TWI637185B - Built-in self test (bist) circuit for clock jitter - Google Patents

Built-in self test (bist) circuit for clock jitter Download PDF

Info

Publication number
TWI637185B
TWI637185B TW106100075A TW106100075A TWI637185B TW I637185 B TWI637185 B TW I637185B TW 106100075 A TW106100075 A TW 106100075A TW 106100075 A TW106100075 A TW 106100075A TW I637185 B TWI637185 B TW I637185B
Authority
TW
Taiwan
Prior art keywords
jitter
circuit
flip
flop
signal
Prior art date
Application number
TW106100075A
Other languages
Chinese (zh)
Other versions
TW201825923A (en
Inventor
翁盟智
Original Assignee
奇景光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇景光電股份有限公司 filed Critical 奇景光電股份有限公司
Priority to TW106100075A priority Critical patent/TWI637185B/en
Publication of TW201825923A publication Critical patent/TW201825923A/en
Application granted granted Critical
Publication of TWI637185B publication Critical patent/TWI637185B/en

Links

Abstract

一種時脈抖動的內建自我測試電路,包括時脈接收電路、計時電路與抖動判斷電路。時脈接收電路執行操作(a):根據時脈訊號產生開始訊號與停止訊號,其中停止訊號落後開始訊號一或多個週期。計時電路執行操作(b):偵測開始訊號與停止訊號之間相差的第一時間。時脈接收電路與計時電路分別執行操作(a)與操作(b)多次以產生多個第二時間。抖動判斷電路根據第二時間計算出基準值,根據基準值計算出抖動臨界值,取得第二時間中的至少一個極端值,並根據極端值計算出抖動量。若抖動量小於抖動臨界值,抖動判斷電路輸出通過訊號。 A built-in self-test circuit for clock jitter, comprising a clock receiving circuit, a timing circuit and a jitter determining circuit. The clock receiving circuit performs the operation (a): generating a start signal and a stop signal according to the clock signal, wherein the stop signal is behind the start signal for one or more cycles. Timing circuit performs operation (b): detects the first time difference between the start signal and the stop signal. The clock receiving circuit and the timing circuit respectively perform operations (a) and (b) a plurality of times to generate a plurality of second times. The jitter determination circuit calculates a reference value based on the second time, calculates a jitter threshold based on the reference value, obtains at least one extreme value in the second time, and calculates a jitter amount based on the extreme value. If the amount of jitter is less than the jitter threshold, the jitter judging circuit outputs a pass signal.

Description

時脈抖動的內建自我測試電路 Built-in self-test circuit for clock jitter

本發明是有關於一種內建自我測試(built-in selftest,BIST)電路,且特別是有關於一種時脈抖動的內建自我測試電路。 The present invention relates to a built-in self test (BIST) circuit, and more particularly to a built-in self-test circuit for a clock jitter.

時脈產生電路,例如鎖相迴路(phase lock loop,PLL)或是延遲線迴路(delay line loop,DLL)是用以產生低抖動的時脈訊號。這樣的時脈產生電路可以應用於很多種產品中,例如為序列(serial)傳輸的傳送端與接收端等。然而,一般在檢驗具有時脈產生電路的產品時,所使用的檢測儀器僅能檢測時脈的頻率,並無法檢測時脈的抖動。因此,若能在時脈產生電路旁邊設置一個內建自我測試電路來檢測時脈的抖動,將對產品的檢測會有很大的幫助。 A clock generation circuit, such as a phase lock loop (PLL) or a delay line loop (DLL), is used to generate a low jitter clock signal. Such a clock generation circuit can be applied to a wide variety of products, such as a transmitting end and a receiving end for serial transmission. However, generally, when testing a product having a clock generation circuit, the detection instrument used can only detect the frequency of the clock and cannot detect the jitter of the clock. Therefore, if a built-in self-test circuit can be set next to the clock generation circuit to detect the jitter of the clock, it will be of great help to the detection of the product.

本發明提出一種時脈抖動的內建自我測試電路,適用於時脈訊號,其具有週期。此內建自我測試電路包括時脈接收電路、計時電路與抖動判斷電路。時脈接收電路 接收時脈訊號並執行操作(a):根據時脈訊號產生開始訊號與停止訊號,其中停止訊號落後開始訊號一或多個週期。計時電路接收開始訊號與停止訊號,並執行操作(b):偵測開始訊號與停止訊號之間相差的第一時間。時脈接收電路與計時電路分別執行操作(a)與操作(b)多次以產生多個第二時間,這些第二時間包含上述的第一時間。抖動判斷電路根據第二時間計算出基準值,並根據基準值計算出抖動臨界值。抖動判斷電路取得第二時間中的至少一個極端值,並根據極端值計算出抖動量。抖動判斷電路判斷抖動量是否小於抖動臨界值,若抖動量是否小於抖動臨界值,抖動判斷電路輸出通過訊號。 The invention provides a built-in self-test circuit for clock jitter, which is suitable for a clock signal, which has a period. The built-in self-test circuit includes a clock receiving circuit, a timing circuit and a jitter judging circuit. Clock receiving circuit Receiving the clock signal and performing the operation (a): generating a start signal and a stop signal according to the clock signal, wherein the stop signal is behind the start signal for one or more cycles. The timing circuit receives the start signal and the stop signal, and performs operation (b): detecting the first time difference between the start signal and the stop signal. The clock receiving circuit and the timing circuit respectively perform operations (a) and (b) a plurality of times to generate a plurality of second times, the second times including the first time described above. The jitter determination circuit calculates a reference value based on the second time and calculates a jitter threshold based on the reference value. The jitter determination circuit takes at least one extreme value of the second time and calculates the amount of jitter based on the extreme value. The jitter judging circuit judges whether the jitter amount is smaller than the jitter threshold value, and if the jitter amount is smaller than the jitter threshold value, the jitter judging circuit outputs the pass signal.

在一些實施例中,上述的基準值為第二時間的平均,並且抖動判斷電路將基準值乘上預設數值以得到抖動臨界值。 In some embodiments, the reference value is an average of the second time, and the jitter determination circuit multiplies the reference value by a preset value to obtain a jitter threshold.

