrodes 2002a, 2002b can be composed of one or more electrodes, and each electrode is connected to a separate power source. A permeable membrane 2011a, 2011b having one or more layers is disposed between the electrodes 2002a, 2002b and the substrates 2001a, 2001b. The electrically conductive substrate holding device 2003 is coupled to a vertical movement drive device 2012 that drives the substrates 2001a, 2001b into the immersed cavity 2021 or out of the immersion cavity 2021. The vertical movement driving device 2012 and the electrodes 2002a, 2002b are both connected to the vertical vibration driving device 2013, and the vertical vibration driving device 2013 has a vibration amplitude of 1-300 mm and a vibration frequency of 0.001-0.5 Hz. The vertical vibration driving device 2013 drives the electrodes 2002a, 2002b and the substrates 2001a, 2001b to periodically vibrate up and down along the Z axis, and the Z axis is perpendicular to the sound wave propagation direction to ensure that each point on the substrates 2001a, 2001b passes through the entire sound field region, Is the area B. The vertical vibration driving device 2013 drives the electrodes 2002a, 2002b and the substrates 2001a, 2001b to vibrate from the sound field region B to the non-sound field region A, then returns to the sound field region B, vibrates from the sound field region B to the non-sound field region C, and then Return to sound field area B. Thus, each point on the substrates 2001a, 2001b has the same acoustic energy obtained during the process.
圖3揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。該裝置包括浸入式腔體3021、至少一個電極、導電的基板固持裝置3003、超聲波或兆聲波裝置3004、豎直振動驅動裝置、聲波吸收層3040及旋轉驅動裝置3017。浸入式腔體3021盛放至少一種金屬鹽電解液3020。電極與獨立的電源相連接。導電的基板固持裝置3003固持至少一塊基板3001,使基板3001可導電的一面面向電極且經導電的基板固持裝置3003導電。超聲波或兆聲波裝置3004在區域B形成聲場。豎直振動驅動裝置又被命名為第一驅動裝置帶動導電的基板固持裝置3003及電極經過超聲波或兆聲波區域及非超聲波或兆聲波區域。聲波吸收層3040正對著超聲波或兆聲波裝置3004佈置,用以防止駐波的形成。旋轉驅動裝置3017又被命名為第二驅動裝置與導電的基板固持裝置3003連接,當豎直振動驅動裝置帶動導電的基板固持裝置3003振動至非超聲波或兆聲波區域A和區域C時,旋轉驅動裝置3017帶動導電的基板固持裝置3003繞導電的基板固持裝置3003的軸翻轉180°,其目的在於當基板3001經過超聲波或兆聲波區域B時,進一步提高基板3001表面聲能強度分佈均勻性。 Figure 3 discloses a schematic diagram of yet another embodiment of a uniform metallization apparatus on a substrate. The apparatus includes an immersion chamber 3021, at least one electrode, a conductive substrate holding device 3003, an ultrasonic or megasonic device 3004, a vertical vibration driving device, an acoustic wave absorbing layer 3040, and a rotational driving device 3017. The immersion chamber 3021 holds at least one metal salt electrolyte 3020. The electrodes are connected to a separate power source. The conductive substrate holding device 3003 holds at least one substrate 3001 such that the conductive side of the substrate 3001 faces the electrode and conducts through the conductive substrate holding device 3003. The ultrasonic or megasonic device 3004 forms a sound field in region B. The vertical vibration drive device is also referred to as a first drive device that drives the conductive substrate holding device 3003 and the electrodes through ultrasonic or megasonic regions and non-ultrasonic or megasonic regions. The acoustic wave absorbing layer 3040 is disposed opposite the ultrasonic or megasonic device 3004 to prevent the formation of standing waves. The rotary driving device 3017 is also referred to as a second driving device connected to the conductive substrate holding device 3003. When the vertical vibration driving device drives the conductive substrate holding device 3003 to vibrate to the non-ultrasonic or megasonic region A and the region C, the rotary driving The device 3017 drives the conductive substrate holding device 3003 to rotate 180° around the axis of the conductive substrate holding device 3003. The purpose is to further improve the uniformity of the surface acoustic energy intensity distribution of the substrate 3001 when the substrate 3001 passes through the ultrasonic or megasonic region B.
圖4揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。該裝置包括浸入式腔體4021、至少一個電極、導電的基板固持裝置4003、超聲波或兆聲波裝置4004、豎直振動驅動裝置及坡面4040。浸入式腔體4021盛放至少 一種金屬鹽電解液4020。電極與獨立的電源相連接。導電的基板固持裝置4003固持至少一塊基板4001,使基板4001可導電的一面面向電極且經導電的基板固持裝置4003導電。超聲波或兆聲波裝置4004在區域B形成聲場。豎直振動驅動裝置又被命名為第一驅動裝置帶動導電的基板固持裝置4003及電極經過超聲波或兆聲波區域及非超聲波或兆聲波區域。坡面4040與浸入式腔體4021的側壁之間具有夾角α(0<α<45),坡面4040與超聲波或兆聲波裝置4004相對佈置,坡面4040將聲波反射出浸入式腔體4021,以防止駐波的形成。 Figure 4 discloses a schematic diagram of yet another embodiment of a uniform metallization apparatus on a substrate. The apparatus includes an immersion cavity 4021, at least one electrode, an electrically conductive substrate holding device 4003, an ultrasonic or megasonic device 4004, a vertical vibration drive, and a ramp 4040. The immersion chamber 4021 is filled with at least A metal salt electrolyte 4020. The electrodes are connected to a separate power source. The conductive substrate holding device 4003 holds at least one substrate 4001 such that the conductive side of the substrate 4001 faces the electrode and is electrically conducted via the conductive substrate holding device 4003. The ultrasonic or megasonic device 4004 forms a sound field in region B. The vertical vibration drive device is also referred to as a first drive device that drives the conductive substrate holding device 4003 and the electrodes through ultrasonic or megasonic regions and non-ultrasonic or megasonic regions. The slope 4040 has an angle α (0<α<45) with the sidewall of the immersion cavity 4021, and the slope 4040 is disposed opposite to the ultrasonic or megasonic device 4004, and the slope 4040 reflects the sound wave out of the immersion cavity 4021. To prevent the formation of standing waves.
圖5A示例了基板5001在電鍍槽中進行工藝加工時駐波經過基板5001表面。當聲波在超聲波或兆聲波裝置5004與反射板5005之間傳播,且超聲波或兆聲波裝置5004與反射板5005之間的距離等於,N=1,2,3...,λ為超聲波或兆聲波的波長,N為整數,前進波與其反射波干涉形成駐波。具有最高聲能強度的駐波形成在超聲波或兆聲波裝置5004與反射板5005之間。當超聲波或兆聲波裝置5004與反射板5005之間的距離接近半波長的整數倍時,超聲波或兆聲波裝置5004與反射板5005之間同樣可以形成駐波,但是駐波的聲能強度沒有前者強。駐波沿著波的傳播方向保持能量均勻性。駐波在電解液中傳播時的能量損失達到最小。在這種情況下,從離聲源較近的區域至離聲 源較遠的區域的聲能強度分佈均勻性得到提高,聲波發生器的效率也提高了。 FIG. 5A illustrates a standing wave passing through the surface of the substrate 5001 when the substrate 5001 is processed in the plating bath. When the sound wave propagates between the ultrasonic or megasonic device 5004 and the reflecting plate 5005, and the distance between the ultrasonic or megasonic device 5004 and the reflecting plate 5005 is equal to , N = 1, 2, 3..., λ is the wavelength of the ultrasonic or megasonic wave, N is an integer, and the forward wave interferes with the reflected wave to form a standing wave. The standing wave having the highest acoustic energy intensity is formed between the ultrasonic or megasonic device 5004 and the reflection plate 5005. When the distance between the ultrasonic or megasonic device 5004 and the reflecting plate 5005 is close to an integral multiple of a half wavelength, a standing wave can be formed between the ultrasonic or megasonic device 5004 and the reflecting plate 5005, but the acoustic energy intensity of the standing wave is not the former. Strong. The standing wave maintains energy uniformity along the direction of propagation of the wave. The energy loss of the standing wave propagating in the electrolyte is minimized. In this case, the uniformity of the distribution of the sound energy intensity from the region closer to the sound source to the region farther from the sound source is improved, and the efficiency of the sound wave generator is also improved.
