TWI638335B - Method for correcting a diffusion image having an artifact - Google Patents

Method for correcting a diffusion image having an artifact Download PDF

Info

Publication number
TWI638335B
TWI638335B TW106100859A TW106100859A TWI638335B TW I638335 B TWI638335 B TW I638335B TW 106100859 A TW106100859 A TW 106100859A TW 106100859 A TW106100859 A TW 106100859A TW I638335 B TWI638335 B TW I638335B
Authority
TW
Taiwan
Prior art keywords
image
diffused
artifacts
diffusion
slice
Prior art date
Application number
TW106100859A
Other languages
Chinese (zh)
Other versions
TW201826220A (en
Inventor
曾文毅
黃芊丰
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW106100859A priority Critical patent/TWI638335B/en
Publication of TW201826220A publication Critical patent/TW201826220A/en
Application granted granted Critical
Publication of TWI638335B publication Critical patent/TWI638335B/en

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本發明係關於一種矯正一具有假影之擴散影像的方法,該方法包含:(a)提供一組擴散影像,其包含該具有假影之擴散影像;(b)計算該組擴散影像中每個影像的第一信號強度;(c)繪製該組擴散影像的切片編號相對於該第一信號強度的圖;(d)藉由在該圖上進行內插法來計算該具有假影之擴散影像的第二信號強度;及(e)基於該第二信號強度校正該具有假影之擴散影像。 The present invention relates to a method of correcting a diffused image having artifacts, the method comprising: (a) providing a set of diffused images comprising the diffuse image having artifacts; (b) calculating each of the set of diffused images a first signal intensity of the image; (c) a plot of the slice number of the set of diffused images relative to the first signal intensity; (d) calculating the diffused image with artifacts by interpolation on the map a second signal strength; and (e) correcting the diffused image with artifacts based on the second signal strength.

Description

一種矯正具有假影之擴散影像的方法  Method for correcting diffused image with artifact  

本發明係關於一種矯正具有假影之擴散影像的方法。 The present invention relates to a method of correcting a diffuse image with artifacts.

磁振造影(MRI)神經追蹤術(tractography)係基於組織各向異性(tissue anisotropy)的擴散敏感(diffusion-sensitive)MRI的神經纖維結構的映像。為了作為具有一般價值的調查工具,神經追蹤術必須在大多數現實情況下提供根據原則且準確的神經連通性的繪像。複雜的纖維結構係神經解剖學普遍存在的特徵,因此可以可靠地檢查神經組織結構的神經追蹤術方法會是非常有價值的。在擴散張量造影(DTI)的架構內開始進行的MRI神經追蹤術未達到此目標(Basser,P.J.,Pajevic,S.,Pierpaoli,C.,Duda,J.,Aldroubi,A.,2000.In vivo fiber tractography using DT-MRI data.Magn.Reson.Med.44,625-632)。其所依賴的張量模型無法分辨MRI立體像素(voxel)內的多個纖維方向,因此無法分辨纖維交叉,無論是白質中的纖維束交叉(tractintersection)或是在灰質的錯綜複雜結構中的纖維交叉(Mori,S.,van Zijl,P.C.,2002.Fiber tracking:principles and strategies-a technical review.NMR Biomed.15,468-480)。解決DTI架構內此限制的方法已被提出(例如Behrens,T.E.,Woolrich,M.W.,Jenkinson,M.,Johansen-Berg,H.,Nunes,R.G.,Clare,S.,Matthews,P.M.,Brady,J.M.,Smith,S.M.,2003.Characterization and propagation of uncertainty in diffusion-weighted MR imaging.Magn.Reson.Med.50,1077-1088)但並未暗 示有根據原則、直接且詳細的複雜纖維結構的成像。 Magnetic resonance imaging (MRI) tractography is a mapping of nerve fiber structures based on tissue anisotropy diffusion-sensitive MRI. In order to be a survey tool of general value, neurosurgery must provide a schematic and accurate representation of neural connectivity in most real-world situations. Complex fiber structures are a ubiquitous feature of neuroanatomy, so neurospatial methods that reliably examine neural tissue structures can be very valuable. MRI neurosurgery, which began within the framework of diffusion tensor angiography (DTI), did not achieve this goal (Basser, PJ, Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A., 2000. In Vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625-632). The tensor model it relies on cannot distinguish the multiple fiber directions in the MRI voxel, so it is impossible to distinguish the fiber intersection, whether it is the tract intersection in the white matter or the fiber cross in the intricate structure of the gray matter. (Mori, S., van Zijl, PC, 2002. Fiber tracking: principles and strategies-a technical review. NMR Biomed. 15, 468-480). Methods to address this limitation in the DTI architecture have been proposed (eg, Behrens, TE, Woolrich, MW, Jenkinson, M., Johansen-Berg, H., Nunes, RG, Clare, S., Matthews, PM, Brady, JM, Smith, SM, 2003. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077-1088) but does not imply the imaging of direct and detailed complex fiber structures according to principles.

