TWI639361B - Induction cooker and control circuit and control method therefor - Google Patents

Induction cooker and control circuit and control method therefor Download PDF

Info

Publication number
TWI639361B
TWI639361B TW105125850A TW105125850A TWI639361B TW I639361 B TWI639361 B TW I639361B TW 105125850 A TW105125850 A TW 105125850A TW 105125850 A TW105125850 A TW 105125850A TW I639361 B TWI639361 B TW I639361B
Authority
TW
Taiwan
Prior art keywords
voltage
signal
control
input
switch
Prior art date
Application number
TW105125850A
Other languages
Chinese (zh)
Other versions
TW201711512A (en
Inventor
呂華偉
方倩
袁廷志
韓剛
羅強
Original Assignee
昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂寶電子(上海)有限公司 filed Critical 昂寶電子(上海)有限公司
Publication of TW201711512A publication Critical patent/TW201711512A/en
Application granted granted Critical
Publication of TWI639361B publication Critical patent/TWI639361B/en

Links

Landscapes

  • Induction Heating Cooking Devices (AREA)
  • Inverter Devices (AREA)

Abstract

電磁爐及用於電磁爐的控制電路和控制方法,其中該控制電路包含斜坡信號發生器,通過包括在斜坡信號發生器中的諧振波峰控制電路對電磁爐主回路開關的諧振波峰電壓進行採樣,並利用採樣得到的諧振波峰電壓生成第一補償電流,並且通過將諧振波峰控制電路生成的第一補償電流與恆定電流相加利用電容器生成斜坡信號;差分積分電路,將與第一參考電壓和第一電壓信號的電壓之間的電壓差相應的電流進行積分獲得第二電壓信號;比較器,將作為斜坡信號的第三電壓信號的電壓與第二電壓信號的電壓進行比較以輸出第一控制信號以便於控制電磁爐的主回路開關。通過該控制電路,可以有效控制諧振電壓。 An induction cooker and a control circuit and a control method therefor, wherein the control circuit includes a ramp signal generator for sampling a resonance peak voltage of the main circuit switch of the induction cooker through a resonance peak control circuit included in the ramp signal generator, and using the sampling The obtained resonance peak voltage generates a first compensation current, and generates a ramp signal by adding a first compensation current generated by the resonance peak control circuit to the constant current; the differential integration circuit, and the first reference voltage and the first voltage signal The voltage difference between the voltages is integrated to obtain a second voltage signal; the comparator compares the voltage of the third voltage signal as the ramp signal with the voltage of the second voltage signal to output the first control signal for control The main circuit switch of the induction cooker. The resonance voltage can be effectively controlled by the control circuit.

Description

電磁爐及用於電磁爐的控制電路和控制方法 Induction cooker and control circuit and control method therefor

本發明涉及家用電器領域,更具體地說,本發明涉及電磁爐及用於電磁爐的控制電路和控制方法。 The present invention relates to the field of household appliances, and more particularly to an induction cooker and a control circuit and control method for the same.

電磁爐是採用磁場感應渦流原理,它利用高頻的電流通過環形線圈,從而產生無數封閉磁場力,使鍋體本身自行快速發熱,然後再加熱鍋內食物。當線圈1中通過高頻電流時,線圈1周圍產生高頻交變磁場,當磁場磁力線3通過導磁材料(如:鐵質鍋2)的底部在高頻交變磁場的作用下,鐵質鍋2底既會產生無數小渦流4,鍋底迅速釋放出大量的熱量,達到加熱目的,其工作示意圖如第1圖所示。 The induction cooker adopts the principle of magnetic field induced eddy current, which uses high-frequency current to pass through the toroidal coil, thereby generating numerous closed magnetic field forces, so that the body itself rapidly heats up, and then heats the food in the pot. When the high-frequency current is passed through the coil 1, a high-frequency alternating magnetic field is generated around the coil 1, and when the magnetic field line 3 passes through the bottom of the magnetic conductive material (such as the iron pot 2) under the action of the high-frequency alternating magnetic field, the iron The bottom of the pot 2 will produce numerous small eddies 4, and the bottom of the pot will quickly release a large amount of heat for heating purposes. The working diagram is shown in Figure 1.

第2圖是現有技術中電磁爐工作的主回路的示意圖,由全波整流橋、LC濾波器、電磁線圈MC、電容器C0與第一開關W構成。這裡,所述第一開關W為一絕緣閘雙極電晶體(Insulated Gate Bipolar Transistor,IGBT)。 Fig. 2 is a schematic view showing the main circuit of the prior art induction cooker operation, comprising a full-wave rectifier bridge, an LC filter, an electromagnetic coil MC, a capacitor C0 and a first switch W. Here, the first switch W is an insulated gate bipolar transistor (IGBT).

作為輸入的交流電,經過全波整流橋後被全波整流,然後經過LC濾波器,形成正弦半波電壓。第一開關W不斷地導通和斷開,第一開關W導通時經整流後的輸入電壓Vin加在電磁線圈MC兩端,電磁線圈MC流過正向電流增加,第一開關W斷開時電磁線圈MC與並聯的電容器C0形成高頻諧振,電磁線圈MC上電壓反向,流經電磁線圈MC的電流減小,流過電磁線圈MC的電流的改變形成高頻磁場。高頻磁場產生的交變磁力線穿過鍋具,在鐵質鍋體內形成渦流,使鍋發熱,因此交變磁力線對渦流產生了決定性的作用。 The input AC power is full-wave rectified after passing through the full-wave rectifier bridge, and then passes through the LC filter to form a sinusoidal half-wave voltage. The first switch W is continuously turned on and off. When the first switch W is turned on, the rectified input voltage Vin is applied across the electromagnetic coil MC, the electromagnetic coil MC flows through the forward current, and the first switch W is turned off. The coil MC forms a high-frequency resonance with the capacitor C0 connected in parallel, the voltage on the electromagnetic coil MC is reversed, the current flowing through the electromagnetic coil MC is reduced, and the change in the current flowing through the electromagnetic coil MC forms a high-frequency magnetic field. The alternating magnetic field lines generated by the high-frequency magnetic field pass through the pot and form a vortex in the iron pot to heat the pot. Therefore, the alternating magnetic lines of force have a decisive effect on the eddy current.

下面對第2圖的工作狀態進行分析,瞭解第2圖這種架構是如何產生交變磁場。 The following is an analysis of the working state of Figure 2 to see how the architecture of Figure 2 produces an alternating magnetic field.

工作狀態一:第3圖中示出了第一開關W閉合時電磁爐工作電路的電流流向。 Working state one: Fig. 3 shows the current flow of the operating circuit of the induction cooker when the first switch W is closed.

此時,第一開關W閉合,設定第一開關W的導通時間段為導通時間Ton,整流後半波電壓經過電磁線圈MC和閉合的開關形成回路,電磁線圈MC是一個線性電感,流過電磁線圈MC的電流持續增加。 At this time, the first switch W is closed, and the on-time period of the first switch W is set to be the on-time Ton, and the rectified half-wave voltage forms a loop through the electromagnetic coil MC and the closed switch, and the electromagnetic coil MC is a linear inductor flowing through the electromagnetic coil. The current of the MC continues to increase.

一般而言,由於第一開關W的導通時間Ton較小,因此流過電磁線圈MC的電流近似為線性增加,L.△i L =V input sin θT on (1)公式(1)中,通過電磁線圈MC的電流為△i L ,θ為輸入電壓的相位角,Vinput為輸入電壓Vin的峰值。由於輸入電壓為一正弦波形電壓,Vinput‧sinθ為不同相位角下的輸入電壓值。 In general, since the on-time Ton of the first switch W is small, the current flowing through the electromagnetic coil MC is approximately linearly increased, L.i L = V input sin θ . T on (1) Equation (1), the current through the electromagnetic coil MC is △ i L, θ is the phase angle of the input voltage, the peak Vinput input voltage Vin. Since the input voltage is a sinusoidal waveform voltage, Vinput‧sinθ is the input voltage value at different phase angles.

由公式(1)可得, Available from formula (1),

工作狀態二:第4圖中示出了第一開關W斷開時電磁爐中電磁線圈MC和電容器C0構成的諧振回路的電流流向。 Operation state 2: Fig. 4 shows the current flow of the resonance circuit constituted by the electromagnetic coil MC and the capacitor C0 in the induction cooker when the first switch W is turned off.

此時,第一開關W斷開,設定第一開關W的斷開時間段為斷開時間Toff,第一開關W斷開後,儲存在電磁線圈MC中的能量轉移到並聯的諧振電容器C0,形成LC諧振回路。 At this time, the first switch W is turned off, and the off period of the first switch W is set to the off time Toff. After the first switch W is turned off, the energy stored in the electromagnetic coil MC is transferred to the parallel resonant capacitor C0. An LC resonant circuit is formed.

諧振頻率為:,其中,L為電磁線圈MC的電感值,C為與電磁線圈MC並聯的諧振電容器C0的電容值。 The resonant frequency is: Where L is the inductance value of the electromagnetic coil MC, and C is the capacitance value of the resonance capacitor C0 in parallel with the electromagnetic coil MC.

當儲存在電磁線圈MC中的能量全部轉移到電容器C0上後,電容器C0電壓最高,此時加在第一開關W上的電壓達到諧振波峰。 When all the energy stored in the electromagnetic coil MC is transferred to the capacitor C0, the voltage of the capacitor C0 is the highest, and the voltage applied to the first switch W reaches the resonance peak.

將公式(2)代入公式(3),可得: Substituting formula (2) into formula (3), you can get:

因此,第一開關W上諧振電壓的波峰VPEAK也和輸入電壓一樣呈現為正弦變化。當電磁爐的功率設定在最大時,第一開關W的導通時間Ton也達到最大,由於交流輸入電壓不穩定,具有一定的波動範圍為176V~264V,若輸入電壓為高壓264V,諧振的波峰會接近1200V,甚至達到開關W的耐壓值,這樣第一開關W有可能會過壓損壞。 Therefore, the peak V PEAK of the resonant voltage on the first switch W also exhibits a sinusoidal variation as the input voltage. When the power of the induction cooker is set to the maximum, the on-time Ton of the first switch W also reaches the maximum. Since the AC input voltage is unstable, the fluctuation range is 176V~264V. If the input voltage is 264V, the peak of the resonance will be close. 1200V, even reaching the withstand voltage of the switch W, so that the first switch W may be damaged by overvoltage.

當諧振處於波峰時,可能會對第一開關W造成損壞;同樣,當諧振處於波谷時,也可能對第一開關W造成不良影響。 When the resonance is at the peak, the first switch W may be damaged; likewise, when the resonance is in the valley, the first switch W may be adversely affected.

當電容器C0上的能量全部轉移到電感上形成負向的電流,電感的能量又全部轉移到電容器C0上形成反向的電壓,如第5圖所示,第一開關W上的電壓將達到諧振波谷,此時:V VALLEY =2.V input sin θ-V PEAK (5) When the energy on the capacitor C0 is all transferred to the inductor to form a negative current, the energy of the inductor is all transferred to the capacitor C0 to form a reverse voltage. As shown in FIG. 5, the voltage on the first switch W will reach resonance. Valley, at this time: V VALLEY = 2 . V input sin θ - V PEAK (5)

將公式(4)代入公式(5),可得: Substituting the formula (4) into the formula (5), you can get:

其中,VVALLEY為諧振的波谷電壓。從上述公式(6)可見,開關上諧振的波谷電壓也和交流輸入電壓一樣呈現為正弦變化。當電磁爐的功率設定在最小時,開關的導通時間Ton也最短;由於交流輸入電壓不穩定有一定的波動範圍在176V~264V,若輸入電壓為高壓264V,諧振的波谷電壓會超過100V甚至更高,此時如果導通第一開關W,該第一開關W會因損耗過大而被損壞。 Among them, V VALLEY is the valley voltage of resonance. It can be seen from the above formula (6) that the valley voltage of the resonance on the switch also exhibits a sinusoidal variation as the AC input voltage. When the power of the induction cooker is set to a minimum, the on-time Ton of the switch is also the shortest; since the AC input voltage is unstable, there is a certain fluctuation range of 176V~264V. If the input voltage is 264V, the valley voltage of the resonance will exceed 100V or higher. At this time, if the first switch W is turned on, the first switch W is damaged due to excessive loss.