在一些實施例中,上述的至少一極端值包括第二時間中的最大值與最小值。抖動判斷電路將最大值減去最小值以得到抖動量。 In some embodiments, the at least one extreme value described above includes a maximum and a minimum of the second time. The jitter judging circuit subtracts the minimum value from the maximum value to obtain the amount of jitter.

在一些實施例中,上述的抖動判斷電路計算最大值與最小值的平均以得到基準值,並且將基準值乘上預設數值以得到抖動臨界值。 In some embodiments, the jitter determination circuit described above calculates an average of the maximum value and the minimum value to obtain a reference value, and multiplies the reference value by a preset value to obtain a jitter threshold.

在一些實施例中,上述的預設數值是可程式化,預設數值為0.25、0.125、0.0625與0.03125的其中之一。 In some embodiments, the preset values described above are programmable, and the preset values are one of 0.25, 0.125, 0.0625, and 0.03125.

在一些實施例中,抖動判斷電路包括第一暫存 器,用以儲存最大值;第二暫存器,用以儲存最小值;以及計算電路。 In some embodiments, the jitter determination circuit includes a first temporary storage a device for storing a maximum value; a second register for storing a minimum value; and a calculation circuit.

在一些實施例中,上述的時脈接收電路包括第一至第三正反器。第一正反器的輸入端耦接至高準位電壓,觸發端耦接至時脈訊號。第二正反器的輸入端耦接至第一正反器的正相輸出端,觸發端耦接至時脈訊號,正相輸出端輸出開始訊號。第三正反器的輸入端耦接至第二正反器的正相輸出端,觸發端耦接至時脈訊號,正相輸出端輸出停止訊號。 In some embodiments, the clock receiving circuit described above includes first to third flip-flops. The input end of the first flip-flop is coupled to the high-level voltage, and the trigger end is coupled to the clock signal. The input end of the second flip-flop is coupled to the positive-phase output end of the first flip-flop, the trigger end is coupled to the clock signal, and the positive-phase output terminal outputs the start signal. The input end of the third flip-flop is coupled to the positive-phase output end of the second flip-flop, the trigger end is coupled to the clock signal, and the positive-phase output terminal outputs the stop signal.

在一些實施例中,上述的計時電路包括第一至第二振盪器。第一振盪器接收開始訊號並由開始訊號所驅動。第二振盪器接收停止訊號並由停止訊號所驅動,其中第二振盪器的振盪頻率大於第一振盪器的振盪頻率。 In some embodiments, the timing circuit described above includes first to second oscillators. The first oscillator receives the start signal and is driven by the start signal. The second oscillator receives the stop signal and is driven by the stop signal, wherein the oscillation frequency of the second oscillator is greater than the oscillation frequency of the first oscillator.

在一些實施例中,上述的計時電路還包括以下元件。第四正反器的輸入端耦接至第一振盪器的輸出端,觸發端耦接至第二振盪器的輸出端。第五正反器的輸入端耦接至第四正反器的正相輸出端,觸發端耦接至第二振盪器的輸出端。反及閘的第一輸入端耦接至第四正反器的反相輸出端,第二輸入端耦接至第五正反器的正相輸出端。計時器的計時端耦接至固定電壓,觸發端耦接至第二振盪器的輸出端,重置端耦接至反及閘的輸出端。 In some embodiments, the timing circuit described above further includes the following components. The input end of the fourth flip-flop is coupled to the output end of the first oscillator, and the trigger end is coupled to the output end of the second oscillator. The input end of the fifth flip-flop is coupled to the non-inverting output of the fourth flip-flop, and the trigger end is coupled to the output of the second oscillator. The first input end of the NAND gate is coupled to the inverting output end of the fourth flip flop, and the second input end is coupled to the positive phase output end of the fifth flip flop. The timing end of the timer is coupled to the fixed voltage, the trigger end is coupled to the output end of the second oscillator, and the reset end is coupled to the output end of the anti-gate.

在一些實施例中,上述的第一正反器、第二正反器與第三正反器的重置端都耦接至反及閘的輸出端。 In some embodiments, the reset ends of the first flip-flop, the second flip-flop, and the third flip-flop are coupled to the output of the anti-gate.

本發明實施例提出的內建自我測試電路可用來檢測時脈訊號的抖動是否符合標準。 The built-in self-test circuit proposed by the embodiment of the invention can be used to detect whether the jitter of the clock signal conforms to the standard.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧內建自我測試電路 100‧‧‧ Built-in self-test circuit

110‧‧‧時脈接收電路 110‧‧‧clock receiving circuit

111~113、124、125‧‧‧正反器 111~113, 124, 125‧‧‧ forward and reverse

120‧‧‧計時電路 120‧‧‧Timekeeping Circuit

121、122‧‧‧振盪器 121, 122‧‧‧ oscillator

126‧‧‧反及閘 126‧‧‧Anti-gate

127‧‧‧計時器 127‧‧‧Timer

130‧‧‧抖動判斷電路 130‧‧‧Jitter judgment circuit

131、132‧‧‧暫存器 131, 132‧‧‧ register

133‧‧‧計算電路 133‧‧‧Computation circuit

CLK‧‧‧時脈訊號 CLK‧‧‧ clock signal

START‧‧‧開始訊號 START‧‧‧Start signal

STOP‧‧‧停止訊號 STOP‧‧‧ stop signal

D‧‧‧輸入端 D‧‧‧ input

Q‧‧‧正相輸出端 Q‧‧‧Phase phase output

‧‧‧反向輸出端 ‧‧‧inverted output

RST‧‧‧重置端 RST‧‧‧Reset

OscA、OscB‧‧‧振盪訊號 OscA, OscB‧‧‧ oscillation signal

A、B‧‧‧訊號 A, B‧‧‧ signal

RSTN‧‧‧重置訊號 RSTN‧‧‧Reset signal

UP‧‧‧計時端 UP‧‧‧Timed end

T1‧‧‧第一時間 T1‧‧‧ first time

T2、T3‧‧‧時間 T2, T3‧‧‧ time

T4~T6‧‧‧時間點 T4~T6‧‧‧ time point

[圖1]是根據一實施例繪示內建自我測試電路100的方塊圖。 FIG. 1 is a block diagram showing a built-in self-test circuit 100 in accordance with an embodiment.