受這些限制所激勵,MRI方法已被描述具有解析每個分辨的組織體積(立體像素)中纖維方向的異質性的能力(Tuch,D.S.,Reese,T.G.,Wiegell,M.R.,Makris,N.,Belliveau,J.W.,Wedeen,V.J.,2002.High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity.Magn.Reson.Med.48,577-582),並為腦白質纖維束的結構提供新的見解(Schmahmann,J.D.,Pandya,D.N.,Wang,R.,Dai,G.,D'Arceuil,H.E.,de Crespigny,A.J.,Wedeen,V.J.,2007.Association fibre pathways of the brain:parallel observations from diffusion spectrum imaging and auto-radiography.Brain 130,630-653)。這些方法超越了DTI。他們以一般函數(機率密度函數(PDF))描述每個立體像素中的擴散,該機率密度函數為每個立體像素指定其包含的MR可見自旋的微觀位移的3D分佈。這些方法包括擴散頻譜MRI(DSI)(Lin,C.P.,Wedeen,V.J.,Chen,J.H.,Yao,C.,Tseng,W.Y.,2003.Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms.NeuroImage 19,482-495)(其中PDF全部用位移的3D傅立葉編碼來成像),以及主要對PDF角度部分敏感的Q球法(Tuch,D.S.,Reese,T.G.,Wiegell,M.R.,Wedeen,V.J.,2003.Diffusion MRI of complex neural architecture.Neuron 40,885-895)及相關方法(Jansons,K.,Alexander,D.,2003.Persistent angular structure:new insights from diffusion magnetic resonance imaging data.Inverse Problems 19,1031-1046)。 Inspired by these limitations, the MRI method has been described as having the ability to resolve the heterogeneity of fiber orientation in each resolved tissue volume (stereopixel) (Tuch, DS, Reese, TG, Wiegell, MR, Makris, N., Belliveau). , JW, Wedeen, VJ, 2002. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577-582), and provides new insights into the structure of white matter fiber bundles (Schmahmann, JD, Pandya) , DN, Wang, R., Dai, G., D'Arceuil, HE, de Crespigny, AJ, Wedeen, VJ, 2007. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and auto-radiography. Brain 130,630 -653). These methods go beyond DTI. They describe the diffusion in each voxel in a general function (Probability Density Function (PDF)) that specifies the 3D distribution of the microscopic displacement of the MR visible spins it contains for each voxel. These methods include diffusion spectrum MRI (DSI) (Lin, CP, Wedeen, VJ, Chen, JH, Yao, C., Tseng, WY, 2003. Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms.NeuroImage 19, 482-495) (where PDF is all imaged with displaced 3D Fourier coding), and Q-ball method that is primarily sensitive to PDF angles (Tuch, DS, Reese, TG, Wiegell, MR, Wedeen, VJ, 2003) .Diffusion MRI of complex neural architecture. Neuron 40, 885-895) and related methods (Jansons, K., Alexander, D., 2003. Persistent angular structure: new insights from diffusion magnetic resonance imaging data. Inverse Problems 19, 1031-1046) .

