TWI639178B - Plasma assisted atomic layer deposition apparatus - Google Patents
Plasma assisted atomic layer deposition apparatus Download PDFInfo
- Publication number
- TWI639178B TWI639178B TW106103641A TW106103641A TWI639178B TW I639178 B TWI639178 B TW I639178B TW 106103641 A TW106103641 A TW 106103641A TW 106103641 A TW106103641 A TW 106103641A TW I639178 B TWI639178 B TW I639178B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode plate
- atomic layer
- impedance matching
- layer coating
- reaction chamber
- Prior art date
Links
- 238000000231 atomic layer deposition Methods 0.000 title description 10
- 230000005540 biological transmission Effects 0.000 claims abstract description 54
- 238000000576 coating method Methods 0.000 claims abstract description 38
- 239000011248 coating agent Substances 0.000 claims abstract description 35
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 238000013022 venting Methods 0.000 claims description 6
- 239000012671 ceramic insulating material Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- 238000009826 distribution Methods 0.000 abstract description 14
- 239000002243 precursor Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 14
- 239000010408 film Substances 0.000 description 11
- 230000005684 electric field Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
本發明提供一種電漿輔助原子層鍍膜裝置,主要包含反應腔體,複數條進料管路,真空幫浦與射頻模組。其中該反應腔體包含一電極板與一加熱板;該射頻模組主要包含一射頻功率源,一阻抗匹配器,複數條阻抗匹配傳輸線所組成。藉由調整該些阻抗匹配傳輸線連接在該反應腔體內之該電極板的數量與位置,該射頻模組可快速提供低反射的超高頻功率至該電極板,並可以在大面積的電極板上得到穩定且均勻的電磁波分布。 The invention provides a plasma assisted atomic layer coating device, which mainly comprises a reaction cavity, a plurality of feed lines, a vacuum pump and an RF module. The reaction cavity comprises an electrode plate and a heating plate; the RF module mainly comprises an RF power source, an impedance matching device and a plurality of impedance matching transmission lines. By adjusting the number and position of the electrode plates connected to the impedance matching transmission line in the reaction chamber, the RF module can quickly provide low reflection UHF power to the electrode plate and can be used in a large area electrode plate. A stable and uniform electromagnetic wave distribution is obtained.
Description
本發明大致上係有關於一種原子層鍍膜裝置,更具體來說是具有阻抗匹配之超高頻電漿輔助原子層鍍膜裝置。 The present invention relates generally to an atomic layer coating apparatus, and more particularly to an ultra-high frequency plasma assisted atomic layer coating apparatus having impedance matching.
原子層沉積技術是利用製程氣體與材料表面進行化學吸附作用,由於反應僅在表面發生反應,具自我侷限(Self-limited)特性,使得每次的成長循環,僅會在表面形成一層原子的薄膜,可控制膜厚度達原子級(0.1奈米),是現存所有鍍膜方法中,可成長最高品質薄膜的鍍膜技術 Atomic layer deposition technology uses the process gas to chemically adsorb the surface of the material. Since the reaction only reacts on the surface, it has self-limited characteristics, so that each time the growth cycle, only a layer of atomic film is formed on the surface. It can control the film thickness up to the atomic level (0.1 nm), which is the coating technology for the highest quality film in all existing coating methods.
原子層沉積技術可進行超薄高介電(High-k)材料鍍膜外,亦可針對微小的電路結構提供孔洞填補能力,在具有高深寬比的動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)電容結構與微機電元件中提供厚度均勻的鍍膜;在元件封裝上,具有高緻密性的原子層沉積技術漸漸被導入有激發光二極體(Organic Light-Emitting Diode,OLED)元件的封裝。 Atomic layer deposition technology can be used for ultra-thin high-k material coating, and can also provide hole filling capability for small circuit structures in dynamic random access memory (Dynamic Random Access Memory) with high aspect ratio. DRAM) provides a uniform thickness coating in the capacitor structure and MEMS components; on the component package, the atomic layer deposition technique with high density is gradually introduced into the package of the Organic Light-Emitting Diode (OLED) component.
原子層沉積技術的最大缺點為沉積速度慢,批次式設備與電漿輔助原子層沉積可以改善原子層沉積製程產率的問題。電漿輔助原子層沉積設備是利用電漿所產生的原子自由基以及其他處於激態的原子和分子(如氫原子、氧原子、氮原子)來強化傳統的原子層沉積製程,可在低溫下進行沉積,且可多元選用的前驅物,但其電漿損傷是一待解決的問題。 The biggest disadvantage of atomic layer deposition technology is the slow deposition rate. Batch equipment and plasma-assisted atomic layer deposition can improve the productivity of atomic layer deposition process. Plasma-assisted atomic layer deposition equipment utilizes atomic radicals generated by plasma and other atoms and molecules in the excitatory state (such as hydrogen atoms, oxygen atoms, nitrogen atoms) to strengthen the traditional atomic layer deposition process, which can be used at low temperatures. Depositing, and multiple choice of precursors, but its plasma damage is a problem to be solved.