[圖2]與[圖3]是根據一實施例繪示圖1中各訊號的時序圖。 2 and FIG. 3 are timing diagrams of signals in FIG. 1 according to an embodiment.

關於本文中所使用之『第一』、『第二』、...等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。另外,關於本文中所使用之「耦接」,可指二個元件直接地或間接地作電性連接。也就是說,當以下描述「第一物件耦接至第二物件」時,第一物件與第二物件之間還可設置其他的物件。 The terms "first", "second", "etc." used in this document are not intended to mean the order or the order, and are merely to distinguish between elements or operations described in the same technical terms. In addition, as used herein, "coupled" may mean that two elements are electrically connected, either directly or indirectly. That is, when the following description "the first object is coupled to the second object", other items may be disposed between the first object and the second object.

圖1是根據一實施例繪示內建自我測試(built-in self test,BIST)電路100的方塊圖,內建自我測試電路100是用以偵測時脈訊號CLK中的抖動是否符合一個標準,例如判斷時脈訊號CLK的抖動量是否小於3%等。時脈訊號CLK是來自任何適當的時脈產生電路,例如為鎖相迴路、延遲線迴路、振盪器等,但本發明並不限制時脈訊號CLK的來源。內建自我測試電路100包括了時脈接收 電路110、計時電路120與抖動判斷電路130。 1 is a block diagram showing a built-in self test (BIST) circuit 100 for detecting whether a jitter in a clock signal CLK conforms to a standard, according to an embodiment. For example, it is determined whether the amount of jitter of the clock signal CLK is less than 3% or the like. The clock signal CLK is from any suitable clock generation circuit, such as a phase locked loop, a delay line loop, an oscillator, etc., but the present invention does not limit the source of the clock signal CLK. Built-in self-test circuit 100 includes clock reception The circuit 110, the timing circuit 120, and the jitter determination circuit 130.

時脈接收電路110用以接收時脈訊號CLK並執行操作(a):根據時脈訊號CLK產生開始訊號START與停止訊號STOP。停止訊號STOP落後開始訊號START一個週期,此週期所指的是時脈訊號CLK的週期。值得注意的是,由於抖動的緣故,時脈訊號CLK的週期可能會隨時間改變,但這並不影響時脈接收電路110的運作。具體來說,時脈接收電路110包括第一正反器111、第二正反器112與第三正反器113。第一正反器111的輸入端D耦接至高準位電壓(即邏輯“1”),觸發端(亦稱為時脈端)耦接至時脈訊號CLK。第二正反器112的輸入端D耦接至第一正反器111的正相輸出端Q,觸發端耦接至時脈訊號CLK,而正相輸出端Q輸出開始訊號START。第三正反器113的輸入端D耦接至第二正反器112的正相輸出端Q,觸發端耦接至時脈訊號CLK,而正相輸出端Q輸出停止訊號STOP。請同時參照圖1與圖2,時脈訊號CLK形成第一個上升邊緣時,第一正反器111的正相輸出端Q輸出高準位,而第二正反器112與第三正反器113的正相輸出端Q輸出低準位。時脈訊號CLK形成第二個上升邊緣時,第一正反器111的正相輸出端Q依然輸出高準位,但第二正反器112的正相輸出端Q由低準位轉換為高準位(形成一個上升邊緣),第三正反器113的正相輸出端Q輸出低準位。時脈訊號CLK形成第三個上升邊緣時,第一正反器111的正相輸出端Q依然輸出高準位,第二正反器112的正相輸出端Q輸出高準位,此時第三正反器113的 正相輸出端Q由低準位轉換為高準位(形成一個上升邊緣)。藉此,停止訊號STOP的上升邊緣會落後開始訊號START的上升邊緣一個週期。 The clock receiving circuit 110 is configured to receive the clock signal CLK and perform an operation (a): generating a start signal START and a stop signal STOP according to the clock signal CLK. The stop signal STOP is behind the start signal START for one cycle, which refers to the period of the clock signal CLK. It is worth noting that the period of the clock signal CLK may change with time due to jitter, but this does not affect the operation of the clock receiving circuit 110. Specifically, the clock receiving circuit 110 includes a first flip-flop 111, a second flip-flop 112, and a third flip-flop 113. The input terminal D of the first flip-flop 111 is coupled to the high-level voltage (ie, logic "1"), and the trigger terminal (also referred to as the clock-end terminal) is coupled to the clock signal CLK. The input terminal D of the second flip-flop 112 is coupled to the positive-phase output terminal Q of the first flip-flop 111, the trigger terminal is coupled to the clock signal CLK, and the positive-phase output terminal Q outputs the start signal START. The input terminal D of the third flip-flop 113 is coupled to the positive-phase output terminal Q of the second flip-flop 112, the trigger terminal is coupled to the clock signal CLK, and the positive-phase output terminal Q outputs the stop signal STOP. Referring to FIG. 1 and FIG. 2 simultaneously, when the clock signal CLK forms the first rising edge, the positive phase output terminal Q of the first flip-flop 111 outputs a high level, and the second flip-flop 112 and the third positive and negative elements The positive phase output terminal Q of the device 113 outputs a low level. When the clock signal CLK forms a second rising edge, the positive phase output terminal Q of the first flip-flop 111 still outputs a high level, but the positive phase output terminal Q of the second flip-flop 112 is converted from a low level to a high level. The level (forming a rising edge), the positive phase output terminal Q of the third flip-flop 113 outputs a low level. When the clock signal CLK forms a third rising edge, the positive phase output terminal Q of the first flip-flop 111 still outputs a high level, and the positive phase output terminal Q of the second flip-flop 112 outputs a high level. Three-reactor 113 The positive phase output Q is converted from a low level to a high level (forming a rising edge). Thereby, the rising edge of the stop signal STOP is one cycle behind the rising edge of the start signal START.

