TWI637635B - Power management control circuit and lnb circuit therefor - Google Patents

Power management control circuit and lnb circuit therefor Download PDF

Info

Publication number
TWI637635B
TWI637635B TW106129183A TW106129183A TWI637635B TW I637635 B TWI637635 B TW I637635B TW 106129183 A TW106129183 A TW 106129183A TW 106129183 A TW106129183 A TW 106129183A TW I637635 B TWI637635 B TW I637635B
Authority
TW
Taiwan
Prior art keywords
switch tube
circuit
capacitor
power management
management control
Prior art date
Application number
TW106129183A
Other languages
Chinese (zh)
Other versions
TW201811021A (en
Inventor
王建欽
冉揚眉
Original Assignee
大陸商廈門科塔電子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商廈門科塔電子有限公司 filed Critical 大陸商廈門科塔電子有限公司
Priority to TW106129183A priority Critical patent/TWI637635B/en
Publication of TW201811021A publication Critical patent/TW201811021A/en
Application granted granted Critical
Publication of TWI637635B publication Critical patent/TWI637635B/en

Links

Abstract

一種電源管理控制電路及應用電源管理控制電路的高頻頭電路,其中,該電源管理控制電路包括依次連接的一第一段LDO穩壓電路、一DC/DC變換器以及一第三段LDO穩壓電路,該第一段LDO穩壓電路的輸入端為電源輸入端,該第三段LDO穩壓電路的輸出端為供電輸出端,該DC/DC變換器包含電性相連的一開關器件、一非重疊時鐘發生器以及一參照時鐘發生器電路;藉此,其提高LNB的供電效率,減少電源本身的功耗,減少LNB的發熱量,同時又能提供低紋波、無雜散、穩定的電源電壓,供高頻處理電路使用。 A power management control circuit and a high frequency head circuit applying the power management control circuit, wherein the power management control circuit comprises a first segment LDO voltage regulator circuit, a DC/DC converter and a third segment LDO stable a voltage circuit, the input end of the first LDO voltage stabilizing circuit is a power input end, and the output end of the third LDO voltage stabilizing circuit is a power supply output end, the DC/DC converter includes a switching device electrically connected, A non-overlapping clock generator and a reference clock generator circuit; thereby, the LNB power supply efficiency is improved, the power consumption of the power source itself is reduced, the heat generation of the LNB is reduced, and low ripple, spurious, and stable are provided. The power supply voltage is used by the high frequency processing circuit.

Description

電源管理控制電路及應用電源管理控制電路的高頻頭電路 Power management control circuit and high frequency head circuit of application power management control circuit

本發明涉及一種電源供電技術領域,尤其是指一種電源管理控制電路及應用電源管理控制電路的高頻頭電路。 The invention relates to the technical field of power supply, in particular to a power management control circuit and a high frequency head circuit for applying a power management control circuit.

衛星通信系統中諸如衛星電視接收機系統,通常由室外抛物線天線接收單元和室內的接收機構成。室外的接收單元俗稱高頻處理電路,也稱LNB,其功能在於對衛星發射出的高頻信號進行接收、放大,並把高頻信號下變頻到中頻信號。由於室外單元和室內接收機是通過一根同軸電纜相連,中頻信號從高頻處理電路經過同軸電纜傳到室內接收機的同時,室內接收機還通過這根同軸電纜把極化控制電壓和本振頻率控制音訊信號傳給高頻處理電路,並且,極化控制電壓還兼負有電源供電的功能。例如在歐洲普及的UTELSAT系統中,極化控制電壓用的是13V和18V,分別用於接收垂直極化信號和水準極化信號;而這個13V或18V的極化控制電壓上有是否調製著22KHz的音訊信號則控制著高頻處理電路內本振的頻率,沒有調製22KHz信號時,使用低本振頻率接收低頻段的信號,而有調製22KHz信號時則使用高本振頻率接收高頻段信號。更應指出的是,13V或18V的極化控制電壓(包含著22KHz調製信號)還起著給高頻處理電路內低雜訊放大器和下變頻器電路的電源供電作用。 Satellite communication systems, such as satellite television receiver systems, typically consist of an outdoor parabolic antenna receiving unit and an indoor receiver. The outdoor receiving unit is commonly called the high frequency processing circuit, also known as the LNB. Its function is to receive and amplify the high frequency signal emitted by the satellite, and downconvert the high frequency signal to the intermediate frequency signal. Since the outdoor unit and the indoor receiver are connected by a coaxial cable, the intermediate frequency signal is transmitted from the high frequency processing circuit to the indoor receiver through the coaxial cable, and the indoor receiver also controls the polarization control voltage and the current through the coaxial cable. The vibration frequency control audio signal is transmitted to the high frequency processing circuit, and the polarization control voltage also functions as a power supply. For example, in the popular UTELSAT system in Europe, the polarization control voltage is 13V and 18V, respectively, for receiving vertical polarization signals and level polarization signals; and whether the 13V or 18V polarization control voltage is modulated with 22KHz. The audio signal controls the frequency of the local oscillator in the high-frequency processing circuit. When the 22KHz signal is not modulated, the low-frequency signal is received using the low local oscillator frequency, and the high-frequency signal is received using the high local oscillator frequency when the 22KHz signal is modulated. It should be noted that the 13V or 18V polarization control voltage (including the 22KHz modulation signal) also acts as a power supply for the low noise amplifier and downconverter circuits in the high frequency processing circuit.

第一圖所示的是傳統高頻頭電路的通道與供電結構示意圖。極化控制電壓經過同軸電纜連接端10輸入到LNB內部後,分別印加到三端穩壓器90輸入端和高頻處理電路70中的極化/本振控制輸入端。13V或18V的極化控制電 壓經過三端穩壓器90降壓並穩壓,形成一個穩定的無紋波電壓供給包含低噪放和下變頻器的高頻處理電路70作為電源電壓使用。高頻處理電路在這個供電條件下動作,按照極化電壓值和本振頻率的22KHz控制信號有無接收相應的極化和波段的信號,放大並下變頻後從中頻輸出端輸出,經過隔直電容連接到同軸電纜連接端10。所以,中頻信號經過同軸電纜連接端10傳輸到室內的接收機,而接收機則解調出相應的通信信號供使用者使用。 The first figure shows a schematic diagram of the channel and power supply structure of a conventional tuner circuit. The polarization control voltage is input to the inside of the LNB through the coaxial cable connection terminal 10, and is respectively printed on the input terminal of the three-terminal regulator 90 and the polarization/local oscillation control input terminal of the high-frequency processing circuit 70. 13V or 18V polarization control The voltage is stepped down and regulated by a three-terminal regulator 90 to form a stable ripple-free voltage supply to the high frequency processing circuit 70 including the low noise amplifier and downconverter for use as a supply voltage. The high-frequency processing circuit operates under this power supply condition, and the 22KHz control signal according to the polarization voltage value and the local oscillation frequency receives the corresponding polarization and band signals, is amplified and down-converted, and is output from the intermediate frequency output terminal, and passes through the DC blocking capacitor. Connect to the coaxial cable connection end 10. Therefore, the intermediate frequency signal is transmitted to the indoor receiver through the coaxial cable connection end 10, and the receiver demodulates the corresponding communication signal for the user to use.

近年來隨著高頻器件製造技術的提高,器件趨於精細化,使用時供電電壓也趨於低電壓化。這樣,傳統LNB中的三端穩壓器的輸入電壓和輸出電壓差值增加,造成在三端穩壓器上的功耗增加,發熱量也隨之增加。於是,LNB動作時的環境溫度增加,造成高頻處理電路的雜訊係數增加,直接影響了接收的靈敏度。也就是說,傳統的LNB中,因為電源的供電電壓高,而高頻處理電路需要的電源電壓低,所以大部分的功率都無謂地消耗在三端穩壓器上,供電效率低的同時還造成LNB發熱,影響接收靈敏度。 In recent years, with the improvement of high-frequency device manufacturing technology, devices have become more refined, and the power supply voltage tends to be lower in voltage during use. In this way, the difference between the input voltage and the output voltage of the three-terminal regulator in the conventional LNB increases, resulting in an increase in power consumption on the three-terminal regulator and an increase in the amount of heat generated. Therefore, the ambient temperature during the operation of the LNB increases, causing an increase in the noise coefficient of the high-frequency processing circuit, which directly affects the sensitivity of the reception. That is to say, in the conventional LNB, since the power supply voltage of the power supply is high and the high-frequency processing circuit requires a low power supply voltage, most of the power is unnecessarily consumed on the three-terminal regulator, and the power supply efficiency is low. Causes LNB heating, affecting the receiving sensitivity.

而如果將傳統LNB中的三端穩壓器改為DC/DC變換器,那麼,因為DC/DC變換器的供電效率高,可以有效地節省功耗,減少發熱量,降低LNB動作時的環境溫度。但是,由於DC/DC變換器的紋波去除能力低,LNB供電路中的22KHz音訊信號有一部分將會通過DC/DC變換器印加到高頻處理電路的電源端,影響高頻處理電路雜散性能,降低了接收機的信號接收品質,而且DC/DC變化器的使用會影響高頻處理電路的相位雜訊性能。 If the three-terminal regulator in the conventional LNB is changed to a DC/DC converter, since the power supply efficiency of the DC/DC converter is high, power consumption can be effectively saved, heat generation can be reduced, and the environment during LNB operation can be reduced. temperature. However, due to the low ripple removal capability of the DC/DC converter, a portion of the 22KHz audio signal in the LNB supply circuit will be printed by the DC/DC converter to the power supply terminal of the high frequency processing circuit, affecting the high frequency processing circuit spurs. Performance reduces the receiver's signal reception quality, and the use of DC/DC variators can affect the phase noise performance of high-frequency processing circuits.

因此,本發明專利申請中,申請人精心研究了一種電源管理控制電路及應用電源管理控制電路的高頻頭電路來解決了上述問題。 Therefore, in the patent application of the present invention, the applicant has carefully studied a power management control circuit and a high frequency head circuit using the power management control circuit to solve the above problems.

本發明針對上述現有技術所存在不足,主要目的在於提供一種電源管理控制電路及應用電源管理控制電路的高頻頭電路,其以提高LNB的供電 效率,減少電源本身的功耗,減少LNB的發熱量,同時又能提供低紋波、無雜散、穩定的電源電壓,供高頻頭內的高頻處理電路使用。 The present invention is directed to the above prior art deficiencies, and the main object thereof is to provide a power management control circuit and a high frequency head circuit for applying the power management control circuit to improve the power supply of the LNB. Efficiency, reducing the power consumption of the power supply itself, reducing the heat output of the LNB, while providing low ripple, spurious-free, stable power supply voltage for high-frequency processing circuits in the high-frequency head.