然而,在駐波的一個波長內的聲能強度分佈是不均勻的,原因在於駐波的節點和非節點之間的能量轉移。圖5B示例了基板5001在四分之一波長的距離間的移動,從駐波的節點處移動到駐波的非節點處,在累積的時間內,基板5001的表面獲得均勻的聲能強度。進一步地,為了保持基板5001上的每一點具有相同的總的聲能強度,基板5001的移動距離等於,N=1,2,3... However, the distribution of the intensity of the acoustic energy within one wavelength of the standing wave is not uniform due to the energy transfer between the nodes of the standing wave and the non-node. 5B illustrates the movement of the substrate 5001 at a distance of a quarter wavelength, moving from the node of the standing wave to the non-node of the standing wave, and the surface of the substrate 5001 obtains a uniform acoustic energy intensity during the accumulated time. Further, in order to maintain the same total acoustic energy intensity at each point on the substrate 5001, the moving distance of the substrate 5001 is equal to , N=1, 2, 3...
其中,λ為超聲波或兆聲波的波長,N為整數。基板5001上的每一點在累積的電鍍時間內獲得相同的總的聲能強度,從而能夠得到高的電鍍速率和高的電鍍均勻性。 Where λ is the wavelength of the ultrasonic or megasonic wave, and N is an integer. Each point on the substrate 5001 achieves the same total acoustic energy intensity during the accumulated plating time, thereby enabling a high plating rate and high plating uniformity.
圖5C揭示了超聲波或兆聲波裝置與反射板之間聲區域中的任一點的聲能強度示意圖。該結果透過採用聲感測器測量獲得,且測量是在電鍍槽中進行,該電鍍槽內設置有超聲波或兆聲波裝置及反射板。該結果證明聲能強度隨著電鍍槽內的超聲波或兆聲波裝置與反射板之間距離的改變而周期性改變。節點與節點之間的距離為超聲波或兆聲波的半波長,節點與非節點之間的距離為超聲波或兆聲波的四分之一波長。 Figure 5C discloses a schematic representation of the acoustic energy intensity at any point in the acoustic region between the ultrasonic or megasonic device and the reflector. The result is obtained by measurement using an acoustic sensor, and the measurement is performed in an electroplating bath in which an ultrasonic or megasonic device and a reflecting plate are disposed. This result proves that the acoustic energy intensity changes periodically as the distance between the ultrasonic wave or the megasonic device and the reflecting plate in the plating bath changes. The distance between the node and the node is half wavelength of the ultrasonic wave or megasonic wave, and the distance between the node and the non-node is a quarter wavelength of the ultrasonic wave or the megasonic wave.
圖6A和圖6B揭示了在基板上均勻金屬化裝置的一實施例的示意圖。該裝置包括浸入式腔體6021、兩個電極6002a、6002b、導電的基板固持裝置6003、超聲波或 兆聲波裝置6004、反射板6005及豎直振動驅動裝置6013。浸入式腔體6021盛放至少一種金屬鹽電解液6020。電極6002a、6002b分別與獨立的電源6024a、6024b相連接。具有一層或多層的滲透膜6011a、6011b設置在電極6002a、6002b和基板6001a、6001b之間。導電的基板固持裝置6003固持兩塊基板6001a、6001b,使基板6001a、6001b可導電的一面面向電極6002a、6002b且經導電的基板固持裝置6003導電。反射板6005與超聲波或兆聲波裝置6004平行佈置。豎直振動驅動裝置6013又被命名為第一驅動裝置帶動導電的基板固持裝置6003及電極6002a、6002b經過超聲波或兆聲波區域及非超聲波或兆聲波區域。該裝置能夠同時加工兩塊基板6001a、6001b或僅加工其中一塊基板。金屬鹽電解液6020從浸入式腔體6021的底部流向頂部。浸入式腔體6021設置有至少一個進口和一個出口,用於金屬鹽電解液6020循環。導電的基板固持裝置6003與豎直移動驅動裝置6012連接,該豎直移動驅動裝置6012驅使基板6001a、6001b移進浸入式腔體6021或移出浸入式腔體6021。豎直移動驅動裝置6012和電極6002a、6002b均與豎直振動驅動裝置6013連接,豎直振動驅動裝置6013的振動振幅為1-300mm,振動頻率為0.001-0.5Hz。豎直振動驅動裝置6013在工藝過程中帶動電極6002a、6002b和基板6001a、6001b沿Z軸周期性上下振動,Z軸垂直於浸入式腔體6021的底平面。豎直振動驅動裝置6013帶動電極6002a、6002b和基板6001a、6001b沿Z軸周期性上下 振動,以確保基板6001a、6001b上的每個點經過整個聲場區域,也就是區域B。豎直振動驅動裝置6013帶動電極6002a、6002b和基板6001a、6001b由聲場區域B振動至非聲場區域A,然後返回聲場區域B,由聲場區域B振動至非聲場區域C,然後返回聲場區域B。這樣,基板6001a、6001b上的每個點在工藝過程中所獲得的聲波能量相同。超聲波或兆聲波裝置6004和與超聲波或兆聲波裝置6004相平行的反射板6005安裝在浸入式腔體6021的側壁上,超聲波或兆聲波裝置6004和反射板6005相對於導電的基板固持裝置6003的振動方向具有傾角θ(0<θ<45)。超聲波或兆聲波裝置6004和反射板6005的表面浸入金屬鹽電解液6020中。駐波形成於超聲波或兆聲波裝置6004和反射板6005相平行的表面之間。駐波的傳播方向平行於基板6001a、6001b的表面。駐波與導電的基板固持裝置6003的振動方向的法線之間具有夾角θ。如圖6B所示,X’為駐波傳播方向,X軸垂直於導電的基板固持裝置6003的振動方向。當偏量△X’,也就是基板6001a、6001b沿駐波傳播方向移動的距離為四分之一波長的整數倍時,基板6001a、6001b上的每一點在基板6001a、6001b移動過程中經過駐波的節點和非節點,基板6001a、6001b上的每一點在每個移動周期獲得相同的總的聲能強度。因此,豎直振動振幅△Z等於,N=1,2,3... 6A and 6B show schematic views of an embodiment of a uniform metallization apparatus on a substrate. The device includes an immersion cavity 6021, two electrodes 6002a, 6002b, a conductive substrate holding device 6003, an ultrasonic or megasonic device 6004, a reflective plate 6005, and a vertical vibration driving device 6013. The immersion chamber 6021 holds at least one metal salt electrolyte 6020. The electrodes 6002a, 6002b are connected to separate power sources 6024a, 6024b, respectively. A permeable membrane 6011a, 6011b having one or more layers is disposed between the electrodes 6002a, 6002b and the substrates 6001a, 6001b. The conductive substrate holding device 6003 holds the two substrates 6001a, 6001b such that the conductive side of the substrates 6001a, 6001b faces the electrodes 6002a, 6002b and is electrically conducted via the conductive substrate holding device 6003. The reflecting plate 6005 is arranged in parallel with the ultrasonic or megasonic device 6004. The vertical vibration driving device 6013 is also referred to as a first driving device that drives the conductive substrate holding device 6003 and the electrodes 6002a, 6002b through an ultrasonic or megasonic region and a non-ultrasonic or megasonic region. The device is capable of simultaneously processing two substrates 6001a, 6001b or processing only one of the substrates. Metal salt electrolyte 6020 flows from the bottom of immersion chamber 6021 to the top. The immersion chamber 6021 is provided with at least one inlet and one outlet for circulation of the metal salt electrolyte 6020. The electrically conductive substrate holding device 6003 is coupled to a vertical moving drive 6012 that drives the substrates 6001a, 6001b into the immersion cavity 6021 or out of the immersion cavity 6021. The vertical movement driving device 6012 and the electrodes 6002a, 6002b are both connected to the vertical vibration driving device 6013, and the vertical vibration driving device 6013 has a vibration amplitude of 1-300 mm and a vibration frequency of 0.001-0.5 Hz. The vertical vibration driving device 6013 periodically drives the electrodes 6002a, 6002b and the substrates 6001a, 6001b to vibrate up and down along the Z axis during the process, and the Z axis is perpendicular to the bottom plane of the immersion cavity 6021. The vertical vibration driving device 6013 drives the electrodes 6002a, 6002b and the substrates 6001a, 6001b to periodically vibrate up and down along the Z axis to ensure that each point on the substrate 6001a, 6001b passes through the entire sound field region, that is, the region B. The vertical vibration driving device 6013 drives the electrodes 6002a, 6002b and the substrates 6001a, 6001b to vibrate from the sound field region B to the non-sound field region A, then returns to the sound field region B, vibrates from the sound field region B to the non-sound field region C, and then Return to sound field area B. Thus, each point on the substrate 6001a, 6001b has the same acoustic energy obtained during the process. An ultrasonic or megasonic device 6004 and a reflecting plate 6005 parallel to the ultrasonic or megasonic device 6004 are mounted on the side wall of the immersion cavity 6021, and the ultrasonic or megasonic device 6004 and the reflecting plate 6005 are opposed to the conductive substrate holding device 6003. The vibration direction has an inclination angle θ (0 < θ < 45). The surface of the ultrasonic or megasonic device 6004 and the reflection plate 6005 is immersed in the metal salt electrolyte 6020. The standing wave is formed between the surfaces of the ultrasonic or megasonic device 6004 and the reflecting plate 6005. The propagation direction of the standing wave is parallel to the surfaces of the substrates 6001a, 6001b. The standing wave has an angle θ with the normal to the vibration direction of the conductive substrate holding device 6003. As shown in FIG. 6B, X' is the standing wave propagation direction, and the X axis is perpendicular to the vibration direction of the conductive substrate holding device 6003. When the offset ΔX′, that is, the distance that the substrates 6001a and 6001b move in the standing wave propagation direction is an integral multiple of a quarter wavelength, each point on the substrate 6001a, 6001b passes through during the movement of the substrates 6001a and 6001b. The nodes of the wave and the non-nodes, each point on the substrate 6001a, 6001b obtains the same total acoustic energy intensity for each movement cycle. Therefore, the vertical vibration amplitude ΔZ is equal to , N=1, 2, 3...