在電漿增強型化學式氣相沈積製程中,電漿係藉由射頻功率所激發,而電漿中的射頻頻率的提升可以增加鍍膜速率並減少轟擊造成的電漿損傷。當欲鍍膜之基板面積增大時,在其上傳遞之射頻電磁波將會因相位變化造成電場之變動,相對地也影響了電漿的均勻性及後續鍍膜之品質。 尤其是在今日顯示器廠與太陽能廠,其所使用之腔體面積多為一平方公尺以上,射頻電磁波在腔體的不穩定將會嚴重影響元件量產之品質。 In the plasma enhanced chemical vapor deposition process, the plasma is excited by RF power, and the increase in RF frequency in the plasma can increase the coating rate and reduce the plasma damage caused by bombardment. When the area of the substrate to be coated is increased, the radio frequency electromagnetic wave transmitted thereon will cause the electric field to change due to the phase change, and relatively affect the uniformity of the plasma and the quality of the subsequent coating. Especially in today's display factories and solar plants, the cavity area used is more than one square meter, and the instability of radio frequency electromagnetic waves in the cavity will seriously affect the mass production of components.
參照美國專利中6,228,438號,標題為應用於大面積基板的電漿反應器(Plasma reactor for the treatment of large size substrates),其揭示一種透鏡型電極板。其電極板表面係以高斯橢圓函數分佈以匹配電場分佈,產生一均勻電漿,然而該案中所揭示之設備並無法運用在直立電極式腔體以縮小設備所佔面積。有鑑於在薄膜太陽能電池鍍膜製程中,常需以直立式腔體以提高單次生產基板片數,降低製程成本,因此需提出一種直立結構裝置以達到降低成本並沈積均勻厚度薄膜之目標。 Reference is made to U.S. Patent No. 6,228,438, entitled,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The surface of the electrode plate is distributed by a Gaussian elliptic function to match the electric field distribution to produce a uniform plasma. However, the device disclosed in this case cannot be used in an upright electrode cavity to reduce the area occupied by the device. In view of the thin film solar cell coating process, it is often necessary to use a vertical cavity to increase the number of single-production substrates and reduce the process cost. Therefore, an upright structural device is required to achieve the goal of reducing cost and depositing a uniform thickness film.
另參照美國專利中7,141,516號,標題為具有高頻電漿產生器及其產生方法(High frequency plasma generator and high frequency plasma generating method),其揭示一種採用梯型電極的電漿輔助氣相沈積系統。該梯型電極係採用以一對多方式對管狀電極進行線性相位匹配以達到一大面積均勻分佈之電場,藉以產生均勻分布之電漿。然而該電極板需採用相位調整器(phase shifter)以及多組阻抗調整器以達到其效果。 Further, reference is made to U.S. Patent No. 7,141,516, entitled,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The ladder electrode adopts a linear phase matching of the tubular electrodes in a one-to-many manner to achieve an electric field uniformly distributed over a large area, thereby generating a uniformly distributed plasma. However, the electrode plate requires a phase shifter and a plurality of sets of impedance adjusters to achieve the effect.
為了解決上述問題,有需要提供一種電漿輔助原子層鍍膜設備,能在超高頻下產生均勻性電漿,以克服先前技術的缺點。 In order to solve the above problems, there is a need to provide a plasma-assisted atomic layer coating apparatus capable of producing a uniform plasma at an ultra-high frequency to overcome the disadvantages of the prior art.
本發明之主要目的在於提出一種超高頻電漿輔助原子層鍍膜設備,可快速提供超高頻功率至反應腔體內之電極板,減少功率的反射,並可以在大面積的電極板上得到均勻的電磁波分布。 The main object of the present invention is to provide an ultra-high frequency plasma-assisted atomic layer coating device which can quickly provide ultra-high frequency power to an electrode plate in a reaction chamber, reduce power reflection, and can be uniformly obtained on a large-area electrode plate. The electromagnetic wave distribution.
為達本發明之本發明目的,本發明提供一種電漿輔助原子層鍍膜裝置,用於化學氣相沈積系統,其包含:一反應腔體,具有複數個進氣孔及複數個出氣孔,該反應腔體內設置有一電極板與一加熱板,且該反應腔體之外表面係接地;複數個進料管路,連接於該複數個進氣孔;真空幫浦,具有複數個抽氣管路,連接於複數個出氣孔;一射頻模組,設置於該反應腔體外部,用以提供一超高頻功率至該反應腔體。其中該射頻模組包含一射頻功率源,用以提供該超高頻功率;一阻抗匹配器,電性連接於該射頻功率源,用於調整該反應腔體的電漿阻抗;複數條阻抗匹配傳輸線,電性連接於該阻抗匹配器與該電極板之間。該些阻抗匹配傳輸線之一阻抗,介於1到50歐姆之間,該些阻抗匹配傳輸線的數目是2的次冪數,對稱分配連接在該電極板的面積上,以均勻分配該超高頻功率至該電極板上。 In order to achieve the object of the present invention, the present invention provides a plasma assisted atomic layer coating apparatus for a chemical vapor deposition system, comprising: a reaction chamber having a plurality of gas inlet holes and a plurality of gas outlet holes, An electrode plate and a heating plate are disposed in the reaction chamber, and the outer surface of the reaction chamber is grounded; a plurality of feed lines are connected to the plurality of air inlet holes; and the vacuum pump has a plurality of air suction lines. Connected to a plurality of air outlets; an RF module disposed outside the reaction chamber for providing an ultra-high frequency power to the reaction chamber. The RF module includes an RF power source for providing the UHF power; an impedance matching device electrically connected to the RF power source for adjusting the plasma impedance of the reaction chamber; and a plurality of impedance matching The transmission line is electrically connected between the impedance matching device and the electrode plate. The impedance of one of the impedance matching transmission lines is between 1 and 50 ohms, and the number of the impedance matching transmission lines is a power of 2, and the symmetric distribution is connected to the area of the electrode plate to evenly distribute the ultra high frequency. Power is applied to the electrode plate.