由上可見,若對第一開關W上的諧振電壓進行控制,包括波峰電壓和波谷電壓,將會提高第一開關W的使用壽命,增強電磁爐使用時的安全性。 It can be seen from the above that if the resonance voltage on the first switch W is controlled, including the peak voltage and the valley voltage, the service life of the first switch W is increased, and the safety of the induction cooker is enhanced.

以上分析在回路阻抗近似為0的條件下進行,當有電磁爐負載接入時,回路阻抗會增加,但分析方法不變。 The above analysis is performed under the condition that the loop impedance is approximately 0. When the load of the induction cooker is connected, the loop impedance will increase, but the analysis method will not change.

為了解決上述問題的一個或多個,本發明提出了一種新的對電磁爐主回路開關的諧振電壓的波峰和波谷進行控制的方法。 In order to solve one or more of the above problems, the present invention proposes a new method of controlling the peaks and troughs of the resonant voltage of the main circuit switch of the induction cooker.

根據本發明的一方面,提供了一種用於電磁爐的控制電路,包括:第一控制單元,將與第一參考電壓和第一電壓信號的電壓之間的電壓差相應的電流進行積分獲得第二電壓信號,並將作為斜坡信號的第三電壓信號的電壓與第二電壓信號的電壓進行比較以輸出第一控制信號;第二控制單元,將反映第四電壓信號的電壓變化的第五電壓信號的電壓與第一閾值電壓進行比較以輸出第二控制信號;第一邏輯控制單元,基於分別從第一控制單元和第二控制單元輸出的第一控制信號和第二控制信號輸出第三控制信號以對電磁爐主回路開關進行控制,其中,第一控制單元包括:諧振波峰控制電路,對電磁爐主回路開關的諧振波峰電壓進行採樣,利用採樣得到的諧振波峰電壓生成第一補償電流,所述第一控制單元通過將諧振波峰控制電路生成的第一補償電流與恆定電流相加利用電容器生成作為斜坡信號的第三電壓信號。 According to an aspect of the present invention, a control circuit for an induction cooker is provided, comprising: a first control unit that integrates a current corresponding to a voltage difference between a voltage of a first reference voltage and a first voltage signal to obtain a second a voltage signal, and comparing a voltage of the third voltage signal as the ramp signal with a voltage of the second voltage signal to output a first control signal; and a second control unit, a fifth voltage signal reflecting a voltage change of the fourth voltage signal The voltage is compared with the first threshold voltage to output a second control signal; the first logic control unit outputs the third control signal based on the first control signal and the second control signal respectively output from the first control unit and the second control unit Controlling the main circuit switch of the induction cooker, wherein the first control unit comprises: a resonance peak control circuit, sampling a resonance peak voltage of the main circuit switch of the induction cooker, and generating a first compensation current by using the sampled resonance peak voltage, the first A control unit passes the first compensation current generated by the resonance peak control circuit with a constant Generating a stream by adding a third ramp voltage signal as a signal using a capacitor.

根據本發明的另一方面,其中,所述第一控制單元還包括:諧振波谷控制電路,對電磁爐主回路開關的諧振波谷電壓進行採樣,利用採樣得到的諧振波谷電壓生成第二補償電流,其中,所述第一控制單元通過將諧振波谷控制電路生成的第二補償電流與恆定電流相減利用電容器生成作為斜坡信號的第三電壓信號。 According to another aspect of the present invention, the first control unit further includes: a resonant valley control circuit that samples a resonant valley voltage of the main circuit switch of the induction cooker, and generates a second compensation current by using the sampled resonant valley voltage, wherein The first control unit generates a third voltage signal as a ramp signal by subtracting the second compensation current generated by the resonant valley control circuit from the constant current using a capacitor.

根據本發明的另一方面,其中,在諧振波峰控制電路中,通過第一RC積分電路將採樣得到的諧振波峰電壓輸入第一電壓控制電流源的正相輸入端,並將第二參考電壓輸入第一電壓控制電流源的反相輸入端以生成第一補償電流。 According to another aspect of the present invention, in the resonance peak control circuit, the sampled resonance peak voltage is input to the non-inverting input terminal of the first voltage control current source through the first RC integration circuit, and the second reference voltage is input. The first voltage controls the inverting input of the current source to generate a first compensation current.

根據本發明的另一方面,其中,在諧振波谷控制電路中,通過第二RC積分電路將採樣得到的諧振波谷電壓輸入第二電壓控制電流源的正相輸入端,並將第三參考電壓輸入第二電壓控制電流源的反相輸入端以生成第二補償電流。 According to another aspect of the present invention, in the resonant valley control circuit, the sampled resonant valley voltage is input to the non-inverting input of the second voltage controlled current source through the second RC integrating circuit, and the third reference voltage is input The second voltage controls the inverting input of the current source to generate a second compensation current.

根據本發明的另一方面,其中,在諧振波峰控制電路和諧振波谷控制電路中,分別利用電壓跟隨器電路將採樣得到的電壓輸入至第一 RC積分電路和第二RC積分電路。 According to another aspect of the present invention, in the resonance peak control circuit and the resonance valley control circuit, the sampled voltage is input to the first by a voltage follower circuit, respectively RC integration circuit and second RC integration circuit.

根據本發明的另一方面,其中,在諧振波峰控制電路中,將採樣得到的諧振波峰電壓與第四參考電壓相比較來生成第一脈衝信號,利用第一脈衝信號對經整流的輸入電壓進行採樣,並將整流的輸入電壓和採樣得到的輸入電壓分別輸入到第三電壓控制電流源的正相輸入端和反相輸入端以生成第一補償電流。 According to another aspect of the present invention, in the resonance peak control circuit, the sampled resonance peak voltage is compared with a fourth reference voltage to generate a first pulse signal, and the rectified input voltage is performed by using the first pulse signal. Sampling, and inputting the rectified input voltage and the sampled input voltage to the non-inverting input and the inverting input of the third voltage-controlled current source, respectively, to generate a first compensation current.

根據本發明的另一方面,其中,在諧振波谷控制電路中,將採樣得到的諧振波谷電壓與第五參考電壓相比較來生成第二脈衝信號,利用第二脈衝信號對經整流的輸入電壓進行採樣,並將經整流的輸入電壓和採樣得到的輸入電壓分別輸入到第四電壓控制電流源的正相輸入端和反相輸入端以生成第二補償電流。 According to another aspect of the present invention, in the resonant valley control circuit, the sampled resonant valley voltage is compared with a fifth reference voltage to generate a second pulse signal, and the second pulse signal is used to perform the rectified input voltage. Sampling, and inputting the rectified input voltage and the sampled input voltage to the non-inverting input and the inverting input of the fourth voltage-controlled current source respectively to generate a second compensation current.

根據本發明的另一方面,其中,該第一邏輯控制單元為RS觸發器,第一控制信號輸入到RS觸發器的復位端,而第二控制信號輸入到RS觸發器的置位端,當第一控制信號為高電平時,從第一邏輯控制單元輸出的第三控制信號為低電平,電磁爐主回路開關斷開;當第二控制信號為高電平時,從第一邏輯控制單元輸出的第三控制信號為高電平,電磁爐主回路開關導通。 According to another aspect of the present invention, the first logic control unit is an RS flip-flop, the first control signal is input to the reset terminal of the RS flip-flop, and the second control signal is input to the set terminal of the RS flip-flop. When the first control signal is at a high level, the third control signal outputted from the first logic control unit is at a low level, the induction cooker main circuit switch is turned off; and when the second control signal is at a high level, is output from the first logic control unit The third control signal is at a high level, and the main circuit switch of the induction cooker is turned on.

根據本發明的另一方面,提供了一種控制電路,包括:斜坡信號發生器,通過包括在斜坡信號發生器中的諧振波峰控制電路對電磁爐主回路開關的諧振波峰電壓進行採樣,並利用採樣得到的諧振波峰電壓生成第一補償電流,並且通過將諧振波峰控制電路生成的第一補償電流與恆定電流相加利用電容器生成斜坡信號;差分積分電路,將與第一參考電壓和第一電壓信號的電壓之間的電壓差相應的電流進行積分獲得第二電壓信號;比較器,將作為斜坡信號的第三電壓信號的電壓與第二電壓信號的電壓進行比較以輸出第一控制信號以便於控制電磁爐的主回路開關。 According to another aspect of the present invention, there is provided a control circuit comprising: a ramp signal generator for sampling a resonance peak voltage of an induction cooker main circuit switch by a resonance peak control circuit included in a ramp signal generator, and using sampling a resonance peak voltage generates a first compensation current, and generates a ramp signal by adding a first compensation current generated by the resonance peak control circuit to the constant current; a differential integration circuit that is to be associated with the first reference voltage and the first voltage signal The voltage corresponding to the voltage difference between the voltages is integrated to obtain a second voltage signal; the comparator compares the voltage of the third voltage signal as the ramp signal with the voltage of the second voltage signal to output the first control signal to facilitate controlling the induction cooker Main circuit switch.

根據本發明的另一方面,其中所述斜坡信號發生器還包括:諧振波谷控制電路,對電磁爐主回路開關的諧振波谷電壓進行採樣,利用採樣得到的諧振波谷電壓生成第二補償電流,其中,所述斜坡信號發生器通過將諧振波谷控制電路生成的第二補償電流與恆定電流相減利用電容器 生成斜坡信號。 According to another aspect of the present invention, the ramp signal generator further includes: a resonant valley control circuit that samples a resonant valley voltage of the main circuit switch of the induction cooker, and generates a second compensation current by using the sampled resonant valley voltage, wherein The ramp signal generator utilizes a capacitor by subtracting a second compensation current generated by the resonant valley control circuit from a constant current Generate a ramp signal.

根據本發明的另一方面,其中,在諧振波峰控制電路中,通過第一RC積分電路將採樣得到的諧振波峰電壓輸入第一電壓控制電流源的正相輸入端,並將第二參考電壓輸入第一電壓控制電流源的反相輸入端以生成第一補償電流。 According to another aspect of the present invention, in the resonance peak control circuit, the sampled resonance peak voltage is input to the non-inverting input terminal of the first voltage control current source through the first RC integration circuit, and the second reference voltage is input. The first voltage controls the inverting input of the current source to generate a first compensation current.

根據本發明的另一方面,其中,在諧振波谷控制電路中,通過第二RC積分電路將採樣得到的諧振波谷電壓輸入第二電壓控制電流源的正相輸入端,並將第三參考電壓輸入第二電壓控制電流源的反相輸入端以生成第二補償電流。 According to another aspect of the present invention, in the resonant valley control circuit, the sampled resonant valley voltage is input to the non-inverting input of the second voltage controlled current source through the second RC integrating circuit, and the third reference voltage is input The second voltage controls the inverting input of the current source to generate a second compensation current.

根據本發明的另一方面,其中,在諧振波峰控制電路和諧振波谷控制電路中,分別利用電壓跟隨器電路將採樣得到的電壓輸入至第一RC積分電路和第二RC積分電路。 According to another aspect of the invention, in the resonance peak control circuit and the resonance valley control circuit, the sampled voltage is input to the first RC integration circuit and the second RC integration circuit, respectively, using a voltage follower circuit.

根據本發明的另一方面,其中,在諧振波峰控制電路中,將採樣得到的諧振波峰電壓與第四參考電壓相比較來生成第一脈衝信號,利用第一脈衝信號對經整流的輸入電壓進行採樣,並將經整流的輸入電壓和採樣得到的輸入電壓分別輸入到第三電壓控制電流源的正相輸入端和反相輸入端以生成第一補償電流。 According to another aspect of the present invention, in the resonance peak control circuit, the sampled resonance peak voltage is compared with a fourth reference voltage to generate a first pulse signal, and the rectified input voltage is performed by using the first pulse signal. Sampling, and inputting the rectified input voltage and the sampled input voltage to the non-inverting input and the inverting input of the third voltage-controlled current source respectively to generate a first compensation current.