其中,λ為超聲波或兆聲波的波長,N為整數。反射板 6005由一層或多層製成。反射板6005多層之間的距離設置能夠減小聲波能量損失。為了使反射板6005的表面與超聲波或兆聲波裝置6004的表面之間保持平行,調整元件用於設置反射板6005的位置。 Where λ is the wavelength of the ultrasonic or megasonic wave, and N is an integer. The reflection plate 6005 is made of one or more layers. The distance between the layers of the reflector 6005 is set to reduce the loss of acoustic energy. In order to keep the surface of the reflecting plate 6005 parallel to the surface of the ultrasonic or megasonic device 6004, the adjusting member is used to set the position of the reflecting plate 6005.
在另一實施例中,該裝置還包括旋轉驅動裝置,旋轉驅動裝置又被命名為第二驅動裝置與導電的基板固持裝置連接,當豎直振動驅動裝置帶動導電的基板固持裝置移動至非超聲波或兆聲波區域A和區域C時,旋轉驅動裝置帶動導電的基板固持裝置繞導電的基板固持裝置的軸翻轉180°。 In another embodiment, the apparatus further includes a rotary driving device, which is in turn named as a second driving device connected to the conductive substrate holding device, and the vertical vibration driving device drives the conductive substrate holding device to move to the non-ultrasonic wave Or in the case of the megasonic wave region A and the region C, the rotary driving device drives the conductive substrate holding device to be turned 180° around the axis of the conductive substrate holding device.
圖7揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。該裝置包括浸入式腔體7021、至少一個電極、導電的基板固持裝置7003、超聲波或兆聲波裝置7004、反射板7005及豎直振動驅動裝置7013。浸入式腔體7021盛放至少一種金屬鹽電解液7020。電極與獨立的電源相連接。導電的基板固持裝置7003固持至少一塊基板7001,使基板7001可導電的一面面向電極且經導電的基板固持裝置導電。反射板7005與超聲波或兆聲波裝置7004平行佈置。豎直振動驅動裝置7013又被命名為第一驅動裝置帶動導電的基板固持裝置7003及電極經過超聲波或兆聲波區域及非超聲波或兆聲波區域。超聲波或兆聲波裝置7004和與超聲波或兆聲波裝置7004相平行的反射板7005安裝在浸入式腔體7021的側壁上,超聲波或兆聲波裝置7004和反射板7005垂直於浸入式腔體7021的底平面。超聲波或兆聲波裝 置7004和反射板7005的表面浸入金屬鹽電解液7020中。駐波形成於超聲波或兆聲波裝置7004和反射板7005相平行的表面之間。導電的基板固持裝置7003與豎直振動驅動裝置7013連接,豎直振動驅動裝置7013的振動振幅為1-300mm,振動頻率為0.001-0.5Hz。豎直振動驅動裝置7013在工藝過程中帶動導電的基板固持裝置7003沿Z’方向周期性上下振動,Z’與Z軸之間具有夾角θ(0<θ<45),Z軸垂直於駐波傳播方向。當偏量△X,也就是基板7001沿駐波傳播方向移動的距離為四分之一波長的整數倍時,基板7001上的每一點在基板7001移動過程中經過駐波的節點和非節點,基板7001上的每一點在每個移動周期獲得相同的總的聲能強度。因此,豎直振動振幅△Z’等於 ,N=1,2,3... Figure 7 discloses a schematic diagram of yet another embodiment of a uniform metallization apparatus on a substrate. The device includes an immersion cavity 7021, at least one electrode, a conductive substrate holding device 7003, an ultrasonic or megasonic device 7004, a reflective plate 7005, and a vertical vibration driving device 7013. The immersion chamber 7021 holds at least one metal salt electrolyte 7020. The electrodes are connected to a separate power source. The conductive substrate holding device 7003 holds at least one substrate 7001 such that the conductive side of the substrate 7001 faces the electrode and is electrically conducted via the conductive substrate holding device. The reflection plate 7005 is arranged in parallel with the ultrasonic or megasonic device 7004. The vertical vibration driving device 7013 is also referred to as a first driving device that drives the conductive substrate holding device 7003 and the electrodes through ultrasonic or megasonic regions and non-ultrasonic or megasonic regions. An ultrasonic or megasonic device 7004 and a reflector 7005 parallel to the ultrasonic or megasonic device 7004 are mounted on the sidewall of the immersion cavity 7021, and the ultrasonic or megasonic device 7004 and the reflector 7005 are perpendicular to the bottom of the immersion cavity 7021. flat. The surface of the ultrasonic or megasonic device 7004 and the reflection plate 7005 is immersed in the metal salt electrolyte 7020. The standing wave is formed between the surfaces of the ultrasonic or megasonic device 7004 and the reflecting plate 7005. The conductive substrate holding device 7003 is connected to the vertical vibration driving device 7013, and the vertical vibration driving device 7013 has a vibration amplitude of 1-300 mm and a vibration frequency of 0.001-0.5 Hz. The vertical vibration driving device 7013 periodically drives the conductive substrate holding device 7003 to vibrate up and down in the Z' direction, and has an angle θ (0< θ <45) between the Z' and the Z axis, and the Z axis is perpendicular to the standing wave. Direction of communication. When the offset ΔX, that is, the distance that the substrate 7001 moves in the standing wave propagation direction is an integral multiple of a quarter wavelength, each point on the substrate 7001 passes through the standing wave node and the non-node during the movement of the substrate 7001. Each point on the substrate 7001 achieves the same total acoustic energy intensity for each movement cycle. Therefore, the vertical vibration amplitude ΔZ' is equal to , N=1, 2, 3...
其中,λ為超聲波或兆聲波的波長,N為整數。豎直振動驅動裝置7013帶動基板7001沿Z’方向周期性上下振動,以確保基板7001上的每個點經過整個聲場區域,也就是區域B。豎直振動驅動裝置7013帶動基板7001由聲場區域B振動至非聲場區域A,然後返回聲場區域B,由聲場區域B振動至非聲場區域C,然後返回聲場區域B。這樣,基板7001上的每個點在工藝過程中所獲得的聲波能量相同。 Where λ is the wavelength of the ultrasonic or megasonic wave, and N is an integer. The vertical vibration driving device 7013 drives the substrate 7001 to periodically vibrate up and down in the Z' direction to ensure that each point on the substrate 7001 passes through the entire sound field region, that is, the region B. The vertical vibration driving device 7013 drives the substrate 7001 to vibrate from the sound field region B to the non-sound field region A, then returns to the sound field region B, vibrates from the sound field region B to the non-sound field region C, and then returns to the sound field region B. Thus, each point on the substrate 7001 has the same acoustic energy obtained during the process.