自從Stejskal及Tanner描述了基本擴散序列後,擴散權重磁振造影(DWI)已成為臨床和研究設置中的既定工具(Stejskal EO,Tanner JE.Spin Diffusion Measurements:Spin Echoes in the Presence of a Time-Dependent Field Gradient.J.Chem.Phys.1965;42(1):288-92)。如今,單次回音平面造影(EPI)係大多數應用所選擇的方法,除非需要非常高的空間解析度或非常小的空間失真(spatial distortion),在這種情況下多點法(multi-shot method)(Pipe JG,Farthing VG,Forbes KP.Multishot diffusion-weighted FSE using PROPELLER MRI.Magn Reson Med.Jan;2002 47(1):42-52)係較佳的。擴散成像容易受到幾種假影影響(Le Bihan D,Poupon C,Amadon A,Lethimonnier F.Artifacts and pitfalls in diffusion MRI.J Magn Reson Imaging.Sep;2006 24(3):478-88)。這些假影中的一些係與掃描器硬體相關,如由渦電流導致的失真,且一些假影係與擷取相關,如當使用回音平面造影(EPI)讀出時由整個腦組織的磁化率差異引起的幾何扭曲(geometric distortion)。其它假影係與受試者相關,如生理運動(心臟搏動、呼吸)及整體運動(bulk motion)。在擷取期間留下的未校正的、緩慢的整體運動導致影像數據不一致。這導致影像中的邊緣假影及模糊。此外,快速整體運動可導致擴散權重影像中不均勻的信號衰減假影(信號丟失(signal dropout)),其係由附加相位項(additional phase term)所引起(Anderson AW,Gore JC.Analysis and correction of motion artifacts in diffusion weighted imaging.Magn Reson Med.Sep;1994 32(3):379-87)。由生理運動造成的假影通常較小且可藉由門控(gating)來減輕,然而,當未校正時,整體運動假影時常會導致不可用的影像。雖然可以回溯地校正緩慢的整體運動,但與回溯性運動校正相比,即時運動校正減少了運動相關效應並減小體積之間的方差。如果空間解析度係各向異性的,如臨床試驗計畫書(clinical protocol)通常的情況,內插法也將導致次最佳化(sub-optimal)的影像質量。亦可使用外部動態追蹤(external motion tracking)在線上(online)校正運動,例如 使用光學方法(Zaitsev M,Dold C,Sakas G,Hennig J,Speck O.Magnetic resonance imaging of freely moving objects:prospective real-time motion correction using an external optical motion tracking system.Neuroimage.Jul 1;2006 31(3):1038-50;Dold C,Zaitsev M,Speck O,Firle EA,Hennig J,Sakas G.Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device.Acad Radiol.Sep;2006 13(9):1093-103;Zaremba AA,MacFarlane DL,Tseng WC,Stark AJ,Briggs RW,Gopinath KS,Cheshkov S,White KD.Optical head tracking for functional magnetic resonance imaging using structured light.J Opt Soc Am A Opt Image Sci Vis.Jul;2008 25(7):1551-7)。然而,這些方法需要額外的外部硬體及軟體以及耗時的校準步驟才能被使用。 Since Stejskal and Tanner described the basic diffusion sequence, diffusion weight magnetic resonance imaging (DWI) has become an established tool in clinical and research settings (Stejskal EO, Tanner JE. Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent) Field Gradient. J. Chem. Phys. 1965; 42(1): 288-92). Today, single echo planar imaging (EPI) is the method of choice for most applications, unless very high spatial resolution or very small spatial distortion is required, in this case multi-shot (multi-shot) Method) (Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med. Jan; 2002 47(1): 42-52) is preferred. Diffusion imaging is susceptible to several artifacts (Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging. Sep; 2006 24(3): 478-88). Some of these artifacts are related to the scanner hardware, such as distortion caused by eddy currents, and some artifacts are associated with the capture, such as the magnetization of the entire brain tissue when read using echo floor imaging (EPI). Geometric distortion caused by the difference in rate. Other artifacts are associated with subjects such as physiological movements (heart beats, breathing) and bulk motion. The uncorrected, slow overall motion left during the capture results in inconsistent image data. This causes edge artifacts and blurring in the image. In addition, rapid global motion can result in uneven signal attenuation artifacts (signal dropouts) in the diffuse weight image, which is caused by the additional phase term (Anderson AW, Gore JC. Analysis and Correction). Of motion artifacts in diffusion weighted imaging. Magn Reson Med. Sep; 1994 32(3): 379-87). Artifacts caused by physiological motion are usually small and can be mitigated by gating, however, when uncorrected, overall motion artifacts often result in images that are not available. While slow overall motion can be corrected retrospectively, immediate motion correction reduces motion-related effects and reduces the variance between volumes compared to retrospective motion correction. If the spatial resolution is anisotropic, as is often the case with clinical protocols, interpolation will also result in sub-optimal image quality. External motion tracking can also be used to correct motion online, for example using optical methods (Zaitsev M, Dold C, Sakas G, Hennig J, Speck O. Magnetic resonance imaging of freely moving objects: prospective real- Time motion correction using an external optical motion tracking system. Neuroimage.Jul 1;2006 31(3):1038-50;Dold C,Zaitsev M,Speck O,Firle EA,Hennig J,Sakas G.Advantages and limitations of prospective head Motion compensation for MRI using an optical motion tracking device. Acad Radiol.Sep;2006 13(9):1093-103;Zaremba AA,MacFarlane DL,Tseng WC,Stark AJ,Briggs RW,Gopinath KS,Cheshkov S,White KD. Optical head tracking for functional magnetic resonance imaging using structured light. J Opt Soc Am A Opt Image Sci Vis. Jul; 2008 25(7): 1551-7). However, these methods require additional external hardware and software and time-consuming calibration steps to be used.