根據本發明之一特徵,該些阻抗匹配傳輸線與該阻抗匹配器之間更包含一功率分配傳輸線,且該些阻抗匹配傳輸線之阻抗係小於該功率分配傳輸線之阻抗。 According to a feature of the invention, the impedance matching transmission line and the impedance matching unit further comprise a power distribution transmission line, and the impedance matching transmission line impedance is smaller than the impedance of the power distribution transmission line.
根據本發明之一特徵,該射頻模組所提供之該超高頻功率 之頻率係介於20至90MHz之間。 According to one feature of the present invention, the ultra high frequency power provided by the radio frequency module The frequency is between 20 and 90 MHz.
根據本發明之一特徵,該些阻抗匹配傳輸線之外表批覆一 層陶瓷絕緣材料。 According to a feature of the present invention, the impedance matching transmission lines are overwritten Layer ceramic insulation.
本發明之一種電漿輔助原子層鍍膜裝置具有以下之功效: The plasma assisted atomic layer coating device of the invention has the following effects:
1.針對不同頻率的射頻功率,可以改變傳輸線數量的方式對應,藉此達到降低功率反射的功效,提供穩定的功率至反應腔體,進而提升每次沈積循環的沈積厚度。 1. For different frequency RF power, the number of transmission lines can be changed accordingly, thereby achieving the effect of reducing power reflection, providing stable power to the reaction cavity, thereby increasing the deposition thickness of each deposition cycle.
2.以複數個阻抗匹配傳輸線之輸入路徑改變電極板上電場強度,藉此改變電漿之分布,達到大面積的均勻電漿分布形式,並提升沈積薄膜的均勻度。 2. The electric field strength of the electrode plate is changed by the input path of the plurality of impedance matching transmission lines, thereby changing the distribution of the plasma, achieving a uniform plasma distribution pattern of a large area, and improving the uniformity of the deposited film.
為讓本發明之目的、特徵和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the objects, features and advantages of the present invention more comprehensible, the following detailed description of the preferred embodiments and the accompanying drawings.
100‧‧‧電漿輔助原子層鍍膜裝置 100‧‧‧ Plasma Auxiliary Atomic Layer Coating Device
110‧‧‧反應腔體 110‧‧‧Reaction chamber
111‧‧‧接地 111‧‧‧ Grounding
112‧‧‧電極板 112‧‧‧electrode plate
114‧‧‧加熱板 114‧‧‧heating plate
121,122‧‧‧進料管路 121,122‧‧‧feed line
123,124‧‧‧進氣孔 123,124‧‧‧Air intake
125‧‧‧抽氣管路 125‧‧‧Exhaust line
126‧‧‧出氣孔 126‧‧‧ Vents
131‧‧‧真空幫浦 131‧‧‧vacuum pump
141‧‧‧射頻模組 141‧‧‧RF Module
143‧‧‧射頻功率源 143‧‧‧RF power source
144‧‧‧阻抗匹配器 144‧‧‧impedance matcher
145‧‧‧接地 145‧‧‧ Grounding
146‧‧‧阻抗匹配傳輸線 146‧‧‧ impedance matching transmission line
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。雖然本發明可表現為不同形式之實施例,但附圖所示者及於下文中說明者係為本發明可之較佳實施例,並請了解本文所揭示者係考量為本發明之一範例,且並非意圖用以將本發明限制於圖示及/或所描述之特定實施例中。 The above and other objects, features, and advantages of the present invention will become more apparent and understood. While the invention may be embodied in various forms, the embodiments illustrated in the drawings It is not intended to limit the invention to the particular embodiments illustrated and/or described.
第1圖:本發明之電漿輔助原子層鍍膜裝置之示意圖。 Figure 1 is a schematic view of a plasma assisted atomic layer coating apparatus of the present invention.
第2a圖:阻抗匹配傳輸線與電極板關係的一實施例態樣的上視示意圖。 Figure 2a is a top plan view of an embodiment of an impedance matching transmission line to an electrode plate.
第2b圖:阻抗匹配傳輸線與電極板關係的另一實施例態樣的上視示意圖。 Figure 2b is a top plan view of another embodiment of an impedance matching transmission line to an electrode plate.
第2c圖:阻抗匹配傳輸線與電極板關係的又一實施例態樣的上視示意圖。 Figure 2c is a top plan view of another embodiment of an impedance matching transmission line to an electrode plate.
本發明將由協同附圖之下列詳盡描述而更為全面瞭解。現將描述某些例示性實施例以提供本文所揭示之裝置及方法之結構、功能、製造及使用原理的全面瞭解。此等實施例之一個或多個實施例於附圖中加以繪示。熟習此項技術者將瞭解,本文所特定描述且在附圖中繪示之裝置及方法係非限制性例示性實施例,且本發明之範疇僅由申請專利範圍加以界定。結合一例示性實施例繪示或描述之特徵可與其他實施例之諸特徵進行結合。此等修飾及變動將包括於本發明之範疇內。 The invention will be more fully understood from the following detailed description of the drawings. Certain illustrative embodiments are now described to provide a comprehensive understanding of the structure, function, One or more embodiments of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will recognize that the devices and methods that are specifically described herein and illustrated in the drawings are non-limiting exemplary embodiments, and the scope of the invention is defined only by the scope of the claims. Features illustrated or described in connection with an exemplary embodiment may be combined with features of other embodiments. Such modifications and variations are intended to be included within the scope of the invention.