圖8揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。該裝置包括浸入式腔體8021、至少一個電極、導電的基板固持裝置8003、超聲波或兆聲波裝置8004、反射板8005及豎直振動驅動裝置8013。浸入式腔體8021 盛放至少一種金屬鹽電解液8020。電極與獨立的電源相連接。導電的基板固持裝置8003固持至少一塊基板8001,使基板8001可導電的一面面向電極且經導電的基板固持裝置8003導電。反射板8005與超聲波或兆聲波裝置8004平行佈置。豎直振動驅動裝置8013又被命名為第一驅動裝置帶動導電的基板固持裝置8003及電極經過超聲波或兆聲波區域及非超聲波或兆聲波區域。超聲波或兆聲波裝置8004和與超聲波或兆聲波裝置8004相平行的反射板8005安裝在浸入式腔體8021的側壁上,超聲波或兆聲波裝置8004和反射板8005垂直於浸入式腔體8021的底平面。超聲波或兆聲波裝置8004和反射板8005的表面浸入金屬鹽電解液8020中。駐波形成於超聲波或兆聲波裝置8004和反射板8005相平行的表面之間。導電的基板固持裝置8003與豎直振動驅動裝置8013連接,豎直振動驅動裝置8013在工藝過程中帶動導電的基板固持裝置8003和電極沿Z軸周期性上下振動,Z軸垂直於駐波傳播方向。豎直振動驅動裝置8013的振動振幅為1-300mm,振動頻率為0.001-0.5Hz。另一振動驅動裝置8015又被命名為第三驅動裝置與豎直振動驅動裝置8013連接,當豎直振動驅動裝置8013在工藝過程中帶動導電的基板固持裝置8003和電極沿Z軸周期性上下振動時,振動驅動裝置8015帶動導電的基板固持裝置8003沿X軸移動,X軸為駐波傳播方向。在豎直振動驅動裝置8013和振動驅動裝置8015的帶動下,導電的基板固持裝置8003在與駐波傳播方向相垂直的方向上周期性上下 振動,同時又沿駐波傳播方向周期性往返運動,且沿駐波傳播方向振動頻率大於在與駐波傳播方向相垂直的方向上的振動頻率。當振動驅動裝置8015帶動基板8001沿X軸振動的振幅為四分之一波長的整數倍時,基板8001上的每一點在基板8001振動過程中經過駐波的節點和非節點,基板8001上的每一點在每個振動周期獲得相同的總的聲能強度。 Figure 8 discloses a schematic diagram of yet another embodiment of a uniform metallization apparatus on a substrate. The apparatus includes an immersion cavity 8021, at least one electrode, a conductive substrate holding device 8003, an ultrasonic or megasonic device 8004, a reflective plate 8005, and a vertical vibration driving device 8013. Immersion cavity 8021 At least one metal salt electrolyte 8020 is contained. The electrodes are connected to a separate power source. The conductive substrate holding device 8003 holds at least one substrate 8001 such that the conductive side of the substrate 8001 faces the electrode and conducts through the conductive substrate holding device 8003. The reflecting plate 8005 is arranged in parallel with the ultrasonic or megasonic device 8004. The vertical vibration drive device 8013 is also referred to as a first drive device that drives the conductive substrate holding device 8003 and the electrodes through ultrasonic or megasonic regions and non-ultrasonic or megasonic regions. An ultrasonic or megasonic device 8004 and a reflecting plate 8005 parallel to the ultrasonic or megasonic device 8004 are mounted on the side wall of the immersion cavity 8021, and the ultrasonic or megasonic device 8004 and the reflecting plate 8005 are perpendicular to the bottom of the immersed cavity 8021. flat. The surface of the ultrasonic or megasonic device 8004 and the reflecting plate 8005 is immersed in the metal salt electrolyte 8020. The standing wave is formed between the surfaces of the ultrasonic or megasonic device 8004 and the reflecting plate 8005. The conductive substrate holding device 8003 is connected to the vertical vibration driving device 8013. The vertical vibration driving device 8013 drives the conductive substrate holding device 8003 and the electrodes to periodically vibrate up and down along the Z axis during the process, and the Z axis is perpendicular to the standing wave propagation direction. . The vertical vibration driving device 8013 has a vibration amplitude of 1-300 mm and a vibration frequency of 0.001-0.5 Hz. Another vibration driving device 8015 is also named as a third driving device connected to the vertical vibration driving device 8013. When the vertical vibration driving device 8013 drives the conductive substrate holding device 8003 and the electrodes periodically vibrate up and down along the Z axis during the process. At this time, the vibration driving device 8015 drives the conductive substrate holding device 8003 to move along the X axis, and the X axis is the standing wave propagation direction. Under the driving of the vertical vibration driving device 8013 and the vibration driving device 8015, the conductive substrate holding device 8003 periodically rises and falls in a direction perpendicular to the standing wave propagation direction. The vibration is simultaneously reciprocated in the direction of the standing wave propagation, and the vibration frequency in the direction of the standing wave propagation is greater than the vibration frequency in the direction perpendicular to the direction in which the standing wave propagates. When the vibration driving device 8015 drives the amplitude of the vibration of the substrate 8001 along the X-axis to be an integral multiple of a quarter wavelength, each point on the substrate 8001 passes through the standing wave node and the non-node during the vibration of the substrate 8001, and the substrate 8001 Each point achieves the same total acoustic energy intensity at each vibration cycle.
圖9揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。該裝置包括浸入式腔體9021、至少一個電極9002、導電的基板固持裝置9003、超聲波或兆聲波裝置9004、反射板9005及豎直振動驅動裝置9013。浸入式腔體9021盛放至少一種金屬鹽電解液9020。電極9002與獨立的電源9024相連接。導電的基板固持裝置9003固持至少一塊基板9001,使基板9001可導電的一面面向電極9002且經導電的基板固持裝置9003導電。反射板9005與超聲波或兆聲波裝置9004平行佈置。豎直振動驅動裝置9013又被命名為第一驅動裝置帶動導電的基板固持裝置9003經過具有不同聲能強度的超聲波或兆聲波區域。金屬鹽電解液9020從浸入式腔體9021的底部流向頂部。浸入式腔體9021設置有至少一個進口和一個出口,用於金屬鹽電解液9020循環。超聲波或兆聲波裝置9004和與超聲波或兆聲波裝置9004相平行的反射板9005安裝在浸入式腔體9021的側壁上,超聲波或兆聲波裝置9004和反射板9005的表面浸入金屬鹽電解液9020中。駐波形成於超聲波或兆聲波裝 置9004和反射板9005相平行的表面之間。旋轉元件9036與導電的基板固持裝置9003連接,旋轉元件9036的旋轉速度為10rpm至300rpm。旋轉致動器9033又被命名為第四驅動裝置位於浸入式腔體9021的外壁,旋轉致動器9033透過磁耦合機理提供驅動力驅動旋轉元件9036旋轉。連接元件9030將豎直振動驅動裝置9013和旋轉元件9036連接在一起。豎直振動驅動裝置9013帶動導電的基板固持裝置9003沿Z軸周期性上下振動,與此同時,旋轉元件9036帶動導電的基板固持裝置9003繞垂直於基板表面的軸旋轉。豎直振動驅動裝置9013帶動導電的基板固持裝置9003沿Z軸振動的振幅為1-300mm。在這種情況下,基板9001上的每一點在工藝過程中所獲得的聲能強度相同。基板9001在旋轉過程中,連接元件9030透過接觸元件9034達成與基板9001的電傳導。氣體管道9038向連接元件9030提供氣體,使連接元件9030內保持正壓,從而防止電解液9020進入連接元件9030內。 Figure 9 discloses a schematic view of yet another embodiment of a uniform metallization device on a substrate. The device includes an immersion cavity 9021, at least one electrode 9002, a conductive substrate holding device 9003, an ultrasonic or megasonic device 9004, a reflective plate 9005, and a vertical vibration driving device 9013. The immersion chamber 9021 holds at least one metal salt electrolyte 9020. Electrode 9002 is coupled to a separate power source 9024. The conductive substrate holding device 9003 holds at least one substrate 9001 such that the conductive side of the substrate 9001 faces the electrode 9002 and is electrically conducted via the conductive substrate holding device 9003. The reflecting plate 9005 is arranged in parallel with the ultrasonic or megasonic device 9004. The vertical vibration driving device 9013 is also referred to as a first driving device that drives the conductive substrate holding device 9003 through ultrasonic or megasonic regions having different acoustic energy intensities. Metal salt electrolyte 9020 flows from the bottom of immersion chamber 9021 to the top. The immersion chamber 9021 is provided with at least one inlet and one outlet for the metal salt electrolyte 9020 to circulate. An ultrasonic or megasonic device 9004 and a reflecting plate 9005 parallel to the ultrasonic or megasonic device 9004 are mounted on the side wall of the immersion cavity 9021, and the surfaces of the ultrasonic or megasonic device 9004 and the reflecting plate 9005 are immersed in the metal salt electrolyte 9020. . Standing wave formed in ultrasonic or megasonic wave Place 9004 between the surfaces parallel to the reflector 9005. The rotating member 9036 is coupled to the conductive substrate holding device 9003, and the rotational speed of the rotating member 9036 is from 10 rpm to 300 rpm. The rotary actuator 9033 is again named as the fourth drive device located on the outer wall of the immersion cavity 9021, and the rotary actuator 9033 provides a driving force to drive the rotary member 9036 to rotate through the magnetic coupling mechanism. The connecting member 9030 connects the vertical vibration driving device 9013 and the rotating member 9036 together. The vertical vibration driving device 9013 drives the conductive substrate holding device 9003 to periodically vibrate up and down along the Z axis. At the same time, the rotating member 9036 drives the conductive substrate holding device 9003 to rotate about an axis perpendicular to the substrate surface. The vertical vibration driving device 9013 drives the conductive substrate holding device 9003 to vibrate along the Z-axis with an amplitude of 1-300 mm. In this case, each point on the substrate 9001 has the same acoustic energy intensity obtained during the process. During the rotation of the substrate 9001, the connecting member 9030 transmits electrical conduction with the substrate 9001 through the contact member 9034. Gas line 9038 provides gas to connecting element 9030 to maintain a positive pressure within connecting element 9030, thereby preventing electrolyte 9020 from entering connecting element 9030.