計時電路120會接收開始訊號START與停止訊號STOP,並執行操作(b):偵測開始訊號START與停止訊號STOP之間相差的第一時間T1。也就是說,計時電路120是用以計算一個週期的時間長度。在此實施例中,計時電路120中包括了游標為基礎的時間數位轉換器(Vernier-based time to digital converter)。具體來說,計時電路120包括了第一振盪器121、第二振盪器122、第四正反器124、第五正反器125、反及閘126與計時器127。第一振盪器121與第二振盪器122例如為環型(ring)振盪器,但在其他實施例中也可以使用電感電容(LC)振盪器或其他合適的振盪器,本發明並不在此限。第一振盪器121接收開始訊號START並由開始訊號START的上升邊緣所驅動以輸出振盪訊號OscA。第二振盪器122接收停止訊號STOP並由停止訊號STOP的上升邊緣所驅動以輸出振盪訊號OscB。其中第二振盪器122的振盪頻率大於第一振盪器121的振盪頻率,例如第二振盪器122的振盪頻率多了1%~8%,但本發明並不在此限。第四正反器124的輸入端D耦接至第一振盪器121的輸出端以接收振盪訊號OscA,觸發端耦接至第二振盪器122的輸出端以接收振盪訊號OscB,正相輸出端Q則輸出訊號B。第五正反器125的輸入端D耦接至第四正反器124的正相輸出端Q,觸發端耦接至 第二振盪器122的輸出端以接收振盪訊號OscB,正相輸出端Q則輸出訊號A。反及閘126的第一輸入端耦接至第四正反器124的反相輸出端,第二輸入端耦接至第五正反器125的正相輸出端Q以接收訊號A,並且反及閘126輸出重置訊號RSTN。計時器127的計時端UP耦接至一個固定電壓(例如為高準位),觸發端耦接至第二振盪器122的輸出端以接收振盪訊號OscB,重置端RST耦接至反及閘126的輸出端以接收重置訊號RSTN。 The timer circuit 120 receives the start signal START and the stop signal STOP, and performs operation (b): detecting the first time T1 between the start signal START and the stop signal STOP. That is, the timing circuit 120 is used to calculate the length of time of one cycle. In this embodiment, the timing circuit 120 includes a Vernier-based time to digital converter. Specifically, the timing circuit 120 includes a first oscillator 121, a second oscillator 122, a fourth flip-flop 124, a fifth flip-flop 125, an inverse gate 126, and a timer 127. The first oscillator 121 and the second oscillator 122 are, for example, ring oscillators, but in other embodiments, an inductor-capacitor (LC) oscillator or other suitable oscillator may also be used, and the present invention is not limited thereto. . The first oscillator 121 receives the start signal START and is driven by the rising edge of the start signal START to output the oscillation signal OscA. The second oscillator 122 receives the stop signal STOP and is driven by the rising edge of the stop signal STOP to output the oscillation signal OscB. The oscillation frequency of the second oscillator 122 is greater than the oscillation frequency of the first oscillator 121. For example, the oscillation frequency of the second oscillator 122 is 1% to 8% more, but the invention is not limited thereto. The input terminal D of the fourth flip-flop 124 is coupled to the output of the first oscillator 121 to receive the oscillation signal OscA, and the trigger terminal is coupled to the output of the second oscillator 122 to receive the oscillation signal OscB, the positive phase output terminal. Q outputs signal B. The input terminal D of the fifth flip-flop 125 is coupled to the positive-phase output terminal Q of the fourth flip-flop 124, and the trigger terminal is coupled to the output terminal of the second oscillator 122 to receive the oscillation signal OscB, and the positive-phase output terminal Q Then the signal A is output. The first input end of the NAND gate 126 is coupled to the inverted output end of the fourth flip flop 124 The second input terminal is coupled to the positive phase output terminal Q of the fifth flip-flop 125 to receive the signal A, and the gate 126 outputs the reset signal RSTN. The timing terminal UP of the timer 127 is coupled to a fixed voltage (for example, a high level), the trigger terminal is coupled to the output end of the second oscillator 122 to receive the oscillation signal OscB, and the reset terminal RST is coupled to the reverse gate. The output of 126 receives the reset signal RSTN.

計時電路120的運作原理如下,請同時參照圖1與圖2。第一振盪器121在開始訊號START形成上升邊緣時開始震盪,而第二振盪器122在結束訊號STOP形成上升邊緣時開始震盪,因此在初始階段振盪訊號OscB會落後振盪訊號OscA。然而,由於振盪訊號OscB的振盪頻率較大,即週期較小,因此振盪訊號OscB會逐漸“追上”振盪訊號OscA。舉例來說,假設振盪訊號OscA的週期減去振盪訊號OscB的週期後等於時間T。在圖2中,振盪訊號OscA的第一個上升邊緣與振盪訊號OscB的第一個上升邊緣之間相差了時間T2,振盪訊號OscA的第二個上升邊緣與振盪訊號OscB的第二個上升邊緣之間相差了時間T3,時間T2會大於時間T3(此差距通常很小,於圖示中並未能清楚辨別出),明確的說是T2=T3+T。因此,振盪訊號OscB的上升邊緣會逐漸靠近振盪訊號OscA的上升邊緣。假設經過了N個週期以後(N為正整數),振盪訊號OscB的上升邊緣會同步於振盪訊號OscA的上升邊緣,這表示可根據以下方程式(1)來計 算出第一時間T1。 The operation principle of the timing circuit 120 is as follows, please refer to FIG. 1 and FIG. 2 at the same time. The first oscillator 121 starts to oscillate when the start signal START forms a rising edge, and the second oscillator 122 starts to oscillate when the end signal STOP forms a rising edge, so the oscillation signal OscB will lag behind the oscillation signal OscA in the initial stage. However, since the oscillation frequency of the oscillation signal OscB is large, that is, the period is small, the oscillation signal OscB gradually "catch up" the oscillation signal OscA. For example, it is assumed that the period of the oscillation signal OscA is equal to the time T Δ after subtracting the period of the oscillation signal OscB. In FIG. 2, the first rising edge of the oscillation signal OscA is different from the first rising edge of the oscillation signal OscB by time T2, and the second rising edge of the oscillation signal OscA and the second rising edge of the oscillation signal OscB There is a difference between time T3 and time T2 which is greater than time T3 (this gap is usually small and not clearly discernible in the illustration), specifically T2=T3+T . Therefore, the rising edge of the oscillation signal OscB gradually approaches the rising edge of the oscillation signal OscA. Assuming that after N cycles (N is a positive integer), the rising edge of the oscillation signal OscB is synchronized with the rising edge of the oscillation signal OscA, which means that the first time T1 can be calculated according to the following equation (1).