為實現上述之目的,本發明採取如下技術:一種電源管理控制電路,包括依次連接的一第一段LDO穩壓電路、一DC/DC變換器以及一第三段LDO穩壓電路,該第一段LDO穩壓電路的輸入端為電源輸入端,該第三段LDO穩壓電路的輸出端為供電輸出端,該DC/DC變換器包含電性相連的一開關器件、一非重疊時鐘發生器以及一參照時鐘發生器電路,其中,該開關器件包括一第一電容(C1)、一第二電容(C2)、一第三電容(C3)、一第一開關管(S1)、一第二開關管(S2)、一第三開關管(S3)、一第四開關管(S4)、一第五開關管(S5)、一第六開關管(S6)、一第七開關管(S7)以及一第八開關管(S8);所述電源輸入端連接該第一開關管(S1)和該第五開關管(S5)的一端,該第一開關管(S1)的另一端連接該第二開關管(S2)的一端和該第一電容(C1)的一端,該第二開關管(S2)的另外一端連接該第六開關管(S6)和該第七開關管(S7)的一端以及該第二電容(C2)的一端,該第六開關管(S6)的另一端連接該第五開關管(S5)的另一端、該第三開關管(S3)的一端和該第三電容(C3)的一端,該第七開關管(S7)的另一端與該第三電容(C3)的另一端和該第八開關管(S8)的一端相連,該第八開關管(S8)的另一端接地,該第三開關管(S3)的另一端同該第四開關管(S4)的一端相連,並與該第一電容(C1)的另一端相連,該第四開關管(S4)的另一端接地,該第二電容(C2)另一端接地;該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)、該第四開關管(S4)、該第五開關管(S5)、該第六開關管(S6)、該第七開關管(S7)和該第八開關管(S8)的控制端分別連接到該非重疊時鐘發生器的開關控制輸出端,該第一段LDO穩壓電路具有一極化電壓檢測器,該非重疊時鐘發生器依該極化電壓檢測器的輸出狀態選擇控制相應的開關動作狀態。 In order to achieve the above object, the present invention adopts the following technology: a power management control circuit, comprising a first segment LDO voltage regulator circuit, a DC/DC converter and a third segment LDO voltage regulator circuit, which are sequentially connected, the first The input end of the segment LDO voltage stabilizing circuit is a power input end, and the output end of the third LDO voltage stabilizing circuit is a power supply output end, the DC/DC converter includes a switching device electrically connected, and a non-overlapping clock generator And a reference clock generator circuit, wherein the switching device comprises a first capacitor (C1), a second capacitor (C2), a third capacitor (C3), a first switch (S1), and a second a switch tube (S2), a third switch tube (S3), a fourth switch tube (S4), a fifth switch tube (S5), a sixth switch tube (S6), and a seventh switch tube (S7) And an eighth switch tube (S8); the power input end is connected to one end of the first switch tube (S1) and the fifth switch tube (S5), and the other end of the first switch tube (S1) is connected to the first One end of the second switch tube (S2) and one end of the first capacitor (C1), and the other end of the second switch tube (S2) is connected to the sixth switch tube (S6) and the first One end of the seven switch tube (S7) and one end of the second capacitor (C2), the other end of the sixth switch tube (S6) is connected to the other end of the fifth switch tube (S5), the third switch tube (S3) One end of the third switch (C3) and the other end of the third switch (C3) are connected to one end of the third capacitor (C3) and one end of the eighth switch (S8), The other end of the eighth switch tube (S8) is grounded, and the other end of the third switch tube (S3) is connected to one end of the fourth switch tube (S4) and connected to the other end of the first capacitor (C1). The other end of the fourth switch tube (S4) is grounded, and the other end of the second capacitor (C2) is grounded; the first switch tube (S1), the second switch tube (S2), and the third switch tube (S3) The control ends of the fourth switch tube (S4), the fifth switch tube (S5), the sixth switch tube (S6), the seventh switch tube (S7), and the eighth switch tube (S8) are respectively connected. To the switch control output of the non-overlapping clock generator, the first stage LDO regulator circuit has a polarization voltage detector, and the non-overlapping clock generator selects and controls the corresponding switch according to the output state of the polarization voltage detector State.

進一步,該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)、該第四開關管(S4)、該第五開關管(S5)、該第六開關管(S6)、該第七開關管(S7)、該第八開關管(S8)均為場效電晶體或金屬氧化物半導體場效電晶體。 Further, the first switch tube (S1), the second switch tube (S2), the third switch tube (S3), the fourth switch tube (S4), the fifth switch tube (S5), and the sixth The switch tube (S6), the seventh switch tube (S7), and the eighth switch tube (S8) are field effect transistors or metal oxide semiconductor field effect transistors.

一種電源管理控制電路,包括依次連接的一第一段LDO穩壓電路、一DC/DC變換器以及一第三段LDO穩壓電路,該第一段LDO穩壓電路的輸入端為電源輸入端,該第三段LDO穩壓電路的輸出端為供電輸出端,該DC/DC變換器包含電性相連的一開關器件、一非重疊時鐘發生器、一參照時鐘發生器電路以及供高頻處理電路使用的同步參照時鐘輸出,其中,該開關器件包括一第一電容(C1)、一第二電容(C2)、一第三電容(C3)、一第一開關管(S1)、一第二開關管(S2)、一第三開關管(S3)、一第四開關管(S4)、一第五開關管(S5)、一第六開關管(S6)、一第七開關管(S7)以及一第八開關管(S8);電源輸入端連接該第一開關管(S1)和該第五開關管(S5)的一端,該第一開關管(S1)的另一端連接該第二開關管(S2)的一端和該第一電容(C1)的一端,該第二開關管(S2)的另外一端連接該第六開關管(S6)和該第七開關管(S7)的一端以及該第二電容(C2)的一端,該第六開關管(S6)的另一端連接該第五開關管(S5)的另一端、該第三開關管(S3)的一端和該第三電容(C3)的一端,該第七開關管(S7)的另一端與該第三電容(C3)的另一端和該第八開關管(S8)的一端相連,該第八開關管(S8)的另一端接地,該第三開關管(S3)的另一端同該第四開關管(S4)的一端相連,並與該第一電容(C1)的另一端相連,該第四開關管(S4)的另一端接地,該第二電容(C2)另一端接地;該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)、該第四開關管(S4)、該第五開關管(S5)、該第六開關管(S6)、該第七開關管(S7)和該第八開關管(S8)的控制端分別連接到該非重疊時鐘發生器的開關控制輸出端,該第一段LDO穩壓電路具有一極化電壓檢測器,該非重疊時鐘發生器依該極化電壓檢測器的輸出狀態選擇控制相應的開關動作狀態。 A power management control circuit includes a first stage LDO voltage regulator circuit, a DC/DC converter and a third stage LDO voltage regulator circuit, wherein the input end of the first stage LDO voltage regulator circuit is a power input terminal The output end of the third-stage LDO regulator circuit is a power supply output terminal, and the DC/DC converter includes a switching device electrically connected, a non-overlapping clock generator, a reference clock generator circuit, and a high frequency processing The synchronous reference clock output used by the circuit, wherein the switching device comprises a first capacitor (C1), a second capacitor (C2), a third capacitor (C3), a first switch (S1), and a second a switch tube (S2), a third switch tube (S3), a fourth switch tube (S4), a fifth switch tube (S5), a sixth switch tube (S6), and a seventh switch tube (S7) And an eighth switch tube (S8); the power input end is connected to one end of the first switch tube (S1) and the fifth switch tube (S5), and the other end of the first switch tube (S1) is connected to the second switch One end of the tube (S2) and one end of the first capacitor (C1), and the other end of the second switch tube (S2) is connected to the sixth switch tube (S6) and the seventh open One end of the switch (S7) and one end of the second capacitor (C2), the other end of the sixth switch (S6) is connected to the other end of the fifth switch (S5), the third switch (S3) One end and one end of the third capacitor (C3), the other end of the seventh switch tube (S7) is connected to the other end of the third capacitor (C3) and one end of the eighth switch tube (S8), the first The other end of the eighth switch tube (S8) is grounded, and the other end of the third switch tube (S3) is connected to one end of the fourth switch tube (S4) and connected to the other end of the first capacitor (C1). The other end of the fourth switch tube (S4) is grounded, and the other end of the second capacitor (C2) is grounded; the first switch tube (S1), the second switch tube (S2), the third switch tube (S3), The control ends of the fourth switch tube (S4), the fifth switch tube (S5), the sixth switch tube (S6), the seventh switch tube (S7), and the eighth switch tube (S8) are respectively connected to a switch control output of the non-overlapping clock generator, the first stage LDO regulator circuit has a polarization voltage detector, and the non-overlapping clock generator selects and controls a corresponding switch operation according to an output state of the polarization voltage detector .

進一步,該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)、該第四開關管(S4)、該第五開關管(S5)、該第六開關管(S6)、該第七開關管(S7)、該第八開關管(S8)均為場效電晶體或金屬氧化物半導體場效電晶體。 Further, the first switch tube (S1), the second switch tube (S2), the third switch tube (S3), the fourth switch tube (S4), the fifth switch tube (S5), and the sixth The switch tube (S6), the seventh switch tube (S7), and the eighth switch tube (S8) are field effect transistors or metal oxide semiconductor field effect transistors.

進一步,包括至少兩個前述第一段LDO穩壓電路、一個前述DC/DC變換器以及一個前述第三段LDO穩壓電路,所有第一段LDO穩壓電路的輸出端分別通過各自連接元件連接於一公共端,該公共端連接於該DC/DC變換器的輸入端。 Further, comprising at least two of the foregoing first stage LDO voltage stabilizing circuits, one of the foregoing DC/DC converters, and one of the foregoing third stage LDO voltage stabilizing circuits, wherein the output ends of all the first stage LDO voltage stabilizing circuits are respectively connected through respective connecting elements At a common end, the common terminal is coupled to the input of the DC/DC converter.

進一步,所述連接元件為二極體(D1)或開關管(S0)。 Further, the connecting element is a diode (D1) or a switching tube (S0).

一種應用前述電源管理控制電路的高頻頭電路,還包括有一同軸電纜連接端、一中頻信號輸出傳輸線、一隔直電容、一極化與本振控制信號傳輸線、一電源管理控制電路供電輸入線、一電源管理控制電路供電輸出線、一高頻處理電路以及一時鐘信號傳輸線;該同軸電纜連接端經該電源管理控制電路供電輸入線連接於該電源管理控制電路的一DC/DC變換器,該同軸電纜連接端經該極化與本振控制信號傳輸線連接於該高頻處理電路,該高頻處理電路經該中頻信號輸出傳輸線、該隔直電容連接於該同軸電纜連接端,該電源管理控制電路的供電輸出端經該電源管理控制電路供電輸出線連接於該高頻處理電路,該電源管理控制電路的時鐘控制電路經該時鐘信號傳輸線連接於該高頻處理電路。 A high frequency head circuit applying the foregoing power management control circuit further comprises a coaxial cable connection end, an intermediate frequency signal output transmission line, a DC blocking capacitor, a polarization and local oscillator control signal transmission line, and a power management control circuit power supply input a power supply output line, a high frequency processing circuit and a clock signal transmission line; the coaxial cable connection end is connected to a DC/DC converter of the power management control circuit via the power supply control input line of the power management control circuit The coaxial cable connection end is connected to the high frequency processing circuit via the polarization and local oscillator control signal transmission line, and the high frequency processing circuit is connected to the coaxial cable connection end via the intermediate frequency signal output transmission line, and the DC blocking capacitor is connected to the coaxial cable connection end. The power supply output end of the power management control circuit is connected to the high frequency processing circuit via the power management output circuit power supply output line, and the clock control circuit of the power management control circuit is connected to the high frequency processing circuit via the clock signal transmission line.

進一步,包括至少兩個前述同軸電纜連接端、一個前述電源管理控制電路、一個前述高頻處理電路,每個同軸電纜連接端通過各自的前述中頻信號輸出傳輸線、前述隔直電容、前述極化與本振控制信號傳輸線與前述高頻處理電路相連接,每個同軸電纜連接端通過各自的電源管理控制電路供電輸入線與前述電源管理控制電路該DC/DC變換器相連接。 Further, comprising at least two of the foregoing coaxial cable connection ends, a power management control circuit, and a high frequency processing circuit, each of the coaxial cable connection ends outputting a transmission line, the DC blocking capacitor, and the polarization through respective intermediate frequency signals. The local oscillator control signal transmission line is connected to the high frequency processing circuit, and each coaxial cable connection end is connected to the DC/DC converter of the power management control circuit through a power supply input line of the respective power management control circuit.

根據上述技術特徵可達成以下功效: 通過對電源管理控制電路結構的合理設計,可以大幅度提高LNB的供電效率,減少電源本身的功耗,進一步減少LNB發熱量,降低動作時的環境溫度,使得接收通道的雜訊係數減少,提高接收靈敏度,同時又能提供低紋波、無雜散、穩定的電源電壓,供高頻處理電路使用。 According to the above technical features, the following effects can be achieved: Through reasonable design of the power management control circuit structure, the power supply efficiency of the LNB can be greatly improved, the power consumption of the power supply itself can be reduced, the heat generation of the LNB can be further reduced, and the ambient temperature during operation can be reduced, so that the noise coefficient of the receiving channel is reduced and improved. Receive sensitivity, while providing low ripple, no stray, stable supply voltage for high frequency processing circuits.