圖10A揭示了超聲波或兆聲波裝置與反射板之間聲區域中的聲能強度隨著超聲波或兆聲波裝置與反射板之間距離的改變而改變示意圖。超聲波或兆聲波裝置10004與反射板10005之間的聲能強度分佈圖透過聲學測試站測試獲得,其中,暗區域代表低聲能強度,亮區域代表高聲能強度。聲能強度分佈圖中沿著Z軸的明暗交替的線揭示了駐波的形成。駐波的節點對應最暗的線,駐波的非節點對應最亮的線。超聲波或兆聲波裝置10004與反射板10005 之間的距離標示為d。當將超聲波或兆聲波裝置10004與反射板10005之間的距離由d1改變為d2時(d1≠d2),聲能強度圖由最亮變為最暗,d2與d1的差值為超聲波或兆聲波的四分之一波長的整數倍。由此可見,當超聲波或兆聲波裝置10004與反射板10005之間的距離改變時,駐波的形成是不同的。圖10B揭示了當超聲波或兆聲波裝置與反射板之間的距離改變時,超聲波或兆聲波裝置與反射板之間聲區域中的任一點的聲能強度示意圖。超聲波或兆聲波裝置與反射板之間的距離由dn減小至dm。圖10B揭示了當超聲波或兆聲波裝置與反射板之間的距離改變時,聲能強度周期性改變。 Fig. 10A discloses a schematic diagram in which the intensity of the acoustic energy in the acoustic region between the ultrasonic or megasonic device and the reflecting plate changes as the distance between the ultrasonic or megasonic device and the reflecting plate changes. The acoustic energy intensity profile between the ultrasonic or megasonic device 10004 and the reflector 10005 is obtained by an acoustic test station test in which the dark regions represent low acoustic energy intensity and the bright regions represent high acoustic energy intensity. The alternating lines of light and dark along the Z-axis in the distribution of the intensity of the sound energy reveal the formation of standing waves. The nodes of the standing wave correspond to the darkest line, and the non-nodes of the standing wave correspond to the brightest line. The distance between the ultrasonic or megasonic device 10004 and the reflector 10005 is indicated as d. When the distance between the ultrasonic or megasonic device 10004 and the reflecting plate 10005 is changed from d1 to d2 ( d 1≠ d 2), the sound energy intensity map changes from the brightest to the darkest, and the difference between d2 and d1 is the ultrasonic wave. Or an integer multiple of the quarter-wavelength of a megasonic wave. It can be seen that the formation of standing waves is different when the distance between the ultrasonic or megasonic device 10004 and the reflecting plate 10005 is changed. Fig. 10B is a view showing the acoustic energy intensity at any point in the acoustic region between the ultrasonic or megasonic device and the reflecting plate when the distance between the ultrasonic or megasonic device and the reflecting plate is changed. The distance between the ultrasonic or megasonic device and the reflector is reduced from dn to dm. Fig. 10B discloses that the acoustic energy intensity changes periodically when the distance between the ultrasonic or megasonic device and the reflecting plate is changed.
運動的示意圖。超聲波或兆聲波裝置11004與反射板11005之間的聲能強度分佈圖透過聲學測試站測試獲得,其中,暗區域代表低聲能強度,亮區域代表高聲能強度。聲能強度分佈圖中沿著Z軸的明暗交替的線揭示了駐波的形成。駐波的節點對應最暗的線,駐波的非節點對應最亮的線。聲能強度分佈圖中沿X’方向的暗條表明沿垂直於超聲波裝置表面的方向的聲能強度分佈是不均勻的。基板沿Z軸振動的振幅為 ,N=1,2,3... Schematic diagram of the movement. The acoustic energy intensity profile between the ultrasonic or megasonic device 11004 and the reflector 11005 is obtained by an acoustic test station test in which the dark regions represent low acoustic energy intensity and the bright regions represent high acoustic energy intensity. The alternating lines of light and dark along the Z-axis in the distribution of the intensity of the sound energy reveal the formation of standing waves. The nodes of the standing wave correspond to the darkest line, and the non-nodes of the standing wave correspond to the brightest line. A dark strip in the X' direction of the acoustic energy intensity profile indicates that the distribution of acoustic energy intensity along a direction perpendicular to the surface of the ultrasonic device is not uniform. The amplitude of the substrate vibrating along the Z axis is , N=1, 2, 3...
其中,λ為超聲波或兆聲波的波長,N為整數。Z’與Z軸之間的夾角為θ(0度<θ<45度)。沿X’方向的分量運動,X’與X軸之間的夾角為θ(0度<θ<45度),致使基板11001 上的每個點在每個振動周期內經過駐波的節點和非節點。同時,反射板沿X’方向振動,且振動振幅為半波長的整數倍,從而能夠保證在每個振動周期內超聲波或兆聲波裝置與反射板之間的總的聲能強度相同。反射板的振動速度快於基板的振動速度。上述方法解決了超聲波或兆聲波裝置與反射板之間平行度調整的問題,從而使超聲波或兆聲波裝置與反射板之間滿足駐波形成的最佳條件。此外,即使浸入式腔體內的情況不是很穩定,但是在每個振動周期內,浸入式腔體內的聲場能夠保持穩定。 Where λ is the wavelength of the ultrasonic or megasonic wave, and N is an integer. The angle between Z' and the Z axis is θ (0 degrees < θ < 45 degrees). The component motion along the X' direction, the angle between X' and the X axis is θ (0 degrees < θ < 45 degrees), causing each point on the substrate 11001 to pass through the standing and non-standing nodes in each vibration period. node. At the same time, the reflecting plate vibrates in the X' direction, and the vibration amplitude is an integral multiple of a half wavelength, thereby ensuring that the total acoustic energy intensity between the ultrasonic or megasonic device and the reflecting plate is the same in each vibration period. The vibration speed of the reflector is faster than the vibration speed of the substrate. The above method solves the problem of parallelism adjustment between the ultrasonic or megasonic device and the reflector, so that the optimal condition for standing wave formation is satisfied between the ultrasonic or megasonic device and the reflector. In addition, even if the immersion cavity is not very stable, the sound field in the immersed cavity can remain stable during each vibration cycle.
圖12A至圖12C揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。該裝置包括浸入式腔體12021、兩個電極12002a、12002b、導電的基板固持裝置12003、超聲波或兆聲波裝置12004、反射板12005、豎直振動驅動裝置12013及振動驅動器12006。浸入式腔體12021盛放至少一種金屬鹽電解液12020。兩個電極12002a、12002b分別與獨立的電源12024a、12024b相連接。導電的基板固持裝置12003固持兩塊基板12001a、12001b,使基板12001a、12001b可導電的一面面向電極12002a、12002b且經導電的基板固持裝置12003導電。反射板12005與超聲波或兆聲波裝置12004平行佈置。豎直振動驅動裝置12013又被命名為第一驅動裝置帶動導電的基板固持裝置12003經過超聲波或兆聲波區域及非超聲波或兆聲波區域。振動驅動器 12006與反射板12005連接。振動驅動器12006透過波紋管元件12007安裝在反射板12005的背面,振動驅動器12006帶動反射板12005沿X’方向,也就是駐波傳播方向,來回振動,以改變反射板12005與超聲波或兆聲波裝置12004之間的距離。振動驅動器12006的振動頻率為1-10Hz,振幅為,λ為超聲波或兆聲波的波長,N為1至10之間的整數。振動驅動器12006帶動反射板12005振動的同時,豎直振動驅動裝置12013帶動基板12001a、12001b沿Z軸周期性上下振動,基板12001a、12001b上的每個點經過整個聲場區域,也就是區域B,豎直振動驅動裝置12013帶動基板12001a、12001b由聲場區域B振動至非聲場區域A,然後返回聲場區域B,由聲場區域B振動至非聲場區域C,然後返回聲場區B。振動驅動器12006的振動速度快於豎直振動驅動裝置12013的振動速度。 12A through 12C illustrate schematic views of yet another embodiment of a uniform metallization apparatus on a substrate. The apparatus includes an immersion chamber 12021, two electrodes 12002a, 12002b, a conductive substrate holding device 12003, an ultrasonic or megasonic device 12004, a reflector 12005, a vertical vibration driving device 12013, and a vibration driver 12006. The immersion chamber 12021 holds at least one metal salt electrolyte 12020. The two electrodes 12002a, 12002b are connected to separate power supplies 12024a, 12024b, respectively. The conductive substrate holding device 12003 holds the two substrates 12001a, 12001b such that the conductive sides of the substrates 12001a, 12001b face the electrodes 12002a, 12002b and are electrically conducted via the conductive substrate holding device 12003. The reflecting plate 12005 is arranged in parallel with the ultrasonic or megasonic device 12004. The vertical vibration drive device 12013 is again named as the first drive device that drives the conductive substrate holding device 12003 through ultrasonic or megasonic regions and non-ultrasonic or megasonic regions. The vibration driver 12006 is connected to the reflection plate 12005. The vibration driver 12006 is mounted on the back surface of the reflector 12005 through the bellows element 12007, and the vibration driver 12006 drives the reflector 12005 to vibrate back and forth in the X' direction, that is, the direction of standing wave propagation, to change the reflector 12005 and the ultrasonic or megasonic device 12004. the distance between. The vibration frequency of the vibration driver 12006 is 1-10 Hz, and the amplitude is , λ is the wavelength of the ultrasonic or megasonic wave, and N is an integer between 1 and 10. While the vibration driver 12006 drives the reflection plate 12005 to vibrate, the vertical vibration driving device 12013 drives the substrates 12001a and 12001b to periodically vibrate up and down along the Z axis, and each point on the substrate 12001a, 12001b passes through the entire sound field region, that is, the region B, The vertical vibration driving device 12013 drives the substrates 12001a, 12001b to vibrate from the sound field region B to the non-sound field region A, then returns to the sound field region B, vibrates from the sound field region B to the non-sound field region C, and then returns to the sound field region B. . The vibration speed of the vibration driver 12006 is faster than the vibration speed of the vertical vibration driving device 12013.