T1=N.T...(1) T1=N. T ...(1)

計時器127便是用以計算上述的正整數N,而第四正反器124與第五正反器125的運作等同於一個相位偵測器,用以偵測振盪訊號OscA是否同步於振盪訊號OscB。具體來說,請參照圖1與圖3,在振盪訊號OscB追逐振盪訊號OscA的過程中,振盪訊號OscB的上升邊緣會觸發計時器127,由於計時端UP上的電壓為固定值,因此計時器127會不斷累加一數值,此數值等同於振盪訊號OscB中時脈的個數。在時間點T4,當第四正反器124根據振盪訊號OscB的上升邊緣來取樣振盪訊號OscA時會取樣到高準位,這表示振盪訊號OscB還沒追上振盪訊號OscA,第四正反器124的正相輸出端Q上的訊號B會是高準位。在時間點T5,當第四正反器124根據振盪訊號OscB的上升邊緣來取樣振盪訊號OscA時會取樣到低準位,這表示振盪訊號OscB已經追上振盪訊號OscA,訊號B會從高準位轉換為低準位,而訊號A會等同於上一個時脈的訊號B(即高準位)。在時間點T6,反及閘126的第一輸入端是反相於訊號B,即是高準位,並且反及閘126的第二輸入端為訊號A,也是高準位,因此反及閘126輸出的重置訊號RSTN會從高準位轉換為低準位,計時器127會被重置,並且計時器127會將所累加的數值保留下來成為上述的正整數N。如上述方程式(1)所示,此正整數N可用來計算第一時間T1。 The timer 127 is used to calculate the positive integer N, and the operation of the fourth flip-flop 124 and the fifth flip-flop 125 is equivalent to a phase detector for detecting whether the oscillation signal OscA is synchronized with the oscillation signal. OscB. Specifically, referring to FIG. 1 and FIG. 3, during the oscillation signal OscB chasing the oscillation signal OscA, the rising edge of the oscillation signal OscB triggers the timer 127. Since the voltage on the timing terminal UP is a fixed value, the timer 127 will continue to accumulate a value equal to the number of clocks in the oscillation signal OscB. At the time point T4, when the fourth flip-flop 124 samples the oscillation signal OscA according to the rising edge of the oscillation signal OscB, it samples to a high level, which indicates that the oscillation signal OscB has not caught up with the oscillation signal OscA, and the fourth flip-flop The signal B on the positive phase output terminal Q of 124 will be at a high level. At time T5, when the fourth flip-flop 124 samples the oscillating signal OscA according to the rising edge of the oscillating signal OscB, it will sample to the low level, which means that the oscillating signal OscB has caught up with the oscillating signal OscA, and the signal B will be from the high standard. The bit is converted to a low level, and the signal A is equivalent to the signal B of the previous clock (ie, the high level). At time T6, the first input of the anti-gate 126 is inverted to the signal B, that is, the high level, and the second input of the gate 126 is the signal A, which is also a high level, and therefore the gate is reversed. The output reset signal RSTN of 126 will change from the high level to the low level, the timer 127 will be reset, and the timer 127 will retain the accumulated value as the positive integer N described above. As shown in the above equation (1), this positive integer N can be used to calculate the first time T1.

另一方面,第一正反器111、第二正反器112與 第三正反器113的重置端RST都會耦接至反及閘126的輸出端以接收重置訊號RSTN,因此在時間點T6正反器111~113都會被重置。接下來,時脈接收電路110會重新產生開始訊號START與停止訊號STOP,即重新執行上述的操作(a),而計時電路120會重新再計算一次第一時間T1,即重新執行上述的操作(b)。時脈接收電路110與計時電路120會分別執行操作(a)與操作(b)多次(例如8次,但本發明並不在此限)以產生多個第二時間,這些第二時間便包括了第一時間T1。每一個第二時間都表示時脈訊號CLK的週期,但由於時脈訊號CLK可能有抖動,這表示這些第二時間可能彼此不相同,接下來抖動判斷電路130便可以根據這些第二時間來判斷抖動的程度是否符合一個標準。 On the other hand, the first flip-flop 111 and the second flip-flop 112 are The reset terminal RST of the third flip-flop 113 is coupled to the output of the inverse gate 126 to receive the reset signal RSTN, so that the flip-flops 111-113 are reset at the time point T6. Next, the clock receiving circuit 110 regenerates the start signal START and the stop signal STOP, that is, the above operation (a) is re-executed, and the timer circuit 120 recalculates the first time T1, that is, re-executes the above operation ( b). The clock receiving circuit 110 and the timing circuit 120 respectively perform operations (a) and (b) multiple times (for example, 8 times, but the invention is not limited thereto) to generate a plurality of second times, and the second time includes The first time T1. Each second time represents the period of the clock signal CLK, but since the clock signal CLK may have jitter, which means that these second times may be different from each other, then the jitter determination circuit 130 can judge according to these second times. Whether the degree of jitter meets a standard.

抖動判斷電路130包括了第一暫存器131、第二暫存器132與計算電路133。每當產生一個新的第二時間時,只要此第二時間大於第一暫存器131中的數值,便可以將第一暫存器131中的數值替換為新的第二時間;只要新的第二時間小於第二暫存器132中的數值,便可以將第二暫存器132中的數值替換為新的第二時間。如此一來,第一暫存器131可用來儲存最大值,而第二暫存器132可用來儲存最小值。計算電路133會計算最大值與最小值的平均以作為一個基準值,可表示為以下方程式(2),其中Base為基準值,Max為最大值,Min為最小值。 The jitter determination circuit 130 includes a first register 131, a second register 132, and a calculation circuit 133. Whenever a new second time is generated, as long as the second time is greater than the value in the first register 131, the value in the first register 131 can be replaced with the new second time; The second time is less than the value in the second register 132, and the value in the second register 132 can be replaced with the new second time. In this way, the first register 131 can be used to store the maximum value, and the second register 132 can be used to store the minimum value. The calculation circuit 133 calculates the average of the maximum value and the minimum value as a reference value, which can be expressed as the following equation (2), where Base is the reference value, Max is the maximum value, and Min is the minimum value.