具有信號衰減假影的擴散影像無法輕易地被回溯校正。為了避免這些具有假影的資料造成錯誤,這些影像資料需要被排除在分析之外,而這將導致導出地圖的訊噪比(SNR)降低及張量計算中的偏差。為了解決這些問題,可使用重新擷取法(reacquisition method),其中被運動假影影響的片段或影像在相同的擷取期間被重新擷取(Porter DA,Heidemamn RM.High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging,parallel imaging and a two-dimensional navigator-based reacquisition.Magn Reson Med.Aug;2009 62(2):468-75;Benner,T.;van der Kouwe,AJ.;Sorensen,AG.Diffusion imaging with prospective motion correction and reacquisition.Magn Reson Med.2011 Jul;66(1):154-167)。 Diffused images with signal attenuation artifacts cannot be easily retrospectively corrected. In order to avoid errors caused by these artifacts, these image data need to be excluded from the analysis, which will lead to a reduction in the signal-to-noise ratio (SNR) of the derived map and deviations in the tensor calculation. In order to solve these problems, a reacquisition method may be used in which a segment or image affected by motion artifacts is retrieved during the same capture period (Porter DA, Heidemamn RM. High resolution diffusion-weighted imaging using readout) -segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition.Magn Reson Med.Aug;2009 62(2):468-75;Benner,T.;van der Kouwe,AJ.;Sorensen,AG .Diffusion imaging with prospective motion correction and reacquisition. Magn Reson Med. 2011 Jul; 66(1): 154-167).

擴散MRI對於臨床和神經科學研究變得越來越重要,原因在於其能夠描繪白質的微結構性質。為了更準確地估計擴散指數以反映微結構性質,近來在擴散MRI技術中的進展(例如擴散頻譜成像(DSI)及高角解 析度擴散成像)獲得具有多個擴散靈敏度及方向的擴散權重(DW)影像。由於使用強擴散梯度,這些技術對頭部運動敏感,其可能造成影像的信號衰減假影(信號丟失)並導致擴散指數計算中的誤差(Yendiki,Anastasia;Koldewyn,Kami;Kakunoori,Sita;Kanwisher,Nancy;Fischl,Bruce.:Spurious group differences due to head motion in a diffusion MRI study.NeuroImage Volume 88,March 2014,Pages 79-90)。因此,本發明旨在開發用於校正擴散影像的假影的後處理演算法。藉由模擬活體(in vivo)擴散數據中的信號丟失來測試校正性能,並使用內插法來校正信號丟失。此方法成功地校正丟失影像並恢復準確的廣義擴散不等向性(GFA)計算。 Diffusion MRI is becoming more and more important for clinical and neuroscience research because it is capable of depicting the microstructural properties of white matter. In order to more accurately estimate the diffusion index to reflect the microstructure properties, recent advances in diffusion MRI techniques (such as diffusion spectral imaging (DSI) and high-angle resolution diffusion imaging) have obtained diffusion weights (DW) with multiple diffusion sensitivities and directions. image. Due to the use of strong diffusion gradients, these techniques are sensitive to head motion, which can cause image attenuation artifacts (signal loss) and errors in diffusion index calculations (Yendiki, Anastasia; Koldewyn, Kami; Kakunoori, Sita; Kanwisher, Nancy; Fischl, Bruce.: Spurious group differences due to head motion in a diffusion MRI study. NeuroImage Volume 88, March 2014, Pages 79-90). Accordingly, the present invention is directed to developing a post-processing algorithm for correcting artifacts of a diffuse image. Correction performance is tested by simulating signal loss in in vivo diffusion data and interpolation is used to correct for signal loss. This method successfully corrects missing images and restores accurate generalized diffusion anisotropy (GFA) calculations.

本發明提供一種矯正一具有假影之擴散影像的方法,該方法包含:(a)提供一組擴散影像,其包含該具有假影的擴散影像;(b)計算該組擴散影像中每個影像的第一信號強度;(c)繪製該組擴散影像的切片編號相對於該第一信號強度的圖;(d)藉由在該圖上進行內插法來計算該具有假影之擴散影像的第二信號強度;及(e)基於該第二信號強度校正該具有假影之擴散影像。 The invention provides a method for correcting a diffused image with artifacts, the method comprising: (a) providing a set of diffused images comprising the diffused images with artifacts; (b) calculating each image of the set of diffused images a first signal strength; (c) a plot of a slice number of the set of diffused images relative to the first signal intensity; (d) calculating the diffused image with artifacts by interpolation on the map a second signal strength; and (e) correcting the diffused image with artifacts based on the second signal strength.

在本發明的一較佳實施例中,該組擴散影像係擴散權重影像、擴散頻譜影像、擴散張量影像、高角解析度影像、或q球影像。 In a preferred embodiment of the invention, the set of diffused images is a diffuse weight image, a diffuse spectrum image, a diffused tensor image, a high-angle resolution image, or a q-ball image.

在本發明的一較佳實施例中,該具有假影之擴散影像係由受試者移動所引起。 In a preferred embodiment of the invention, the diffuse image with artifacts is caused by subject movement.

在本發明的一較佳實施例中,該內插法係線性內插法、多項式插值法或樣條內插法。在本發明的一更佳實施例中,該樣條內插法係B樣條內插法。 In a preferred embodiment of the invention, the interpolation method is a linear interpolation method, a polynomial interpolation method or a spline interpolation method. In a more preferred embodiment of the invention, the spline interpolation method is a B-spline interpolation method.