(10)‧‧‧同軸電纜連接端 (10)‧‧‧Coaxial cable connection

(101)‧‧‧第一同軸電纜連接端 (101)‧‧‧First coaxial cable connection

(102)‧‧‧第二同軸電纜連接端 (102)‧‧‧Second coaxial cable connection

(20)‧‧‧中頻信號輸出傳輸線 (20)‧‧‧Intermediate frequency signal output transmission line

(201)‧‧‧第一中頻信號輸出傳輸線 (201)‧‧‧First IF signal output transmission line

(202)‧‧‧第二中頻信號輸出傳輸線 (202)‧‧‧Second IF signal output transmission line

(30)‧‧‧極化與本振控制信號傳輸線 (30) ‧‧ ‧Polarization and local oscillator control signal transmission line

(301)‧‧‧第一極化與本振控制信號傳輸線 (301)‧‧‧First polarization and local oscillator control signal transmission line

(302)‧‧‧第二極化與本振控制信號傳輸線 (302)‧‧‧Second polarization and local oscillator control signal transmission line

(40)‧‧‧電源管理控制電路供電輸入線 (40)‧‧‧Power management control circuit power supply input line

(401)‧‧‧第一電源管理控制電路供電輸入線 (401)‧‧‧First power management control circuit power supply input line

(402)‧‧‧第二電源管理控制電路供電輸入線 (402)‧‧‧Second power management control circuit power supply input line

(50)‧‧‧電源管理控制電路供電輸出線 (50)‧‧‧Power management control circuit power supply output line

(60)‧‧‧電源管理控制電路 (60)‧‧‧Power Management Control Circuit

(600)‧‧‧第一段LDO穩壓電路 (600)‧‧‧The first stage LDO regulator circuit

(601)‧‧‧極化電壓檢測器 (601)‧‧‧Polarization voltage detector

(610)‧‧‧DC/DC變換器 (610)‧‧‧DC/DC converter

(6100)‧‧‧開關器件 (6100)‧‧‧Switching device

(6120)‧‧‧非重疊時鐘發生器 (6120)‧‧‧ Non-overlapping clock generators

(6130)‧‧‧參考時鐘發生器 (6130)‧‧‧Reference clock generator

(620)‧‧‧第三段LDO穩壓電路 (620)‧‧‧The third stage LDO regulator circuit

(70)‧‧‧高頻處理電路 (70)‧‧‧High frequency processing circuit

(80)‧‧‧時鐘信號傳輸線 (80)‧‧‧clock signal transmission line

(90)‧‧‧三端穩壓器 (90)‧‧‧Three-terminal regulator

(90)‧‧‧三端穩壓器 (90)‧‧‧Three-terminal regulator

(S1)‧‧‧第一開關管 (S1)‧‧‧First switch tube

(S2)‧‧‧第二開關管 (S2)‧‧‧Second switch

(S3)‧‧‧第三開關管 (S3)‧‧‧ Third switch tube

(S4)‧‧‧第四開關管 (S4)‧‧‧fourth switch

(S5)‧‧‧第五開關管 (S5) ‧‧‧ fifth switch tube

(S6)‧‧‧第六開關管 (S6) ‧‧‧ sixth switch tube

(S7)‧‧‧第七開關管 (S7)‧‧‧ seventh switch tube

(S8)‧‧‧第八開關管 (S8) ‧‧‧ eighth switch tube

(C1)‧‧‧第一電容 (C1)‧‧‧First Capacitor

(C2)‧‧‧第二電容 (C2)‧‧‧second capacitor

(C3)‧‧‧第三電容 (C3)‧‧‧ Third Capacitor

(D1)‧‧‧二極體 (D1) ‧ ‧ diode

(S0)‧‧‧開關管 (S0)‧‧‧Switch tube

[第一圖]是傳統高頻頭電路的通道與供電結構示意圖。 [The first picture] is a schematic diagram of the channel and power supply structure of the conventional high frequency head circuit.

[第二圖]是本發明第一實施例中,應用單通道電源管理控制電路的高頻頭電路的通道與供電結構示意圖。 [Second Picture] is a schematic diagram of a channel and a power supply structure of a high frequency head circuit to which a single channel power supply management control circuit is applied in the first embodiment of the present invention.

[第三圖]是第二圖中單通道電源管理控制電路的結構示意圖。 [Third Diagram] is a schematic structural diagram of a single-channel power management control circuit in the second figure.

[第四圖]是本發明第一實施例中,應用另一單通道電源管理控制電路的高頻頭電路的通道與供電結構示意圖。 [Fourth Diagram] is a schematic diagram of a channel and a power supply structure of a tuner circuit to which another single-channel power supply management control circuit is applied in the first embodiment of the present invention.

[第五圖]是第四圖中單通道電源管理控制電路的結構示意圖。 [Fifth] is a schematic structural diagram of a single-channel power management control circuit in the fourth figure.

[第六圖]是第四圖中開關器件的一種實施方式結構示意圖。 [Sixth Diagram] is a schematic structural view of an embodiment of a switching device in the fourth figure.

[第七圖]是第四圖中單通道電源管理控制電路的另一結構示意圖。 [Seventh figure] is another schematic structural diagram of the single-channel power management control circuit in the fourth figure.

[第八圖]是第四圖中開關器件的另一種實施方式結構示意圖。 [Eighth Diagram] is a schematic structural view of another embodiment of the switching device in the fourth figure.

[第九圖]是本發明第二實施例,是電源管理控制電路使用多通道輸入的一種實施方式結構示意圖。 [9th] is a second embodiment of the present invention, which is a schematic structural view of an embodiment in which a power management control circuit uses a multi-channel input.

[第十圖]是本發明第二實施例,是電源管理控制電路使用多通道輸入的另一種實施方式結構示意圖。 [Tenth Graph] is a second embodiment of the present invention, which is a schematic structural diagram of another embodiment in which a power management control circuit uses multi-channel input.

[第十一圖]是本發明第二實施例中多通道電源管理控制電路的LNB的通道與供電結構示意圖。 [11th] is a schematic diagram of the channel and power supply structure of the LNB of the multi-channel power management control circuit in the second embodiment of the present invention.

綜合上述技術特徵,本發明電源管理控制電路及應用電源管理控制電路的高頻頭電路的主要功效將可於下述實施例清楚呈現。 In summary of the above technical features, the main functions of the power management control circuit of the present invention and the high frequency head circuit of the application power management control circuit will be clearly shown in the following embodiments.

下面結合附圖與具體實施方式對本發明作進一步描述。 The invention is further described below in conjunction with the drawings and specific embodiments.

下述說明中,不同實施例及不同結構中的相同元件,均採用相同標號,以使說明更易於瞭解,請參照第二圖至第十一圖所示,其顯示出了本發明之一第一實施例的多種具體結構,以及一第二實施例的多種具體結構。 In the following description, the same elements in different embodiments and different structures are denoted by the same reference numerals to make the description easier to understand. Referring to the second to eleventh drawings, one of the present inventions is shown. A plurality of specific configurations of an embodiment, and various specific structures of a second embodiment.

參閱第二圖所示,係第一實施例中,應用單通道電源管理控制電路(60)的高頻頭電路的通道與供電結構示意圖,包括有一同軸電纜連接端(10)、一中頻信號輸出傳輸線(20)、一隔直電容、一極化與本振控制信號傳輸線(30)、一電源管理控制電路供電輸入線(40)、一電源管理控制電路供電輸出線(50)、一高頻處理電路(70)及一電源管理控制電路(60),參閱第四圖所示,係第一實施例中,應用另一單通道電源管理控制電路(60)的高頻頭電路的通道與供電結構示意圖,其與第二圖大致相同,差別僅在於更包含一時鐘信號傳輸線(80)。 Referring to the second figure, in the first embodiment, a schematic diagram of a channel and a power supply structure of a high-frequency head circuit using a single-channel power management control circuit (60) includes a coaxial cable connection end (10) and an intermediate frequency signal. Output transmission line (20), a DC blocking capacitor, a polarization and local oscillator control signal transmission line (30), a power management control circuit power supply input line (40), a power management control circuit power supply output line (50), a high The frequency processing circuit (70) and a power management control circuit (60) are shown in the fourth figure. In the first embodiment, the channel of the tuner circuit of another single-channel power management control circuit (60) is applied. A schematic diagram of the power supply structure, which is substantially the same as the second figure, except that it further includes a clock signal transmission line (80).

參閱第二圖及第四圖所示,該同軸電纜連接端(10)經該電源管理控制電路供電輸入線(40)連接於該電源管理控制電路(60)的一DC/DC變換器,該同軸電纜連接端(10)經該極化與本振控制信號傳輸線(30)連接於該高頻處理電路(70),該高頻處理電路(70)經該中頻信號輸出傳輸線(20)、該隔直電容連接於該同軸電纜連接端(10),該電源管理控制電路(60)的供電輸出端經該電源管理控制電路供電輸出線(50)連接於該高頻處理電路(70);而第四圖中,更有該電源管理控制電路(60)的時鐘控制電路經該時鐘信號傳輸線(80)連接於該高頻處理電路(70)。 Referring to the second and fourth figures, the coaxial cable connection end (10) is connected to a DC/DC converter of the power management control circuit (60) via the power management control circuit power supply input line (40). The coaxial cable connection end (10) is connected to the high frequency processing circuit (70) via the polarization and local oscillation control signal transmission line (30), and the high frequency processing circuit (70) outputs the transmission line (20) via the intermediate frequency signal, The DC blocking capacitor is connected to the coaxial cable connection end (10), and the power supply output end of the power management control circuit (60) is connected to the high frequency processing circuit (70) via the power management control circuit power supply output line (50); In the fourth figure, the clock control circuit of the power management control circuit (60) is connected to the high frequency processing circuit (70) via the clock signal transmission line (80).

以下參閱第二圖及第三圖所示,其中,第三圖是本第一實施例中,前述單通道電源管理控制電路(60)的結構示意圖。又應用前述單通道電源管理控制電路(60)的高頻頭電路中,該電源管理控制電路(60)包括依次連接的一第一段LDO穩壓電路(600)、一DC/DC變換器(610)以及一第三段LDO穩壓電路(620),該第一段LDO穩壓電路(600)的輸入端為電源輸入端,該第三段LDO穩壓電路(620)的輸出端為供電輸出端;該DC/DC變換器(610)包含電性連接之一開關器件(6100)、一非重疊時鐘發生器(6120)和一參考時鐘發生器(6130)電路,該開關器件(6100)的工作狀態受該非重疊時鐘發生器(6120)的輸出信號控制,該非重疊時鐘信號發生器(6120)的輸入信號由該參考時鐘發生器(6130)產生並提供。 Referring to the second and third figures, the third figure is a schematic structural diagram of the single-channel power management control circuit (60) in the first embodiment. In the high frequency head circuit of the foregoing single channel power management control circuit (60), the power management control circuit (60) includes a first stage LDO voltage regulator circuit (600) and a DC/DC converter ( 610) and a third-stage LDO regulator circuit (620), the input end of the first-stage LDO regulator circuit (600) is a power input end, and the output end of the third-stage LDO regulator circuit (620) is powered An output terminal; the DC/DC converter (610) includes a switching device (6100) electrically connected, a non-overlapping clock generator (6120), and a reference clock generator (6130) circuit, the switching device (6100) The operational state is controlled by the output signal of the non-overlapping clock generator (6120), and the input signal of the non-overlapping clock signal generator (6120) is generated and provided by the reference clock generator (6130).