Base=(Max+Min)/2...(2) Base=(Max+Min)/2...(2)

另一方面,計算電路133會將基準值乘上一個 預設數值以得到抖動臨界值。預設數值是可程式化的,例如為0.25、0.125、0.0625與0.03125的其中之一,取這些數值是因為在做相乘的運算時只要將基準值往右位移2、3、4或5的位元即可。然而,在其他實施例中,上述的預設數值也可採用其他數值,本發明並不在此限。抖動臨界值的計算如以下方程式(3),其中jitterspc為抖動臨界值,S為預設數值。 On the other hand, the calculation circuit 133 multiplies the reference value by a preset value to obtain a jitter threshold. The preset values are programmable, such as one of 0.25, 0.125, 0.0625, and 0.03125. These values are taken because the reference value is shifted to the right by 2, 3, 4, or 5 when doing the multiplication operation. The bit can be. However, in other embodiments, the above-mentioned preset values may also adopt other values, and the present invention is not limited thereto. The jitter threshold is calculated as Equation (3) below, where jitter SPc is the jitter threshold and S is the preset value.

jitterspc=Base×S...(3) Jitter spc =Base×S...(3)

此外,計算電路133可將最大值減去最小值以當作抖動量,可表示為以下方程式(4),其中jitter為抖動量。 Further, the calculation circuit 133 may subtract the minimum value from the maximum value as the amount of jitter, which may be expressed as the following equation (4), where the jitter is the amount of jitter.

jitter=Max-Min...(4) Jitter=Max-Min...(4)

計算電路130會判斷抖動量jitter是否小於抖動臨界值jitterspc,如果抖動量jitter小於抖動臨界值jitterspc,則抖動判斷電路130會輸出通過訊號,表示時脈訊號CLK通過了抖動的檢測。舉例來說,如果使用者想要檢測抖動量是否少於12.5%,則可以選定預設數值為0.125,所計算出的抖動臨界值jitterspc理論上會是週期的12.5%,若抖動量jitter小於抖動臨界值jitterspc,即表示通過檢測。 The calculation circuit 130 determines whether the jitter amount jitter is smaller than the jitter threshold value jitter spc . If the jitter amount jitter is smaller than the jitter threshold value jitter spc , the jitter determination circuit 130 outputs a pass signal indicating that the clock signal CLK has passed the detection of the jitter. For example, if the user wants to detect whether the amount of jitter is less than 12.5%, the preset value can be selected to be 0.125, and the calculated jitter threshold value jitter spc will theoretically be 12.5% of the period, if the jitter amount jitter is less than The jitter threshold value jitter spc means that the detection is passed.

值得注意的是,由於抖動臨界值jitterspc與抖動量jitter都是根據第二時間所計算出,因此可以避免製程電壓溫度(process voltage temperature,PVT)的影響。舉例來說,如果因為溫度上升或下降,使得第一振盪器121、第二振盪器122的頻率改變了,則因為抖動量jitter 和抖動臨界值jitterspc會同步的改變,因此不影響抖動的判斷。 It is noted that, due to the jitter threshold jitter SPC dither jitter amount is calculated according to a second time, thus avoiding voltage temperature process (process voltage temperature, PVT) effects. For example, if the frequency of the first oscillator 121 and the second oscillator 122 is changed due to the temperature rise or fall, since the jitter amount jitter and the jitter threshold value jitter spc are synchronously changed, the jitter is not affected. .

在上述的實施例中,停止訊號STOP是落後開始訊號START一個週期,但在其他實施例中停止訊號STOP也可以落後開始訊號START多個週期,這樣的實施例並不影響抖動的判斷。 In the above embodiment, the stop signal STOP is one cycle behind the start signal START, but in other embodiments, the stop signal STOP may also be behind the start signal START for a plurality of cycles. Such an embodiment does not affect the jitter determination.

在上述的實施例中,基準值是計算最大值與最小值的平均而得來,但在其他實施例中基準值也可為第二時間的平均。例如抖動判斷電路130中具有一個記憶單元(未繪示)來儲存這些第二時間,而有另一個計算單元(未繪示)來計算這些第二時間的平均,在此實施例中,基準值同樣會乘上預設數值以得到抖動臨界值。在其他實施例中,基準值也可為第二時間的中位數,本發明並不在此限。另一方面,在上述的實施例中抖動量是將最大值減去最小值而得到,但在其他實施例中也可以將一個極端值(可為最大值或是最小值)與基準值相減而計算出抖動量。 In the above embodiment, the reference value is obtained by calculating the average of the maximum value and the minimum value, but in other embodiments, the reference value may also be the average of the second time. For example, the jitter determination circuit 130 has a memory unit (not shown) for storing the second time, and another calculation unit (not shown) is used to calculate the average of the second time. In this embodiment, the reference value. The preset value is also multiplied to get the jitter threshold. In other embodiments, the reference value may also be the median of the second time, and the invention is not limited thereto. On the other hand, in the above embodiment, the amount of jitter is obtained by subtracting the maximum value from the minimum value, but in other embodiments, an extreme value (which may be the maximum value or the minimum value) may be subtracted from the reference value. The amount of jitter is calculated.