雖然本發明可表現為不同形式之實施例,但附圖所示者及於下文中說明者係為本發明之較佳實施例,並請瞭解本文所揭示者係考量為本發明之一範例,且並非意圖用以將本發明限制於圖示及/或所描述之特定實施例中。 The present invention may be embodied in a different form of embodiment, and the following description of the invention is intended to be a preferred embodiment of the invention. It is not intended to limit the invention to the particular embodiments illustrated and/or described.
典型的原子層鍍膜成膜機制大致分成四個步驟: The typical atomic layer coating film formation mechanism is roughly divided into four steps:
步驟一:於一第一時間區內,將前驅物A注入並吸附於基材之表面,所注入前驅物和基材表面產生反應。此反應具有自我限制(self-limiting)之特性,多餘的前驅物並不會再吸附於已經吸附的前驅物分子上面。 Step 1: In a first time zone, the precursor A is injected and adsorbed on the surface of the substrate, and the injected precursor reacts with the surface of the substrate. This reaction is self-limiting and the excess precursor is no longer adsorbed onto the adsorbed precursor molecules.
步驟二:於一第二時間區內,清除多餘未反應之前驅物及反應後之副產物。該步驟是藉由注入惰性氣體,例如氮氣或氬氣,及該真空幫浦抽氣,將未反應之前驅物以及副產物帶離該反應腔體。 Step 2: In the second time zone, remove excess unreacted precursors and by-products after the reaction. In this step, unreacted precursors and by-products are carried away from the reaction chamber by injecting an inert gas such as nitrogen or argon, and pumping the vacuum pump.
步驟三:於一第三時間區內,將前驅物B注入並吸附於基材之表面,以形成一新鍵結的化合物。 Step 3: In a third time zone, the precursor B is injected and adsorbed on the surface of the substrate to form a newly bonded compound.
步驟四:於一第四時間區內,清除多餘未反應之前驅物B及反應後之副產物。該步驟同樣是藉由注入惰性氣體,例如氮氣或氬氣,及該真 空幫浦抽氣,將未反應之前驅物B以及副產物帶離該反應腔體。 Step 4: In the fourth time zone, the excess unreacted precursor B and the by-products after the reaction are removed. This step is also performed by injecting an inert gas such as nitrogen or argon, and the true The empty pump draws air, and the unreacted precursor B and by-products are carried away from the reaction chamber.
通常這樣四個步驟即完成一次循環,每次循環完成接近一個原子等級厚度的成膜。要增加成膜的厚度,就要繼續上述的四個步驟的循環。 Usually, the four steps are completed in one cycle, and each cycle completes film formation with a thickness close to one atomic level. To increase the thickness of the film, it is necessary to continue the cycle of the above four steps.
由於原子層鍍膜成長的化學特性,並不是所有的材料都適合用原子層鍍膜成長。因此,藉由電漿輔助方式,可以成長一些傳統加熱式原子層鍍膜成長無法成長之薄膜材料。 Due to the chemical nature of atomic layer coating growth, not all materials are suitable for growth with atomic layer coating. Therefore, by means of the plasma-assisted method, it is possible to grow a thin film material which cannot be grown by a conventional heated atomic layer coating.
本發明所揭示之電漿輔助原子層鍍膜裝置100,與傳統的原子層鍍膜方式類似,其第一種前驅物A以自我限制方式吸附在基材表面上。 然而在電漿輔助原子層鍍膜裝置製程中,第二種前驅物B注入反應腔體之後,施以電漿處理,亦即是將第二種前驅物B激發成為電漿態。 The plasma assisted atomic layer coating device 100 disclosed in the present invention is similar to the conventional atomic layer coating method in that the first precursor A is adsorbed on the surface of the substrate in a self-limiting manner. However, in the plasma assisted atomic layer coating apparatus process, after the second precursor B is injected into the reaction chamber, plasma treatment is applied, that is, the second precursor B is excited into a plasma state.
因電漿激發形成許多自由基,其自由基可幫助成膜的鍵結並形成有利於下次反應的反應表面,所以可以於更低的製程溫度下成長。因此反應並不會受到熱能不足而受到限制。因此,電漿可提供自由基增加其反應性,使成長於低溫下反應更加完全。 Since the plasma excites to form many free radicals, its free radicals can help bond the film and form a reaction surface that is favorable for the next reaction, so it can grow at a lower process temperature. Therefore, the reaction is not limited by insufficient heat. Therefore, the plasma can provide free radicals to increase its reactivity, making the reaction more complete at low temperatures.
本發明所揭示之電漿輔助原子層鍍膜裝置100適合成長金屬薄膜,可利用電漿輔助方式,使成長速率加快而不會受到初期薄膜成核而造成成長速率減少的限制。 The plasma-assisted atomic layer coating apparatus 100 disclosed in the present invention is suitable for growing a metal thin film, and can be accelerated by a plasma-assisted method so as not to be limited by the initial film nucleation and the growth rate is reduced.