根據本發明的另一方面,其中,在諧振波谷控制電路中,將採樣得到的諧振波谷電壓與第五參考電壓相比較來生成第二脈衝信號,利用第二脈衝信號對經整流的輸入電壓進行採樣,並將經整流的輸入電壓和採樣得到的輸入電壓分別輸入到第四電壓控制電流源的正相輸入端和反相輸入端以生成第二補償電流。 According to another aspect of the present invention, in the resonant valley control circuit, the sampled resonant valley voltage is compared with a fifth reference voltage to generate a second pulse signal, and the second pulse signal is used to perform the rectified input voltage. Sampling, and inputting the rectified input voltage and the sampled input voltage to the non-inverting input and the inverting input of the fourth voltage-controlled current source respectively to generate a second compensation current.

根據本發明的另一方面,提供了一種控制方法,包括:將與第一參考電壓和第一電壓信號的電壓之間的電壓差相應的電流進行積分獲得第二電壓信號,並將作為斜坡信號的第三電壓信號的電壓與第二電壓信號的電壓進行比較以輸出第一控制信號;將反映第四電壓信號的電壓變化的第五電壓信號的電壓與第一閾值電壓進行比較以輸出第二控制信號;基於分別第一控制信號和第二控制信號輸出第三控制信號以對電磁爐主回路開關進行控制;其中,對電磁爐主回路開關的諧振波峰電壓進行採樣,利 用採樣得到的諧振波峰電壓生成第一補償電流;通過將生成的第一補償電流與恆定電流相加,生成作為斜坡信號的第三電壓信號。 According to another aspect of the present invention, there is provided a control method comprising: integrating a current corresponding to a voltage difference between a first reference voltage and a voltage of a first voltage signal to obtain a second voltage signal, and as a ramp signal The voltage of the third voltage signal is compared with the voltage of the second voltage signal to output a first control signal; the voltage of the fifth voltage signal reflecting the voltage change of the fourth voltage signal is compared with the first threshold voltage to output a second a control signal; outputting a third control signal based on the first control signal and the second control signal respectively to control the main circuit switch of the induction cooker; wherein, the resonance peak voltage of the main circuit switch of the induction cooker is sampled, A first compensation current is generated by using the sampled resonant peak voltage; and a third voltage signal is generated as a ramp signal by adding the generated first compensation current to the constant current.

根據本發明的另一方面,其中該控制方法還包括:對電磁爐主回路開關的諧振波谷電壓進行採樣,利用採樣得到的諧振波谷電壓生成第二補償電流,通過將生成的第二補償電流與恆定電流相減,生成作為斜坡信號的第三電壓信號。 According to another aspect of the present invention, the control method further includes: sampling a resonant valley voltage of the main circuit switch of the induction cooker, generating a second compensation current by using the sampled resonant valley voltage, and generating a second compensation current and a constant The current is subtracted to generate a third voltage signal that is a ramp signal.

根據本發明的另一方面,提供了一種控制方法,包括:對電磁爐主回路開關的諧振波峰電壓進行採樣,並利用採樣得到的諧振波峰電壓生成第一補償電流,並且通過將生成的第一補償電流與恆定電流相加,生成斜坡信號;將與第一參考電壓和第一電壓信號的電壓之間的電壓差相應的電流進行積分獲得第二電壓信號;將作為斜坡信號的第三電壓信號的電壓與第二電壓信號的電壓進行比較以輸出第一控制信號以便於控制電磁爐的主回路開關。 According to another aspect of the present invention, a control method is provided, comprising: sampling a resonance peak voltage of an induction cooker main circuit switch, and generating a first compensation current by using the sampled resonance peak voltage, and passing the generated first compensation And adding a current to the constant current to generate a ramp signal; integrating a current corresponding to a voltage difference between the first reference voltage and the voltage of the first voltage signal to obtain a second voltage signal; and using the third voltage signal as the ramp signal The voltage is compared to the voltage of the second voltage signal to output a first control signal to facilitate control of the main circuit switch of the induction cooker.

根據本發明的另一方面,其中該控制方法還包括:對電磁爐主回路開關的諧振波谷電壓進行採樣,利用採樣得到的諧振波谷電壓生成第二補償電流,通過將生成的第二補償電流與恆定電流相減,生成斜坡信號。 According to another aspect of the present invention, the control method further includes: sampling a resonant valley voltage of the main circuit switch of the induction cooker, generating a second compensation current by using the sampled resonant valley voltage, and generating a second compensation current and a constant The current is subtracted to generate a ramp signal.

根據本發明的另一方面,還提供了一種包括如上所述的控制電路的電磁爐。 According to another aspect of the present invention, there is also provided an induction cooker comprising the control circuit as described above.

通過採用本發明的技術方案,可以對電磁爐的諧振電壓,包括波峰和波谷電壓,進行及時有效的控制,從而增加了電磁爐的安全性。 By adopting the technical scheme of the invention, the resonant voltage of the induction cooker, including the peak and the valley voltage, can be controlled in time and effectively, thereby increasing the safety of the induction cooker.

610‧‧‧第一控制單元 610‧‧‧First Control Unit

620‧‧‧第二控制單元 620‧‧‧Second control unit

630‧‧‧邏輯控制單元 630‧‧‧Logical Control Unit

710‧‧‧差分積分電路 710‧‧‧Differential integration circuit

720‧‧‧第一比較器 720‧‧‧First comparator

730‧‧‧斜坡信號發生模組 730‧‧‧Ramp signal generation module

C0,C1,C2,C3‧‧‧電容器 C0, C1, C2, C3‧‧‧ capacitors

C4‧‧‧第四電容器 C4‧‧‧fourth capacitor

C5‧‧‧第五電容器 C5‧‧‧ fifth capacitor

C6‧‧‧第六電容器 C6‧‧‧ sixth capacitor

C7‧‧‧第七電容器 C7‧‧‧ seventh capacitor

C8‧‧‧第八電容器 C8‧‧‧ eighth capacitor

C9‧‧‧第九電容器 C9‧‧‧ ninth capacitor

C10‧‧‧第十電容器 C10‧‧‧10th Capacitor

C11‧‧‧第十一電容器 C11‧‧‧11th capacitor

gate‧‧‧控制信號 Gate‧‧‧ control signal

gm‧‧‧運算跨導放大器 Gm‧‧‧operating transconductance amplifier

Iin‧‧‧輸入電流 I in ‧‧‧Input current

i‧‧‧恆定電流 i‧‧‧Constant current

i1‧‧‧第一補償電流 I1‧‧‧First compensation current

i2‧‧‧第二補償電流 I2‧‧‧second compensation current

K1‧‧‧第三開關 K1‧‧‧ third switch

K2‧‧‧第四開關 K2‧‧‧fourth switch

K3‧‧‧第五開關 K3‧‧‧ fifth switch

K4‧‧‧第六開關 K4‧‧‧ sixth switch

K5‧‧‧第七開關 K5‧‧‧ seventh switch

K6‧‧‧第八開關 K6‧‧‧ eighth switch

MC‧‧‧電磁線圈 MC‧‧‧Electromagnetic coil

off‧‧‧第一控制信號 Off‧‧‧First control signal

on‧‧‧第二控制信號 On‧‧‧second control signal

Q‧‧‧輸出端 Q‧‧‧output

R1‧‧‧第一電阻器 R1‧‧‧ first resistor

R2‧‧‧第二電阻 R2‧‧‧second resistance

R3‧‧‧第三電阻 R3‧‧‧ third resistor

R4‧‧‧第四電阻 R4‧‧‧fourth resistor

R5‧‧‧第五電阻 R5‧‧‧ fifth resistor

Rs‧‧‧電流檢測電阻 Rs‧‧‧ current sense resistor

ramp‧‧‧斜坡信號 Ramp‧‧‧ ramp signal

ref1‧‧‧第一參考電壓 Ref1‧‧‧first reference voltage

ref2‧‧‧第二參考電壓 Ref2‧‧‧second reference voltage

Ts1,Ts2‧‧‧脈衝信號 Ts1, Ts2‧‧‧ pulse signal

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

Vw,comp‧‧‧電壓信號 Vw, comp‧‧‧ voltage signal

Vcs,Vc1,Vc2,V1,V2‧‧‧電壓 Vcs, Vc1, Vc2, V1, V2‧‧‧ voltage

Vref‧‧‧參考電壓 Vref‧‧‧reference voltage

Vth‧‧‧閾值電壓 Vth‧‧‧ threshold voltage

Vs1‧‧‧波峰電壓 Vs1‧‧•crest voltage

Vs2‧‧‧波谷電壓 Vs2‧‧‧ Valley voltage

vccs1‧‧‧第一電壓控制電流源 Vccs1‧‧‧First voltage controlled current source

vccs2‧‧‧第二電壓控制電流源 Vccs2‧‧‧second voltage controlled current source

vccs3‧‧‧第三電壓控制電流源 Vccs3‧‧‧ third voltage controlled current source

vccs4‧‧‧第四電壓控制電流源 Vccs4‧‧‧fourth voltage controlled current source

W‧‧‧第一開關 W‧‧‧first switch

W1‧‧‧第二開關 W1‧‧‧second switch

第1圖示出了電磁爐的工作示意圖。 Fig. 1 is a schematic view showing the operation of the induction cooker.

第2圖示出了電磁爐工作的主回路的示意圖。 Figure 2 shows a schematic diagram of the main circuit in which the induction cooker is operating.

第3圖示出了在電磁爐主回路的開關導通時主回路的電流流向。 Figure 3 shows the current flow of the main circuit when the switch of the main circuit of the induction cooker is turned on.

第4圖示出了在電磁爐主回路的開關斷開時電磁爐中電磁線圈和電容器構成的諧振回路的電流流向。 Fig. 4 shows the current flow of the resonant circuit formed by the electromagnetic coil and the capacitor in the induction cooker when the switch of the main circuit of the induction cooker is turned off.

第5圖示出了當電磁爐主回路的開關斷開,因為諧振而在電容器上形成反 向電壓時的電流流向。 Figure 5 shows that when the switch of the main circuit of the induction cooker is turned off, it forms an inverse on the capacitor because of resonance. The current flows toward the voltage.

第6圖示出了根據本發明的電磁爐系統的控制電路的結構框圖。 Fig. 6 is a block diagram showing the construction of a control circuit of the induction cooker system according to the present invention.

第7圖示出了第6圖中第一控制單元的示意性結構圖。 Fig. 7 is a view showing a schematic configuration of the first control unit in Fig. 6.

第8圖示出了第6圖中第二控制單元的示意性結構圖。 Fig. 8 is a view showing a schematic configuration of a second control unit in Fig. 6.

第9圖示出了根據本發明示例性實施例對電磁爐主回路開關上的諧振電壓波峰進行控制前後的波形圖對比。 Fig. 9 is a view showing waveform comparison before and after control of a resonance voltage peak on an induction cooker main circuit switch according to an exemplary embodiment of the present invention.

第10圖示出了根據本發明示例性實施例對電磁爐主回路開關上的諧振電壓波谷進行控制前後的波形圖對比。 Fig. 10 is a view showing waveform comparison before and after control of a resonance voltage trough on an induction cooker main circuit switch according to an exemplary embodiment of the present invention.

第11圖示出了根據本發明第一實施例對電磁爐主回路開關上的諧振電壓的波峰和波谷進行控制的控制電路。 Fig. 11 is a view showing a control circuit for controlling the peaks and troughs of the resonance voltage on the main circuit switch of the induction cooker according to the first embodiment of the present invention.

第12A圖示出了根據本發明第一實施例的控制電路下波峰採樣脈衝信號、諧振電壓、控制電磁爐主回路開關導通和斷開的控制信號、斜坡信號的波形圖。 Fig. 12A is a view showing waveforms of a peak sampling pulse signal, a resonance voltage, a control signal for controlling ON/OFF of the main circuit switch of the induction cooker, and a ramp signal according to the first embodiment of the present invention.

第12B圖示出了根據本發明第一實施例的控制電路下波谷採樣脈衝信號、諧振電壓、控制電磁爐主回路開關導通和斷開的控制信號、斜坡信號的波形圖。 12B is a waveform diagram showing a control circuit lower valley sampling pulse signal, a resonance voltage, a control signal for controlling the on/off of the induction cooker main circuit switch, and a ramp signal according to the first embodiment of the present invention.