圖13揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。在該實施例中,振動驅動器13006透過波紋管元件13007安裝在超聲波或兆聲波裝置13004的背面,振動驅動器13006帶動超聲波或兆聲波裝置13004沿駐波傳播方向來回振動,以改變反射板13005與超聲波或兆聲波裝置13004之間的距離。振動驅動器13006的振動 頻率為1-10Hz,振幅為,λ為超聲波或兆聲波的波長,N為1至10之間的整數。 Figure 13 discloses a schematic diagram of yet another embodiment of a uniform metallization apparatus on a substrate. In this embodiment, the vibration driver 13006 is mounted on the back surface of the ultrasonic or megasonic device 13004 through the bellows member 13007, and the vibration driver 13006 drives the ultrasonic or megasonic device 13004 to vibrate back and forth along the direction of the standing wave to change the reflector 13005 and the ultrasonic wave. Or the distance between the megasonic devices 13004. The vibration frequency of the vibration driver 13006 is 1-10 Hz, and the amplitude is , λ is the wavelength of the ultrasonic or megasonic wave, and N is an integer between 1 and 10.
圖14揭示了反射板的一實施例的示意圖。反射板14005由一層或多層固體板14050、14052構成。兩層固體板14050、14052之間形成有空氣隙14051,以提高反射板14005的反射率和減小聲能損失。密封圈14053設置在兩層固體板14050、14052之間,以防止電解液滲入空氣隙14051。在一個實施例中,固體板14050由薄石英材料製成,固體板14050的厚度為,λ為超聲波或兆聲波的波長,N為1至100之間的整數。 Figure 14 discloses a schematic view of an embodiment of a reflector. The reflecting plate 14005 is composed of one or more solid plates 14050, 14052. An air gap 14051 is formed between the two solid plates 14050, 14052 to increase the reflectivity of the reflector 14005 and reduce acoustic energy loss. A seal ring 14053 is disposed between the two solid plates 14050, 14052 to prevent electrolyte from penetrating into the air gap 14051. In one embodiment, the solid plate 14050 is made of a thin quartz material, and the thickness of the solid plate 14050 is , λ is the wavelength of the ultrasonic or megasonic wave, and N is an integer between 1 and 100.
圖15揭示了在基板上均勻金屬化裝置的又一實施例的示意圖。該裝置包括浸入式腔體15021、基板固持裝置15003、超聲波或兆聲波裝置15004及豎直振動驅動裝置15013。浸入式腔體15021盛放至少一種金屬鹽電解液15020。基板固持裝置15003固持兩塊基板15001a、15001b,使基板15001a、15001b需鍍層的一面浸入電解液15020中。豎直振動驅動裝置15013又被命名為第一驅動裝置帶動基板固持裝置15003經過超聲波或兆聲波區域及非超聲波或兆聲波區域。基板固持裝置15003可固持數塊基板同時在浸入式腔體15021內進行工藝加工。豎直振動驅動裝置15013在工藝過程中帶動基板固持裝置15003沿Z軸周期性上下振動,Z軸垂直於浸入式腔體15021的底平 面,以確保基板上的每個點經過整個聲場,在累積的時間內,基板上的每個點獲得相同的聲能強度。當基板15001a、15001b移動至非聲場區域,基板15001a、15001b翻轉180度,以進一步提高基板15001a、15001b表面聲能強度分佈均勻性。在另一實施例中,反射板與超聲波或兆聲波裝置15004平行佈置,反射板與超聲波或兆聲波裝置15004之間的距離可控,以在浸入式腔體15021內產生駐波。 Figure 15 discloses a schematic view of yet another embodiment of a uniform metallization apparatus on a substrate. The device includes an immersion cavity 15021, a substrate holding device 15003, an ultrasonic or megasonic device 15004, and a vertical vibration driving device 15013. The immersion chamber 15021 holds at least one metal salt electrolyte 15020. The substrate holding device 15003 holds the two substrates 15001a and 15001b, and immerses one side of the substrates 15001a and 15001b to be immersed in the electrolyte 15020. The vertical vibration driving device 15013 is also referred to as a first driving device that drives the substrate holding device 15003 through an ultrasonic or megasonic region and a non-ultrasonic or megasonic region. The substrate holding device 15003 can hold a plurality of substrates while performing processing in the immersion cavity 15021. The vertical vibration driving device 15013 periodically drives the substrate holding device 1503 to vibrate up and down along the Z axis during the process, and the Z axis is perpendicular to the bottom of the immersion cavity 15021. To ensure that each point on the substrate passes through the entire sound field, each point on the substrate acquires the same level of acoustic energy over the cumulative time. When the substrates 15001a and 15001b are moved to the non-sound field region, the substrates 15001a and 15001b are flipped by 180 degrees to further improve the uniformity of the surface acoustic energy intensity distribution of the substrates 15001a and 15001b. In another embodiment, the reflector is disposed in parallel with the ultrasonic or megasonic device 15004, and the distance between the reflector and the ultrasonic or megasonic device 15004 is controllable to create a standing wave within the immersion cavity 15021.
本發明還提供了在基板上均勻金屬化的方法,該方法包括如下步驟: The present invention also provides a method of uniform metallization on a substrate, the method comprising the steps of:
步驟1:向浸入式腔體內引入金屬鹽電解液,其中,金屬鹽電解液包括至少下述中的一種金屬陽離子:Cu、Au、Ag、Pt、Ni、Sn、Co、Pd、Zn。 Step 1: Introducing a metal salt electrolyte into the immersion chamber, wherein the metal salt electrolyte includes at least one of the following metal cations: Cu, Au, Ag, Pt, Ni, Sn, Co, Pd, Zn.
步驟2:轉移至少一塊基板到基板固持裝置,使基板可導電的一面面向電極,該基板固持裝置具有導電性,與基板導電層電連通。 Step 2: Transfer at least one substrate to the substrate holding device such that the conductive side of the substrate faces the electrode, and the substrate holding device has electrical conductivity and is in electrical communication with the conductive layer of the substrate.
步驟3:給基板載入一個最大為10V的小偏壓。 Step 3: Load the substrate with a small bias of up to 10V.
步驟4:將基板置入電解液中,基板可導電的一面與電解液完全接觸。 Step 4: The substrate is placed in an electrolyte, and the conductive side of the substrate is in complete contact with the electrolyte.
步驟5:載入電流至每個電極,與電極相連的電源在預定的時間內可從電壓模式切換到電流模式。 Step 5: Load current to each electrode, and the power supply connected to the electrode can be switched from voltage mode to current mode for a predetermined time.
步驟6:維持電極的電流恒定,電流範圍在0.1A到100A內,打開超聲波或兆聲波裝置,超聲波或兆聲波裝置的聲能強度為0.01-3W/cm2,頻率為20KHz-10MHz。在另一實施例中,載入的電流為可調的雙脈衝模式,脈衝周期為 5ms至2s。 Step 6: Maintain the electrode current constant, the current range is from 0.1A to 100A, and open the ultrasonic or megasonic device. The ultrasonic or megasonic device has an acoustic energy intensity of 0.01-3 W/cm 2 and a frequency of 20 KHz-10 MHz. In another embodiment, the loaded current is an adjustable dual pulse mode with a pulse period of 5 ms to 2 s.