換言之,抖動判斷電路130會根據第二時間計算出一個基準值,並根據此基準值計算出一個抖動臨界值,此基準值可以是平均值、中位數、或是第二時間中最大值與最小值的平均。抖動判斷電路130也會取得第二時間中的至少一個極端值,此極端值可為最小值及/或最小值,並根據此極端值計算出抖動量,例如將最大值減去最小值,或者是將最大值減去基準值,或者是將基準值減去最小值。由於抖動臨界值以及抖動量都是根據第二時間計算出,因此可以避 免PVT影響,本領域具有通常知識者當可根據這樣的教示來設計出其他的基準值與抖動量,本發明並不限於上述的實施例。 In other words, the jitter determination circuit 130 calculates a reference value based on the second time, and calculates a jitter threshold based on the reference value, which may be an average value, a median, or a maximum value in the second time. The average of the minimum. The jitter determination circuit 130 also obtains at least one extreme value of the second time, the extreme value may be a minimum value and/or a minimum value, and the amount of jitter is calculated according to the extreme value, for example, the maximum value is subtracted from the minimum value, or Is to subtract the maximum value from the reference value, or subtract the minimum value from the reference value. Since the jitter threshold and the jitter amount are calculated according to the second time, it can be avoided. Without the influence of PVT, those skilled in the art can design other reference values and jitter amounts according to such teachings, and the present invention is not limited to the above embodiments.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

Claims (10)

一種時脈抖動的內建自我測試電路,適用於一時脈訊號,該時脈訊號具有一週期,該內建自我測試電路包括:一時脈接收電路,接收該時脈訊號並執行操作(a):根據該時脈訊號產生一開始訊號與一停止訊號,其中該停止訊號落後該開始訊號一或多個該週期;一計時電路,接收該開始訊號與該停止訊號並執行操作(b):偵測該開始訊號與該停止訊號之間相差的一第一時間,其中該時脈接收電路與該計時電路分別執行該操作(a)與該操作(b)多次以產生多個第二時間,該些第二時間包含該第一時間;以及一抖動判斷電路,用以根據該些第二時間計算出一基準值,並根據該基準值計算出一抖動臨界值,其中該抖動判斷電路取得該些第二時間中的至少一極端值,並根據該至少一極端值計算出一抖動量,其中該抖動判斷電路判斷該抖動量是否小於該抖動臨界值,其中若該抖動量小於該抖動臨界值,該抖動判斷電路輸出一通過訊號。 A built-in self-test circuit for clock jitter is applicable to a clock signal having a period. The built-in self-test circuit includes: a clock receiving circuit that receives the clock signal and performs an operation (a): Generating a start signal and a stop signal according to the clock signal, wherein the stop signal is behind the start signal for one or more of the cycles; a timing circuit receives the start signal and the stop signal and performs an operation (b): detecting a first time when the start signal and the stop signal are different, wherein the clock receiving circuit and the timing circuit respectively perform the operation (a) and the operation (b) a plurality of times to generate a plurality of second times, The second time includes the first time; and a jitter determining circuit is configured to calculate a reference value according to the second time, and calculate a jitter threshold according to the reference value, wherein the jitter determining circuit obtains the At least one extreme value of the second time, and calculating a jitter amount according to the at least one extreme value, wherein the jitter determination circuit determines whether the jitter amount is less than the jitter threshold value, If the jitter amount is less than the dither threshold value, the determination circuit outputs a dither signal through. 如申請專利範圍第1項所述之內建自我測 試電路,其中該基準值為該些第二時間的平均,並且該抖動判斷電路將該基準值乘上一預設數值以得到該抖動臨界值。 Built-in self-test as described in item 1 of the patent application scope a trial circuit, wherein the reference value is an average of the second times, and the jitter determination circuit multiplies the reference value by a predetermined value to obtain the jitter threshold. 如申請專利範圍第1項所述之內建自我測試電路,其中該至少一極端值包括該些第二時間中的一最大值與一最小值,該抖動判斷電路將該最大值減去該最小值以得到該抖動量。 The built-in self-test circuit according to claim 1, wherein the at least one extreme value includes a maximum value and a minimum value of the second time, and the jitter determination circuit subtracts the maximum value from the minimum value. Value to get the amount of jitter. 如申請專利範圍第3項所述之內建自我測試電路,其中該抖動判斷電路計算該最大值與該最小值的平均以得到該基準值,並且將該基準值乘上一預設數值以得到該抖動臨界值。 The built-in self-test circuit according to claim 3, wherein the jitter judging circuit calculates an average of the maximum value and the minimum value to obtain the reference value, and multiplies the reference value by a preset value to obtain The jitter threshold. 如申請專利範圍第4項所述之內建自我測試電路,其中該預設數值是可程式化,該預設數值為0.25、0.125、0.0625與0.03125的其中之一。 The built-in self-test circuit according to claim 4, wherein the preset value is programmable, and the preset value is one of 0.25, 0.125, 0.0625 and 0.03125. 如申請專利範圍第4項所述之內建自我測試電路,其中該抖動判斷電路包括:一第一暫存器,用以儲存該最大值;一第二暫存器,用以儲存該最小值;以及一計算電路。 The built-in self-test circuit according to claim 4, wherein the jitter judging circuit comprises: a first register for storing the maximum value; and a second register for storing the minimum value; And a calculation circuit. 如申請專利範圍第1項所述之內建自我測試電路,其中該時脈接收電路包括:一第一正反器,其輸入端耦接至一高準位電壓,觸發端耦接至該時脈訊號;一第二正反器,其輸入端耦接至該第一正反器的正相輸出端,觸發端耦接至該時脈訊號,該第二正反器的正相輸出端輸出該開始訊號;以及一第三正反器,其輸入端耦接至該第二正反器的該正相輸出端,觸發端耦接至該時脈訊號,該第三正反器的正相輸出端輸出該停止訊號。 The built-in self-test circuit of the first aspect of the invention, wherein the clock receiving circuit comprises: a first flip-flop, the input end of which is coupled to a high-level voltage, and the trigger end is coupled to the time a second positive-reactor, the input end of which is coupled to the positive-phase output end of the first flip-flop, the trigger end is coupled to the clock signal, and the positive-phase output of the second flip-flop is output The start signal; and a third flip-flop having an input coupled to the positive phase output of the second flip-flop, the trigger coupled to the clock signal, the positive phase of the third flip-flop The output outputs the stop signal. 如申請專利範圍第7項所述之內建自我測試電路,其中該計時電路包括:一第一振盪器,接收該開始訊號並由該開始訊號所驅動;以及一第二振盪器,接收該停止訊號並由該停止訊號所驅動,其中該第二振盪器的振盪頻率大於該第一振盪器的振盪頻率。 The built-in self-test circuit according to claim 7, wherein the timing circuit comprises: a first oscillator that receives the start signal and is driven by the start signal; and a second oscillator that receives the stop The signal is driven by the stop signal, wherein the oscillation frequency of the second oscillator is greater than the oscillation frequency of the first oscillator. 如申請專利範圍第8項所述之內建自我測試電路,其中該計時電路還包括:一第四正反器,其輸入端耦接至該第一振盪器的輸出端,觸發端耦接至該第二振盪器的輸出端;一第五正反器,其輸入端耦接至該第四正反器的正相 輸出端,觸發端耦接至該第二振盪器的該輸出端;一反及閘,其第一輸入端耦接至該第四正反器的反相輸出端,第二輸入端耦接至該第五正反器的正相輸出端;以及一計時器,其計時端耦接至一固定電壓,觸發端耦接至該第二振盪器的該輸出端,重置端耦接至該反及閘的輸出端。 The built-in self-test circuit of claim 8, wherein the timing circuit further includes: a fourth flip-flop having an input coupled to the output of the first oscillator, the trigger coupled to An output of the second oscillator; a fifth flip-flop having an input coupled to the positive phase of the fourth flip-flop An output end, the trigger end is coupled to the output end of the second oscillator; a reverse gate, the first input end is coupled to the inverting output end of the fourth flip-flop, and the second input end is coupled to a positive phase output terminal of the fifth flip-flop; and a timer, the timing end of which is coupled to a fixed voltage, the trigger end is coupled to the output end of the second oscillator, and the reset end is coupled to the opposite end And the output of the gate. 如申請專利範圍第9項所述之內建自我測試電路,其中該第一正反器、該第二正反器與該第三正反器的重置端都耦接至該反及閘的該輸出端。 The built-in self-test circuit according to claim 9, wherein the first flip-flop, the second flip-flop and the reset end of the third flip-flop are coupled to the anti-gate The output.
TW106100075A 2017-01-03 2017-01-03 Built-in self test (bist) circuit for clock jitter TWI637185B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106100075A TWI637185B (en) 2017-01-03 2017-01-03 Built-in self test (bist) circuit for clock jitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106100075A TWI637185B (en) 2017-01-03 2017-01-03 Built-in self test (bist) circuit for clock jitter