第13圖示出了根據本發明第二實施例對電磁爐主回路開關上的諧振電壓的波峰和波谷進行控制的控制電路。 Figure 13 is a diagram showing a control circuit for controlling the peaks and troughs of the resonance voltage on the main circuit switch of the induction cooker in accordance with the second embodiment of the present invention.

第14A圖示出了不加控制時的諧振電壓波峰包絡、在根據本發明第二實施例的控制電路進行控制時的諧振電壓波峰包絡、當諧振波峰電壓大於第一參考電壓時生成的脈衝信號的波形圖。 FIG. 14A is a diagram showing a resonance voltage peak envelope when uncontrolled, a resonance voltage peak envelope when the control circuit according to the second embodiment of the present invention performs control, and a pulse signal generated when the resonance peak voltage is greater than the first reference voltage. Waveform.

第14B圖示出了不加控制時的諧振電壓波谷包絡、在根據本發明第二實施例的控制電路進行控制時的諧振電壓波谷包絡、當諧振波谷電壓大於第二參考電壓時生成的脈衝信號的波形圖。 FIG. 14B is a diagram showing a resonance voltage valley envelope when uncontrolled, a resonance voltage valley envelope when the control circuit according to the second embodiment of the present invention performs control, and a pulse signal generated when the resonance valley voltage is greater than the second reference voltage. Waveform.

下面將結合具體的實施例來對本發明進行詳細的描述。本領域技術人員應該理解,本發明所示的實施例只是示例性的,並不作為對本發明的限制。本領域技術人員應該理解,上述電路可以應用於任何可以應用的場合而不僅限於對電磁爐的功率進行控制。下面,為了描述簡便而將 該功率控制電路應用於電磁爐的功率控制。 The invention will now be described in detail in connection with the specific embodiments. Those skilled in the art should understand that the embodiments of the present invention are only exemplary and not intended to limit the invention. Those skilled in the art will appreciate that the above described circuitry can be applied to any application where applicable and is not limited to controlling the power of the induction cooker. Below, for the sake of simplicity The power control circuit is applied to the power control of the induction cooker.

第6圖中示出了電磁爐系統控制電路的原理圖。該示圖僅是示例,其不應當不當地限制申請專利範圍的範疇。本領域的技術人員在該示圖的基礎上將可進行適應性地變化、替代和修改。 A schematic diagram of the control circuit of the induction cooker system is shown in Fig. 6. This illustration is only an example and should not unduly limit the scope of the claimed patent. Those skilled in the art will be able to adapt, adapt, and modify in accordance with the drawings.

輸入電流Iin是從電網端流入電磁爐系統的電流,當電磁爐主回路上的第一開關W導通時,有輸入電流Iin流入電磁爐系統;當第一開關W斷開時,輸入電流Iin將停止流入電磁爐系統。如第6圖所示,將電流檢測電阻Rs與第一開關W串聯連接以連接到主回路中對輸入電流Iin的大小進行檢測。因為電壓是電阻值和電流的乘積,所以電流檢測電阻Rs上的電壓Vcs也就反映了輸入電流Iin的大小。 The input current I in is the current flowing from the grid end into the induction cooker system. When the first switch W on the main circuit of the induction cooker is turned on, the input current I in flows into the induction cooker system; when the first switch W is turned off, the input current I in will be Stop flowing into the induction cooker system. As shown in FIG. 6, the current detection resistor Rs connected with the first switch in series W to be connected to the main circuit of the magnitude of the input current I in is detected. Since the voltage is the product of the resistance value and the current, the voltage Vcs on the current detecting resistor R s also reflects the magnitude of the input current I in .

如第6圖所示,電磁爐系統控制電路包括第一控制單元610、第二控制單元620和邏輯控制單元630。其中,邏輯控制單元630根據第一控制單元610和第二控制單元620分別輸出的控制信號,輸出用於控制電磁爐主回路上開關W導通和斷開的控制信號gate。 As shown in FIG. 6, the induction cooker system control circuit includes a first control unit 610, a second control unit 620, and a logic control unit 630. The logic control unit 630 outputs a control signal gate for controlling the on and off of the switch W on the main circuit of the induction cooker according to the control signals respectively output by the first control unit 610 and the second control unit 620.

第一控制單元610接收與電磁爐的設定功率相應的參考電壓Vref以及與電磁爐主回路上的電流大小相應的電壓信號(例如,電流檢測電阻Rs上的電壓Vcs),對與這些信號的電壓差相應的電流進行積分,然後將獲得的電壓與斜坡信號ramp的電壓進行比較以向邏輯控制單元630輸出用於控制第一開關W斷開的第一控制信號off,其中,第一控制信號off是電平信號,當第一控制信號off為高電平時,可控制電磁爐主回路上的第一開關W斷開。 The first control unit 610 receives the reference voltage Vref corresponding to the set power of the induction cooker and a voltage signal corresponding to the magnitude of the current on the main circuit of the induction cooker (for example, the voltage Vcs on the current detecting resistor Rs), corresponding to the voltage difference of the signals The current is integrated, and then the obtained voltage is compared with the voltage of the ramp signal ramp to output a first control signal off for controlling the first switch W to be turned off to the logic control unit 630, wherein the first control signal off is electric The flat signal, when the first control signal off is at a high level, can control the first switch W on the main circuit of the induction cooker to be turned off.

第二控制單元620接收在電磁爐主回路中經由並聯的電磁線圈MC與電容器C0(電磁線圈MC與電容器C0構成諧振電路)施加到第一開關W上的電壓信號Vw,並將與該信號相應的電壓與閾值電壓Vth進行比較以向邏輯控制單元630輸出用於控制第一開關W導通的第二控制信號on。其中,第二控制信號on為電平信號。當第二控制信號on為高電平時,可通過邏輯控制單元630控制第一開關W導通。 The second control unit 620 receives the voltage signal Vw applied to the first switch W via the parallel electromagnetic coil MC and the capacitor C0 (the electromagnetic coil MC and the capacitor C0 constitute a resonant circuit) in the main circuit of the induction cooker, and will correspond to the signal The voltage is compared with the threshold voltage Vth to output a second control signal on for controlling the first switch W to be turned on to the logic control unit 630. The second control signal on is a level signal. When the second control signal on is high, the first switch W can be controlled to be turned on by the logic control unit 630.

邏輯控制單元630基於分別從第一控制單元610和第二控制單元620輸出的第一控制信號off和第二控制信號on輸出用於控制第一開關 W的導通和斷開的控制信號gate。 The logic control unit 630 outputs the first control signal off and the second control signal on output from the first control unit 610 and the second control unit 620 for controlling the first switch. The control signal of the turn-on and turn-off of W.

作為示例,邏輯控制單元630是RS觸發器,第一控制單元610的輸出連接到RS觸發器的復位端,而第二控制單元620的輸出連接到RS觸發器的置位端。也就是說,第一控制信號off輸入到RS觸發器的重定端而第二控制信號on輸入到RS觸發器的置位端。RS觸發器的輸出端Q連接至第一開關W的控制端以控制第一開關W的導通和斷開。這裡,僅作為示例而不作為限制,第一開關W可以為絕緣閘雙極電晶體開關。 As an example, the logic control unit 630 is an RS flip-flop, the output of the first control unit 610 is connected to the reset terminal of the RS flip-flop, and the output of the second control unit 620 is connected to the set terminal of the RS flip-flop. That is, the first control signal off is input to the reset terminal of the RS flip-flop and the second control signal on is input to the set terminal of the RS flip-flop. The output terminal Q of the RS flip-flop is connected to the control terminal of the first switch W to control the on and off of the first switch W. Here, by way of example only and not limitation, the first switch W may be an insulated gate bipolar transistor switch.

第7圖中示出了第一控制單元610的示意性結構圖。 A schematic structural diagram of the first control unit 610 is shown in FIG.

作為示例,如第7圖所示,第一控制單元610包括差分積分電路710、第一比較器720和斜坡信號發生模組730。差分積分電路710包括運算跨導放大器gm和電容器C1。根據本發明示例性實施例,將與電磁爐的設定功率相應的參考電壓Vref與反映電磁爐主回路的電流大小的電壓信號(例如電流檢測電阻Rs上的電壓Vcs,下文中為了描述簡便,用電壓Vcs作為示例進行描述)輸入到差分積分電路710以對與這兩個電壓信號的電壓差相應的電流進行積分。其中,與設定功率相應的參考電壓Vref輸入到運算跨導放大器gm的正相輸入端,而電壓Vcs輸入到運算跨導放大器gm的反相輸入端以根據這兩個輸入信號之間的電壓差來調節輸出電流的大小。運算跨導放大器gm的輸出端連接到電容器C1,從而利用電容器C1對通過運算跨導放大器gm輸出的與輸入到運算跨導放大器gm的兩個電壓信號的電壓差相應的電流進行積分,得到電容器C1上的電壓信號comp。另外,電容器C1的一端(也是電容器C1與運算跨導放大器gm的輸出端相連接的一端)連接到第一比較器720的反相輸入端,從而將電壓信號comp輸入到第一比較器720。 As an example, as shown in FIG. 7, the first control unit 610 includes a differential integration circuit 710, a first comparator 720, and a ramp signal generation module 730. The differential integration circuit 710 includes an operational transconductance amplifier gm and a capacitor C1. According to an exemplary embodiment of the present invention, a reference voltage Vref corresponding to the set power of the induction cooker and a voltage signal reflecting the magnitude of the current of the main circuit of the induction cooker (for example, the voltage Vcs on the current detecting resistor Rs, hereinafter for convenience of description, the voltage Vcs is used. As an example, it is input to the differential integration circuit 710 to integrate currents corresponding to the voltage differences of the two voltage signals. Wherein, the reference voltage Vref corresponding to the set power is input to the non-inverting input terminal of the operational transconductance amplifier gm, and the voltage Vcs is input to the inverting input terminal of the operational transconductance amplifier gm to be based on the voltage difference between the two input signals To adjust the size of the output current. The output terminal of the operational transconductance amplifier gm is connected to the capacitor C1, so that the current corresponding to the voltage difference between the two voltage signals input to the operational transconductance amplifier gm output by the operational transconductance amplifier gm is integrated by the capacitor C1 to obtain a capacitor. The voltage signal comp on C1. Further, one end of the capacitor C1 (which is also the end at which the capacitor C1 is connected to the output terminal of the operational transconductance amplifier gm) is connected to the inverting input terminal of the first comparator 720, thereby inputting the voltage signal comp to the first comparator 720.

第一比較器720的正相輸入端輸入由斜坡信號發生模組730產生的斜坡信號ramp,從而將斜坡信號ramp的電壓與電壓信號comp的電壓進行比較以向邏輯控制單元630輸出第一控制信號off。當斜坡信號ramp的電壓高於電壓信號comp的電壓時,從第一比較器720輸出(也即從第一控制單元610輸出)的第一控制信號off變為高電平,從而使得從邏輯控制單元630輸出的控制信號gate變為低電平,因此電磁爐主回路上的第一開關W斷開。 The non-inverting input terminal of the first comparator 720 inputs the ramp signal ramp generated by the ramp signal generating module 730, thereby comparing the voltage of the ramp signal ramp with the voltage of the voltage signal comp to output the first control signal to the logic control unit 630. Off. When the voltage of the ramp signal ramp is higher than the voltage of the voltage signal comp, the first control signal off output from the first comparator 720 (ie, output from the first control unit 610) becomes a high level, thereby causing slave logic control The control signal gate outputted by the unit 630 becomes a low level, so the first switch W on the main circuit of the induction cooker is turned off.

斜坡信號發生模組730可包括電容器C2、電流源、第二開關 W1和諧振電壓控制模組。諧振電壓控制模組用於根據諧振的電壓值,提供用於對電容器C2進行充電的補償電流。斜坡信號ramp與控制信號gate同步變化。當第一開關W導通時,也即控制信號gate輸出高電平時,第二開關W1斷開,電流源輸出的恆定電流i與諧振電壓控制模組輸出的補償電流一併對電容器C2充電,斜坡信號ramp的電壓逐漸上升;當第一開關W斷開時,也即控制信號gate輸出低電平時,第二開關W1導通,通過第二開關W1對電容器C2快速放電,斜坡信號ramp的電壓急劇下降為0。 The ramp signal generation module 730 can include a capacitor C2, a current source, and a second switch. W1 and resonant voltage control module. The resonant voltage control module is configured to provide a compensation current for charging capacitor C2 based on the resonant voltage value. The ramp signal ramp is synchronized with the control signal gate. When the first switch W is turned on, that is, when the control signal gate outputs a high level, the second switch W1 is turned off, and the constant current i outputted by the current source and the compensation current output by the resonant voltage control module charge the capacitor C2, the slope The voltage of the signal ramp is gradually increased; when the first switch W is turned off, that is, when the control signal gate outputs a low level, the second switch W1 is turned on, the capacitor C2 is quickly discharged through the second switch W1, and the voltage of the ramp signal ramp is sharply decreased. Is 0.