從該電源管理控制電路供電輸入線(40)傳來的電壓是室內接收機根據需要接收的信號被調製的極化波和頻段設定的。例如,歐洲的UTELSAT系統中規定,垂直極化波的電壓為13V,水準極化波的電壓為18V,需要低頻段本振時極化電壓中沒有調製22KHz的音訊信號,需要高頻段本振時,極化電壓中則調製著增幅為0.8Vpp的22KHz音訊脈衝信號。 The voltage from the power management input line (40) of the power management control circuit is set by the indoor receiver to modulate the polarized wave and frequency band modulated according to the signal received. For example, in the European UTELSAT system, the voltage of the vertically polarized wave is 13V, and the voltage of the horizontally polarized wave is 18V. When the low frequency band local oscillator is required, the 22KHz audio signal is not modulated in the polarization voltage, and the high frequency local oscillator is required. In the polarization voltage, a 22KHz audio pulse signal with an amplitude of 0.8Vpp is modulated.

該電源管理控制電路(60)為了輸出一個穩定的DC電壓供該高頻處理電路(70)使用,首先必須對音訊調製信號進行抑制,並且不管輸入電壓值是13V還是18V,其輸出電壓必須保持不變。該電源管理控制電路(60)的該第一段LDO穩壓電路(600),就是為了實現這樣的功能,以線性穩壓器的形式動作,去除大部分的22KHz音訊信號,輸出相對穩定的大約10V左右的DC電壓。 The power management control circuit (60) must first suppress the audio modulation signal in order to output a stable DC voltage for use by the high frequency processing circuit (70), and the output voltage must be maintained regardless of whether the input voltage value is 13V or 18V. constant. The first stage LDO regulator circuit (600) of the power management control circuit (60) is configured to operate in the form of a linear regulator to remove such a 22KHz audio signal, and the output is relatively stable. DC voltage of about 10V.

為了降低電源的功耗,該第一段LDO穩壓電路(600)輸出的電壓印加到該DC/DC變換器(610)的輸入端,通過該DC/DC變換器(610),把DC電壓降低,並提高電源的供電效率。該DC/DC變換器(610)提高電源的供電效率的原理為業界公知的內容,這裡省略了具體的描述。該DC/DC變換器(610)可以是使用電感的構造,也可以是不使用電感的開關電容的構造。無論使用哪一種構 造,因為該DC/DC變換器(610)必須對大電流做開關動作,在輸出端會產生較大的紋波信號,所以在該DC/DC變換器(610)之後設置旁路電容(圖中未標示)的同時,用該第三段LDO穩壓電路(620)對開關電流造成的紋波進行抑制,同時對該第一段LDO穩壓電路(600)無法完全抑制的22KHz音訊信號進行再次抑制,這樣,從該第三段LDO穩壓電路(620)輸出的電壓的紋波、該DC/DC變換器(610)產生的開關雜訊以及22KHz音訊信號的雜散可以達到足夠低的水準,讓該高頻處理電路(70)正常地動作。 In order to reduce the power consumption of the power supply, the voltage outputted by the first stage LDO regulator circuit (600) is applied to the input terminal of the DC/DC converter (610), and the DC voltage is passed through the DC/DC converter (610). Reduce and improve the power supply efficiency of the power supply. The principle that the DC/DC converter (610) improves the power supply efficiency of the power supply is well known in the art, and a detailed description is omitted here. The DC/DC converter (610) may be of a configuration using an inductor or a configuration of a switched capacitor without using an inductor. No matter which structure is used Because the DC/DC converter (610) must switch on a large current and generate a large ripple signal at the output, so set a bypass capacitor after the DC/DC converter (610). While not shown in the middle, the third-stage LDO regulator circuit (620) suppresses the ripple caused by the switching current, and simultaneously performs the 22KHz audio signal that cannot be completely suppressed by the first-stage LDO regulator circuit (600). Again, the ripple of the voltage output from the third stage LDO regulator circuit (620), the switching noise generated by the DC/DC converter (610), and the spur of the 22 KHz audio signal can be sufficiently low. The level allows the high frequency processing circuit (70) to operate normally.

必須強調的是,該DC/DC變換器(610)因為是對大電流進行開關動作來實現的,除了在其輸出端會出現較大的時鐘信號的紋波信號,所以,通過該第三段LDO穩壓電路(620)對該DC/DC變換器(610)的輸出電壓再次進行穩定,實現了大幅度提高電源的供電效率,減少功耗,降低裝置動作時的環境溫度,減少雜訊係數,提高接收靈敏度的同時,還能夠有效地消除本振頻率的音訊信號造成的雜散,又能夠有效地防止由於該DC/DC變換器(610)的使用而影響該高頻處理電路(70)的相位雜訊性能。 It must be emphasized that the DC/DC converter (610) is realized by switching a large current, except that a ripple signal of a large clock signal appears at its output end, so the third stage is passed. The LDO regulator circuit (620) stabilizes the output voltage of the DC/DC converter (610) again, thereby greatly improving the power supply efficiency of the power supply, reducing power consumption, reducing the ambient temperature during the operation of the device, and reducing the noise coefficient. When the receiving sensitivity is improved, the spur caused by the audio signal of the local oscillator frequency can be effectively eliminated, and the high frequency processing circuit (70) can be effectively prevented from being affected by the use of the DC/DC converter (610). Phase noise performance.

以下參閱第四圖及第五圖所示,其中,第五圖是本第一實施例中,前述另一單通道電源管理控制電路(60)的結構示意圖。又應用前述另一單通道電源管理控制電路(60)的高頻頭電路中,該電源管理控制電路(60)包括依次連接的一第一段LDO電路(600)、一DC/DC變換器(610)以及一第三段LDO穩壓電路(620),該第一段LDO電路(600)的輸入端為電源輸入端,該第三段LDO穩壓電路(620)的輸出端為供電輸出端,該DC/DC變換器(610)包含了電性連接的一開關器件(6100)、一非重疊時鐘發生器(6120)、一參考時鐘發生器(6130)電路以及供該高頻處理電路(70)使用的同步參照時鐘輸出,該開關器件(6100)的工作狀態受該非重疊時鐘發生器(6120)的輸出信號控制,該非重疊時鐘信號發生器(6120)的輸入信號由該參考時鐘發生器(6130)產生並提供,同時,該參考時鐘發 生器(6130)還輸出一路同步的時鐘信號經過該同步時鐘信號傳輸線(80)提供給該高頻處理電路(70)作為頻蹤的參考時鐘使用使得該DC/DC變換器(610)中使用的第一時鐘信號與該高頻處理電路(70)使用的第二時鐘信號保持同步狀態。 Referring to the fourth and fifth figures, the fifth figure is a schematic structural diagram of the other single-channel power management control circuit (60) in the first embodiment. In the high frequency head circuit of the other single channel power management control circuit (60), the power management control circuit (60) includes a first segment LDO circuit (600) and a DC/DC converter ( 610) and a third-stage LDO regulator circuit (620), the input end of the first-stage LDO circuit (600) is a power input end, and the output end of the third-stage LDO voltage stabilization circuit (620) is a power supply output end The DC/DC converter (610) includes a switching device (6100) electrically connected, a non-overlapping clock generator (6120), a reference clock generator (6130) circuit, and the high frequency processing circuit ( 70) Using the synchronous reference clock output, the operating state of the switching device (6100) is controlled by the output signal of the non-overlapping clock generator (6120), and the input signal of the non-overlapping clock signal generator (6120) is used by the reference clock generator (6130) generated and provided, at the same time, the reference clock is sent The generator (6130) also outputs a synchronous clock signal to the high frequency processing circuit (70) via the synchronous clock signal transmission line (80) for use as a reference clock of the frequency trace for use in the DC/DC converter (610) The first clock signal is synchronized with the second clock signal used by the high frequency processing circuit (70).

參閱第二圖至第五圖所示,其中之第四圖與第二圖的不同之處在於是否輸出同步時鐘輸出供該高頻處理電路(70)使用,而相同之處的動作原理在這裡不做重複的描述。必須強調的是,該DC/DC變換器(610)因為是對大電流進行開關動作來實現的,除了在其輸出端會出現較大的時鐘信號的紋波信號這個問題以外,開關信號的高次諧波還會向空中輻射,通過空中耦合影響到該高頻處理電路(70)的性能發揮。特別是在其時鐘頻率不穩定或其第一時鐘信號與該高頻處理電路(70)中的第二時鐘信號不同步時,該DC/DC變換器(610)輸出的的第一時鐘信號的紋波信號和高次諧波信號將會在該高頻處理電路(70)中發散,對該高頻處理電路(70)中的鎖相環和高頻壓控振盪器的相位雜訊的性能造成嚴重影響。所以,該DC/DC變換器(610)中使用的第一時鐘信號與高頻頭(70)使用的第二時鐘信號保持同步狀態,使得開關信號不會在接收通道中發散形成相位雜訊,並且,通過該第三段LDO穩壓電路(620)對該DC/DC變換器(610)的輸出電壓再次進行穩壓,實現了大幅度提高電源的供電效率,減少功耗,降低裝置動作時的環境溫度,減少雜訊係數,提高接收靈敏度的同時,還能夠有效地消除本振頻率的音訊信號造成的雜散,又能夠有效地防止由於該DC/DC變換器(610)的使用而影響該高頻處理電路(70)的相位雜訊性能。 Referring to the second to fifth figures, the fourth figure differs from the second figure in whether or not the synchronous clock output is output for use by the high frequency processing circuit (70), and the same principle of operation is here. Do not repeat the description. It must be emphasized that the DC/DC converter (610) is realized by switching a large current, and the switching signal is high except for the problem that a large clock signal ripple signal appears at its output end. The subharmonics also radiate into the air, affecting the performance of the high frequency processing circuit (70) through air coupling. Particularly when the clock frequency is unstable or the first clock signal is not synchronized with the second clock signal in the high frequency processing circuit (70), the first clock signal output by the DC/DC converter (610) The ripple signal and the higher harmonic signal will be diverged in the high frequency processing circuit (70), and the phase noise of the phase locked loop and the high frequency voltage controlled oscillator in the high frequency processing circuit (70) Has a serious impact. Therefore, the first clock signal used in the DC/DC converter (610) is synchronized with the second clock signal used by the tuner (70) so that the switching signal does not diverge in the receiving channel to form phase noise. Moreover, the output voltage of the DC/DC converter (610) is again regulated by the third-stage LDO regulator circuit (620), thereby greatly improving the power supply efficiency of the power supply, reducing power consumption, and reducing device operation. The ambient temperature reduces the noise coefficient and improves the receiving sensitivity. At the same time, it can effectively eliminate the spur caused by the audio signal of the local oscillator frequency, and effectively prevent the influence of the DC/DC converter (610). Phase noise performance of the high frequency processing circuit (70).

參閱第五圖及第六圖所示,本第一實施例中,該開關器件(6100)包括一第一電容(C1)、一第二電容(C2)、一第一開關管(S1)、一第二開關管(S2)、一第三開關管(S3)以及一第四開關管(S4),用來實現降壓,提高供電效率。電路的結構是:所述電源輸入端連接該第一開關管(S1)的一端,該第一開關管(S1)的另一端連接該第二開關管(S2)的一端和該第一電容(C1)的一端,該第二開關 管(S2)的另外一端連接該第三開關管(S3)的一端和該第二電容(C2)的一端,該第三開關管(S3)的另一端連接該第四開關管(S4)的一端和該第一電容(C1)的另一端,該第四開關管(S4)的另一端接地;該第二電容(C2)另一端接地;該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)和該第四開關管(S4)的控制端分別連接到該非重疊時鐘發生器(6120)相應的開關控制輸出端。在本第一實施例中,該第一開關管(S1)控制端與該第三開關管(S3)控制端的控制信號同相位,該第二開關管(S2)控制端與該第四開關管(S4)控制端的控制信號同相位;該DC/DC變換器(610)的輸出端由該第二電容(C2)的非接地端引出。 Referring to the fifth and sixth figures, in the first embodiment, the switching device (6100) includes a first capacitor (C1), a second capacitor (C2), a first switching transistor (S1), A second switch tube (S2), a third switch tube (S3) and a fourth switch tube (S4) are used to implement step-down and improve power supply efficiency. The structure of the circuit is: the power input end is connected to one end of the first switch tube (S1), and the other end of the first switch tube (S1) is connected to one end of the second switch tube (S2) and the first capacitor ( One end of C1), the second switch The other end of the third switch tube (S3) is connected to one end of the third switch tube (S3) and one end of the second capacitor (C2), and the other end of the third switch tube (S3) is connected to the fourth switch tube (S4). One end and the other end of the first capacitor (C1), the other end of the fourth switch tube (S4) is grounded; the other end of the second capacitor (C2) is grounded; the first switch tube (S1), the second switch The control terminals of the tube (S2), the third switch tube (S3), and the fourth switch tube (S4) are respectively connected to respective switch control outputs of the non-overlapping clock generator (6120). In the first embodiment, the control end of the first switch tube (S1) is in phase with the control signal of the control end of the third switch tube (S3), and the second switch tube (S2) control end and the fourth switch tube (S4) The control signal of the control terminal is in phase; the output of the DC/DC converter (610) is led out by the non-ground terminal of the second capacitor (C2).