圖1顯示一個迭代式內插法(iterative interpolation)的實例。迭代式內插法的步驟係顯示於(B)至(D)中。 Figure 1 shows an example of an iterative interpolation. The steps of the iterative interpolation are shown in (B) to (D).

圖2顯示下列之參考影像(頂行)及校正影像(salvaged image)(底行):(A)b=310s/mm2,擴散方向[0.0601,-0.9895,-0.1314]、(B)b=2760s/mm2,擴散方向[0.3834,-0.5477,-0.7437]、及(C)b=4000s/mm2,擴散方向[0.0419,-0.9022,0.4292]。 Figure 2 shows the following reference image (top row) and corrected image (salvaged image) (bottom row): (A) b = 310 s / mm 2 , diffusion direction [0.0601, -0.9895, -0.1314], (B) b = 2760 s/mm 2 , diffusion direction [0.3834, -0.5477, -0.7437], and (C) b = 4000 s/mm 2 , diffusion direction [0.0419, -0.9022, 0.4292].

圖3顯示來自參考(左)、壞損(degraded)(中)及校正(右)DSI數據組中單一切片的代表性廣義擴散不等向性(GFA)圖。 Figure 3 shows a representative generalized diffusion anisotropy (GFA) plot for a single slice from the reference (left), degraded (middle), and corrected (right) DSI data sets.

圖4顯示在壞損及校正的DSI數據組中信號丟失數與功能差異(FD)的關係圖。 Figure 4 shows a plot of signal loss versus functional difference (FD) in a corrupted and corrected DSI data set.

圖5顯示兩個連續的丟失校正的原始影像(A)、校正影像(B)以及原始影像與校正影像之間的差異(C)。頂行顯示第一個丟失,且底行顯示第二個丟失。 Figure 5 shows two consecutive missing corrected original images (A), corrected images (B), and the difference between the original image and the corrected image (C). The top line shows the first one lost and the bottom line shows the second one missing.

以下實施例係非限制性的且僅代表本發明的各種態樣及特徵。 The following examples are non-limiting and represent only a variety of aspects and features of the invention.

成像 Imaging

在具有32通道相位陣列線圈(phased array coil)的3T MRI系統(TIM Trio,Siemens,Erlangen)上獲得DSI數據。DSI脈衝序列使用兩次重新聚焦的平衡回音擴散回音平面造影序列(Reese TG,Heid O,Weisskoff RM,Wedeen VJ.Reduction of eddy-current-induced distortion in diffusion MRI using a twice- refocused spin echo.Magn Reson Med.2003 Jan;49(1):177-82)、TR/TE=9600/130ms、FOV=200 x 200mm2、矩陣大小=80 x 80、56切片、且切片厚度為2.5mm。在3D q空間(|q|3.6單位)的半球中的網格點上採樣總共102個擴散編碼梯度(最大擴散靈敏度bmax=4000s/mm2)(Li-Wei Kuo,Jyh-HorngChen,Van Jay Wedeen,and Wen-Yih Isaac Tseng.Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system.NeuroImage 41(2008)7-18)。 DSI data was obtained on a 3T MRI system (TIM Trio, Siemens, Erlangen) with a 32 channel phased array coil. The DSI pulse sequence uses two refocusing balanced echo-diffusion echographic contrast sequences (Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction eddy-current-induced distortion in diffusion MRI using a twice- refocused spin echo. Magn Reson Med. 2003 Jan; 49(1): 177-82), TR/TE = 9600/130 ms, FOV = 200 x 200 mm 2 , matrix size = 80 x 80, 56 slices, and the slice thickness is 2.5 mm. In 3D q space (|q| A total of 102 diffusion coding gradients (maximum diffusion sensitivity bmax=4000 s/mm 2 ) are sampled at grid points in the hemisphere of 3.6 units (Li-Wei Kuo, Jyh-HorngChen, Van Jay Wedeen, and Wen-Yih Isaac Tseng. Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. NeuroImage 41 (2008) 7-18).

信號丟失模擬 Signal loss simulation

選擇沒有信號丟失的十五個DSI數據組作為參考。這些DSI數據組係用於模擬由信號丟失而壞損的數據組;用信號丟失影像隨機替換原始DW影像。對於每個數據組,使用15種不同的丟失數,即10、30、50、70、90、130、170、210、250、290、340、380、420、460及500個丟失,創建15個模擬數據組。這些丟失係離散丟失。類似的方法係用於模擬連續丟失,例如兩個連續的丟失。 Fifteen DSI data sets with no signal loss were selected for reference. These DSI data sets are used to simulate data sets that are corrupted by signal loss; the original DW images are randomly replaced with signal loss images. For each data set, 15 different losses were used, ie 10, 30, 50, 70, 90, 130, 170, 210, 250, 290, 340, 380, 420, 460 and 500 lost, creating 15 Analog data set. These losses are discretely lost. A similar approach is used to simulate continuous loss, such as two consecutive losses.