第8圖中示出了第二控制單元620的示意性結構圖。 A schematic structural view of the second control unit 620 is shown in FIG.

作為示例,第二控制單元620包括第二比較器、電容器C3、第一電阻器R1、第二電阻器R2和第三電阻R3。其中,第二電阻器R2一端輸入施加到第一開關W上的電壓信號Vw,另一端連接至第三電阻R3與由電容器C3和第一電阻器R1所形成的串聯電路構成的並聯電路。第一電阻器R1與電容器C3相連接的節點連接到第二比較器的反相輸入端,第二比較器的正相輸入端輸入閾值電壓Vth。第二比較器的輸出端連接至邏輯控制單元630以將從其輸出的第二控制信號on輸入到邏輯控制單元630。這裡,電壓信號Vw經過第二電阻器R2分壓後的電壓,經過電容器C3微分後產生代表諧振電壓(第一開關W斷開後的電壓信號Vw)斜率的電流,該電流流過第一電阻器R1產生電壓,因而,該流過第一電阻器R1產生的電壓同樣代表了諧振電壓的斜率。該電壓與閾值電壓Vth一起送入第二比較器,當該電壓小於閾值電壓Vth時,代表諧振到了或接近波谷,第二比較器輸出的第二控制信號on變為高電平,使得邏輯控制單元630上輸出的控制信號gate變為高電平,從而使電磁爐主回路上的第一開關W導通。 As an example, the second control unit 620 includes a second comparator, a capacitor C3, a first resistor R1, a second resistor R2, and a third resistor R3. The second resistor R2 has a voltage signal Vw applied to the first switch W at one end and a parallel circuit composed of a series circuit formed by the capacitor C3 and the first resistor R1 at the other end. A node to which the first resistor R1 is connected to the capacitor C3 is connected to the inverting input terminal of the second comparator, and a non-inverting input terminal of the second comparator inputs the threshold voltage Vth. The output of the second comparator is connected to the logic control unit 630 to input a second control signal on which it is output, to the logic control unit 630. Here, the voltage of the voltage signal Vw divided by the second resistor R2 is differentiated by the capacitor C3 to generate a current representing the slope of the resonance voltage (the voltage signal Vw after the first switch W is turned off), and the current flows through the first resistor. R1 generates a voltage, and thus the voltage generated by the first resistor R1 also represents the slope of the resonant voltage. The voltage is supplied to the second comparator together with the threshold voltage Vth. When the voltage is less than the threshold voltage Vth, it represents resonance to or near the valley, and the second control signal on of the second comparator is turned to a high level, so that the logic control The control signal gate outputted on unit 630 goes high, thereby turning on the first switch W on the main circuit of the induction cooker.

根據本發明示例性實施例,在第一開關W斷開之後,由電磁線圈MC和電容器C0構成的諧振電路產生諧振,第二控制單元620將反映施加到第一開關W上的電壓信號的變化速率的電壓(例如,第一電阻器R1上的電壓)與閾值電壓Vth進行比較,當該電壓小於閾值電壓Vth時,則表示諧振到了或接近波谷,第二控制單元620輸出的第二控制信號on變為高電平,從而使得邏輯控制單元630輸出的控制信號gate變為高電平,因此第一開關W導通。 According to an exemplary embodiment of the present invention, after the first switch W is turned off, the resonance circuit composed of the electromagnetic coil MC and the capacitor C0 generates resonance, and the second control unit 620 reflects the change of the voltage signal applied to the first switch W. The voltage of the rate (for example, the voltage on the first resistor R1) is compared with the threshold voltage Vth. When the voltage is less than the threshold voltage Vth, it indicates that the resonance is at or near the valley, and the second control signal output by the second control unit 620 On becomes a high level, so that the control signal gate output from the logic control unit 630 becomes a high level, and thus the first switch W is turned on.

從前述的公式(4)、公式(6)可見,第一開關W的諧振電壓的波峰和波谷是導通時間Ton的函數,具體而言,諧振電壓的波峰和波谷隨導通時間Ton的增加分別增大和減小。當第一開關W的諧振電壓波峰超過第一參考電壓時,增大斜坡信號ramp的斜率,使斜坡信號ramp的電壓超過電壓信號comp的電壓所需的導通時間Ton縮短,從而減小第一開關W上的諧振電壓波峰;當第一開關W的諧振電壓的波谷超過第二參考電壓時,減小斜坡信號ramp的斜率,使斜坡信號ramp的電壓超過電壓信號comp的電壓所需的導通時間Ton延長,從而減小第一開關W上的諧振電壓的波谷。 It can be seen from the above formulas (4) and (6) that the peaks and troughs of the resonant voltage of the first switch W are a function of the on-time Ton. Specifically, the peaks and troughs of the resonant voltage increase with the increase of the on-time Ton. Big and small. When the resonance voltage peak of the first switch W exceeds the first reference voltage, the slope of the ramp signal ramp is increased, and the on-time Ton required for the voltage of the ramp signal ramp to exceed the voltage of the voltage signal comp is shortened, thereby reducing the first switch The resonant voltage peak on W; when the valley of the resonant voltage of the first switch W exceeds the second reference voltage, the slope of the ramp signal ramp is decreased, and the voltage required for the voltage of the ramp signal ramp exceeds the voltage of the voltage signal comp Extending, thereby reducing the valley of the resonant voltage on the first switch W.

第9圖示出了根據本發明示例性實施例對電磁爐主回路上的第一開關W的諧振電壓波峰進行控制前後的波形圖對比。若不加入諧振電壓的波峰控制,第一開關W上諧振電壓的波峰包絡隨經整流後的輸入電壓Vin的變化而呈現為正弦波;當輸入電壓Vin處於波峰時,諧振電壓也將處於諧振電壓波峰包絡的波峰位置,此時諧振電壓將會超過預先設定的第一參考電壓。當加入波峰電壓控制後,若諧振電壓的波峰超過第一參考電壓,將會通過增大斜坡信號ramp的斜率而減小導通時間Ton,使諧振電壓的波峰被保持於第一參考電壓。 Fig. 9 is a view showing waveform comparison before and after control of the resonance voltage peak of the first switch W on the main circuit of the induction cooker according to an exemplary embodiment of the present invention. If the peak control of the resonant voltage is not added, the peak envelope of the resonant voltage on the first switch W appears as a sine wave with the change of the rectified input voltage Vin; when the input voltage Vin is at the peak, the resonant voltage will also be at the resonant voltage. The peak position of the peak envelope, at which point the resonant voltage will exceed the preset first reference voltage. When the peak voltage control is added, if the peak of the resonant voltage exceeds the first reference voltage, the on-time Ton is decreased by increasing the slope of the ramp signal ramp, so that the peak of the resonant voltage is maintained at the first reference voltage.

第10圖示出了根據本發明示例性實施例對電磁爐主回路上的第一開關W的諧振電壓波谷進行控制前後的波形圖對比。若不對諧振電壓的波谷進行控制,第一開關W上諧振電壓的波谷隨輸入電壓Vin的變化而呈現為正弦波;當輸入電壓Vin處於波峰時,諧振電壓也將處於諧振電壓波谷包絡的波峰位置,此時的諧振電壓將會超過第二參考電壓。當加入波谷電壓控制後,若諧振電壓的波谷超過第二參考電壓,將會通過減小斜坡信號ramp的斜率而延長導通時間Ton,使得諧振電壓的波谷控制於第二參考電壓。 Fig. 10 is a view showing waveform comparison before and after control of the resonance voltage trough of the first switch W on the main circuit of the induction cooker according to an exemplary embodiment of the present invention. If the valley of the resonant voltage is not controlled, the valley of the resonant voltage on the first switch W appears as a sine wave with the change of the input voltage Vin; when the input voltage Vin is at the peak, the resonant voltage will also be at the peak position of the envelope of the resonant voltage valley. At this time, the resonant voltage will exceed the second reference voltage. When the valley voltage control is added, if the valley of the resonance voltage exceeds the second reference voltage, the on-time Ton is extended by decreasing the slope of the ramp signal ramp so that the valley of the resonance voltage is controlled to the second reference voltage.

由於在進行諧振電壓的控制時,電磁爐系統需保持預先設定的功率,因此電磁爐中的電路系統會自動調節,使諧振的波峰電壓和波谷電壓分別保持於第一參考電壓和第二參考電壓附近的時間,相比較於未進行諧振電壓控制的條件下諧振電壓的波峰和波谷分別超過第一參考電壓和第二參考電壓的時間要更長。反映到波形圖上,可以直觀地看到,在加入 諧振電壓控制後,諧振波峰電壓和波谷電壓分別將更快地上升到第一參考電壓和第二參考電壓,並且分別從第一參考電壓和第二參考電壓下降的速度也將更快。 Since the induction cooker system needs to maintain a preset power when the resonance voltage is controlled, the circuit system in the induction cooker is automatically adjusted so that the resonance peak voltage and the valley voltage are maintained near the first reference voltage and the second reference voltage, respectively. The time is longer than the peaks and troughs of the resonant voltage exceeding the first reference voltage and the second reference voltage, respectively, under the condition that the resonance voltage control is not performed. Reflected on the waveform, you can visually see that you are joining After the resonant voltage is controlled, the resonant peak voltage and the valley voltage will rise to the first reference voltage and the second reference voltage, respectively, and the speed of falling from the first reference voltage and the second reference voltage, respectively, will also be faster.

第11圖是根據本發明示例性實施例的第6圖中諧振電壓控制模組的一種具體實現電路。本領域技術人員應該理解,第11圖所示的電路結構僅是示例,其不應當不當地限制申請專利範圍的範疇。本領域的技術人員在實施例的基礎上將可進行適應性地變化、替代和修改。 Figure 11 is a specific implementation circuit of the resonant voltage control module of Figure 6 in accordance with an exemplary embodiment of the present invention. It should be understood by those skilled in the art that the circuit configuration shown in FIG. 11 is merely an example, and should not unduly limit the scope of the patent application. Those skilled in the art will be able to adapt, adapt, and modify the invention on the basis of the embodiments.

該諧振電壓控制模組包含諧振波峰控制部分和諧振波谷控制部分;諧振波峰控制部分中各信號的波形如第12A圖所示,諧振波谷控制部分中各信號的波形如第12B圖所示。 The resonant voltage control module includes a resonant peak control portion and a resonant valley control portion; the waveform of each signal in the resonant peak control portion is as shown in FIG. 12A, and the waveform of each signal in the resonant valley control portion is as shown in FIG. 12B.