步驟7:振動基板,使基板經過整個聲場區域,由聲場區域B振動至非聲場區域A,然後返回聲場區域B,由聲場區域B振動至非聲場區域C,然後返回聲場區域B,基板振動振幅為1mm-300mm,振動頻率為0.001-0.5Hz。 Step 7: Vibrate the substrate so that the substrate passes through the entire sound field region, vibrates from the sound field region B to the non-sound field region A, then returns to the sound field region B, vibrates from the sound field region B to the non-sound field region C, and then returns to the sound. In the field region B, the substrate vibration amplitude is 1 mm to 300 mm, and the vibration frequency is 0.001 to 0.5 Hz.
步驟8:關閉超聲波或兆聲波裝置,停止振動基板。 Step 8: Turn off the ultrasonic or megasonic device and stop vibrating the substrate.
步驟9:切換電源到一個小的偏壓模式,載入至基板,大小為0.1V至0.5V。 Step 9: Switch the power supply to a small bias mode and load it into the substrate from 0.1V to 0.5V.
步驟10:將基板移出電解液。 Step 10: Remove the substrate from the electrolyte.
步驟11:停止電源,清洗基板表面殘餘電解液。 Step 11: Stop the power supply and clean the residual electrolyte on the surface of the substrate.
上述方法適用於在基板上的深孔中沈積金屬層,深孔的寬度為0.5-50μm,深孔的深度為5-500μm。 The above method is suitable for depositing a metal layer in a deep hole on a substrate, the deep hole having a width of 0.5 to 50 μm and the deep hole having a depth of 5 to 500 μm.
在另一個實施例中,當基板振動至非聲場區域A和C時,基板翻轉180度。 In another embodiment, when the substrate vibrates to the non-sound field regions A and C, the substrate is flipped 180 degrees.
本發明還提供了另一在基板上均勻金屬化的方法,該方法包括如下步驟: The present invention also provides another method of uniform metallization on a substrate, the method comprising the steps of:
步驟1:向浸入式腔體內引入金屬鹽電解液,其中,金屬鹽電解液包括至少下述中的一種金屬陽離子:Cu、Au、Ag、Pt、Ni、Sn、Co、Pd、Zn。 Step 1: Introducing a metal salt electrolyte into the immersion chamber, wherein the metal salt electrolyte includes at least one of the following metal cations: Cu, Au, Ag, Pt, Ni, Sn, Co, Pd, Zn.
步驟2:轉移至少一塊基板到基板固持裝置,使基板可導電的一面面向電極,該基板固持裝置具有導電性,與基板導電層電連通。 Step 2: Transfer at least one substrate to the substrate holding device such that the conductive side of the substrate faces the electrode, and the substrate holding device has electrical conductivity and is in electrical communication with the conductive layer of the substrate.
步驟3:給基板載入一個最大為10V的小偏壓。 Step 3: Load the substrate with a small bias of up to 10V.
步驟4:將基板置入電解液中,基板可導電的一面與電 解液完全接觸。 Step 4: Place the substrate in the electrolyte, the conductive side of the substrate and the electricity The solution is completely in contact.
步驟5:載入電流至每個電極,與電極相連的電源在預定的時間內可從電壓模式切換到電流模式。 Step 5: Load current to each electrode, and the power supply connected to the electrode can be switched from voltage mode to current mode for a predetermined time.
步驟6:維持電極的電流恒定,電流範圍在0.1A到100A內,打開超聲波或兆聲波裝置,超聲波或兆聲波裝置的聲能強度為0.01-3W/cm2,頻率為20KHz-10MHz。在另一實施例中,載入的電流為可調的雙脈衝模式,脈衝周期為5ms至2s。 Step 6: Maintain the electrode current constant, the current range is from 0.1A to 100A, and open the ultrasonic or megasonic device. The ultrasonic or megasonic device has an acoustic energy intensity of 0.01-3 W/cm 2 and a frequency of 20 KHz-10 MHz. In another embodiment, the loaded current is an adjustable dual pulse mode with a pulse period of 5 ms to 2 s.
步驟7:振動基板,使基板經過整個聲場區域,由聲場區域B振動至非聲場區域A,然後返回聲場區域B,由聲場區域B振動至非聲場區域C,然後返回聲場區域B,基板振動振幅為1mm-300mm,振動頻率為0.001-0.5Hz,同時,周期性改變超聲波或兆聲波裝置與反射板之間的距離,改變的距離長度為,λ為超聲波或兆聲波的波長,N為1至10之間的整數,改變頻率為1-10HZ。 Step 7: Vibrate the substrate so that the substrate passes through the entire sound field region, vibrates from the sound field region B to the non-sound field region A, then returns to the sound field region B, vibrates from the sound field region B to the non-sound field region C, and then returns to the sound. Field area B, the substrate vibration amplitude is 1mm-300mm, the vibration frequency is 0.001-0.5Hz, and at the same time, the distance between the ultrasonic or megasonic device and the reflector is periodically changed, and the length of the change is , [Lambda] is the wavelength of ultrasonic or megasonic, N being an integer between 1 and 10, changing the frequency of 1-10HZ.
步驟8:關閉超聲波或兆聲波裝置,停止振動基板,停止周期性改變超聲波或兆聲波裝置與反射板之間的距離。 Step 8: Turn off the ultrasonic or megasonic device, stop vibrating the substrate, and stop periodically changing the distance between the ultrasonic or megasonic device and the reflector.
步驟9:切換電源到一個小的偏壓模式,載入至基板,大小為0.1V至0.5V。 Step 9: Switch the power supply to a small bias mode and load it into the substrate from 0.1V to 0.5V.
步驟10:將基板移出電解液。 Step 10: Remove the substrate from the electrolyte.
步驟11:停止電源,清洗基板表面殘餘電解液。 Step 11: Stop the power supply and clean the residual electrolyte on the surface of the substrate.
上述方法適用於在基板上的深孔中沈積金屬 層,深孔的寬度為0.5-50μm,深孔的深度為5-500μm。 The above method is suitable for depositing metal in deep holes on a substrate The layer has a deep hole having a width of 0.5 to 50 μm and a deep hole having a depth of 5 to 500 μm.
在另一個實施例中,在步驟7中,基板周期性上下振動的振幅為,N=1,2,3...,λ為超聲波或兆聲波的波長,N為整數,θ為超聲波或兆聲波裝置與基板振動方向之間的夾角。基板周期性上下振動的方向垂直於浸入式腔體的底平面。 In another embodiment, in step 7, the amplitude of the substrate periodically vibrating up and down is , N = 1, 2, 3..., λ is the wavelength of the ultrasonic or megasonic wave, N is an integer, and θ is the angle between the ultrasonic or megasonic device and the direction of vibration of the substrate. The direction in which the substrate periodically vibrates up and down is perpendicular to the bottom plane of the immersed cavity.
在步驟7中,超聲波或兆聲波裝置與反射板之間的距離周期性改變的頻率大於基板周期性上下振動的頻率。透過周期性改變超聲波或兆聲波裝置與反射板之間的距離以及周期性上下振動基板,基板上的每個點在工藝過程中均經過整個聲場區域,從而能夠獲得相同的聲波能量。 In step 7, the frequency at which the distance between the ultrasonic or megasonic device and the reflector periodically changes is greater than the frequency at which the substrate periodically vibrates up and down. By periodically changing the distance between the ultrasonic or megasonic device and the reflector and periodically vibrating the substrate up and down, each point on the substrate passes through the entire sound field during the process, thereby achieving the same acoustic energy.
在另一個實施例中,在步驟7中,當基板周期性上下振動的同時,基板還沿波的傳播方向振動,沿波的傳播方向振動的振幅為四分之一波長的整數倍。 In another embodiment, in step 7, while the substrate periodically vibrates up and down, the substrate also vibrates in the direction of propagation of the wave, and the amplitude of the vibration in the direction of propagation of the wave is an integer multiple of a quarter wavelength.
在另一個實施例中,當基板振動至非聲場區域A和C時,基板翻轉180度。 In another embodiment, when the substrate vibrates to the non-sound field regions A and C, the substrate is flipped 180 degrees.
在另一個實施例中,在步驟7中,基板振動的方向與超聲波或兆聲波裝置及反射板之間具有夾角θ(0度<θ<45度),基板振動的振幅為,N=1,2,3...,λ為超聲波或兆聲波的波長,N為整數。超聲波或兆聲波裝置及 反射板直於浸入式腔體的底平面。 In another embodiment, in step 7, the direction of vibration of the substrate and the ultrasonic or megasonic device and the reflector have an angle θ (0 degrees < θ < 45 degrees), and the amplitude of the substrate vibration is , N = 1, 2, 3..., λ is the wavelength of the ultrasonic or megasonic wave, and N is an integer. The ultrasonic or megasonic device and the reflector are directed to the bottom plane of the immersion cavity.