丟失校正 Loss correction

對於對應於特定擴散編碼的每個體積數據,我們發現沿著z(切片)方向的信號強度係一平滑曲線。在本實施例中,該曲線中任何z位置處的信號丟失係藉由將剩餘數據以B樣條曲線使用最小平方擬合來恢復(David Eberly.:Least-Squares Fitting of Data with B-Spline Surfaces.Geometric Tools 2005)。 For each volumetric data corresponding to a particular diffusion code, we find that the signal strength along the z (slice) direction is a smooth curve. In this embodiment, the signal loss at any z position in the curve is recovered by using the least squares fit on the B-spline curve (David Eberly.: Least-Squares Fitting of Data with B-Spline Surfaces) .Geometric Tools 2005).

對於離散丟失,該丟失影像的兩側信息均被保留,因此直接進行內插法以校正該丟失影像。對於連續丟失,該等丟失影像的兩側信息均 不完整以致無法直接校正丟失影像。因此,使用迭代式內插法來校正連續丟失。迭代式內插法的一個實例如下:當該等連續丟失影像在切片27及切片28(圖1A)時,使用四個步驟來校正該等連續丟失影像: For discrete loss, both sides of the missing image are retained, so interpolation is performed directly to correct the missing image. For continuous loss, the information on both sides of the lost image is incomplete so that the lost image cannot be directly corrected. Therefore, iterative interpolation is used to correct for continuous loss. An example of an iterative interpolation method is as follows: When the consecutive lost images are in slice 27 and slice 28 (Fig. 1A), four steps are used to correct the consecutive lost images:

步驟1:丟棄切片27及切片28的丟失信息,否則該丟失信息會產生錯誤的結果。 Step 1: Discard the missing information of slice 27 and slice 28, otherwise the missing information will produce an erroneous result.

步驟2:使用切片1至切片26及切片29至切片56的信息以內插由切片27及切片28的丟失造成的遺失部分(內插影像被看作是切片27與切片28的複合體,即切片27.5)(圖1B)。 Step 2: Use the information from slice 1 to slice 26 and slice 29 to slice 56 to interpolate the missing portion caused by the loss of slice 27 and slice 28 (the interpolated image is considered to be a complex of slice 27 and slice 28, ie slice 27.5) (Fig. 1B).

步驟3:使用切片1至切片26、切片27.5及切片29至切片56的信息以內插切片27的影像(獲得切片27的兩側信息,因此內插法的結果更好)(圖1C)。 Step 3: The information of slice 1 to slice 26, slice 27.5, and slice 29 to slice 56 is used to interpolate the image of slice 27 (both sides of slice 27 are obtained, so the result of the interpolation is better) (Fig. 1C).

步驟4:使用切片1至切片27.5及切片29至切片56的信息以內插切片28的影像,完成迭代式內插法(圖1D)。 Step 4: Using the information of slice 1 to slice 27.5 and slice 29 to slice 56 to interpolate the image of slice 28, iterative interpolation is performed (Fig. 1D).

丟失校正驗證 Loss correction verification

我們使用全腦神經束基礎自動分析術(whole brain tract-based automatic analysis)(Yu-Jen Chen,Yu-Chun Lo,Yung-Chin Hsu,Chun-Chieh Fan,Tzung-Jeng Hwang,Chih-Min Liu,Yi-Ling Chien,Ming H.Hsieh,Chen-Chung Liu,Hai-Gwo Hwu,Wen-Yih Isaac Tseng:Automatic Whole Brain Tract-Based Analysis Using Predefined Tracts in a Diffusion Spectrum Imaging Template and an Accurate Registration Strategy.Human Brain Mapping 36:3441-3458(2015))為每個DSI數據組獲得76個白質神經束的廣義擴散不等向性(GFA)剖面圖。我們藉由評估從參考DSI數據組導出的GFA剖面圖與從壞損及校正數據組導出的GFA剖面圖之間的功能差異(FD)來測試該校正方法的表現(Sylvain Gouttard,Casey B.Goodlett Marek Kubicki,and Guido Gerig:Measures for Validation of DTI Tractography.Proc SPIE Int Soc Opt Eng.2012 February 23;8314:83)。功能差異係定義為: 其中f(t i ,tb j ,s k )及f ref (t i ,tb j ,s k )為受試者s k 的神經束tb j 的第t i 步所測得的GFA值,分別導出自壞損/校正的DSI數據組及參考DSI數據組,且l、m、n分別指示神經束的總步數、神經束的總數、及受試者的總數。 We use whole brain tract-based automatic analysis (Yu-Jen Chen, Yu-Chun Lo, Yung-Chin Hsu, Chun-Chieh Fan, Tzung-Jeng Hwang, Chih-Min Liu, Yi-Ling Chien, Ming H.Hsieh, Chen-Chung Liu, Hai-Gwo Hwu, Wen-Yih Isaac Tseng: Automatic Whole Brain Tract-Based Analysis Using Predefined Tracts in a Diffusion Spectrum Imaging Template and an Accurate Registration Strategy.Human Brain Mapping 36: 3441-3458 (2015)) A generalized diffusion anisotropy (GFA) profile of 76 white matter nerve bundles was obtained for each DSI data set. We tested the performance of this correction method by evaluating the functional difference (FD) between the GFA profile derived from the reference DSI dataset and the GFA profile derived from the impairment and correction dataset (Sylvain Gouttard, Casey B. Goodlett Marek Kubicki, and Guido Gerig: Measures for Validation of DTI Tractography. Proc SPIE Int Soc Opt Eng. 2012 February 23; 8314:83). Functional differences are defined as: Where f ( t i , tb j , s k ) and f ref ( t i , tb j , s k ) are the GFA values measured in the t i step of the nerve bundle tb j of the subject s k , respectively derived The self-corrupted/corrected DSI data set and the reference DSI data set, and l, m, n indicate the total number of steps of the nerve bundle, the total number of nerve bundles, and the total number of subjects, respectively.