諧振波峰控制部分中,第三開關K1的一端輸入電磁爐主回路上的開關電壓信號Vw,第三開關K1另一端與第四電容器C4相連,第四電容器C4的另一端接地。作為示例,第四電容器C4的電容值可為10pF。第三開關K1與第四電容器C4相連的一端,與第一跟隨器電路的正相輸入端相連。第三開關K1受波峰採樣信號控制而導通或斷開,波峰採樣信號為一脈衝信號,如第12A圖所示,當電壓信號Vw在每個週期內處於電壓信號Vw的波峰位置時,該波峰採樣信號為高電平,第三開關K1導通。當第三開關K1導通時,第四電容器C4與第三開關K1相連的一端為諧振電壓信號Vw的波峰電壓Vs1的瞬時值;當第三開關K1斷開,第四電容器C4上仍保持該波峰電壓Vs1,並輸入第一跟隨器電路的正相輸入端。第一跟隨器電路的輸出端與其反相輸入端相連,並連接至一個由第四電阻R4和第五電容器C5構成的RC積分電路,其中第四電阻R4與第五電容器C5相連接的節點與第一電壓控制電流源vccs1的正相輸入端相連。第五電容器C5上的電壓Vc1輸入第一電壓控制電流源vccs1的正相輸入端。第一參考電壓ref1輸入第一電壓控制電流源vccs1的反相輸入端,第一電壓控制電流源vccs1生成與電壓Vc1與第一參考電壓ref1之間的電壓差值成正比例的第一補償電流i1,第一補償電流i1與電流源輸出的恆定電流i相加之後,對電容器C2充電生成斜坡信號ramp。 In the resonance peak control section, one end of the third switch K1 is input to the switching voltage signal Vw on the main circuit of the induction cooker, the other end of the third switch K1 is connected to the fourth capacitor C4, and the other end of the fourth capacitor C4 is grounded. As an example, the capacitance value of the fourth capacitor C4 may be 10 pF. One end of the third switch K1 connected to the fourth capacitor C4 is connected to the non-inverting input terminal of the first follower circuit. The third switch K1 is turned on or off under the control of the peak sampling signal, and the peak sampling signal is a pulse signal. As shown in FIG. 12A, when the voltage signal Vw is at the peak position of the voltage signal Vw in each period, the peak The sampling signal is at a high level, and the third switch K1 is turned on. When the third switch K1 is turned on, one end of the fourth capacitor C4 connected to the third switch K1 is an instantaneous value of the peak voltage Vs1 of the resonant voltage signal Vw; when the third switch K1 is turned off, the peak is still maintained on the fourth capacitor C4. The voltage Vs1 is input to the non-inverting input of the first follower circuit. The output end of the first follower circuit is connected to its inverting input terminal, and is connected to an RC integrating circuit composed of a fourth resistor R4 and a fifth capacitor C5, wherein the node connecting the fourth resistor R4 and the fifth capacitor C5 is The non-inverting input of the first voltage controlled current source vccs1 is connected. The voltage Vc1 on the fifth capacitor C5 is input to the non-inverting input terminal of the first voltage control current source vccs1. The first reference voltage ref1 is input to the inverting input terminal of the first voltage control current source vccs1, and the first voltage control current source vccs1 generates a first compensation current i1 that is proportional to the voltage difference between the voltage Vc1 and the first reference voltage ref1. After the first compensation current i1 is added to the constant current i output from the current source, the capacitor C2 is charged to generate a ramp signal ramp.

作為另一示例,在上述諧振波峰控制部分中,也可以不需要該第一跟隨器電路,其餘部分的電路不變。即,第三開關K1與第四電容器 C4相連的一端,直接與第四電阻R4和第五電容器C5組成的RC積分電路相連,第五電容器C5上的電壓Vc1輸入第一電壓控制電流源vccs1的正相輸入端。 As another example, in the above-described resonance peak control portion, the first follower circuit may not be required, and the remaining portions of the circuit are unchanged. That is, the third switch K1 and the fourth capacitor One end connected to C4 is directly connected to the RC integration circuit composed of the fourth resistor R4 and the fifth capacitor C5, and the voltage Vc1 on the fifth capacitor C5 is input to the non-inverting input terminal of the first voltage control current source vccs1.

在諧振波谷控制部分中,第四開關K2的一端輸入電磁爐主回路上的開關電壓信號Vw,另一端與第六電容器C6相連,第六電容器C6的另一端接地。作為示例,第六電容器C6的電容值可為10pF。第四開關K2與第六電容器C6相連的一端,與第二跟隨器電路的正相輸入端相連。第四開關K2受波谷採樣信號控制而導通或斷開,波谷採樣信號為一脈衝信號,如第12B圖所示,當控制電磁爐主回路的第一開關W的控制信號gate的低電平在每個週期內接近於結束時,該波谷採樣信號為高電平,第四開關K2導通。當第四開關K2導通時,第六電容器C6與第四開關K2相連的一端為諧振電壓信號Vw的波谷電壓Vs2;當第四開關K2斷開,第六電容器C6上仍保持該波谷電壓Vs2,並輸入第二跟隨器電路的正相輸入端。第二跟隨器電路的輸出端與其反相輸入端相連,並連接至由第五電阻R5和第七電容器C7構成的RC積分電路,其中第五電阻R5與第七電容器C7相連接的節點與第二電壓控制電流源vccs2的正相輸入端相連。第七電容器C7上的電壓Vc2輸入第二電壓控制電流源vccs2的正相輸入端。第二參考電壓ref2輸入第二電壓控制電流源vccs2的反相輸入端,第二電壓控制電流源vccs2生成與電壓Vc2與第二參考電壓ref2之間的電壓差值成正比例的第二補償電流i2,第二補償電流i2與電流源輸出的恆定電流i相減之後,對電容器C2充電生成斜坡信號ramp。 In the resonance valley control portion, one end of the fourth switch K2 is input to the switching voltage signal Vw on the main circuit of the induction cooker, the other end is connected to the sixth capacitor C6, and the other end of the sixth capacitor C6 is grounded. As an example, the capacitance value of the sixth capacitor C6 may be 10 pF. One end of the fourth switch K2 connected to the sixth capacitor C6 is connected to the non-inverting input terminal of the second follower circuit. The fourth switch K2 is controlled to be turned on or off by the valley sampling signal, and the valley sampling signal is a pulse signal. As shown in FIG. 12B, when the control signal gate of the first switch W of the main circuit of the induction cooker is controlled, the low level is When the period is close to the end, the valley sampling signal is at a high level, and the fourth switch K2 is turned on. When the fourth switch K2 is turned on, one end of the sixth capacitor C6 connected to the fourth switch K2 is the valley voltage Vs2 of the resonant voltage signal Vw; when the fourth switch K2 is turned off, the valley voltage Vs2 is still maintained on the sixth capacitor C6, And input to the non-inverting input of the second follower circuit. The output of the second follower circuit is connected to its inverting input terminal, and is connected to an RC integrating circuit composed of a fifth resistor R5 and a seventh capacitor C7, wherein the node and the fifth resistor R5 are connected to the seventh capacitor C7. The positive phase input of the two voltage controlled current source vccs2 is connected. The voltage Vc2 on the seventh capacitor C7 is input to the non-inverting input of the second voltage controlled current source vccs2. The second reference voltage ref2 is input to the inverting input terminal of the second voltage control current source vccs2, and the second voltage control current source vccs2 generates a second compensation current i2 proportional to the voltage difference between the voltage Vc2 and the second reference voltage ref2 After the second compensation current i2 is subtracted from the constant current i output by the current source, the capacitor C2 is charged to generate a ramp signal ramp.

在上述諧振波峰控制部分中,也可以不需要該第二跟隨器電路,其餘部分的電路不變。即,第五開關K3與第六電容器C6相連的一端,直接與第五電阻R5和第七電容器C7組成的RC積分電路相連,第七電容器C7上的電壓Vc2輸入第二電壓控制電流源vccs2的正相輸入端。 In the above-described resonance peak control section, the second follower circuit may not be required, and the rest of the circuits are unchanged. That is, one end of the fifth switch K3 connected to the sixth capacitor C6 is directly connected to the RC integration circuit composed of the fifth resistor R5 and the seventh capacitor C7, and the voltage Vc2 on the seventh capacitor C7 is input to the second voltage control current source vccs2. Positive phase input.

該第一實施例中,通過閉環的方法調節斜坡信號ramp的斜率,從而將諧振電壓的波峰和波谷分別控制在第一參考電壓ref1和第二參考電壓ref2附近。其中諧振波峰和波谷控制部分中RC積分電路參數的選取,以及通過第一、第二電壓控制電流源vccs1、vccs2產生第一、第二補償電流i1、i2的比例選取將會影響到最終的波峰電壓和波谷電壓的控制效果。 In the first embodiment, the slope of the ramp signal ramp is adjusted by a closed loop method to control the peaks and valleys of the resonance voltage in the vicinity of the first reference voltage ref1 and the second reference voltage ref2, respectively. The selection of the parameters of the RC integration circuit in the resonance peak and valley control sections, and the ratio of the first and second compensation currents i1 and i2 generated by the first and second voltage control current sources vccs1 and vccs2 will affect the final peak. Control of voltage and valley voltage.

第13圖是根據本發明第二實施例的第6圖中諧振電壓控制模組的一種具體實現電路。本領域技術人員應該理解,第13圖所示的電路結構僅是示例,其不應當不當地限制申請專利範圍的範疇。本領域的技術人員在該實施例的基礎上可進行適應性的變化、替代和修改。 Figure 13 is a specific implementation circuit of the resonant voltage control module of Figure 6 in accordance with the second embodiment of the present invention. It should be understood by those skilled in the art that the circuit structure shown in FIG. 13 is only an example, and should not unduly limit the scope of the patent application. Adaptable variations, substitutions, and modifications can be made by those skilled in the art based on this embodiment.

該第二實施例中的控制電路包含諧振波峰控制部分和諧振波谷控制部分;諧振波峰控制部分中各信號的波形如第14A圖所示,諧振波谷控制部分中各信號的波形如第14B圖所示。 The control circuit in the second embodiment includes a resonance peak control portion and a resonance valley control portion; the waveform of each signal in the resonance peak control portion is as shown in FIG. 14A, and the waveform of each signal in the resonance valley control portion is as shown in FIG. 14B. Show.

在諧振波峰控制部分中,第五開關K3的一端輸入電磁爐主回路上的開關電壓信號Vw,另一端與第八電容器C8相連,第八電容器C8的另一端接地。作為示例,第八電容器C8的電容值可為10pF。第五開關K3與第八電容器C8相連的一端,與第三比較器的正相輸入端相連。第五開關K3受波峰採樣信號控制而導通或斷開,與第一實施例相同,該波峰採樣信號為一脈衝信號,當電壓信號Vw在每個週期內處於波峰位置時,該波峰採樣信號為高電平,第五開關K3導通。當第五開關K3導通時,第八電容器C8與第五開關K3相連的一端為諧振電壓信號Vw的波峰電壓Vs1的瞬時值;當第五開關K3斷開時,第八電容器C8上仍保持該波峰電壓Vs1,並輸入第三比較器的正相輸入端。第一參考電壓ref1輸入第三比較器的反相輸入端。當波峰電壓Vs1大於第一參考電壓ref1時,第三比較器輸出一高電平的脈衝信號Ts1,輸入電壓Vin通過第六開關K4輸入第九電容器C9,第九電容器C9的另一端接地。作為示例,第九電容器C9的電容值可為10pF。該脈衝信號Ts1控制該第六開關K4的導通和斷開。當該脈衝信號Ts1為高電平時,第六開關K4導通,第九電容器C9上的電壓(也即第九電容器C9與第六開關K4相連的一端的電壓)為輸入電壓Vin的電壓V1瞬時值;當第六開關K4斷開,第九電容器C9上仍保持該電壓V1,並輸入第三電壓控制電流源vccs3的反相輸入端。該輸入電壓Vin輸入第三電壓控制電流源vccs3的正相輸入端。第三電壓控制電流源vccs3生成與輸入電壓Vin與電壓V1之間的差值成正比例的第一補償電流i1,第一補償電流i1與電流源輸出的恆定電流i相加之後,對電容器C2充電生成斜坡信號ramp。 In the resonance peak control section, one end of the fifth switch K3 is input to the switching voltage signal Vw on the main circuit of the induction cooker, the other end is connected to the eighth capacitor C8, and the other end of the eighth capacitor C8 is grounded. As an example, the capacitance value of the eighth capacitor C8 may be 10 pF. One end of the fifth switch K3 connected to the eighth capacitor C8 is connected to the non-inverting input terminal of the third comparator. The fifth switch K3 is turned on or off under the control of the peak sampling signal. As in the first embodiment, the peak sampling signal is a pulse signal. When the voltage signal Vw is at a peak position in each period, the peak sampling signal is High level, the fifth switch K3 is turned on. When the fifth switch K3 is turned on, one end of the eighth capacitor C8 connected to the fifth switch K3 is an instantaneous value of the peak voltage Vs1 of the resonant voltage signal Vw; when the fifth switch K3 is turned off, the eighth capacitor C8 remains The peak voltage Vs1 is input to the non-inverting input of the third comparator. The first reference voltage ref1 is input to the inverting input of the third comparator. When the peak voltage Vs1 is greater than the first reference voltage ref1, the third comparator outputs a high-level pulse signal Ts1, the input voltage Vin is input to the ninth capacitor C9 through the sixth switch K4, and the other end of the ninth capacitor C9 is grounded. As an example, the capacitance value of the ninth capacitor C9 may be 10 pF. The pulse signal Ts1 controls the on and off of the sixth switch K4. When the pulse signal Ts1 is at a high level, the sixth switch K4 is turned on, and the voltage on the ninth capacitor C9 (that is, the voltage at the end of the ninth capacitor C9 and the sixth switch K4) is the instantaneous value of the voltage V1 of the input voltage Vin. When the sixth switch K4 is turned off, the voltage V1 is still held on the ninth capacitor C9, and is input to the inverting input terminal of the third voltage control current source vccs3. The input voltage Vin is input to the non-inverting input of the third voltage controlled current source vccs3. The third voltage control current source vccs3 generates a first compensation current i1 that is proportional to the difference between the input voltage Vin and the voltage V1. After the first compensation current i1 is added to the constant current i output by the current source, the capacitor C2 is charged. A ramp signal ramp is generated.