該DC/DC變換器(610)的動作原理如下所述:該非重疊時鐘發生器(6120)的控制規則為:該第一開關管(S1)和該第三開關管(S3)導通時,該第二開關管(S2)和該第四開關管(S4)關斷;該第二開關管(S2)和該第四開關管(S4)導通時,該第一開關管(S1)和該第三開關管(S3)關斷;在該第一開關管(S1)和該第三開關管(S3)導通而該第二開關管(S2)和該第四開關管(S4)截止時,輸入的電壓經過該第一開關管(S1)和該第三開關管(S3)對該第一電容(C1)和該第二電容(C2)進行串聯充電,當該第一電容(C1)電容量等於該第二電容(C2)電容量時,充電後的該第一電容(C1)和該第二電容(C2)兩端之間的電壓差均為輸入電壓的大約一半;在該第一開關管(S1)和該第三開關管(S3)截止而該第二開關管(S2)和該第四開關管(S4)導通時,該第一電容(C1)上儲蓄的電量經過該第二開關管(S2)與該第二電容(C2)並列地向輸出端供電,此時,該第一開關管(S1)無電流通過。這個電路穩定動作時,該第一電容(C1)和該第二電容(C2)的放電量等於該第一電容(C1)和該第二電容(C2)的充電量,也就是說,充電的電流等於放電的電流。因為該第一電容(C1)和該第二電容(C2)放電的電流就是負荷電流,所以,該第一電容(C1)和該第二電容(C2)的充電電流也等於負荷電流。而由於該第一電容(C1)和該第二電容(C2)的充放電占空比 各為50%,所以輸入端的平均電流是輸出端平均電流的一半。也就是說,電源的供電效率增加了一倍。 The operation principle of the DC/DC converter (610) is as follows: The control rule of the non-overlapping clock generator (6120) is: when the first switch tube (S1) and the third switch tube (S3) are turned on, The second switch tube (S2) and the fourth switch tube (S4) are turned off; when the second switch tube (S2) and the fourth switch tube (S4) are turned on, the first switch tube (S1) and the first The three switch tubes (S3) are turned off; when the first switch tube (S1) and the third switch tube (S3) are turned on and the second switch tube (S2) and the fourth switch tube (S4) are turned off, the input is The voltage of the first capacitor (C1) and the second capacitor (C2) are serially charged through the first switch tube (S1) and the third switch tube (S3), when the first capacitor (C1) capacitance When the capacitance of the second capacitor (C2) is equal to, the voltage difference between the charged first capacitor (C1) and the second capacitor (C2) is about half of the input voltage; at the first switch When the tube (S1) and the third switch tube (S3) are turned off and the second switch tube (S2) and the fourth switch tube (S4) are turned on, the amount of electricity saved on the first capacitor (C1) passes through the second The switch tube (S2) and the second capacitor (C2) are supplied to the output side by side At this time, the first switching transistor (S1) has no current flowing. When the circuit is stably operated, the discharge amount of the first capacitor (C1) and the second capacitor (C2) is equal to the charge amount of the first capacitor (C1) and the second capacitor (C2), that is, charged The current is equal to the current discharged. Since the current discharged by the first capacitor (C1) and the second capacitor (C2) is the load current, the charging current of the first capacitor (C1) and the second capacitor (C2) is also equal to the load current. And the charge and discharge duty ratio of the first capacitor (C1) and the second capacitor (C2) Each is 50%, so the average current at the input is half the average current at the output. In other words, the power supply efficiency of the power supply has doubled.

這個電路中該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)及該第四開關管(S4)均為場效電晶體或金屬氧化物半導體場效電晶體,其控制電壓的高低電平可以根據另外一開關管(圖未示)的特性進行適當設定。本電路的優點在於,不使用任何電感器件即可達到降壓和提高供電效率。 In the circuit, the first switch tube (S1), the second switch tube (S2), the third switch tube (S3) and the fourth switch tube (S4) are field effect transistors or metal oxide semiconductor fields. The effect transistor can be appropriately set according to the characteristics of another switching transistor (not shown). The advantage of this circuit is that it can achieve buck and improve power efficiency without using any inductive components.

如第七圖和第八圖所示,其中,第七圖是本第一實施例中,前述另一單通道電源管理控制電路(60)的另一結構示意圖。而第八圖是本第一實施例中,前述另一單通道電源管理控制電路(60)之開關器件(6100)的另一種實施方式結構示意圖。其中該開關器件(6100)包括一第一電容(C1)、一第二電容(C2)、一第三電容(C3)、一第一開關管(S1)、一第二開關管(S2)、一第三開關管(S3)、一第四開關管(S4)、一第五開關管(S5)、一第六開關管(S6)、一第七開關管(S7)以及一第八開關管(S8),用來實現降壓,提高供電效率。電路的結構是:電源輸入端連接該第一開關管(S1)和該第五開關管(S5)的一端,該第一開關管(S1)的另一端連接該第二開關管(S2)的一端和該第一電容(C1)的一端,該第二開關管(S2)的另外一端連接該第六開關管(S6)和該第七開關管(S7)的一端以及該第二電容(C2)的一端,該第六開關管(S6)的另一端連接該第五開關管(S5)的另一端、該第三開關管(S3)的一端和該第三電容(C3)的一端,該第七開關管(S7)的另一端與該第三電容(C3)的另一端和該第八開關管(S8)的一端相連,該第八開關管(S8)的另一端接地,該第三開關管(S3)的另一端同該第四開關管(S4)的一端相連,並與該第一電容(C1)的另一端相連,該第四開關管(S4)的另一端接地,該第二電容(C2)另一端接地;該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)、該第四開關管(S4)、該第五開關管(S5)、該第六開關管(S6)、該第七開關管(S7)和該第八開關管(S8)的控制端分別連接到該非重疊時鐘發生器(6120) 相應的輸出端,該第一段LDO穩壓電路(600)具有一極化電壓檢測器(601),該非重疊時鐘發生器(6120)依該極化電壓檢測器(601)的輸出狀態選擇控制相應的開關動作狀態。 As shown in the seventh and eighth figures, wherein the seventh figure is another structural diagram of the other single-channel power management control circuit (60) in the first embodiment. The eighth figure is a schematic structural view of another embodiment of the switching device (6100) of the other single-channel power management control circuit (60) in the first embodiment. The switching device (6100) includes a first capacitor (C1), a second capacitor (C2), a third capacitor (C3), a first switching transistor (S1), a second switching transistor (S2), a third switch tube (S3), a fourth switch tube (S4), a fifth switch tube (S5), a sixth switch tube (S6), a seventh switch tube (S7), and an eighth switch tube (S8), used to achieve step-down and improve power supply efficiency. The structure of the circuit is: the power input end is connected to one end of the first switch tube (S1) and the fifth switch tube (S5), and the other end of the first switch tube (S1) is connected to the second switch tube (S2) One end and one end of the first capacitor (C1), and the other end of the second switch tube (S2) is connected to one end of the sixth switch tube (S6) and the seventh switch tube (S7) and the second capacitor (C2) One end of the sixth switch tube (S6) is connected to the other end of the fifth switch tube (S5), one end of the third switch tube (S3), and one end of the third capacitor (C3). The other end of the seventh switch (S7) is connected to the other end of the third capacitor (C3) and one end of the eighth switch (S8), and the other end of the eighth switch (S8) is grounded, the third The other end of the switch tube (S3) is connected to one end of the fourth switch tube (S4), and is connected to the other end of the first capacitor (C1), and the other end of the fourth switch tube (S4) is grounded. The other end of the second capacitor (C2) is grounded; the first switch tube (S1), the second switch tube (S2), the third switch tube (S3), the fourth switch tube (S4), and the fifth switch tube (S5), the sixth switch tube (S6), the seventh The control terminals of the switch tube (S7) and the eighth switch tube (S8) are respectively connected to the non-overlapping clock generator (6120) Corresponding output end, the first stage LDO regulator circuit (600) has a polarization voltage detector (601), and the non-overlapping clock generator (6120) is selectively controlled according to the output state of the polarization voltage detector (601) The corresponding switch action state.

當極化電壓為13V時,該第一開關管(S1)到該第四開關管(S4)處於截止狀態,此時,該第五開關管(S5)控制端與該第七開關管(S7)控制端的控制信號同相位,該第六開關管(S6)控制端與該第八開關管(S8)控制端的控制信號同相位;而當極化電壓為18V時,該第五開關管(S5)處於截止狀態,此時,該第一開關管(S1)、該第三開關管(S3)和該第七開關管(S7)的控制端信號相位均相同,該第二開關管(S2)、該第四開關管(S4)、該第六開關管(S6)和該第八開關管(S8)的控制端信號相位均相同。該DC/DC變換器(610)的輸出端由該第二電容(C2)的非接地端引出;此處的動作原理如下所述:電路中該非重疊時鐘發生器(6120)的控制規則為:1.當該極化電壓檢測器(601)檢測出極化電壓為低電壓,比如13V時,該第五開關管(S5)和該第七開關管(S7)導通時,該第六開關管(S6)和該第八開關管(S8)關斷;該第五開關管(S5)和該第七開關管(S7)關斷時,該第六開關管(S6)和該第八開關管(S8)導通;2.當該極化電壓檢測器(601)檢測出極化電壓為高電壓,比如18V時,該第一開關管(S1)、該第三開關管(S3)和該第七開關管(S7)導通時,該第二開關管(S2)、該第四開關管(S4)、該第六開關管(S6)和該第八開關管(S8)關斷;該第一開關管(S1)、該第三開關管(S3)和該第七開關管(S7)關斷時,該第二開關管(S2)、該第四開關管(S4)、該第六開關管(S6)和該第八開關管(S8)導通。 When the polarization voltage is 13V, the first switch tube (S1) to the fourth switch tube (S4) are in an off state. At this time, the fifth switch tube (S5) control end and the seventh switch tube (S7) The control signal of the control end is in phase, the control end of the sixth switch tube (S6) is in phase with the control signal of the control end of the eighth switch tube (S8); and when the polarization voltage is 18V, the fifth switch tube (S5) Is in an off state, at this time, the control terminal signals of the first switch tube (S1), the third switch tube (S3) and the seventh switch tube (S7) have the same phase, and the second switch tube (S2) The signals of the control terminals of the fourth switch tube (S4), the sixth switch tube (S6) and the eighth switch tube (S8) are all the same. The output of the DC/DC converter (610) is taken out by the non-ground terminal of the second capacitor (C2); the principle of operation here is as follows: The control rule of the non-overlapping clock generator (6120) in the circuit is: 1. When the polarization voltage detector (601) detects that the polarization voltage is a low voltage, such as 13V, when the fifth switch tube (S5) and the seventh switch tube (S7) are turned on, the sixth switch tube (S6) and the eighth switch tube (S8) are turned off; when the fifth switch tube (S5) and the seventh switch tube (S7) are turned off, the sixth switch tube (S6) and the eighth switch tube (S8) conducting; 2. when the polarization voltage detector (601) detects that the polarization voltage is a high voltage, such as 18V, the first switching transistor (S1), the third switching transistor (S3), and the first When the seven switch tube (S7) is turned on, the second switch tube (S2), the fourth switch tube (S4), the sixth switch tube (S6), and the eighth switch tube (S8) are turned off; When the switch tube (S1), the third switch tube (S3), and the seventh switch tube (S7) are turned off, the second switch tube (S2), the fourth switch tube (S4), and the sixth switch tube (S6) and the eighth switch (S8) are turned on.