結果 Result

為了防止由信號丟失造成的GFA計算中的錯誤,常規方式係從分析中丟棄數據。這種方法會浪費許多數據組,並可能偏離研究母體。為了解決這個問題,我們提供一種方法來校正由信號丟失而壞損的DSI數據組。在模擬數據組中,我們顯示此方法可以成功地校正離散的丟失影像(圖2)。如圖2所示,我們可以看到丟失影像被校正成底行中顯示的影像,其看起來非常類似於頂行中的參考影像。如圖3所示,壞損的GFA圖顯然不同於參考GFA圖,而校正的GFA圖看起來非常類似於參考GFA圖。如圖4所示,壞損的FD值隨著丟失數急劇增加。相比之下,校正的FD值隨著丟失數輕微增加。GFA圖及FD的結果證實校正後可以恢復準確的GFA值(圖3及圖4)。對於連續丟失,此方法亦成功校正了兩個連續丟失。如圖5所示,我們可以看到校正影像(B)看起來非常類似於原始影像(A)。 To prevent errors in GFA calculations caused by signal loss, the conventional approach is to discard data from the analysis. This method wastes a lot of data sets and may deviate from the research matrix. To solve this problem, we provide a way to correct DSI data sets that are corrupted by signal loss. In the simulation data set, we show that this method can successfully correct discrete missing images (Figure 2). As shown in Figure 2, we can see that the missing image is corrected to the image displayed in the bottom row, which looks very similar to the reference image in the top row. As shown in Figure 3, the corrupted GFA map is clearly different from the reference GFA map, and the corrected GFA map looks very similar to the reference GFA map. As shown in Fig. 4, the FD value of the damage increases sharply with the number of losses. In contrast, the corrected FD value increases slightly with the number of losses. The results of the GFA plot and FD confirmed that the correct GFA values were restored after correction (Figures 3 and 4). For continuous loss, this method also successfully corrected for two consecutive losses. As shown in Figure 5, we can see that the corrected image (B) looks very similar to the original image (A).

Claims (5)

一種矯正一具有假影之擴散影像的方法,該方法包含:(a)提供一組擴散影像,其包含該具有假影之擴散影像;(b)計算該組擴散影像中每個影像的第一信號強度;(c)繪製該組擴散影像的切片編號相對於該第一信號強度的圖;(d)藉由在該圖上進行內插法來計算該具有假影之擴散影像的第二信號強度;及(e)基於該第二信號強度校正該具有假影之擴散影像。  A method of correcting a diffused image having artifacts, the method comprising: (a) providing a set of diffused images comprising the diffuse image having artifacts; (b) calculating a first image of each of the set of diffused images Signal strength; (c) plotting the slice number of the set of diffused images relative to the first signal intensity; (d) calculating the second signal of the diffused image with artifacts by interpolation on the map And (e) correcting the diffused image with artifacts based on the second signal strength.   如請求項1之方法,其中該組擴散影像係擴散權重影像、擴散頻譜影像、擴散張量影像、高角解析度影像、或q球影像。  The method of claim 1, wherein the set of diffused images is a diffusion weight image, a diffused spectrum image, a diffusion tensor image, a high-angle resolution image, or a q-ball image.   如請求項1之方法,其中該具有假影之擴散影像係由受試者移動所引起。  The method of claim 1, wherein the diffuse image with artifacts is caused by movement of the subject.   如請求項1之方法,其中該內插法係線性內插法、多項式插值法或樣條內插法。  The method of claim 1, wherein the interpolation method is a linear interpolation method, a polynomial interpolation method, or a spline interpolation method.   如請求項4之方法,其中該樣條內插法係B樣條內插法。  The method of claim 4, wherein the spline interpolation method is a B-spline interpolation method.  
TW106100859A 2017-01-11 2017-01-11 Method for correcting a diffusion image having an artifact TWI638335B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106100859A TWI638335B (en) 2017-01-11 2017-01-11 Method for correcting a diffusion image having an artifact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106100859A TWI638335B (en) 2017-01-11 2017-01-11 Method for correcting a diffusion image having an artifact