在諧振波谷控制部分中,第七開關K5的一端輸入電磁爐主 回路上的第一開關W的電壓信號Vw,另一端與第十電容器C10相連,第十電容器C10的另一端接地。作為示例,第十電容器C10的電容值可為10pF。第七開關K5與第十電容器C10相連的一端,與第四比較器的正相輸入端相連。第七開關K5受波谷採樣信號控制而導通或斷開,與第一實施例相同,該波谷採樣信號為一脈衝信號,當控制電磁爐主回路的第一開關W的控制信號gate的低電平在每個週期內接近於結束時,該波谷採樣信號為高電平,第七開關K5導通。當第七開關K5導通時,第十電容器C10與第七開關K5相連的一端為諧振電壓信號Vw的波谷電壓Vs2;當第七開關K5斷開時,第十電容器C10上仍保持該波谷電壓Vs2,並輸入第四比較器的正相輸入端。第二參考電壓ref2輸入第四比較器的反相輸入端。當波谷電壓Vs2大於第二參考電壓ref2時,第四比較器輸出一高電平的脈衝信號Ts2。輸入電壓Vin通過第八開關K6與第十一電容器C11相連,第十一電容器C11的另一端接地。作為示例,第十一電容器C11的電容值可為10pF。該脈衝信號Ts2控制該第八開關K6的導通和斷開。當該脈衝信號Ts2為高電平時,第八開關K6導通,第十一電容器C11與第八開關K6相連的一端為輸入電壓V2的瞬時值;當第八開關K6斷開,第十一電容器C11上仍保持該電壓V2,並輸入第四電壓控制電流源vccs4的反相輸入端。輸入電壓Vin輸入第四電壓控制電流源vccs4的正相輸入端。第四電壓控制電流源vccs4生成與輸入電壓Vin與電壓V2之間的差值成正比例的第二補償電流i2,第二補償電流i2與電流源輸出的恆定電流i相減之後,對電容器C2充電生成斜坡信號ramp。 In the resonant valley control section, one end of the seventh switch K5 is input to the induction cooker The voltage signal Vw of the first switch W on the loop is connected to the tenth capacitor C10 at the other end, and the other end of the tenth capacitor C10 is grounded. As an example, the capacitance value of the tenth capacitor C10 may be 10 pF. One end of the seventh switch K5 connected to the tenth capacitor C10 is connected to the non-inverting input terminal of the fourth comparator. The seventh switch K5 is turned on or off under the control of the valley sampling signal. As in the first embodiment, the valley sampling signal is a pulse signal, and when the control signal gate of the first switch W of the main circuit of the induction cooker is controlled, the low level is When the cycle is near the end, the valley sampling signal is at a high level, and the seventh switch K5 is turned on. When the seventh switch K5 is turned on, one end of the tenth capacitor C10 connected to the seventh switch K5 is the valley voltage Vs2 of the resonant voltage signal Vw; when the seventh switch K5 is turned off, the valley voltage Vs2 is maintained on the tenth capacitor C10. And input the positive phase input of the fourth comparator. The second reference voltage ref2 is input to the inverting input of the fourth comparator. When the valley voltage Vs2 is greater than the second reference voltage ref2, the fourth comparator outputs a high-level pulse signal Ts2. The input voltage Vin is connected to the eleventh capacitor C11 through the eighth switch K6, and the other end of the eleventh capacitor C11 is grounded. As an example, the capacitance value of the eleventh capacitor C11 may be 10 pF. The pulse signal Ts2 controls the on and off of the eighth switch K6. When the pulse signal Ts2 is at a high level, the eighth switch K6 is turned on, and the end of the eleventh capacitor C11 connected to the eighth switch K6 is an instantaneous value of the input voltage V2; when the eighth switch K6 is turned off, the eleventh capacitor C11 The voltage V2 is still maintained and is input to the inverting input of the fourth voltage control current source vccs4. The input voltage Vin is input to the non-inverting input of the fourth voltage controlled current source vccs4. The fourth voltage control current source vccs4 generates a second compensation current i2 proportional to the difference between the input voltage Vin and the voltage V2, and after the second compensation current i2 is subtracted from the constant current i output from the current source, the capacitor C2 is charged. A ramp signal ramp is generated.

若不加控制時的諧振電壓的波峰越高,加入波峰控制時,諧振電壓的波峰被「削平」得越多,為了保證電磁爐的功率不發生改變,反映到「削平」後的諧振電壓的波形圖上,波峰電壓Vs1上升到第一參考電壓ref1的時間將更短。基於上述原因,若不加控制時的諧振電壓的波峰越高,當加入波峰控制時,波峰電壓Vs1超過第一參考電壓ref1時的時刻,即脈衝信號Ts1為高電平的時刻,對應於輸入電壓Vin的相位角越小。由於在相位角越小時,電壓變化越快,因此相位角越小,疊加到恆定電流i上的第一補償電流i1越大,導通時間Ton減小得越多;基於相同的原因,若不加控制時的諧振電壓的波谷越高,諧振電壓的波谷超過第二參考電壓ref2的時刻的 相位角就會越小,與恆定電流i相減的第二補償電流i2越大,導通時間Ton增加得越多。 If the peak of the resonance voltage is not controlled, the more the peak of the resonance voltage is "flattened" when the peak control is added, the waveform of the resonance voltage after "flattening" is reflected in order to ensure that the power of the induction cooker does not change. In the figure, the time when the peak voltage Vs1 rises to the first reference voltage ref1 will be shorter. For the above reasons, if the peak of the resonance voltage is not controlled, the time when the peak voltage Vs1 exceeds the first reference voltage ref1 when the peak control is added, that is, the timing at which the pulse signal Ts1 is at the high level corresponds to the input. The phase angle of the voltage Vin is smaller. Since the voltage change is faster as the phase angle is smaller, the smaller the phase angle is, the larger the first compensation current i1 superimposed on the constant current i is, and the more the on-time Ton is decreased; for the same reason, if not The higher the valley of the resonant voltage at the time of control, the time when the valley of the resonant voltage exceeds the second reference voltage ref2 The smaller the phase angle, the larger the second compensation current i2 which is subtracted from the constant current i, and the more the on-time Ton increases.

因此,第二實施例的控制電路下,電流補償量的大小與不加入補償條件下諧振電壓的波峰和波谷的高低是相關的。輸入第三、第四電壓控制電流源vccs3、vccs4的兩個電壓的差值與產生第一、第二補償電流i1、i2的比例,將影響到諧振電壓的控制效果。 Therefore, under the control circuit of the second embodiment, the magnitude of the current compensation amount is related to the level of the peaks and troughs of the resonance voltage without the addition of the compensation condition. The ratio of the difference between the two voltages input to the third and fourth voltage control current sources vccs3, vccs4 and the ratio of the first and second compensation currents i1, i2 will affect the control effect of the resonance voltage.

本領域技術人員應該理解,第11圖和第13圖所示的諧振控制模組包括諧振峰值控制部分和諧振谷底控制部分只是示例,諧振峰值控制部分和諧振谷底控制部分是相對獨立的電路,本發明可以只包括諧振峰值控制部分或者諧振谷底控制部分。 It should be understood by those skilled in the art that the resonance control module shown in FIGS. 11 and 13 includes a resonance peak control portion and a resonance valley control portion as examples, and the resonance peak control portion and the resonance valley control portion are relatively independent circuits. The invention may include only the resonance peak control portion or the resonance valley control portion.

上述兩種實施例中的控制電路,可適用於不同功率等級的電磁爐,實現在全電壓輸入範圍內諧振電壓的波峰和/或波谷的控制。在實踐中,上述的第一實施例和第二實施例的適用環境有所區別;在對諧振電壓的波峰和波谷最大值的精度要求比較高,且能提供較大濾波RC時間常數的條件下,可以採用第一實施例的方式進行諧振電壓的控制;在對諧振電壓的波峰和波谷最大值的精度要求不高,且無法提供較大濾波RC時間常數的情況下,可以採用第二實施例的方式進行諧振電壓的控制。 The control circuit in the above two embodiments can be applied to induction cookers of different power levels to realize the control of the peaks and/or troughs of the resonant voltage in the full voltage input range. In practice, the applicable environments of the first embodiment and the second embodiment described above are different; under the condition that the accuracy of the peak and valley maximum of the resonant voltage is relatively high, and a large filter RC time constant can be provided. The resonance voltage can be controlled in the manner of the first embodiment; in the case where the accuracy of the peak and valley maximum of the resonance voltage is not high, and the larger filter RC time constant cannot be provided, the second embodiment can be employed. The way to control the resonant voltage.

本發明的技術方案適用於不同功率等級的電磁爐系統,可在不影響電磁爐輸出功率的前提下,有效的控制諧振電壓的波峰,避免電磁爐主回路上的開關因為過壓而損壞,同時還可以控制諧振電壓的波谷,減小主回路上開關的開通損耗,避免電磁爐的開關炸機。 The technical scheme of the invention is applicable to the induction cooker system of different power levels, can effectively control the peak of the resonance voltage without affecting the output power of the induction cooker, and avoid the damage of the switch on the main circuit of the induction cooker due to overpressure, and can also be controlled The valley of the resonant voltage reduces the turn-on loss of the switch on the main circuit and avoids the switching fan of the induction cooker.

以上描述了本發明的優選實施例,但是,該實施例僅是示例性的,而不是要限制本發明的範圍,本發明的範圍由所附申請專利範圍及其等同物限定。此外,儘管已經詳細描述了本發明及其優勢,但應該理解,可以在不脫離所附申請專利範圍限定的本發明主旨和範圍的情況下,進行各種不同的改變、替換和更改;而且,本發明的範圍並不僅限於本說明書中描述的系統、方法和步驟的實施例。作為本發明普通技術人員應理解,通過本發明,現有的或今後開發的用於執行和根據本發明所採用的技術方案基本相同的方式或獲得基本相同結果的方法和步驟根據本發明可以被使 用。 The preferred embodiments of the present invention are described above, but the scope of the present invention is defined by the scope of the appended claims. In addition, the present invention and its advantages are described in detail, and it is to be understood that various changes, substitutions and changes can be made without departing from the spirit and scope of the invention. The scope of the invention is not limited to the embodiments of the systems, methods and steps described in the specification. It will be understood by those of ordinary skill in the art that, by the present invention, existing or future developed methods and steps for performing substantially the same or substantially the same results as those employed in accordance with the present invention may be made in accordance with the present invention. use.