當該極化電壓檢測器(601)檢測出極化電壓為低電壓,比如13V時,該DC/DC變換器的動作原理與第四圖的相關說明相同,結果,電源的供電效率增加了一倍。當該極化電壓檢測器(601)檢測出極化電壓為高電壓,比如18V時,該第五開關管(S5)處於常時關斷,此時,在該第一開關管(S1)、該第三開 關管(S3)、該第七開關管(S7)導通而該第二開關管(S2)、該第四開關管(S4)、該第六開關管(S6)、該第八開關管(S8)截止時,輸入的電壓經過該第一開關管(S1)、該第三開關管(S3)和該第七開關管(S7)對該第一電容(C1)、該第三電容(C3)和該第二電容(C2)進行串聯充電,在該第一電容(C1)、該第三電容(C3)和該第二電容(C2)的電容量相同時,充電後的該第一電容(C1)、該第三電容(C3)和該第二電容(C2)兩端之間的電壓差均為輸入電壓的大約1/3;在該第一開關管(S1)、該第三開關管(S3)和該第七開關管(S7)截止而該第二開關管(S2)、該第四開關管(S4)、該第六開關管(S6)和該第八開關管(S8)導通時,該第一電容(C1)上儲蓄的電量和該第三電容(C3)上儲蓄的電量經過該第二開關管(S2)和該第六開關管(S6)分別與該第二電容(C2)並列地向輸出端即負荷供電,此時,該第一開關管(S1)和該第五開關管(S5)無電流通過。這個電路穩定動作時,該第一電容(C1)、該第三電容(C3)和該第二電容(C2)的放電量等於該第一電容(C1)、該第三電容(C3)和該第二電容(C2)的充電量,也就是說,充電的電流等於放電的電流的2/3。因為該第一電容(C1)、該第三電容(C3)和該第二電容(C2)放電的電流就是負荷電流,所以,該第一電容(C1)、該第三電容(C3)和該第二電容(C2)的充電電流也等於負荷電流的2/3。而由於該第一電容(C1)、該第三電容(C3)和該第二電容(C2)的充放電占空比各為50%,所以輸入端的平均電流是輸出端平均電流的1/3。也就是說,電源的供電效率增加了兩倍。 When the polarization voltage detector (601) detects that the polarization voltage is a low voltage, such as 13V, the operation principle of the DC/DC converter is the same as that of the fourth figure. As a result, the power supply efficiency of the power supply is increased by one. Times. When the polarization voltage detector (601) detects that the polarization voltage is a high voltage, such as 18V, the fifth switch tube (S5) is normally turned off, at this time, in the first switch tube (S1), the Third open The closing pipe (S3), the seventh switching pipe (S7) is turned on, the second switching pipe (S2), the fourth switching pipe (S4), the sixth switching pipe (S6), and the eighth switching pipe (S8) When the voltage is off, the input voltage passes through the first switch (S1), the third switch (S3), and the seventh switch (S7) to the first capacitor (C1) and the third capacitor (C3). And charging the second capacitor (C2) in series, when the capacitances of the first capacitor (C1), the third capacitor (C3), and the second capacitor (C2) are the same, the first capacitor after charging ( C1), the voltage difference between the third capacitor (C3) and the second capacitor (C2) is about 1/3 of the input voltage; in the first switch tube (S1), the third switch tube (S3) and the seventh switch tube (S7) are turned off, and the second switch tube (S2), the fourth switch tube (S4), the sixth switch tube (S6), and the eighth switch tube (S8) are turned on. The amount of electricity saved on the first capacitor (C1) and the amount of electricity saved on the third capacitor (C3) pass through the second switch (S2) and the sixth switch (S6), respectively, and the second capacitor ( C2) Parallelly supplying power to the output terminal, that is, the first switch tube (S1) and the fifth switch tube (S5) No current is passed. When the circuit is stable, the discharge amount of the first capacitor (C1), the third capacitor (C3), and the second capacitor (C2) is equal to the first capacitor (C1), the third capacitor (C3), and the The amount of charge of the second capacitor (C2), that is, the current charged is equal to 2/3 of the current discharged. The first capacitor (C1), the third capacitor (C3), and the second capacitor The charging current of the second capacitor (C2) is also equal to 2/3 of the load current. Since the charge and discharge duty ratios of the first capacitor (C1), the third capacitor (C3), and the second capacitor (C2) are each 50%, the average current at the input terminal is 1/3 of the average current of the output terminal. . In other words, the power supply efficiency of the power supply has been increased by two times.

使用了這個DC/DC變換器(610)的電源管理控制電路(60),由於在該第一段LDO穩壓電路(600)中追設了該極化電壓檢測器(601),根據極化電壓的高低選擇相應的開關管動作狀態,讓低極化電壓時效率增加一倍,高極化電壓時效率增加兩倍,大大地減少了LNB的功耗,降低LNB的動作環境溫度,從而達到低功耗和高接收靈敏度的功效。 The power management control circuit (60) of the DC/DC converter (610) is used, since the polarization voltage detector (601) is chased in the first stage LDO regulator circuit (600), according to the polarization The voltage level selects the corresponding switching tube action state, which doubles the efficiency of the low polarization voltage and doubles the efficiency when the high polarization voltage is used, which greatly reduces the power consumption of the LNB and lowers the operating environment temperature of the LNB. Low power consumption and high receiving sensitivity.

這個電路中所述之該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)、該第四開關管(S4)、該第五開關管(S5)、該第六開關管(S6)、該第七開關(S7)管及該第八開關管(S8)均為場效電晶體或金屬氧化物半導體場效電晶體,其控制電壓的高低電平可以根據另外一開關管(圖未示)的特性進行適當設定。本電路的優點在於,不使用任何電感器件可以達到降壓和更大地提高供電效率。 The first switch tube (S1), the second switch tube (S2), the third switch tube (S3), the fourth switch tube (S4), and the fifth switch tube (S5) described in this circuit The sixth switch tube (S6), the seventh switch (S7) tube and the eighth switch tube (S8) are field effect transistors or metal oxide semiconductor field effect transistors, and the control voltage is high and low. It can be appropriately set according to the characteristics of another switch tube (not shown). The advantage of this circuit is that it can achieve step-down and greater power efficiency without using any inductive components.

以下參閱第九圖至第十一圖所示,並配合參閱第四圖所示,其中,第九圖是本發明第二實施例中,該電源管理控制電路(60)使用多通道輸入的一種實施方式之結構示意圖;而第十圖是本第二實施例中,該電源管理控制電路(60)使用多通道輸入的另一種實施方式之結構示意圖;而第十一圖是本第二實施例中,多通道電源管理控制電路的LNB的通道與供電結構示意圖。 Referring to the ninth to eleventh drawings, and referring to the fourth figure, wherein the ninth embodiment is a second embodiment of the present invention, the power management control circuit (60) uses a multi-channel input FIG. 10 is a schematic structural diagram of another embodiment of the power management control circuit (60) using multi-channel input in the second embodiment; and FIG. 11 is the second embodiment. The schematic diagram of the channel and power supply structure of the LNB of the multi-channel power management control circuit.

其中,該電源管理控制電路(60)擴充為多路(多通道)輸出LNB上使用,包括至少兩個前述第一段LDO穩壓電路(600)、一個前述DC/DC變換器(610)以及一個前述第三段LDO穩壓電路(620),此處,列舉兩個前述第一段LDO穩壓電路(600),其分別為一第一段LDO1及一第一段LDO2;所有第一段LDO穩壓電路(600)的輸出端分別通過各自連接元件連接於一公共端,該公共端連接於該DC/DC變換器(610)的輸入端,該DC/DC變換器(610)的輸出端分別與該第三段LDO穩壓電路(620)的輸入端連接;需要說明的是,其原理同單路(單通道)之該電源管理控制電路(60)相同。由於多路輸出的LNB中只要有任何一路供電了,那麼其高頻處理電路(70)中的這一路就必須有相應的極化和本振頻率對應的中頻信號輸出。而通過連接元件相連的第一段多路LDO即可實現這樣的功能,在本實施例中,所述連接元件可以是二極體(D1)或開關管(S0);當連接元件為二極體(D1)時,如第九圖所示,對於某一路第一段LDO穩壓電路(600)動 作,而其他路的第一段LDO穩壓電路(600)無供電狀態,因為二極體(D1)的方向不導通特性,可以避免了電流的回流現象。 The power management control circuit (60) is expanded for use on a multi-channel (multi-channel) output LNB, including at least two of the aforementioned first-stage LDO regulator circuits (600), one of the aforementioned DC/DC converters (610), and a third stage LDO voltage stabilizing circuit (620), here, two first-stage LDO voltage stabilizing circuits (600) are listed, which are respectively a first segment LDO1 and a first segment LDO2; all the first segments The output terminals of the LDO regulator circuit (600) are respectively connected to a common terminal through respective connection elements, and the common terminal is connected to the input terminal of the DC/DC converter (610), and the output of the DC/DC converter (610) is output. The terminals are respectively connected to the input terminals of the third-stage LDO regulator circuit (620); it should be noted that the principle is the same as that of the single-channel (single-channel) power management control circuit (60). Since any one of the multi-output LNBs is powered, the path in the high-frequency processing circuit (70) must have a corresponding polarization and an intermediate frequency signal output corresponding to the local oscillator frequency. Such a function can be realized by the first multi-channel LDO connected by the connecting component. In this embodiment, the connecting component can be a diode (D1) or a switching transistor (S0); when the connecting component is a diode In the body (D1), as shown in the ninth figure, for the first stage LDO regulator circuit (600) However, the first stage of the LDO regulator circuit (600) of the other circuit has no power supply state, because the direction of the diode (D1) is non-conducting, the current reflow phenomenon can be avoided.

當連接元件為一開關管(S0)時,如第十圖所示,這個電路的構造與第九圖不同之處在於:1、用該開關管(S0)代替了該二極體(D1);2、各路的該第一段LDO穩壓電路(600)配置了輸入供電檢測器(圖中未標示),其檢測的結果用於控制該開關管(S0)的動作,也就是說,在某一路的第一段LDO穩壓電路(600)檢測到輸入端印加了正常的電壓時,其檢測器則輸出一個信號讓其後面的該開關管(S0)導通,反之,沒有檢測到正常的輸入電壓的第一段LDO穩壓電路(600),其檢測器的輸出則讓其後面的開關管(S0)處於關斷狀態。 When the connecting element is a switching tube (S0), as shown in the tenth figure, the configuration of this circuit is different from the ninth figure in that: 1. The switching tube (S0) is used instead of the diode (D1). 2, the first segment of the LDO voltage regulator circuit (600) is configured with an input power supply detector (not shown), and the result of the detection is used to control the action of the switch tube (S0), that is, When the first LDO regulator circuit (600) of a certain path detects that a normal voltage is applied to the input terminal, the detector outputs a signal to turn on the switch (S0) behind it. Otherwise, no normal detection is detected. The first stage of the LDO voltage regulator circuit (600) of the input voltage, the output of the detector is such that the switch tube (S0) behind it is in the off state.

這樣的構造的有益之處在於,同樣面積的該開關管(S0)的導通電阻比該二極體(D1)的正嚮導通電阻小,可以降低該第一段LDO穩壓電路(600)輸出電壓在互相連接時的壓降,從而增加了供電的效率,其構造的動作原理與第九圖相同。 Such a configuration is advantageous in that the on-resistance of the switching transistor (S0) of the same area is smaller than the forward conduction resistance of the diode (D1), and the output of the first-stage LDO regulator circuit (600) can be lowered. The voltage drop when the voltages are connected to each other increases the efficiency of the power supply, and the operation principle of the structure is the same as that of the ninth figure.