在另一個實施例中,在步驟7中,當基板周期性上下振動的同時,基板旋轉,基板旋轉的轉速為10rpm-300rpm。 In another embodiment, in step 7, while the substrate periodically vibrates up and down, the substrate rotates, and the rotation speed of the substrate rotates from 10 rpm to 300 rpm.
本發明還提供了另一在基板上均勻金屬化的方法,該方法包括如下步驟: The present invention also provides another method of uniform metallization on a substrate, the method comprising the steps of:
步驟1:向浸入式腔體內引入金屬鹽電解液,其中,金屬鹽電解液包括至少下述中的一種金屬陽離子:Cu、Au、Ag、Pt、Ni、Sn、Co、Pd、Zn。 Step 1: Introducing a metal salt electrolyte into the immersion chamber, wherein the metal salt electrolyte includes at least one of the following metal cations: Cu, Au, Ag, Pt, Ni, Sn, Co, Pd, Zn.
步驟2:轉移至少一塊基板到基板固持裝置。 Step 2: Transfer at least one substrate to the substrate holding device.
步驟3:打開超聲波或兆聲波裝置,超聲波或兆聲波裝置的聲能強度為0.01-3W/cm2,頻率為20KHz-10MHz。 Step 3: Turn on the ultrasonic or megasonic device. The ultrasonic or megasonic device has an acoustic energy intensity of 0.01 - 3 W/cm 2 and a frequency of 20 kHz to 10 MHz.
步驟4:振動基板,使基板經過整個聲場區域,由聲場區域B振動至非聲場區域A,然後返回聲場區域B,由聲場區域B振動至非聲場區域C,然後返回聲場區域B,基板振動振幅為1mm-300mm,振動頻率為0.001-0.5Hz。 Step 4: Vibrate the substrate so that the substrate passes through the entire sound field region, vibrates from the sound field region B to the non-sound field region A, then returns to the sound field region B, vibrates from the sound field region B to the non-sound field region C, and then returns to the sound. In the field region B, the substrate vibration amplitude is 1 mm to 300 mm, and the vibration frequency is 0.001 to 0.5 Hz.
步驟5:關閉超聲波或兆聲波裝置,停止振動基板。 Step 5: Turn off the ultrasonic or megasonic device and stop vibrating the substrate.
步驟6:將基板移出電解液。 Step 6: Remove the substrate from the electrolyte.
本發明還提供了另一在基板上均勻金屬化的方法,該方法包括如下步驟: The present invention also provides another method of uniform metallization on a substrate, the method comprising the steps of:
步驟1:向浸入式腔體內引入金屬鹽電解液,其中,金屬鹽電解液包括至少下述中的一種金屬陽離子:Cu、Au、Ag、Pt、Ni、Sn、Co、Pd、Zn。 Step 1: Introducing a metal salt electrolyte into the immersion chamber, wherein the metal salt electrolyte includes at least one of the following metal cations: Cu, Au, Ag, Pt, Ni, Sn, Co, Pd, Zn.
步驟2:轉移至少一塊基板到基板固持裝置。 Step 2: Transfer at least one substrate to the substrate holding device.
步驟3:打開超聲波或兆聲波裝置,超聲波或兆聲波裝置的聲能強度為0.01-3W/cm2,頻率為20KHz-10MHz。 Step 3: Turn on the ultrasonic or megasonic device. The ultrasonic or megasonic device has an acoustic energy intensity of 0.01 - 3 W/cm 2 and a frequency of 20 kHz to 10 MHz.
步驟4:振動基板,使基板經過整個聲場區域,由聲場區域B振動至非聲場區域A,然後返回聲場區域B,由聲場區域B振動至非聲場區域C,然後返回聲場區域B,基板振動振幅為1mm-300mm,振動頻率為0.001-0.5Hz,同時,周期性改變超聲波或兆聲波裝置與反射板之間的距離,改變的距離長度為,λ為超聲波或兆聲波的波長,N為1至10之間的整數,改變頻率為1-10HZ。 Step 4: Vibrate the substrate so that the substrate passes through the entire sound field region, vibrates from the sound field region B to the non-sound field region A, then returns to the sound field region B, vibrates from the sound field region B to the non-sound field region C, and then returns to the sound. Field area B, the substrate vibration amplitude is 1mm-300mm, the vibration frequency is 0.001-0.5Hz, and at the same time, the distance between the ultrasonic or megasonic device and the reflector is periodically changed, and the length of the change is , λ is the wavelength of the ultrasonic or megasonic wave, N is an integer between 1 and 10, and the frequency of change is 1-10HZ.
步驟5:關閉超聲波或兆聲波裝置,停止振動基板,停止周期性改變超聲波或兆聲波裝置與反射板之間的距離。 Step 5: Turn off the ultrasonic or megasonic device, stop vibrating the substrate, and stop periodically changing the distance between the ultrasonic or megasonic device and the reflector.
步驟6:將基板移出電解液。 Step 6: Remove the substrate from the electrolyte.
綜上所述,本發明透過上述實施方式及相關圖式說明,己具體詳實的揭露了相關技術,使本領域的技術人員可以據以實施。而以上所述實施例只是用來說明本發明,不是用來限制本發明的,本發明的權利範圍,應由本發明的申請專利範圍來界定。至於本文中所述元件數目的改變或等效元件的代替等仍都應屬於本發明的權利範圍。 In view of the above, the present invention has been specifically disclosed by the above-described embodiments and related drawings, and can be implemented by those skilled in the art. The above-mentioned embodiments are only intended to illustrate the invention, and are not intended to limit the invention, and the scope of the invention should be defined by the scope of the invention. Changes in the number of elements described herein or substitution of equivalent elements are still within the scope of the invention.
Claims (49)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103135385A TWI639725B (en) | 2014-10-13 | 2014-10-13 | Method and apparatus for uniform metallization on a substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103135385A TWI639725B (en) | 2014-10-13 | 2014-10-13 | Method and apparatus for uniform metallization on a substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201614102A TW201614102A (en) | 2016-04-16 |
TWI639725B true TWI639725B (en) | 2018-11-01 |
Family
ID=56361148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103135385A TWI639725B (en) | 2014-10-13 | 2014-10-13 | Method and apparatus for uniform metallization on a substrate |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI639725B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103114319A (en) * | 2011-11-17 | 2013-05-22 | 盛美半导体设备(上海)有限公司 | Method and device for realizing deep hole uniform metal interconnection on semiconductor silicon chip |
-
2014
- 2014-10-13 TW TW103135385A patent/TWI639725B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103114319A (en) * | 2011-11-17 | 2013-05-22 | 盛美半导体设备(上海)有限公司 | Method and device for realizing deep hole uniform metal interconnection on semiconductor silicon chip |
Also Published As
Publication number | Publication date |
---|---|
TW201614102A (en) | 2016-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10907266B2 (en) | Method and apparatus for uniformly metallization on substrate | |
CN105986290B (en) | Apparatus and method for uniform metallization on a substrate | |
KR101783786B1 (en) | Methods and apparatus for uniformly metallization on substrates | |
KR101063088B1 (en) | Method for manufacturing semiconductor device, semiconductor manufacturing device, and storage medium | |
JP2004162166A (en) | Plating apparatus and plating method | |
TWI692555B (en) | Bottom-up fill in damascene features | |
TW201250066A (en) | Wetting wave front control for reduced air entrapment during wafer entry into electroplating bath | |
KR20220003145A (en) | Apparatus and method for uniform metallization on substrate | |
Zhai et al. | Research of megasonic electroforming equipment based on the uniformity of electroforming process | |
TWI639725B (en) | Method and apparatus for uniform metallization on a substrate | |
US20070170066A1 (en) | Method for planarization during plating | |
TWI473669B (en) | Improved ultrasonic treatment method and apparatus | |
KR20050111350A (en) | Method and apparatus to form a planarized cu interconnect layer using electroless membrane deposition | |
KR20130093485A (en) | Seed layer deposition in microscale features | |
TWI658170B (en) | Device and method for uniform metallization on substrate | |
KR20050100405A (en) | Method and apparatus for megasonic cleaning of patterned substrates | |
KR102208202B1 (en) | Current ramping and current pulsing entry of substrates for electroplating | |
CN115956143A (en) | Electrochemical assembly for forming semiconductor features | |
KR20150103575A (en) | A Laser enhanced ultra precision micro selective plating system and the method | |
KR101233444B1 (en) | Method and apparatus for material deposition | |
TW201301353A (en) | Methods and apparatus for uniformly metallization on substrates |