Claims (5)

一種控制電路,包括:斜坡信號發生器,通過包括在該斜坡信號發生器中的諧振波峰控制電路對電磁爐主回路開關的諧振波峰電壓進行採樣,並利用採樣得到的該諧振波峰電壓生成第一補償電流,並且通過將該諧振波峰控制電路生成的該第一補償電流與恆定電流相加利用電容器生成斜坡信號;差分積分電路,將與第一參考電壓和第一電壓信號的電壓之間的電壓差相應的電流進行積分獲得第二電壓信號,其中,該第一電壓信號與電磁爐主回路上的電流大小相應;比較器,將作為斜坡信號的第三電壓信號的電壓與該第二電壓信號的電壓進行比較以輸出第一控制信號以便於控制該電磁爐主回路開關;諧振波谷控制電路,對該電磁爐主回路開關的諧振波谷電壓進行採樣,利用採樣得到的該諧振波谷電壓生成第二補償電流,其中,所述斜坡信號發生器通過將該諧振波谷控制電路生成的該第二補償電流與該恆定電流相減利用該電容器生成該斜坡信號;在該諧振波峰控制電路中,將採樣得到的該諧振波峰電壓與第四參考電壓相比較來生成第一脈衝信號,利用該第一脈衝信號對經整流的輸入電壓進行採樣,並將該經整流的輸入電壓和採樣得到的該輸入電壓分別輸入到第三電壓控制電流源的正相輸入端和反相輸入端以生成該第一補償電流;在該諧振波谷控制電路中,將採樣得到的該諧振波谷電壓與第五參考電壓相比較來生成第二脈衝信號,利用該第二脈衝信號對該經整流的輸入電壓進行採樣,並將該經整流的輸入電壓和採樣得到的該輸入電壓分別輸入到第四電壓控制電流源的正相輸入端和反相輸入端以生成該第二補償電流。 A control circuit includes: a ramp signal generator, sampling a resonance peak voltage of an induction cooker main circuit switch by a resonance peak control circuit included in the slope signal generator, and generating a first compensation by using the sampled resonance peak voltage And generating a ramp signal by using the capacitor by adding the first compensation current generated by the resonance peak control circuit to the constant current; and a differential integration circuit to compare a voltage difference between the first reference voltage and the voltage of the first voltage signal Integrating a corresponding current to obtain a second voltage signal, wherein the first voltage signal corresponds to a magnitude of a current on a main circuit of the induction cooker; and a comparator, a voltage of the third voltage signal as a ramp signal and a voltage of the second voltage signal Comparing to output a first control signal to control the main circuit switch of the induction cooker; a resonant valley control circuit, sampling a resonant valley voltage of the main circuit switch of the induction cooker, and generating a second compensation current by using the sampled resonant valley voltage, wherein The ramp signal generator passes The second compensation current generated by the resonant valley control circuit is subtracted from the constant current to generate the ramp signal by using the capacitor; in the resonant peak control circuit, the sampled resonant peak voltage is compared with a fourth reference voltage to generate a first pulse signal, the rectified input voltage is sampled by the first pulse signal, and the rectified input voltage and the sampled input voltage are respectively input to a positive phase input terminal of the third voltage control current source and Inverting an input terminal to generate the first compensation current; in the resonant valley control circuit, comparing the sampled resonant valley voltage with a fifth reference voltage to generate a second pulse signal, using the second pulse signal The rectified input voltage is sampled, and the rectified input voltage and the sampled input voltage are input to a non-inverting input terminal and an inverting input terminal of a fourth voltage-controlled current source, respectively, to generate the second compensation current. 如申請專利範圍第1項所述的控制電路,其中,在該諧振波峰控制電路中,通過第一RC積分電路將採樣得到的該諧振波峰電壓輸入第一電壓控制電流源的正相輸入端,並將第二參考電壓輸入該第一電壓控制電流源的反相輸入端以生成該第一補償電流。 The control circuit of claim 1, wherein in the resonant peak control circuit, the sampled resonant peak voltage is input to a positive phase input terminal of the first voltage controlled current source by a first RC integrating circuit, And inputting a second reference voltage to the inverting input of the first voltage control current source to generate the first compensation current. 如申請專利範圍第2項所述的控制電路,其中,在該諧振波谷控制電路中,通過第二RC積分電路將採樣得到的該諧振波谷電壓輸入第二電壓控制電流源的正相輸入端,並將第三參考電壓輸入該第二電壓控制電流源的反相輸入端以生成該第二補償電流。 The control circuit of claim 2, wherein in the resonant valley control circuit, the sampled resonant valley voltage is input to a positive phase input terminal of the second voltage control current source by a second RC integration circuit, And inputting a third reference voltage to the inverting input of the second voltage control current source to generate the second compensation current. 如申請專利範圍第3項所述的控制電路,其中,在該諧振波峰控制電路和該諧振波谷控制電路中,分別利用電壓跟隨器電路將採樣得到的電壓輸入至該第一RC積分電路和該第二RC積分電路。 The control circuit of claim 3, wherein in the resonance peak control circuit and the resonant valley control circuit, the sampled voltage is input to the first RC integration circuit and the voltage follower circuit, respectively The second RC integration circuit. 一種控制方法,包括:對電磁爐主回路開關的諧振波峰電壓進行採樣,並利用採樣得到的該諧振波峰電壓生成第一補償電流,並且通過將生成的該第一補償電流與恆定電流相加,生成斜坡信號;將與第一參考電壓和第一電壓信號的電壓之間的電壓差相應的電流進行積分獲得第二電壓信號,其中,該第一電壓信號與電磁爐主回路上的電流大小相應;將作為斜坡信號的第三電壓信號的電壓與該第二電壓信號的電壓進行比較以輸出第一控制信號以便於控制電磁爐主回路開關;對該電磁爐主回路開關的諧振波谷電壓進行採樣,利用採樣得到的該諧振波谷電壓生成第二補償電流,並通過將生成的該第二補償電流與該恆定電流相減,生成該斜坡信號;將採樣得到的該諧振波峰電壓與第四參考電壓相比較來生成第一脈衝信號,利用該第一脈衝信號對經整流的輸入電壓進行採樣,並將該經整流的輸入電壓和採樣得到的該輸入電壓分別輸入到第三電壓控制電流源的正相輸入端和反相輸入端以生成該第一補償電流;將採樣得到的該諧振波谷電壓與第五參考電壓相比較來生成第二脈衝信號,利用該第二脈衝信號對該經整流的輸入電壓進行採樣,並將該經整流的輸入電壓和採樣得到的該輸入電壓分別輸入到第四電壓控制電流源的正相輸入端和反相輸入端以生成該第二補償電流。 A control method includes: sampling a resonance peak voltage of an electromagnetic circuit main circuit switch, and generating a first compensation current by using the sampled resonance peak voltage, and generating the first compensation current and the constant current to generate a ramp signal; integrating a current corresponding to a voltage difference between the first reference voltage and a voltage of the first voltage signal to obtain a second voltage signal, wherein the first voltage signal corresponds to a current magnitude on a main circuit of the induction cooker; The voltage of the third voltage signal as the ramp signal is compared with the voltage of the second voltage signal to output a first control signal for controlling the main circuit switch of the induction cooker; sampling the resonant valley voltage of the main circuit switch of the induction cooker, using sampling The resonant valley voltage generates a second compensation current, and generates the ramp signal by subtracting the generated second compensation current from the constant current; and comparing the sampled resonant peak voltage with the fourth reference voltage to generate a first pulse signal using the first pulse signal to the rectified input Sampling, and inputting the rectified input voltage and the sampled input voltage to the non-inverting input terminal and the inverting input terminal of the third voltage-controlled current source respectively to generate the first compensation current; The resonant valley voltage is compared with a fifth reference voltage to generate a second pulse signal, the rectified input voltage is sampled by the second pulse signal, and the rectified input voltage and the sampled input voltage are respectively The positive phase input terminal and the inverting input terminal of the fourth voltage controlled current source are input to generate the second compensation current.
TW105125850A 2015-03-16 2015-05-15 Induction cooker and control circuit and control method therefor TWI639361B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510114575.0A CN104703312B (en) 2015-03-16 2015-03-16 For the control circuit of electromagnetic oven and control method and electromagnetic oven thereof
??201510114575.0 2015-03-16

Publications (2)

Publication Number Publication Date
TW201711512A TW201711512A (en) 2017-03-16
TWI639361B true TWI639361B (en) 2018-10-21

Family

ID=53349978

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105125850A TWI639361B (en) 2015-03-16 2015-05-15 Induction cooker and control circuit and control method therefor
TW104115605A TWI640224B (en) 2015-03-16 2015-05-15 Induction cooker and control circuit and control method therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104115605A TWI640224B (en) 2015-03-16 2015-05-15 Induction cooker and control circuit and control method therefor

Country Status (2)

Country Link
CN (1) CN104703312B (en)
TW (2) TWI639361B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106714354A (en) * 2015-11-13 2017-05-24 比亚迪股份有限公司 Electromagnetic heating device and control method thereof
CN105465847A (en) * 2016-01-13 2016-04-06 昂宝电子(上海)有限公司 Analog control system for electromagnetic oven and electromagnetic oven
CN108731043B (en) * 2017-04-25 2019-09-20 佛山市顺德区美的电热电器制造有限公司 The method for heating and controlling and device of electromagnetic oven
CN109870616B (en) * 2017-12-05 2021-04-27 佛山市顺德区美的电热电器制造有限公司 Peak value taking circuit, control circuit, cooking utensil and method for judging type of cookware
CN112394243A (en) * 2019-08-19 2021-02-23 广东美的白色家电技术创新中心有限公司 Detection module and electrical equipment
CN112272423B (en) * 2020-09-18 2023-02-21 深圳市鑫汇科股份有限公司 Electromagnetic induction heating control method, electromagnetic heating device, and storage medium
CN117498658B (en) * 2023-12-29 2024-03-22 晶艺半导体有限公司 Ramp signal generating circuit and generating method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004234A (en) * 1975-06-23 1977-01-18 Owens-Illinois, Inc. Article presence sensor
TW200702968A (en) * 2005-07-12 2007-01-16 Holtek Semiconductor Inc Architecture and method of power-controlling circuit applicable to electronic cooker
US7663352B2 (en) * 2007-08-27 2010-02-16 System General Corp. Control circuit for measuring and regulating output current of CCM power converter
CN101217251B (en) * 2008-01-04 2010-06-02 华中科技大学 A monocycle feedforward switch control circuit
CN102195492B (en) * 2011-05-24 2014-04-16 成都芯源系统有限公司 Synchronous rectification switching power supply and control circuit and control method thereof
CN103023463B (en) * 2012-11-27 2016-01-13 华为技术有限公司 A kind of ramp signal generative circuit and ramp signal generator
TWI470914B (en) * 2012-12-20 2015-01-21 Macroblock Inc An output current control circuit for a power converter
US9312772B2 (en) * 2013-01-16 2016-04-12 Intersil Americas LLC Current limiting scheme for a converter

Also Published As

Publication number Publication date
CN104703312A (en) 2015-06-10
TW201711512A (en) 2017-03-16
TWI640224B (en) 2018-11-01
CN104703312B (en) 2017-01-04
TW201635852A (en) 2016-10-01

Similar Documents

Publication Publication Date Title
TWI639361B (en) Induction cooker and control circuit and control method therefor
US9455623B2 (en) Power factor correction circuit and method
TWI527493B (en) Inductor current detection circuit and the application of its LED driver circuit
CN102656787B (en) Switching power supply circuit and power factor controller
EP2393189A2 (en) Integrated on-time extension for non-dissipative bleeding in a power supply
TWI558272B (en) Induction Cooker and control circuit and control method
TWI639360B (en) Control circuit and control method for over-current protection of
JP2015179679A (en) controller and power supply
CN106332338B (en) Electromagnetic heating system and driving device and method thereof
TWI596991B (en) A bridgeless circuit and induction cooker for induction cooktops
TWI499183B (en) Power factor correction circuit of power converter
JP5867476B2 (en) Current resonance type power supply
CN107957514B (en) Zero-crossing detection device and method and electric appliance
CN103166486B (en) A controller for a switched mode power converter, a switched mode power converter and method of controlling the same
CN110582136A (en) Dimmable LED drive circuit and control method
TWI650042B (en) Induction cooker, control circuit and control method thereof
CN110099469B (en) Electromagnetic induction heating device and protection control circuit thereof
JP5365656B2 (en) Induction heating apparatus and image forming apparatus provided with the induction heating apparatus
TWI584694B (en) Control systems and induction cookers to induction cookers
WO2018227422A1 (en) Switch-mode power supply and soft-start circuit thereof
TWI822227B (en) High efficiency boost power factor correction circuit having shared pin and conversion control circuit thereof
KR101880369B1 (en) the method of following resonance frequency
TW201724715A (en) AC-DC converter and power factor correction circuit thereof
JP6230454B2 (en) Harmonic suppression power supply and control circuit thereof
JP2014099326A (en) Inverter circuit