當然,這個多路電源管理控制電路(60)的第三段LDO穩壓電路(620)也可根據多路輸出的高頻處理電路(70)的需要並接上多路第三段LDO穩壓電路(620),分別供電給多路的高頻處理電路(70)。其原理、性質與第九圖相同。這個電路構造的特徵在於簡單而有效的實現了多路共同供電且無回流的功能。 Of course, the third stage LDO regulator circuit (620) of the multi-channel power management control circuit (60) can also be connected to multiple third-stage LDO regulators according to the needs of the multi-output high-frequency processing circuit (70). The circuit (620) is separately supplied to the multi-channel high frequency processing circuit (70). The principle and nature are the same as those in the ninth figure. This circuit configuration is characterized by simple and efficient implementation of multiple co-powered and no reflow functions.

參閱第十一圖所示,在本第二實施例中,包括至少兩個前述同軸電纜連接端(10)、一個前述電源管理控制電路(60)、一個前述高頻處理電路(70),每個同軸電纜連接端(10)通過各自的一中頻信號輸出傳輸線(50)、一隔直電容、一極化與本振控制信號傳輸線(30)與一高頻處理電路(70)相連接,每個同軸電纜連接端(10)通過各自的電源管理控制電路供電輸入線(40)與該電源管理控制電路(60)的DC/DC變換器相連接;在本實施例中,採用了兩個前述同軸電纜連接端(10)、一個前述電源管理控制電路(60)、一個雙路輸出的高頻處理電路 (70),其中,兩同軸電纜連接端(10)分別為一第一同軸電纜連接端(101)以及一第二同軸電纜連接端(102);所述第一同軸電纜連接端(101)分別通過一第一電源管理控制電路供電輸入線(401)和一第一極化與本振控制信號傳輸線(301)印加到該電源管理控制電路(60)及該高頻處理電路(70);該第二同軸電纜連接端(102)分別通過一第二電源管理控制電路供電輸入線(402)和一第二極化與本振控制信號傳輸線(302)印加到該電源管理控制電路(60)及該高頻處理電路(70);該電源管理控制電路(60)動作後一方面通過該電源管理控制電路供電輸出線(50)與該高頻處理電路(70)的電源端連接,起供電的作用;另一方面,該電源管理控制電路(60)輸出的第一時鐘信號通過時鐘信號傳輸線(80)印加到該高頻處理電路(70),起參照時鐘的作用;該高頻處理電路(70)受到印加後動作,產生中頻信號並分別經過該第一中頻信號輸出傳輸線(201)、一第二中頻信號輸出傳輸線(202)和各自隔直電容後印加到對應的該第一同軸電纜連接端(101)、該第二同軸電纜連接端(102)。 Referring to FIG. 11 , in the second embodiment, at least two of the aforementioned coaxial cable connection ends (10), one of the foregoing power management control circuits (60), and one of the foregoing high frequency processing circuits (70) are included. The coaxial cable connection end (10) is connected to a high frequency processing circuit (70) through a respective intermediate frequency signal output transmission line (50), a DC blocking capacitor, a polarization and a local oscillation control signal transmission line (30), Each coaxial cable connection end (10) is connected to a DC/DC converter of the power management control circuit (60) through a respective power management control circuit power supply input line (40); in this embodiment, two The coaxial cable connection end (10), a power management control circuit (60), and a dual-output high-frequency processing circuit (70), wherein the two coaxial cable connection ends (10) are a first coaxial cable connection end (101) and a second coaxial cable connection end (102); the first coaxial cable connection end (101) respectively a power supply input line (401) and a first polarization and local oscillation control signal transmission line (301) are applied to the power management control circuit (60) and the high frequency processing circuit (70) through a first power management control circuit; The second coaxial cable connection end (102) is respectively printed to the power management control circuit (60) through a second power management control circuit power supply input line (402) and a second polarization and local oscillation control signal transmission line (302). The high-frequency processing circuit (70); after the operation of the power management control circuit (60), the power supply output line (50) of the power management control circuit is connected to the power supply end of the high-frequency processing circuit (70) to provide power supply. On the other hand, the first clock signal outputted by the power management control circuit (60) is applied to the high frequency processing circuit (70) through the clock signal transmission line (80) to function as a reference clock; the high frequency processing circuit ( 70) After being subjected to the post-printing action, the intermediate frequency signal is generated and respectively The first intermediate frequency signal output transmission line (201), a second intermediate frequency signal output transmission line (202) and respective DC blocking capacitors are printed and applied to the corresponding first coaxial cable connection end (101), the second coaxial cable. Connection end (102).

需要說明的是,雙路輸出或多路輸出的高頻處理電路(70)的每一路電路可能分別需要電源管理控制電路提供穩定的電源電壓,這種情況下,該電源管理控制電路(60)的該第三段LDO穩壓電路(620)可以設定為雙路或多路並列輸出的LDO電路即可;多路輸出的該高頻處理電路(70)的第二時鐘信號由多路之該電源管理控制電路(60)的參照時鐘發生器電路產生並提供;多路之該電源管理控制電路(60)提供多路無紋波,無雜散信號穩定的電源電壓給多路之該高頻處理電路(70)使用,即不會造成多路輸出該高頻處理電路(70)雜散或相位雜訊的增加,有效地降低多路輸出該高頻處理電路(70)的功耗,從而降低其動作的環境溫度,改善雜訊係數,增加接收靈敏度。 It should be noted that each circuit of the dual-output or multi-output high-frequency processing circuit (70) may require a power supply control circuit to provide a stable power supply voltage. In this case, the power management control circuit (60) The third stage LDO regulator circuit (620) can be set as a dual or multiple parallel output LDO circuit; the second clock signal of the multi-output high frequency processing circuit (70) is multi-way The reference clock generator circuit of the power management control circuit (60) generates and provides; the multi-way power management control circuit (60) provides multi-channel ripple-free, stray-free signal stable power supply voltage to the multi-channel high frequency processing The circuit (70) is used, that is, does not cause multi-output of the high-frequency processing circuit (70) to increase the spur or phase noise, effectively reducing the power consumption of the multi-output high-frequency processing circuit (70), thereby reducing The ambient temperature of its action improves the noise coefficient and increases the receiving sensitivity.

本發明設計要點在於,其主要是通過對電源管理控制電路結構的合理設計,可以大幅度提高LNB的供電效率,減少電源本身的功耗,進一步減 少LNB發熱量,降低動作時的環境溫度,使得接收通道的雜訊係數減少,提高接收靈敏度,同時又能提供低紋波、無雜散、穩定的電源電壓,供高頻處理電路使用。 The main point of the design of the present invention is that it can greatly improve the power supply efficiency of the LNB, reduce the power consumption of the power supply itself, and further reduce the power supply management control circuit structure. Less LNB generates heat, lowers the ambient temperature during operation, reduces the noise coefficient of the receiving channel, improves the receiving sensitivity, and provides low ripple, spurious-free, stable power supply voltage for high-frequency processing circuits.

綜合上述實施例之說明,當可充分瞭解本發明之操作、使用及本發明產生之功效,惟以上所述實施例僅係為本發明之較佳實施例,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及發明說明內容所作簡單的等效變化與修飾,皆屬本發明涵蓋之範圍內。 In view of the foregoing description of the embodiments, the operation and the use of the present invention and the effects of the present invention are fully understood, but the above described embodiments are merely preferred embodiments of the present invention, and the invention may not be limited thereto. Included within the scope of the present invention are the scope of the present invention.

Claims (8)