Publications (2)

Publication Number Publication Date
TW201825923A TW201825923A (en) 2018-07-16
TWI637185B true TWI637185B (en) 2018-10-01

Family

ID=63639776

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106100075A TWI637185B (en) 2017-01-03 2017-01-03 Built-in self test (bist) circuit for clock jitter

Country Status (1)

Country Link
TW (1) TWI637185B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010452A2 (en) * 2005-07-15 2007-01-25 Nxp B.V. Emulation and debug interfaces for testing an integrated circuit with an asynchronous microcontroller
TW200919968A (en) * 2007-08-09 2009-05-01 Qualcomm Inc Circuit device and method of measuring clock jitter
CN102073008A (en) * 2010-11-08 2011-05-25 北京龙芯中科技术服务中心有限公司 On-chip clock uncertainty measurement circuit device and system
CN104024873A (en) * 2012-12-13 2014-09-03 英特尔公司 Distortion measurement for limiting jitter in pam transmitters
TW201643445A (en) * 2015-06-11 2016-12-16 智原科技股份有限公司 On-chip apparatus and method for jitter measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010452A2 (en) * 2005-07-15 2007-01-25 Nxp B.V. Emulation and debug interfaces for testing an integrated circuit with an asynchronous microcontroller
TW200919968A (en) * 2007-08-09 2009-05-01 Qualcomm Inc Circuit device and method of measuring clock jitter
CN102073008A (en) * 2010-11-08 2011-05-25 北京龙芯中科技术服务中心有限公司 On-chip clock uncertainty measurement circuit device and system
CN104024873A (en) * 2012-12-13 2014-09-03 英特尔公司 Distortion measurement for limiting jitter in pam transmitters
US20150180592A1 (en) * 2012-12-13 2015-06-25 Intel Corporation Distortion measurement for limiting jitter in pam transmitters
TW201643445A (en) * 2015-06-11 2016-12-16 智原科技股份有限公司 On-chip apparatus and method for jitter measurement

Also Published As

Publication number Publication date
TW201825923A (en) 2018-07-16

Similar Documents

Publication Publication Date Title
US8736338B2 (en) High precision single edge capture and delay measurement circuit
JP5262630B2 (en) Clock generation circuit having self-test circuit
JPWO2006038468A1 (en) Phase difference measurement circuit
KR102105139B1 (en) Clock delay detecting circuit and semiconductor apparatus using the same
JPWO2010150311A1 (en) TDC circuit and ADPLL circuit
US10352997B2 (en) Method of measuring clock jitter, clock jitter measurement circuit, and semiconductor device including the same
JP2009065533A (en) Jitter detecting circuit and semiconductor device
TWI620419B (en) Time to digital converter with high resolution
US5744992A (en) Digital phase shifter
KR20060032410A (en) Delay locked loop using an oscillator obeying an external clock signal frequency and method thereof
CN108318809B (en) Built-in self-test circuit for frequency jitter
TWI637185B (en) Built-in self test (bist) circuit for clock jitter
US7733987B2 (en) Clock signal reproduction device and clock signal reproduction method
US8456195B2 (en) System and method for on-chip jitter and duty cycle measurement
US8995496B2 (en) Method and device for estimating parameters of a system for spreading the spectrum of a clock signal
KR101510777B1 (en) Frequency measuring circuit and semiconductor device comprising the same
JP5381001B2 (en) Semiconductor integrated circuit and method for testing semiconductor integrated circuit
US7885322B2 (en) Jitter measuring circuit
US10110371B2 (en) Phase difference estimation device and communication device having the phase difference estimation device
JP2009518927A (en) Electrical circuit and method for generating a clock signal
JP5307532B2 (en) Frequency change measurement method and apparatus
JP2009518990A (en) Electric counter circuit
JP5486956B2 (en) Unlock detection circuit
US8754685B1 (en) Delay locked loop
JP3864583B2 (en) Variable delay circuit