Publications (2)

Publication Number Publication Date
TW201826220A TW201826220A (en) 2018-07-16
TWI638335B true TWI638335B (en) 2018-10-11

Family

ID=63640030

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106100859A TWI638335B (en) 2017-01-11 2017-01-11 Method for correcting a diffusion image having an artifact

Country Status (1)

Country Link
TW (1) TWI638335B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008128088A1 (en) * 2007-04-13 2008-10-23 The Regents Of The University Of Michigan Systems and methods for tissue imaging
US20130113481A1 (en) * 2011-11-09 2013-05-09 Samsung Electronics Co., Ltd. Apparatus and method for compensating artifact in higher order diffusion magnetic resonance imaging (mri)
WO2013104132A1 (en) * 2012-01-13 2013-07-18 Han Hongbin Method for measuring diffusion parameters of tracer in living organ tissue space and extracellular space
WO2014111927A1 (en) * 2013-01-15 2014-07-24 Cathworks Ltd. Diagnostically useful results in real time
TW201603781A (en) * 2014-07-31 2016-02-01 國立中央大學 Method for detecting and quantifying cerebral infarct

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008128088A1 (en) * 2007-04-13 2008-10-23 The Regents Of The University Of Michigan Systems and methods for tissue imaging
US20130113481A1 (en) * 2011-11-09 2013-05-09 Samsung Electronics Co., Ltd. Apparatus and method for compensating artifact in higher order diffusion magnetic resonance imaging (mri)
WO2013104132A1 (en) * 2012-01-13 2013-07-18 Han Hongbin Method for measuring diffusion parameters of tracer in living organ tissue space and extracellular space
WO2014111927A1 (en) * 2013-01-15 2014-07-24 Cathworks Ltd. Diagnostically useful results in real time
TW201603781A (en) * 2014-07-31 2016-02-01 國立中央大學 Method for detecting and quantifying cerebral infarct

Also Published As

Publication number Publication date
TW201826220A (en) 2018-07-16

Similar Documents

Publication Publication Date Title
Alhamud et al. Volumetric navigators for real‐time motion correction in diffusion tensor imaging
Jeurissen et al. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
Scherrer et al. Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions
Sotiropoulos et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project
Tournier et al. Diffusion tensor imaging and beyond
Benner et al. Diffusion imaging with prospective motion correction and reacquisition
Stankovic et al. Reproducibility study of four‐dimensional flow MRI of arterial and portal venous liver hemodynamics: Influence of spatio‐temporal resolution
Irfanoglu et al. Evaluating corrections for Eddy‐currents and other EPI distortions in diffusion MRI: methodology and a dataset for benchmarking
CN103300857B (en) For the method performing the magnetic resonance-pet of combination
Poot et al. Detecting statistically significant differences in quantitative MRI experiments, applied to diffusion tensor imaging
Bastin et al. On the use of water phantom images to calibrate and correct eddy current induced artefacts in MR diffusion tensor imaging
Jeurissen et al. Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI
US20220187406A1 (en) A system and method for motion correction of magnetic resonance image
Rohde et al. Estimating intensity variance due to noise in registered images: applications to diffusion tensor MRI
Vos et al. Trade-off between angular and spatial resolutions in in vivo fiber tractography
Raj et al. Spatial HARDI: improved visualization of complex white matter architecture with Bayesian spatial regularization
US20100135560A1 (en) Image processing method
Bazin et al. Sharpness in motion corrected quantitative imaging at 7T
Schumacher et al. Probing the reproducibility of quantitative estimates of structural connectivity derived from global tractography
Alhamud et al. Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction
Sui et al. TURBINE‐MRE: a 3D hybrid radial‐Cartesian EPI acquisition for MR elastography
van Gorkum et al. Analysis and correction of off‐resonance artifacts in echo‐planar cardiac diffusion tensor imaging
Baete et al. Fingerprinting Orientation Distribution Functions in diffusion MRI detects smaller crossing angles
Liu et al. In vivo generalized diffusion tensor imaging (GDTI) using higher‐order tensors (HOT)
Gedamu et al. Subject movement during multislice interleaved MR acquisitions: prevalence and potential effect on MRI‐derived brain pathology measurements and multicenter clinical trials of therapeutics for multiple sclerosis