現請參照第1圖,為本發明所揭示之一種電漿輔助原子層鍍膜裝置100,其包含:反應腔體110;複數個進料管路122,124;真空幫浦130;射頻模組140。 Referring to FIG. 1 , a plasma assisted atomic layer coating apparatus 100 according to the present invention includes: a reaction chamber 110; a plurality of feed lines 122, 124; a vacuum pump 130; and a radio frequency module 140. .
該反應腔體110,具有複數個進氣孔123,125及出氣孔126,該反應腔體內設置有一電極板112與一加熱板114,且該腔體之外表面係接地111。該些進料管路連接於該反應腔體110之 該些進氣孔,例如進料管路122連接於該反應腔體110之該進氣孔123,進料管路124連接於該反應腔體110之該進氣孔125。 The reaction chamber 110 has a plurality of air inlets 123, 125 and an air outlet 126. The reaction chamber is provided with an electrode plate 112 and a heating plate 114, and the outer surface of the cavity is grounded 111. The feed lines are connected to the reaction chamber 110 The intake holes, for example, the feed line 122 are connected to the intake hole 123 of the reaction chamber 110, and the feed line 124 is connected to the intake hole 125 of the reaction chamber 110.
該真空幫浦130,藉由抽氣管路126連接於該反應腔體110之出氣孔127。該真空幫浦130採用習知之真空幫浦即可實現。真空幫浦130用以在製程時,藉由抽出該反應腔體110內氣體之方式,,使得該反應腔體110內部之壓力值位於0.5至760托耳(Torr)之間。 The vacuum pump 130 is connected to the air outlet 127 of the reaction chamber 110 by an air suction line 126. The vacuum pump 130 can be realized by a conventional vacuum pump. The vacuum pump 130 is used to draw the pressure inside the reaction chamber 110 between 0.5 and 760 Torr during the process.
該射頻模組140,設置於該反應腔體110外部,用以提供一超高頻功率至該反應腔體110。該射頻模組140包含一射頻功率源142;一阻抗匹配器144;複數條阻抗匹配傳輸線146。 The RF module 140 is disposed outside the reaction chamber 110 for providing an ultra-high frequency power to the reaction chamber 110. The RF module 140 includes a RF power source 142; an impedance matcher 144; and a plurality of impedance matching transmission lines 146.
該射頻功率源142用以提供該超高頻功率,另一端係電性地接地145。該阻抗匹配器144,電性連接於該射頻功率源142,用於調整該反應腔體110的電漿阻抗。該射頻模組140之該射頻功率源142所提供之該超高頻功率之頻率係介於20至90MHz之間。較佳地,在一實施例中,該射頻模組140之該射頻功率源142所提供之該超高頻功率之頻率為40.68MHz。 The RF power source 142 is used to provide the UHF power and the other end is electrically grounded 145. The impedance matcher 144 is electrically connected to the RF power source 142 for adjusting the plasma impedance of the reaction chamber 110. The frequency of the ultra high frequency power provided by the RF power source 142 of the RF module 140 is between 20 and 90 MHz. Preferably, in an embodiment, the frequency of the UHF power provided by the RF power source 142 of the RF module 140 is 40.68 MHz.
該些阻抗匹配傳輸線146,電性連接於該阻抗匹配器144與該電極板112之間。在該些阻抗匹配傳輸線146與該阻抗匹配器144之間係藉由功率分配的形式將來自該射頻功率源142之該超高頻功率分配到該電極板112上。 The impedance matching transmission lines 146 are electrically connected between the impedance matching unit 144 and the electrode plate 112. The UHF power from the RF power source 142 is distributed to the electrode plate 112 by the power distribution between the impedance matching transmission line 146 and the impedance matcher 144.
該些阻抗匹配傳輸線146之一阻抗,介於1至50歐姆之間,較佳地,該些阻抗匹配傳輸線146之阻抗介於30到50歐姆之間。該些阻抗匹配傳輸線146之阻抗係大於該反應腔體110 的電漿阻抗。該些阻抗匹配傳輸線146最佳是使用阻抗為50歐姆之同軸纜線。 The impedance of one of the impedance matching transmission lines 146 is between 1 and 50 ohms. Preferably, the impedance of the impedance matching transmission line 146 is between 30 and 50 ohms. The impedance matching transmission line 146 has a larger impedance than the reaction cavity 110. Plasma impedance. Preferably, the impedance matching transmission lines 146 are coaxial cables having an impedance of 50 ohms.
現請參照第2圖,為本發明所揭示之阻抗匹配傳輸線與電極板之關係的上視示意圖,其中該射頻功率之頻率係為40.68MHz。該些阻抗匹配傳輸線146的數目是2的次冪數,對稱分配連接在該電極板112的面積上,以均勻分配該超高頻功率至該電極板112上。亦即是,該些阻抗匹配傳輸線146的數目是2,4,8,16,32,64,128等。該些阻抗匹配傳輸線146之數目係選自2,4,8條之一。較佳地,該些阻抗匹配傳輸線146之數目係為4條。 Referring to FIG. 2, a top view of the relationship between the impedance matching transmission line and the electrode plate disclosed in the present invention is shown, wherein the frequency of the RF power is 40.68 MHz. The number of the impedance matching transmission lines 146 is a power of two, and the symmetric distribution is connected to the area of the electrode plate 112 to evenly distribute the ultra high frequency power to the electrode plate 112. That is, the number of the impedance matching transmission lines 146 is 2, 4, 8, 16, 32, 64, 128, and the like. The number of impedance matching transmission lines 146 is selected from one of 2, 4, and 8. Preferably, the number of the impedance matching transmission lines 146 is four.