一種電源管理控制電路,係包括依次連接的一第一段LDO穩壓電路、一DC/DC變換器以及一第三段LDO穩壓電路,該第一段LDO穩壓電路的輸入端為電源輸入端,該第三段LDO穩壓電路的輸出端為供電輸出端,該DC/DC變換器包含電性連接的一開關器件、一非重疊時鐘發生器以及一參照時鐘發生器電路,其中,該開關器件包括一第一電容(C1)、一第二電容(C2)、一第三電容(C3)、一第一開關管(S1)、一第二開關管(S2)、一第三開關管(S3)、一第四開關管(S4)、一第五開關管(S5)、一第六開關管(S6)、一第七開關管(S7)以及一第八開關管(S8);該電源輸入端連接該第一開關管(S1)和該第五開關管(S5)的一端,該第一開關管(S1)的另一端連接該第二開關管(S2)的一端和該第一電容(C1)的一端,該第二開關管(S2)的另外一端連接該第六開關管(S6)和該第七開關管(S7)的一端以及該第二電容(C2)的一端,該第六開關管(S6)的另一端連接該第五開關管(S5)的另一端、該第三開關管(S3)的一端和該第三電容(C3)的一端,該第七開關管(S7)的另一端與該第三電容(C3)的另一端和該第八開關管(S8)的一端相連,該第八開關管(S8)的另一端接地,該第三開關管(S3)的另一端同該第四開關管(S4)的一端相連,並與該第一電容(C1)的另一端相連,該第四開關管(S4)的另一端接地,該第二電容(C2)另一端接地;該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)、該第四開關管(S4)、該第五開關管(S5)、該第六開關管(S6)、該第七開關管(S7)和該第八開關管(S8)的控制端分別連接到非重疊時鐘發生器的開關控制輸出端,所述第一段LDO穩壓電路具有極化電壓檢測器,所述非重疊時鐘發生器依極化電壓檢測器的輸出狀態選擇控制相應的開關動作狀態。 A power management control circuit includes a first stage LDO voltage regulator circuit, a DC/DC converter and a third stage LDO voltage regulator circuit, wherein the input end of the first stage LDO voltage regulator circuit is a power input The output end of the third-stage LDO regulator circuit is a power supply output terminal, and the DC/DC converter includes a switching device electrically connected, a non-overlapping clock generator, and a reference clock generator circuit, wherein The switching device includes a first capacitor (C1), a second capacitor (C2), a third capacitor (C3), a first switch tube (S1), a second switch tube (S2), and a third switch tube. (S3), a fourth switch tube (S4), a fifth switch tube (S5), a sixth switch tube (S6), a seventh switch tube (S7), and an eighth switch tube (S8); The power input end is connected to one end of the first switch tube (S1) and the fifth switch tube (S5), and the other end of the first switch tube (S1) is connected to one end of the second switch tube (S2) and the first end One end of the capacitor (C1), the other end of the second switch tube (S2) is connected to one end of the sixth switch tube (S6) and the seventh switch tube (S7) and one of the second capacitors (C2) The other end of the sixth switch tube (S6) is connected to the other end of the fifth switch tube (S5), one end of the third switch tube (S3), and one end of the third capacitor (C3), the seventh switch The other end of the tube (S7) is connected to the other end of the third capacitor (C3) and one end of the eighth switch tube (S8), and the other end of the eighth switch tube (S8) is grounded, and the third switch tube (the third switch tube ( The other end of the S3) is connected to one end of the fourth switch tube (S4), and is connected to the other end of the first capacitor (C1), and the other end of the fourth switch tube (S4) is grounded, and the second capacitor ( C2) the other end is grounded; the first switch tube (S1), the second switch tube (S2), the third switch tube (S3), the fourth switch tube (S4), and the fifth switch tube (S5) The control ends of the sixth switch tube (S6), the seventh switch tube (S7) and the eighth switch tube (S8) are respectively connected to the switch control output end of the non-overlapping clock generator, the first segment LDO The voltage stabilizing circuit has a polarization voltage detector, and the non-overlapping clock generator selects and controls the corresponding switching action state according to the output state of the polarization voltage detector. 如申請專利範圍第1項所述之電源管理控制電路,其中,該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)、該第四開關管(S4)、該第五開關 管(S5)、該第六開關管(S6)、該第七開關管(S7)、該第八開關管(S8)均為場效電晶體或金屬氧化物半導體場效電晶體。 The power management control circuit according to claim 1, wherein the first switch tube (S1), the second switch tube (S2), the third switch tube (S3), and the fourth switch tube ( S4), the fifth switch The tube (S5), the sixth switch tube (S6), the seventh switch tube (S7), and the eighth switch tube (S8) are field effect transistors or metal oxide semiconductor field effect transistors. 一種電源管理控制電路,係包括依次連接的一第一段LDO穩壓電路、一DC/DC變換器以及一第三段LDO穩壓電路,該第一段LDO穩壓電路的輸入端為電源輸入端,該第三段LDO穩壓電路的輸出端為供電輸出端,該DC/DC變換器包含電性相連的一開關器件、一非重疊時鐘發生器、一參照時鐘發生器電路以及供高頻處理電路使用的同步參照時鐘輸出,其中,所述開關器件包括一第一電容(C1)、一第二電容(C2)、一第三電容(C3)、一第一開關管(S1)、一第二開關管(S2)、一第三開關管(S3)、一第四開關管(S4)、一第五開關管(S5)、一第六開關管(S6)、一第七開關管(S7)以及一第八開關管(S8);該電源輸入端連接該第一開關管(S1)和該第五開關管(S5)的一端,該第一開關管(S1)的另一端連接該第二開關管(S2)的一端和該第一電容(C1)的一端,該第二開關管(S2)的另外一端連接該第六開關管(S6)和該第七開關管(S7)的一端以及該第二電容(C2)的一端,該第六開關管(S6)的另一端連接該第五開關管(S5)的另一端、該第三開關管(S3)的一端和該第三電容(C3)的一端,該第七開關管(S7)的另一端與該第三電容(C3)的另一端和該第八開關管(S8)的一端相連,該第八開關管(S8)的另一端接地,該第三開關管(S3)的另一端同該第四開關管(S4)的一端相連,並與該第一電容(C1)的另一端相連,該第四開關管(S4)的另一端接地,該第二電容(C2)另一端接地;該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)、該第四開關管(S4)、第五開該關管(S5)、該第六開關管(S6)、該第七開關管(S7)和該第八開關管(S8)的控制端分別連接到非重疊時鐘發生器的開關控制輸出端,該第一段LDO穩壓電路具有極化電壓檢測器,所述非重疊時鐘發生器依極化電壓檢測器的輸出狀態選擇控制相應的開關動作狀態。 A power management control circuit includes a first stage LDO voltage regulator circuit, a DC/DC converter and a third stage LDO voltage regulator circuit, wherein the input end of the first stage LDO voltage regulator circuit is a power input The output end of the third-stage LDO regulator circuit is a power supply output terminal, and the DC/DC converter includes a switching device electrically connected, a non-overlapping clock generator, a reference clock generator circuit, and a high frequency The synchronous reference clock output used by the processing circuit, wherein the switching device includes a first capacitor (C1), a second capacitor (C2), a third capacitor (C3), a first switch (S1), and a a second switch tube (S2), a third switch tube (S3), a fourth switch tube (S4), a fifth switch tube (S5), a sixth switch tube (S6), and a seventh switch tube ( S7) and an eighth switch tube (S8); the power input end is connected to one end of the first switch tube (S1) and the fifth switch tube (S5), and the other end of the first switch tube (S1) is connected to the One end of the second switch tube (S2) and one end of the first capacitor (C1), and the other end of the second switch tube (S2) is connected to the sixth switch tube (S6) and the One end of the seventh switch tube (S7) and one end of the second capacitor (C2), and the other end of the sixth switch tube (S6) is connected to the other end of the fifth switch tube (S5), the third switch tube ( One end of S3) and one end of the third capacitor (C3), the other end of the seventh switch tube (S7) is connected to the other end of the third capacitor (C3) and one end of the eighth switch tube (S8), The other end of the eighth switch tube (S8) is grounded, and the other end of the third switch tube (S3) is connected to one end of the fourth switch tube (S4) and is connected to the other end of the first capacitor (C1). The other end of the fourth switch tube (S4) is grounded, and the other end of the second capacitor (C2) is grounded; the first switch tube (S1), the second switch tube (S2), and the third switch tube (S3) The control end of the fourth switch tube (S4), the fifth switch unit (S5), the sixth switch tube (S6), the seventh switch tube (S7), and the eighth switch tube (S8) Connected to a switch control output of a non-overlapping clock generator, the first stage LDO regulator circuit has a polarization voltage detector, and the non-overlapping clock generator selects and controls a corresponding switch according to an output state of the polarization voltage detector action State. 如申請專利範圍第3項所述之電源管理控制電路,其中,該第一開關管(S1)、該第二開關管(S2)、該第三開關管(S3)、該第四開關管(S4)、該第五開關管(S5)、該第六開關管(S6)、該第七開關管(S7)、該第八開關管(S8)均為場效電晶體或金屬氧化物半導體場效電晶體。 The power management control circuit according to claim 3, wherein the first switch tube (S1), the second switch tube (S2), the third switch tube (S3), and the fourth switch tube ( S4), the fifth switch tube (S5), the sixth switch tube (S6), the seventh switch tube (S7), and the eighth switch tube (S8) are field effect transistors or metal oxide semiconductor fields. Effect transistor. 如申請專利範圍第1項或第3項任一項所述之電源管理控制電路,其中,包括至少兩個前述第一段LDO穩壓電路、一個前述DC/DC變換器以及一個前述第三段LDO穩壓電路,所有第一段LDO穩壓電路的輸出端分別通過各自連接元件連接於一公共端,該公共端連接於該DC/DC變換器的輸入端。 The power management control circuit according to any one of the preceding claims, comprising at least two of the foregoing first stage LDO voltage stabilizing circuits, one of the foregoing DC/DC converters, and a third segment The LDO regulator circuit, the output ends of all the first LDO regulator circuits are respectively connected to a common terminal through respective connection elements, and the common terminal is connected to the input end of the DC/DC converter. 如申請專利範圍第5項所述之電源管理控制電路,其中,所述連接元件為二極體(D1)或開關管(S0)。 The power management control circuit according to claim 5, wherein the connecting element is a diode (D1) or a switch (S0). 一種應用電源管理控制電路的高頻頭電路,係應用如申請專利範圍第1項至第6項之任一項所述之電源管理控制電路,其特徵在於:還包括有一同軸電纜連接端、一中頻信號輸出傳輸線、一隔直電容、一極化與本振控制信號傳輸線、一電源管理控制電路供電輸入線、一電源管理控制電路供電輸出線、一高頻處理電路及一時鐘信號傳輸線;該同軸電纜連接端經該電源管理控制電路供電輸入線連接於該電源管理控制電路的該DC/DC變換器,該同軸電纜連接端經極化與本振控制信號傳輸線連接於高頻處理電路,所述高頻處理電路經中頻信號輸出傳輸線、隔直電容連接於同軸電纜連接端,所述電源管理控制電路的供電輸出端經電源管理控制電路供電輸出線連接於高頻處理電路,所述電源管理控制電路的時鐘控制電路經時鐘信號傳輸線連接於高頻處理電路。 A power management circuit for applying a power management control circuit, the power management control circuit according to any one of claims 1 to 6, further comprising a coaxial cable connection end, IF signal output transmission line, a DC blocking capacitor, a polarization and local oscillator control signal transmission line, a power management control circuit power supply input line, a power management control circuit power supply output line, a high frequency processing circuit and a clock signal transmission line; The coaxial cable connection end is connected to the DC/DC converter of the power management control circuit via the power supply input line of the power management control circuit, and the coaxial cable connection end is connected to the high frequency processing circuit via a polarization and a local oscillator control signal transmission line. The high frequency processing circuit is connected to the coaxial cable connection end via an intermediate frequency signal output transmission line and a DC blocking capacitor, and the power supply output end of the power management control circuit is connected to the high frequency processing circuit via a power supply control output circuit power supply output line, The clock control circuit of the power management control circuit is connected to the high frequency processing circuit via a clock signal transmission line. 如申請專利範圍第7項所述之應用電源管理控制電路的高頻頭電路,其中,包括至少兩同軸電纜連接端、一電源管理控制電路、一高頻處理電路,每個同軸電纜連接端通過各自的中頻信號輸出傳輸線、隔直電容、極化與本振 控制信號傳輸線與高頻處理電路相連接,每個同軸電纜連接端通過各自的電源管理控制電路供電輸入線與電源管理控制電路的DC/DC變換器相連接。 The high frequency head circuit of the application power management control circuit according to claim 7, wherein at least two coaxial cable connection ends, a power management control circuit, and a high frequency processing circuit are used, and each coaxial cable connection end passes Their respective intermediate frequency signal output transmission lines, DC blocking capacitors, polarization and local oscillator The control signal transmission line is connected to the high frequency processing circuit, and each coaxial cable connection end is connected to the DC/DC converter of the power management control circuit through a power supply input line of the respective power management control circuit.
TW106129183A 2017-08-28 2017-08-28 Power management control circuit and lnb circuit therefor TWI637635B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106129183A TWI637635B (en) 2017-08-28 2017-08-28 Power management control circuit and lnb circuit therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106129183A TWI637635B (en) 2017-08-28 2017-08-28 Power management control circuit and lnb circuit therefor

Publications (2)

Publication Number Publication Date
TW201811021A TW201811021A (en) 2018-03-16
TWI637635B true TWI637635B (en) 2018-10-01

Family

ID=62189783

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129183A TWI637635B (en) 2017-08-28 2017-08-28 Power management control circuit and lnb circuit therefor

Country Status (1)

Country Link
TW (1) TWI637635B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202050360U (en) * 2011-03-14 2011-11-23 广州视源电子科技有限公司 Electric power supply system
CN104868705A (en) * 2014-02-24 2015-08-26 恩智浦有限公司 Electronic device and manufacturing method thereof
TW201633682A (en) * 2015-02-15 2016-09-16 西凱渥資訊處理科技公司 Interleaved dual output charge pump
TWM539182U (en) * 2016-09-12 2017-04-01 奕力科技股份有限公司 Power supply apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202050360U (en) * 2011-03-14 2011-11-23 广州视源电子科技有限公司 Electric power supply system
CN104868705A (en) * 2014-02-24 2015-08-26 恩智浦有限公司 Electronic device and manufacturing method thereof
TW201633682A (en) * 2015-02-15 2016-09-16 西凱渥資訊處理科技公司 Interleaved dual output charge pump
TWM539182U (en) * 2016-09-12 2017-04-01 奕力科技股份有限公司 Power supply apparatus

Also Published As

Publication number Publication date
TW201811021A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
US9086715B2 (en) Voltage regulator, envelope tracking power supply system, transmitter module, and integrated circuit device therefor
US11258359B2 (en) Switching regulator generating continuous output delivery current and operating method thereof
US7382635B2 (en) Power supply apparatus, method of controlling the apparatus, and electronic device using the apparatus
US10230275B2 (en) Power supply device, and control method of power supply device
US20080224674A1 (en) Dc-dc converter and power supply system
US7960949B2 (en) Power converter
CN101710786B (en) Switch voltage stabilizing circuit and method
US10298132B2 (en) Switching power supply for low step down conversion ratio with reduced switching losses
CN201533241U (en) Voltage regulator, low noise module and satellite receiving system
US20130082666A1 (en) Buck power factor correction system
US20160294284A1 (en) Switching regulator circuits and methods with reconfigurable inductance
TW201308882A (en) Downconverter, downconverter IC, and method for controlling the downconverter
CN105245100A (en) Boost circuit and control method thereof
TWI637635B (en) Power management control circuit and lnb circuit therefor
US20130221943A1 (en) Constant input current filter using high-frequency switching for power supplies and related system and method
US20070188957A1 (en) Energy transfer circuit having an electromagnetic induction device for utilizing energy stored by a snubber
CN107370372B (en) Power management control circuit and tuner circuit using same
US9071200B2 (en) Power module for envelope tracking
CN208094439U (en) Power management control circuit and high-frequency therapeutic treatment device
CN101888279A (en) Converter for satellite broadcasting receiving IC, converter for satellite broadcasting receiving and broadcasting satellite receiving antenna
JP2016220210A (en) Signal generating circuit
JP2009106063A (en) Dc-dc converter power supply device and overvoltage preventing circuit for the same
CN219124102U (en) Constant voltage control circuit and switching power supply system
US11411493B2 (en) Two-stage power converter
CN217404783U (en) Radio frequency switch voltage bias circuit and communication equipment