由該射頻功率源142往該些阻抗匹配傳輸線146看進去的阻抗稱之為一饋入阻抗。藉由該些阻抗匹配傳輸線146相對於與電極板112的連接位置,可以有效地調整該饋入阻抗在一適當的阻抗,可以降低該射頻功率源142與該反應腔體內部之電漿阻抗之差異,藉此使該射頻功率源142之功率達成最大傳輸效益。 The impedance seen by the RF power source 142 to the impedance matching transmission lines 146 is referred to as a feed impedance. By the impedance matching transmission line 146 relative to the connection position with the electrode plate 112, the feed impedance can be effectively adjusted at an appropriate impedance, and the plasma impedance of the RF power source 142 and the reaction chamber can be reduced. The difference is thereby such that the power of the RF power source 142 achieves maximum transmission efficiency.
現請參照第2a圖,其所示為本發明之阻抗匹配傳輸線與電極板關係的一實施例態樣的上視示意圖,於本發明之一較佳實施例中。二組該些阻抗匹配傳輸線146連接於該電極板112中心處。 Referring now to Figure 2a, there is shown a top view of an embodiment of the relationship between the impedance matching transmission line and the electrode plate of the present invention, in a preferred embodiment of the present invention. Two sets of the impedance matching transmission lines 146 are connected to the center of the electrode plate 112.
現請參照第2b圖,其所示為本發明阻抗匹配傳輸線與電極板關係的另一實施例態樣的上視示意圖,利用二組阻抗匹配傳輸線146,但與第二實施例不同的是,該兩組該些阻抗匹配傳輸線146與電極板112連接處呈對角線形式。 Referring now to FIG. 2b, there is shown a top view of another embodiment of the relationship between the impedance matching transmission line and the electrode plate of the present invention, using two sets of impedance matching transmission lines 146, but different from the second embodiment, The two sets of impedance matching transmission lines 146 and the electrode plate 112 are in a diagonal form.
現請參照第2c圖,其所示為本發明之阻抗匹配傳輸線與電極板關係的又一實施例態樣的上視示意圖,由四組阻抗匹配傳輸線146可對應越高頻率之射頻功率所具有之較短波長。 Referring now to FIG. 2c, there is shown a top view of another embodiment of the relationship between the impedance matching transmission line and the electrode plate of the present invention. The four sets of impedance matching transmission lines 146 can correspond to the higher frequency RF power. The shorter wavelength.
該些阻抗匹配傳輸線146之材質係選自:鎳、金、銀、鈦、銅、鈀、不鏽鋼、鈹銅合金、鋁、被覆鋁及其組合所構成之群組。該些阻抗匹配傳輸線146之外表更批覆一層陶瓷絕緣材料。 該層陶瓷絕緣材料之材質係選自:氧化矽、氧化鋁、氧化鋯、氧化鈦及其組合之群組。 The materials of the impedance matching transmission lines 146 are selected from the group consisting of nickel, gold, silver, titanium, copper, palladium, stainless steel, beryllium copper alloy, aluminum, coated aluminum, and combinations thereof. The impedance matching transmission lines 146 are further coated with a layer of ceramic insulating material. The material of the layer of ceramic insulating material is selected from the group consisting of cerium oxide, aluminum oxide, zirconium oxide, titanium oxide, and combinations thereof.
該電極板112具有複數個通氣穿孔,並連接至少該複數個進氣孔之一。或者是,該電極板112之下緣可以增加一擴散板113的設置,藉此增加第二前驅物B進入該反應腔體110的分散性。在該電極板112所設置的該些通氣穿孔除了協助氣體擴散,亦能能夠降低超高頻下電極板電磁波的不均勻分布。 The electrode plate 112 has a plurality of venting perforations and connects at least one of the plurality of intake holes. Alternatively, the lower edge of the electrode plate 112 may increase the arrangement of a diffusion plate 113, thereby increasing the dispersion of the second precursor B into the reaction chamber 110. The venting perforations provided in the electrode plate 112 can reduce the uneven distribution of electromagnetic waves of the electrode plates at the ultra-high frequency, in addition to assisting gas diffusion.
該電極板112之材質係選自:鎳、金、銀、鈦、銅、鈀、不鏽鋼、鈹銅合金、鋁、被覆鋁及其組合所構成之群組。為使電極板112上具有一均勻分布的射頻電場強度,該些阻抗匹配傳輸線146對稱配置於該電極板112邊緣或內部。該些阻抗匹配傳輸線146與電極板112連接處距離電極板112之中心線之距離需相等。亦即是,該些阻抗匹配傳輸線146的配置是平衡電場強度之差異,使電極板120上分布之電場強度相同。 The material of the electrode plate 112 is selected from the group consisting of nickel, gold, silver, titanium, copper, palladium, stainless steel, beryllium copper alloy, aluminum, coated aluminum, and combinations thereof. In order to have a uniformly distributed RF electric field strength on the electrode plate 112, the impedance matching transmission lines 146 are symmetrically disposed on the edge or inside of the electrode plate 112. The distance between the impedance matching transmission line 146 and the electrode plate 112 from the center line of the electrode plate 112 needs to be equal. That is, the configuration of the impedance matching transmission lines 146 is to balance the difference in electric field strength so that the electric field strength distributed on the electrode plate 120 is the same.
該電極板之面積介於10000平方公分至22500平方公分之間。該電極板之表面係經過表面處理。當該些阻抗匹配傳輸線146配置於該電極板112邊緣時,因該些阻抗匹配傳輸線146連接造成邊界條件改變所產生之邊緣效應,而造成分布於該處之電場強度與電極板112內部有差距。本發明中,於電極板112之邊緣區域提供一表面處理,用以改變其表面粗糙度以調整電極板112上電磁波分布。其中表面處理方式係選係選自以下方式之組合:噴砂、化學蝕刻、陽極處理。於本發明較佳實施例之表面處理方式 較佳以噴砂處理控制表面粗糙度,表面處理之表面粗糙度為1至300微米之間。表面處理面積係位於該電極板112面積之外圍邊緣,且佔該電極板112面積之二十分之一至十分之一。 The electrode plate has an area of between 10,000 square centimeters and 22,500 square centimeters. The surface of the electrode plate is surface treated. When the impedance matching transmission lines 146 are disposed at the edge of the electrode plate 112, the edge effects caused by the boundary conditions are changed due to the connection of the impedance matching transmission lines 146, and the electric field intensity distributed there is different from the inside of the electrode plate 112. . In the present invention, a surface treatment is provided on the edge region of the electrode plate 112 to change the surface roughness thereof to adjust the electromagnetic wave distribution on the electrode plate 112. The surface treatment method is selected from the group consisting of sandblasting, chemical etching, and anodizing. Surface treatment method in accordance with a preferred embodiment of the present invention Preferably, the surface roughness is controlled by grit blasting, and the surface roughness of the surface treatment is between 1 and 300 microns. The surface treatment area is located at the peripheral edge of the area of the electrode plate 112 and occupies one-twentieth to one-tenth of the area of the electrode plate 112.
該些進料管路122,124係提供三種以上不同的氣體,且該三種氣體係於不同時間進入至該反應腔體。在一實施例中,步驟一之第一前驅物A與步驟二之惰性氣體,例如氮氣或氬氣,經由進料管路124進入該反應腔體110之該進氣孔125,所進入之第一前驅物A或惰性氣體會流經位於放置於加熱板114上基板115的表面。而步驟三之第二前驅物B經由進料管路122進入該反應腔體110之該進氣孔123,所進入之第二前驅物B會在電極板112與加熱板114之間形成一電漿116。步驟四的惰性氣體可以經由進料管路122進入,亦可以經由進料管路124進入該反應腔體110。在每一個步驟中,排出氣體之動作係以出氣孔127藉由抽氣管路126連接至真空幫浦130完成。在本發明之中,為了達到超高頻電漿的使用,並符合原子層沈積鍍膜機制的要求,第一前驅物A與第二前驅物B的進料管路管路是不同的,以避免時間過短的時間,第二前驅物B無法形成穩定的電漿。此外,請參考第1圖,為了流場的穩定,用於第一前驅物A與第二前驅物B的進料管路是設置在不同位置,用於第一前驅物A的進料管路124大致上是在該電極板112與該加熱板114的平行方向,而用於第二前驅物B的進料管路122大致上是在該電極板112與該加熱板114的垂直方向。第二前驅物B進入該電極板112的該些通氣穿孔,甚至到擴散板後,進而在該電極板112與該加熱板114之間快速形成穩定且均勻的電漿。 The feed lines 122, 124 provide three or more different gases, and the three gas systems enter the reaction chamber at different times. In one embodiment, the first precursor A of step one and the inert gas of step two, such as nitrogen or argon, enter the gas inlet hole 125 of the reaction chamber 110 via the feed line 124, and enter the first A precursor A or an inert gas flows through the surface of the substrate 115 placed on the heating plate 114. The second precursor B of the third step enters the gas inlet hole 123 of the reaction chamber 110 via the feed line 122, and the second precursor B that enters forms an electricity between the electrode plate 112 and the heating plate 114. Slurry 116. The inert gas of step four may enter via feed line 122 or may enter the reaction chamber 110 via feed line 124. In each step, the action of venting the gas is accomplished by connecting the vent 127 to the vacuum pump 130 via the bleed line 126. In the present invention, in order to achieve the use of ultra-high frequency plasma and meet the requirements of the atomic layer deposition coating mechanism, the feed lines of the first precursor A and the second precursor B are different to avoid In the short time, the second precursor B cannot form a stable plasma. In addition, referring to FIG. 1 , for the stability of the flow field, the feed lines for the first precursor A and the second precursor B are disposed at different positions for the feed line of the first precursor A. 124 is substantially in the parallel direction of the electrode plate 112 and the heating plate 114, and the feed line 122 for the second precursor B is substantially perpendicular to the electrode plate 112 and the heating plate 114. The second precursor B enters the venting perforations of the electrode plate 112, and even after the diffusion plate, a stable and uniform plasma is rapidly formed between the electrode plate 112 and the heating plate 114.
由於每一個循環的時間都非常短,且進入到該反應腔體的氣體非常少,因此要控制的非常精確。在該些進料管路122,124上皆設置有微量氣體控制閥,以控制進入到該反應腔體110。 Since the time of each cycle is very short and the gas entering the reaction chamber is very small, the control is very precise. A trace gas control valve is disposed on the feed lines 122, 124 to control access to the reaction chamber 110.
本發明之一種電漿輔助原子層鍍膜裝置100具有以下之功效: A plasma assisted atomic layer coating apparatus 100 of the present invention has the following effects:
1.針對不同頻率的射頻功率,可以改變傳輸線數量的方式對應,藉此達到降低功率反射的功效,提供穩定的功率至反應腔體,進而提升每次沈積循環的沈積厚度。 1. For different frequency RF power, the number of transmission lines can be changed accordingly, thereby achieving the effect of reducing power reflection, providing stable power to the reaction cavity, thereby increasing the deposition thickness of each deposition cycle.
2.以複數個阻抗匹配傳輸線之輸入路徑改變電極板上電場強度,藉此改變電漿之分布,達到大面積的均勻電漿分布形式,並提升沈積薄膜的均勻度。 2. The electric field strength of the electrode plate is changed by the input path of the plurality of impedance matching transmission lines, thereby changing the distribution of the plasma, achieving a uniform plasma distribution pattern of a large area, and improving the uniformity of the deposited film.
雖然本發明已以前述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改。如上述的解釋,都可以作各型式的修正與變化,而不會破壞此發明的精神。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described in its preferred embodiments, it is not intended to limit the scope of the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. As explained above, various modifications and variations can be made without departing from the spirit of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106103641A TWI639178B (en) | 2017-02-03 | 2017-02-03 | Plasma assisted atomic layer deposition apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106103641A TWI639178B (en) | 2017-02-03 | 2017-02-03 | Plasma assisted atomic layer deposition apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201830454A TW201830454A (en) | 2018-08-16 |
TWI639178B true TWI639178B (en) | 2018-10-21 |
Family
ID=63960336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106103641A TWI639178B (en) | 2017-02-03 | 2017-02-03 | Plasma assisted atomic layer deposition apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI639178B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200915393A (en) | 2007-05-25 | 2009-04-01 | Univ Tohoku Nat Univ Corp | Compound thin film and method of forming the same, and electronic device using the thin film |
TW201119517A (en) | 2009-11-25 | 2011-06-01 | Ind Tech Res Inst | Plasma generating apparatus |
TW201611665A (en) | 2008-12-10 | 2016-03-16 | 周星工程股份有限公司 | Substrate treatment apparatus |
CN105529238A (en) | 2008-04-12 | 2016-04-27 | 应用材料公司 | Plasma processing apparatus and method |
TW201638989A (en) | 2015-03-02 | 2016-11-01 | 蘭姆研究公司 | Impedance matching circuit for operation with a kilohertz RF generator and a megahertz RF generator to control plasma processes |
-
2017
- 2017-02-03 TW TW106103641A patent/TWI639178B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200915393A (en) | 2007-05-25 | 2009-04-01 | Univ Tohoku Nat Univ Corp | Compound thin film and method of forming the same, and electronic device using the thin film |
CN105529238A (en) | 2008-04-12 | 2016-04-27 | 应用材料公司 | Plasma processing apparatus and method |
TW201611665A (en) | 2008-12-10 | 2016-03-16 | 周星工程股份有限公司 | Substrate treatment apparatus |
TW201119517A (en) | 2009-11-25 | 2011-06-01 | Ind Tech Res Inst | Plasma generating apparatus |
TW201638989A (en) | 2015-03-02 | 2016-11-01 | 蘭姆研究公司 | Impedance matching circuit for operation with a kilohertz RF generator and a megahertz RF generator to control plasma processes |
Also Published As
Publication number | Publication date |
---|---|
TW201830454A (en) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107452616A (en) | Use the system and method for electric asymmetrical effect control plasma processing space | |
CN109103089B (en) | Plasma processing method and plasma processing apparatus | |
US20190237326A1 (en) | Selective film forming method and film forming apparatus | |
US20160326651A1 (en) | Substrate processing apparatus | |
WO2021220841A1 (en) | Pre-coating method and treatment device | |
TWI639178B (en) | Plasma assisted atomic layer deposition apparatus | |
US11217443B2 (en) | Sequential deposition and high frequency plasma treatment of deposited film on patterned and un-patterned substrates | |
TW201812088A (en) | Plasma generation device for remote plasma enhanced chemical vapor deposition (PECVD) system capable of generating a plasma source that meets the requirements for improving the use efficiency and the process efficiency of a remote PECVD system | |
US20100263797A1 (en) | Plasma processing apparatus | |
TWM553913U (en) | Plasma assisted atomic layer deposition apparatus | |
KR102146543B1 (en) | Method of fabricating amorphous silicon layer | |
KR102426960B1 (en) | Method for forming silicon oxide film using plasmas | |
US20030047138A1 (en) | Spiral gas flow plasma reactor | |
TWM546073U (en) | Atomic layer deposition apparatus | |
JP4890012B2 (en) | Plasma CVD equipment | |
KR20220149734A (en) | Cleaning method and plasma processing device | |
JP3590451B2 (en) | How to make insulating film | |
JP2023504044A (en) | Impedance transformation in radio frequency assisted plasma generation | |
KR102125474B1 (en) | Method for Deposition of Thin Film | |
KR20140086607A (en) | Thin film deposition method with high speed and apparatus for the same | |
TWI806337B (en) | LOW-k BORON CARBONITRIDE FILMS | |
KR20150035247A (en) | Showerhead | |
CN101442873A (en) | Equipment and method for processing plasma | |
JP2019102508A (en) | Method and apparatus for forming boron-based film | |
TWI405867B (en) | Thin film deposition apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |