TWI636274B - A positioning system and a positioning method - Google Patents

A positioning system and a positioning method Download PDF

Info

Publication number
TWI636274B
TWI636274B TW107107339A TW107107339A TWI636274B TW I636274 B TWI636274 B TW I636274B TW 107107339 A TW107107339 A TW 107107339A TW 107107339 A TW107107339 A TW 107107339A TW I636274 B TWI636274 B TW I636274B
Authority
TW
Taiwan
Prior art keywords
optical positioning
target device
positioning
field
signal
Prior art date
Application number
TW107107339A
Other languages
Chinese (zh)
Other versions
TW201939067A (en
Inventor
曾孟鈺
Original Assignee
宏達國際電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏達國際電子股份有限公司 filed Critical 宏達國際電子股份有限公司
Priority to TW107107339A priority Critical patent/TWI636274B/en
Application granted granted Critical
Publication of TWI636274B publication Critical patent/TWI636274B/en
Publication of TW201939067A publication Critical patent/TW201939067A/en

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Optical Communication System (AREA)

Abstract

一種定位系統與其定位方法。定位系統包括目標裝置、至少一個非光學定位裝置、多個光學定位裝置與主機。非光學定位裝置與光學定位裝置配置於場域中。主機依據非光學定位裝置的非光學定位信號而判斷目標裝置於場域的粗略位置。主機從這些光學定位裝置中選擇在所述粗略位置的預設範圍內的一或多個經擇光學定位裝置。主機動態地致能所述一或多個經擇光學定位裝置,主機動態地禁能這些光學定位裝置中在這些預設範圍外的其餘光學定位裝置。A positioning system and its positioning method. The positioning system includes a target device, at least one non-optical positioning device, a plurality of optical positioning devices, and a host. The non-optical positioning device and the optical positioning device are disposed in the field. The host determines the coarse position of the target device in the field according to the non-optical positioning signal of the non-optical positioning device. The host selects one or more selected optical positioning devices within the predetermined range of the coarse position from the optical positioning devices. The host dynamically enables the one or more selected optical positioning devices, and the host dynamically disables the remaining optical positioning devices outside of the predetermined ranges of the optical positioning devices.

Description

定位系統與定位方法Positioning system and positioning method

本發明是有關於一種電子系統,且特別是有關於一種定位系統與定位方法。The present invention relates to an electronic system, and more particularly to a positioning system and positioning method.

在虛擬實境顯示技術中,常引用定位技術來獲知使用者(以及目標裝置)於場域中的位置,進而提供較佳的人機互動介面。一般而言,光學定位裝置(例如Lighthouse)在較小的定位範圍內(例如距離5-7公尺)提供較高的定位精度。然而,光學定位裝置所提供的光學定位信號會被障礙物(如牆壁)所遮蔽。因此,使用單組光學定位裝置追蹤移動中的目標時會被距離與地形限制,使得可定位追蹤的範圍較小。In the virtual reality display technology, the positioning technology is often referred to to know the location of the user (and the target device) in the field, thereby providing a better human-computer interaction interface. In general, optical positioning devices (eg, Lighthouse) provide higher positioning accuracy over a smaller range of positioning (eg, 5-7 meters). However, the optical positioning signals provided by the optical positioning device are obscured by obstacles such as walls. Therefore, the use of a single set of optical positioning devices to track moving targets is limited by distance and terrain, making the range of positionable tracking smaller.

對於大面積的場域而言,因為光學定位裝置的定位範圍較小,所以需要佈置大量光學定位裝置在所述場域中的不同位置。這些大量光學定位裝置全部必須隨時處於致能狀態,以便不間斷地提供光學定位信號至場域中。如此一來,不論目標裝置(例如頭戴式電子裝置)移動到場域中的哪個位置,目標裝置與主機才可以憑藉光學定位信號來判斷使用者於場域中的位置。可想而知,這些大量光學定位裝置需要消耗許多電能來持續供應光學定位信號至場域中。若光學定位裝置的電能是來自於電池,則持續供應光學定位信號將加速消耗電池的電能。For large area fields, because the positioning range of the optical positioning device is small, it is necessary to arrange a large number of optical positioning devices at different positions in the field. All of these large number of optical positioning devices must be fully enabled at all times to provide an optical positioning signal to the field without interruption. In this way, regardless of where the target device (eg, the head mounted electronic device) moves to the field, the target device and the host can determine the location of the user in the field by virtue of the optical positioning signal. It is conceivable that these large number of optical positioning devices require a large amount of electrical energy to continuously supply optical positioning signals to the field. If the electrical energy of the optical positioning device is from the battery, continuously supplying the optical positioning signal will accelerate the consumption of power of the battery.

本發明提供一種定位系統與定位方法,以適應性且動態地致能/禁能光學定位裝置。The present invention provides a positioning system and positioning method to adaptively and dynamically enable/disable an optical positioning device.

本發明的實施例提供一種定位系統,包括一個目標裝置、至少一個非光學定位裝置、多個光學定位裝置與一個主機。所述非光學定位裝置配置於場域中,用以提供非光學定位信號。所述光學定位裝置配置於場域中。所述光學定位裝置的任何一個用以選擇性地提供光學定位信號至場域中。主機耦接至目標裝置。主機依據非光學定位信號而判斷目標裝置於場域的粗略位置。主機從多個光學定位裝置中選擇在粗略位置的預設範圍內的一或多個經擇光學定位裝置。主機動態地致能所述經擇光學定位裝置。主機動態地禁能多個光學定位裝置中在所述預設範圍外的其餘光學定位裝置。Embodiments of the present invention provide a positioning system including a target device, at least one non-optical positioning device, a plurality of optical positioning devices, and a host. The non-optical positioning device is configured in the field to provide a non-optical positioning signal. The optical positioning device is configured in a field. Any of the optical positioning devices are used to selectively provide an optical positioning signal to the field. The host is coupled to the target device. The host determines the coarse position of the target device in the field according to the non-optical positioning signal. The host selects one or more selected optical positioning devices within a predetermined range of coarse positions from among the plurality of optical positioning devices. The host dynamically enables the selected optical positioning device. The host dynamically disables the remaining optical positioning devices in the plurality of optical positioning devices that are outside of the predetermined range.

本發明的實施例提供一種定位方法,適用於定位系統。定位系統包括目標裝置、主機、至少一個非光學定位裝置以及多個光學定位裝置。所述定位方法包括:配置所述非光學定位裝置於場域中,所述非光學定位裝置用以提供非光學定位信號;配置所述光學定位裝置於場域中,所述光學定位裝置的任何一個用以選擇性地提供光學定位信號至場域中;以及依據所述非光學定位信號判斷所述目標裝置於場域的粗略位置;從所述多個光學定位裝置中選擇在所述粗略位置的預設範圍內的一或多個經擇光學定位裝置;動態地致能一或多個所述經擇光學定位裝置;以及動態地禁能所述多個光學定位裝置中在預設範圍外的其餘光學定位裝置。Embodiments of the present invention provide a positioning method suitable for use in a positioning system. The positioning system includes a target device, a host, at least one non-optical positioning device, and a plurality of optical positioning devices. The positioning method includes: configuring the non-optical positioning device in a field, the non-optical positioning device to provide a non-optical positioning signal; configuring the optical positioning device in a field, any of the optical positioning devices a means for selectively providing an optical positioning signal to the field; and determining, based on the non-optical positioning signal, a coarse position of the target device in the field; selecting from the plurality of optical positioning devices at the coarse position One or more selected optical positioning devices within a predetermined range; dynamically enabling one or more of the selected optical positioning devices; and dynamically disabling the plurality of optical positioning devices from a predetermined range The remaining optical positioning devices.

基於上述,在本發明一些實施例中,所述定位系統與所述定位方法可以基於目標裝置的粗略位置來適應性且動態致能與禁能光學定位裝置,以降低定位系統的功率消耗。Based on the above, in some embodiments of the present invention, the positioning system and the positioning method may adaptively and dynamically enable and disable the optical positioning device based on the coarse position of the target device to reduce the power consumption of the positioning system.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

在本案說明書全文(包括申請專利範圍)中所使用的「耦接(或連接)」一詞可指任何直接或間接的連接手段。舉例而言,若文中描述第一裝置耦接(或連接)於第二裝置,則應該被解釋成該第一裝置可以直接連接於該第二裝置,或者該第一裝置可以透過其他裝置或某種連接手段而間接地連接至該第二裝置。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟代表相同或類似部分。不同實施例中使用相同標號或使用相同用語的元件/構件/步驟可以相互參照相關說明。The term "coupled (or connected)" as used throughout the specification (including the scope of the claims) may be used in any direct or indirect connection. For example, if the first device is described as being coupled (or connected) to the second device, it should be construed that the first device can be directly connected to the second device, or the first device can be A connection means is indirectly connected to the second device. In addition, wherever possible, the elements and/ Elements/components/steps that use the same reference numbers or use the same terms in different embodiments may refer to the related description.

圖1是依據本發明的一實施例繪示的一種定位系統100的裝置方塊示意圖。請參照圖1,定位系統100可以包括一個目標裝置110、至少一個非光學定位裝置120、多個光學定位裝置130以及一個主機140。目標裝置110是需要被定位或追蹤的物體,目標裝置110為具有運算、儲存與通訊功能的電子裝置。依照設計需求,目標裝置110可以是筆記型電腦、智慧型手機、頭戴式顯示裝置、可穿戴電子裝置或是其他電子裝置,本實施例並不限制目標裝置110的種類與結構。FIG. 1 is a block diagram of a positioning system 100 according to an embodiment of the invention. Referring to FIG. 1 , the positioning system 100 can include a target device 110 , at least one non-optical positioning device 120 , a plurality of optical positioning devices 130 , and a host 140 . The target device 110 is an object that needs to be located or tracked, and the target device 110 is an electronic device having computing, storage, and communication functions. According to design requirements, the target device 110 can be a notebook computer, a smart phone, a head mounted display device, a wearable electronic device, or other electronic devices. This embodiment does not limit the type and structure of the target device 110.

非光學定位裝置120配置於場域中,用以提供非光學定位信號NOTS至所述場域中。因此,處於所述場域中的目標裝置110可以接收到所述非光學定位信號NOTS。在此實施例中,所述場域例如是長十公尺寬十公尺的空間,或是其他面積、其他幾何形狀的空間。本實施例並不限制所述場域的類型與範圍。依照設計需求,非光學定位裝置120例如是具有無線通訊模組的電子裝置,而非光學定位信號NOTS可以是Wi-Fi、藍芽(Bluetooth)、第三代行動通訊(3rd Generation,3G)、全球互通微波存取(Worldwide Interoperability for Microwave Access, WiMAX)等運用無線通訊方式傳輸的無線信號,或者其他並非基於光學技術的定位信號。舉例來說,非光學定位裝置120可以對所述場域提供習知的射頻信號或是其他非光學信號作為所述非光學定位信號NOTS。本實施例並不限制非光學定位裝置120與非光學信號NOTS的種類。A non-optical positioning device 120 is disposed in the field to provide a non-optical positioning signal NOTS to the field. Therefore, the target device 110 in the field domain can receive the non-optical positioning signal NOTS. In this embodiment, the field is, for example, a space 10 meters wide and 10 meters wide, or a space of other areas and other geometric shapes. This embodiment does not limit the type and scope of the field. According to design requirements, the non-optical positioning device 120 is, for example, an electronic device having a wireless communication module, and the non-optical positioning signal NOTS may be Wi-Fi, Bluetooth, 3rd Generation (3G), Wireless signals transmitted by wireless communication, such as Worldwide Interoperability for Microwave Access (WiMAX), or other positioning signals that are not based on optical technology. For example, the non-optical positioning device 120 can provide a conventional radio frequency signal or other non-optical signal to the field as the non-optical positioning signal NOTS. This embodiment does not limit the types of non-optical positioning device 120 and non-optical signal NOTS.

多個光學定位裝置130配置於所述場域中。這些光學定位裝置130的任何一個用以選擇性地提供光學定位信號OTS至所述場域中。光學定位裝置130可以對所述場域提供光學定位信號OTS。因此,處於所述場域中的目標裝置110可以接收到所述光學定位信號OTS。依照設計需求,光學定位信號OTS可以是雷射定位信號、紅外光學定位信號、可見光定位信號或是其他光學定位信號。舉例來說,光學定位裝置130可以對所述場域提供習知的光學定位信號或是其他光學信號作為所述光學定位信號OTS。本實施例並不限制光學定位裝置130與光學定位信號OTS的種類。A plurality of optical positioning devices 130 are disposed in the field. Any of these optical positioning devices 130 are used to selectively provide an optical positioning signal OTS to the field. Optical positioning device 130 can provide an optical positioning signal OTS to the field. Therefore, the target device 110 in the field domain can receive the optical positioning signal OTS. According to design requirements, the optical positioning signal OTS can be a laser positioning signal, an infrared optical positioning signal, a visible light positioning signal or other optical positioning signals. For example, the optical positioning device 130 can provide a conventional optical positioning signal or other optical signal to the field as the optical positioning signal OTS. This embodiment does not limit the types of the optical positioning device 130 and the optical positioning signal OTS.

主機140耦接至目標裝置110。主機140為具有運算、儲存與通訊功能的電子裝置,例如是個人電腦或伺服器。本實施例並不限制主機140的種類。在圖1所示實施例中,主機140與目標裝置110可以是兩個彼此獨立的電子裝置。依照設計需求,在其他實施例中,主機140與目標裝置110可以被整合在同一個電子裝置中。The host 140 is coupled to the target device 110. The host computer 140 is an electronic device having computing, storage, and communication functions, such as a personal computer or a server. This embodiment does not limit the kind of the host 140. In the embodiment shown in FIG. 1, the host 140 and the target device 110 may be two independent electronic devices. According to design requirements, in other embodiments, the host 140 and the target device 110 can be integrated in the same electronic device.

在圖1所示實施例中,主機140可以通過無線通訊方式耦接至目標裝置110,以進行雙向信號傳輸。依照設計需求,主機140在其他實施例中可以通過有線通訊方式或其他通訊方式耦接至目標裝置110。在本實施例中,主機140可以通過無線通訊方式耦接至所述光學定位裝置130,以控制所述光學定位裝置130的任何一個是否提供光學定位信號OTS至場域中。依照設計需求,主機140在其他實施例中也可以透過有線或其他通訊方式耦接至所述光學定位裝置130。依照主機140的控制,所述光學定位裝置130的任何一個可以動態地提供(或不提供)光學定位信號OTS至所述場域中。In the embodiment shown in FIG. 1, the host 140 can be coupled to the target device 110 by wireless communication for bidirectional signal transmission. In other embodiments, the host 140 can be coupled to the target device 110 by wired communication or other communication methods. In this embodiment, the host 140 can be coupled to the optical positioning device 130 by wireless communication to control whether any one of the optical positioning devices 130 provides an optical positioning signal OTS to the field. In other embodiments, the host 140 can also be coupled to the optical positioning device 130 by wire or other communication means. Depending on the control of the host 140, any of the optical positioning devices 130 can dynamically provide (or not provide) an optical positioning signal OTS to the field.

在圖1所示實施例中,處於所述場域中的目標裝置110可以接收到所述非光學信號NOTS,然後將非光學信號NOTS所對應的相關資訊傳送給主機140。因此,主機140可以依據非光學信號NOTS來計算出目標裝置110的粗略位置。舉例來說,非光學信號NOTS可以包括射頻信號,主機140可以解碼所述目標裝置所接收的所述射頻信號。依據接收信號強度指示(Receiver Signal Strength Indicator,簡稱RSSI)信號、信標(beacon)信號或是其他射頻信號,主機140可以通過所述射頻信號的信號強度計算目標裝置110於所述場域的粗略位置。例如,主機140可以依據非光學信號NOTS執行習知定位演算法或是其他定位演算法來計算出目標裝置110的粗略位置。目標裝置110可能隨時間移動,主機140可以依據目標裝置110的粗略位置而動態地開啟在目標裝置110附近的光學定位裝置130而關閉其餘光學定位裝置130,以節省光學定位裝置130的功率消耗。In the embodiment shown in FIG. 1, the target device 110 in the field domain can receive the non-optical signal NOTS, and then transmit the related information corresponding to the non-optical signal NOTS to the host 140. Therefore, the host 140 can calculate the coarse position of the target device 110 based on the non-optical signal NOTS. For example, the non-optical signal NOTS can include a radio frequency signal, and the host 140 can decode the radio frequency signal received by the target device. The host 140 can calculate the roughness of the target device 110 in the field by the signal strength of the radio frequency signal according to a Receiver Signal Strength Indicator (RSSI) signal, a beacon signal, or other radio frequency signals. position. For example, host 140 may perform a conventional positioning algorithm or other positioning algorithm based on non-optical signal NOTS to calculate a coarse location of target device 110. The target device 110 may move over time, and the host 140 may dynamically turn on the optical positioning device 130 near the target device 110 according to the coarse position of the target device 110 to turn off the remaining optical positioning device 130 to save power consumption of the optical positioning device 130.

圖2是依據本發明一實施例繪示的一種定位方法的流程示意圖。請參照圖1與圖2。於步驟S210中,至少一個非光學定位裝置120被配置於場域中,以提供非光學定位信號NOTS。於步驟S220中,多個光學定位裝置130被配置於所述場域中。這些光學定位裝置130的任何一個用以選擇性地提供光學定位信號OTS至所述場域中。FIG. 2 is a schematic flow chart of a positioning method according to an embodiment of the invention. Please refer to FIG. 1 and FIG. 2 . In step S210, at least one non-optical positioning device 120 is configured in the field to provide a non-optical positioning signal NOTS. In step S220, a plurality of optical positioning devices 130 are disposed in the field. Any of these optical positioning devices 130 are used to selectively provide an optical positioning signal OTS to the field.

接著,於步驟S230中,主機140可以依據非光學定位信號NOTS判斷目標裝置110於所述場域的粗略位置。在圖1所示實施例中,處於所述場域中的目標裝置110可以接收由非光學定位裝置120所發出的非光學定位信號NOTS,然後將非光學信號NOTS所對應的相關資訊傳送給主機140。舉例來說,非光學定位信號NOTS例如是Wi-Fi信號,而目標裝置110將所獲得的Wi-Fi信號的信號強弱資訊傳送到主機140。依據來自於在不同位置的兩個非光學定位裝置120的Wi-Fi信號的信號強弱資訊,主機140可以透過習知三角定位法(或其他演算法)計算出目標裝置110在所述場域中的粗略位置。一般而言,Wi-Fi的定位範圍大於光學定位範圍,但是Wi-Fi的定位精度小於光學定位精度。Next, in step S230, the host 140 can determine the coarse position of the target device 110 in the field according to the non-optical positioning signal NOTS. In the embodiment shown in FIG. 1, the target device 110 in the field domain can receive the non-optical positioning signal NOTS issued by the non-optical positioning device 120, and then transmit the related information corresponding to the non-optical signal NOTS to the host. 140. For example, the non-optical positioning signal NOTS is, for example, a Wi-Fi signal, and the target device 110 transmits the signal strength information of the obtained Wi-Fi signal to the host 140. Based on the signal strength information of the Wi-Fi signals from the two non-optical positioning devices 120 at different locations, the host 140 can calculate the target device 110 in the field by a conventional triangulation method (or other algorithm). The rough location. In general, the positioning range of Wi-Fi is larger than the optical positioning range, but the positioning accuracy of Wi-Fi is smaller than the optical positioning accuracy.

於步驟S240中,主機140可以從多個光學定位裝置130中選擇在所述粗略位置的預設範圍內的一或多個經擇光學定位裝置。所述預設範圍可以依照設計需求來決定,譬如所述預設範圍例如是光學定位裝置130的定位範圍。舉例來說,光學定位裝置130的定位範圍例如是7公尺,因此所述預設範圍可以被設定為「以步驟S230的所述粗略位置為圓心,半徑7公尺的圓」。主機140可以將被所述預設範圍所覆蓋的光學定位裝置130選擇為「經擇光學定位裝置」。由於目標裝置110可能進行移動,不同時間所計算出來的粗略位置以及其預設範圍所覆蓋到的光學定位裝置130也會隨之變動。因此,主機140所選擇出的「經擇光學定位裝置」也可以隨時間而動態地變動。In step S240, the host 140 may select one or more selected optical positioning devices within a preset range of the coarse position from the plurality of optical positioning devices 130. The preset range may be determined according to design requirements, such as the positioning range of the optical positioning device 130. For example, the positioning range of the optical positioning device 130 is, for example, 7 meters, so the predetermined range can be set to "a circle having a center of the step S230 as a center and a radius of 7 meters". The host 140 can select the optical positioning device 130 covered by the preset range as a "selected optical positioning device." Since the target device 110 may move, the coarse position calculated at different times and the optical positioning device 130 covered by the preset range may also change. Therefore, the "selected optical positioning device" selected by the host 140 can also dynamically change with time.

接著,於步驟S250中,主機140可以動態地致能(enable)所述經擇光學定位裝置,因此所述經擇光學定位裝置可以提供光學定位信號OTS至所述場域中。因此,主機140可以隨著目標裝置110的粗略位置變化而動態開啟對應的一或多個經擇光學定位裝置,使得目標裝置110周圍的光學定位裝置130都是致能的。因為目標裝置110周圍的光學定位裝置130可以提供光學定位信號OTS給目標裝置110,所以目標裝置110與主機140可以使用光學定位信號OTS來進行高精度的定位。Next, in step S250, the host 140 can dynamically enable the selected optical positioning device, such that the selected optical positioning device can provide an optical positioning signal OTS to the field. Accordingly, the host 140 can dynamically turn on the corresponding one or more selected optical positioning devices as the coarse position of the target device 110 changes, such that the optical positioning devices 130 around the target device 110 are all enabled. Since the optical positioning device 130 around the target device 110 can provide the optical positioning signal OTS to the target device 110, the target device 110 and the host 140 can use the optical positioning signal OTS for high-precision positioning.

此外,於步驟S250中,主機140可以動態地禁能(disable)多個光學定位裝置130中在預設範圍外的其餘光學定位裝置,亦即使所述「其餘光學定位裝置」停止提供/產生光學定位信號OTS。隨著目標裝置110的粗略位置的變化,目標裝置110可能會遠離了「某一個光學定位裝置」的光學定位範圍,此時主機140可以動態地禁能(例如關閉)所述「某一個光學定位裝置」,以節省功率消耗。因此主機140可以動態地關閉一些距離目標裝置110較遠的光學定位裝置130。必須注意的是,上述致能和禁能可以是同步或非同步執行,本實施例並未限制致能和禁能的先後順序。In addition, in step S250, the host 140 can dynamically disable the remaining optical positioning devices of the plurality of optical positioning devices 130 outside the preset range, even if the "remaining optical positioning devices" stop providing/generating optical Positioning signal OTS. As the coarse position of the target device 110 changes, the target device 110 may be away from the optical positioning range of the "one optical positioning device". At this time, the host 140 may dynamically disable (for example, turn off) the "one optical positioning." Device" to save power consumption. Thus the host 140 can dynamically turn off some of the optical positioning devices 130 that are further from the target device 110. It should be noted that the above enabling and disabling may be performed synchronously or asynchronously. This embodiment does not limit the order of enabling and disabling.

圖3是依據本發明一實施例繪示的一種定位系統的操作情境圖。圖3所示定位系統包括一個目標裝置310、九個非光學定位裝置以及九個光學定位裝置。圖3所示基地台(Base Station)311~319的任何一個配置了一個非光學定位裝置與一個光學定位裝置。圖3所示目標裝置310可以參照圖1與圖2所示實施例中關於目標裝置110的相關說明。請參照圖3,在此實施例中,場域300例如是一個20公尺長20公尺寬的房間,場域300配置有多個基地台311~319。房間的尺寸、基地台數量以及基地台的分佈位置僅為說明方便,本實施例並不做限制。在此實施例中,基地台311~319分別為具有圖1所示非光學定位裝置120與光學定位裝置130之電子裝置。基地台311~319的非光學定位裝置120可以提供非光學定位信號NOTS(例如Wi-Fi信號)至場域300中,如圖3所示。FIG. 3 is an operational scenario diagram of a positioning system according to an embodiment of the invention. The positioning system shown in Figure 3 includes a target device 310, nine non-optical positioning devices, and nine optical positioning devices. Any one of the base stations 311 to 319 shown in Fig. 3 is provided with a non-optical positioning device and an optical positioning device. The target device 310 shown in FIG. 3 can refer to the related description of the target device 110 in the embodiment shown in FIGS. 1 and 2. Referring to FIG. 3, in this embodiment, the field 300 is, for example, a room 20 meters long and 20 meters wide, and the field 300 is provided with a plurality of base stations 311 to 319. The size of the room, the number of base stations, and the distribution position of the base station are only for convenience of description, and the embodiment is not limited. In this embodiment, the base stations 311 to 319 are respectively electronic devices having the non-optical positioning device 120 and the optical positioning device 130 shown in FIG. The non-optical positioning device 120 of the base stations 311-319 can provide a non-optical positioning signal NOTS (e.g., a Wi-Fi signal) into the field 300, as shown in FIG.

每一個基地台的Wi-Fi信號皆具有特定編碼(ID)。當目標裝置310(例如是頭戴顯示器)位於場域300內時,目標裝置310將接收到基地台311~319所提供的Wi-Fi信號,並測量每一個Wi-Fi信號的信號強度。目標裝置310可以將基地台311~319的Wi-Fi信號強度傳送到主機140(詳參圖1與圖2的相關說明)。主機140運用適當的解碼方式進行解碼以識別各Wi-Fi信號所對應的基地台,本實施例不限制解碼的方式。接著,主機140將基地台311~319的Wi-Fi信號的信號強度通過定位計算方法(例如是三角定位法)計算出目標裝置310在場域300的粗略位置。舉例來說,主機140可以從多個Wi-Fi信號中篩選出信號強度大於一預設閾值的至少三個有效Wi-Fi信號,例如是基地台311、312、314與315所發射的Wi-Fi信號。依據經篩選出的Wi-Fi信號,主機140可以透過三角定位法來計算目標裝置310在場域300的粗略位置,如圖3所示。依據目標裝置310的粗略位置,主機140可以決定預設範圍320。Each base station's Wi-Fi signal has a specific code (ID). When the target device 310 (e.g., a head mounted display) is located within the field 300, the target device 310 will receive the Wi-Fi signals provided by the base stations 311-319 and measure the signal strength of each Wi-Fi signal. The target device 310 can transmit the Wi-Fi signal strength of the base stations 311 to 319 to the host 140 (refer to the related description of FIG. 1 and FIG. 2 for details). The host 140 decodes to identify the base station corresponding to each Wi-Fi signal by using an appropriate decoding method. This embodiment does not limit the manner of decoding. Next, the host 140 calculates the signal strength of the Wi-Fi signal of the base stations 311 to 319 by the positioning calculation method (for example, the triangulation method) to calculate the rough position of the target device 310 in the field 300. For example, the host 140 may filter, from the plurality of Wi-Fi signals, at least three valid Wi-Fi signals whose signal strength is greater than a predetermined threshold, such as Wi- transmitted by the base stations 311, 312, 314, and 315. Fi signal. Based on the filtered Wi-Fi signals, the host 140 can calculate the coarse position of the target device 310 in the field 300 by triangulation, as shown in FIG. Based on the coarse location of the target device 310, the host 140 can determine the preset range 320.

接著,依據預設範圍320,主機140可以將距離目標裝置310較近的基地台311、312、314與315的光學定位裝置選擇為「經擇光學定位裝置」。主機140可以致能所述經擇光學定位裝置,以提供光學定位信號OTS給目標裝置310。除此之外,主機140可以動態地禁能這些光學定位裝置311~319中在所述預設範圍320外的其餘光學定位裝置(例如圖3所示基地台313、316~319的光學定位裝置)。不同基地台的光學定位信號OTS具有不同的特定編碼(ID)。目標裝置310可以感測這些基地台(例如基地台311、312、314與315)的光學定位信號OTS,並將光學定位信號OTS的相關資訊回傳給主機140(詳參圖1至圖2的相關說明)。因此,主機140可以依據光學定位信號OTS而判斷目標裝置310於場域300的精確位置。Then, according to the preset range 320, the host 140 can select the optical positioning device of the base stations 311, 312, 314, and 315 that are closer to the target device 310 as the "selected optical positioning device." The host 140 can enable the selected optical positioning device to provide an optical positioning signal OTS to the target device 310. In addition, the host 140 can dynamically disable the remaining optical positioning devices outside the preset range 320 of the optical positioning devices 311-319 (for example, the optical positioning devices of the base stations 313, 316-319 shown in FIG. 3). ). The optical positioning signals OTS of different base stations have different specific codes (IDs). The target device 310 can sense the optical positioning signals OTS of the base stations (eg, the base stations 311, 312, 314, and 315), and transmit back information about the optical positioning signals OTS to the host 140 (refer to FIG. 1 to FIG. 2 for details). Related instructions). Therefore, the host 140 can determine the precise location of the target device 310 in the field 300 based on the optical positioning signal OTS.

值得一提的是,在此實施例中,所述經擇光學定位裝置可以同時發射光學定位信號OTS至場域300中。舉例來說,上述經擇光學定位裝置(例如基地台311、312、314、315的光學定位裝置)可以同時發出光學定位信號(例如紅外線信號)給目標裝置310,以提升定位精度。It is worth mentioning that in this embodiment, the selected optical positioning device can simultaneously transmit the optical positioning signal OTS into the field 300. For example, the selected optical positioning device (eg, the optical positioning device of the base station 311, 312, 314, 315) can simultaneously emit an optical positioning signal (eg, an infrared signal) to the target device 310 to improve positioning accuracy.

圖4是依據本發明一實施例繪示的一種判斷目標裝置的粗略位置的流程圖。圖2所示步驟S230可以參照圖4的相關說明。請參照圖1與圖4。於步驟S410中,主機140可以解碼目標裝置110所接收的射頻信號(非光學定位信號NOTS)。射頻信號例如是具有特定編碼(ID)的Wi-Fi信號。主機140可以運用適當的解碼方式進行解碼以識別各Wi-Fi信號所對應的基地台。於步驟S420中,主機410可以通過射頻信號的信號強度,計算目標裝置110於場域中的粗略位置。FIG. 4 is a flow chart of determining a rough position of a target device according to an embodiment of the invention. Step S230 shown in FIG. 2 can refer to the related description of FIG. Please refer to FIG. 1 and FIG. 4. In step S410, the host 140 may decode the radio frequency signal (non-optical positioning signal NOTS) received by the target device 110. The radio frequency signal is, for example, a Wi-Fi signal having a specific code (ID). The host 140 can decode using an appropriate decoding method to identify the base station to which each Wi-Fi signal corresponds. In step S420, the host 410 can calculate the coarse position of the target device 110 in the field by the signal strength of the radio frequency signal.

主機140可以動態地致能在預設範圍(亦即在目標裝置110附近)內的光學定位裝置130,以及動態地禁能在所述預設範圍外的光學定位裝置130。被致能的光學定位裝置130(經擇光學定位裝置)可以提供光學定位信號OTS給目標裝置110。所述主機140可以依據目標裝置110所接收的光學定位信號OTS而判斷目標裝置110於所述場域的精確位置。The host 140 can dynamically enable the optical positioning device 130 within a predetermined range (i.e., near the target device 110) and dynamically disable the optical positioning device 130 outside of the predetermined range. The enabled optical positioning device 130 (selective optical positioning device) can provide an optical positioning signal OTS to the target device 110. The host 140 can determine the precise location of the target device 110 in the field according to the optical positioning signal OTS received by the target device 110.

圖5是依據本發明一實施例繪示的一種判斷目標裝置的精確位置的流程圖。於步驟S510中,主機140可以解碼目標裝置110所接收的光學定位信號OTS。主機140可以運用適當的解碼方式進行解碼,以識別各光學定位信號OTS所對應的基地台。本實施例不限制解碼的方式。於步驟S520中,主機110可以通過光學定位信號OTS的信號強度,計算目標裝置110於場域的精確位置。FIG. 5 is a flow chart of determining the precise position of a target device according to an embodiment of the invention. In step S510, the host 140 can decode the optical positioning signal OTS received by the target device 110. The host 140 can decode using an appropriate decoding method to identify the base station corresponding to each optical positioning signal OTS. This embodiment does not limit the manner of decoding. In step S520, the host 110 can calculate the precise position of the target device 110 in the field by the signal strength of the optical positioning signal OTS.

圖6A、圖6B與圖6C是依據本發明另一實施例繪示的一種定位系統的動態致能與禁能的操作情境示意圖。圖6A、圖6B與圖6C所示定位系統包括一個目標裝置610、八個非光學定位裝置以及八個光學定位裝置。圖6A、圖6B與圖6C所示基地台611~618的任何一個配置了一個非光學定位裝置與一個光學定位裝置。圖6A、圖6B與圖6C所示目標裝置610可以參照圖1與圖2所示實施例中關於目標裝置110的相關說明。請參照圖6A,在此實施例中,場域600例如是一個30公尺長10公尺寬的房間,場域600配置有多個基地台611~618。房間的尺寸、基地台數量以及基地台的分佈位置僅為說明方便,本實施例並不做限制。在此實施例中,基地台611~618分別為具有圖1所示非光學定位裝置120與光學定位裝置130之電子裝置。基地台611~618的非光學定位裝置120可以提供非光學定位信號NOTS至場域600中。依據主機140的控制,基地台611~618的光學定位裝置130可以選擇性地提供光學定位信號OTS至場域600中。光學定位信號OTS的定位範圍(約5-7公尺)較非光學定位信號NOTS的定位範圍(約20-30公尺)小。在此實施例中,光學定位信號OTS的定位範圍為一扇型範圍。舉例來說,基地台611所產生的光學定位信號OTS的定位範圍為圖6A所示扇型範圍621。6A, FIG. 6B and FIG. 6C are schematic diagrams showing the operation of dynamic activation and disabling of a positioning system according to another embodiment of the invention. The positioning system shown in Figures 6A, 6B and 6C includes a target device 610, eight non-optical positioning devices, and eight optical positioning devices. Any of the base stations 611 to 618 shown in Figs. 6A, 6B and 6C is provided with a non-optical positioning device and an optical positioning device. The target device 610 shown in FIGS. 6A, 6B, and 6C can be referred to the related description of the target device 110 in the embodiment shown in FIGS. 1 and 2. Referring to FIG. 6A, in this embodiment, the field 600 is, for example, a room 30 meters long and 10 meters wide, and the field 600 is provided with a plurality of base stations 611-618. The size of the room, the number of base stations, and the distribution position of the base station are only for convenience of description, and the embodiment is not limited. In this embodiment, the base stations 611-618 are respectively electronic devices having the non-optical positioning device 120 and the optical positioning device 130 shown in FIG. The non-optical positioning device 120 of the base stations 611-618 can provide a non-optical positioning signal NOTS into the field 600. The optical positioning device 130 of the base stations 611-618 can selectively provide the optical positioning signal OTS into the field 600 in accordance with the control of the host 140. The positioning range of the optical positioning signal OTS (about 5-7 meters) is smaller than the positioning range of the non-optical positioning signal NOTS (about 20-30 meters). In this embodiment, the positioning range of the optical positioning signal OTS is a fan-shaped range. For example, the positioning range of the optical positioning signal OTS generated by the base station 611 is the fan-shaped range 621 shown in FIG. 6A.

在圖6A所示情境中,目標裝置610向圖6A的右方移動。主機140透過基地台611~618所發射的非光學定位信號NOTS而獲知目標裝置610位於場域600的粗略位置。因此,主機140可以透過無線通訊方式開啟/致能在目標裝置610的該粗略位置的預設範圍內的光學定位裝置130(例如圖6A所示基地台611~614的光學定位裝置130),以及關閉/禁能在所述預設範圍外的光學定位裝置130(例如圖6A所示基地台615~618的光學定位裝置130)。由於目標裝置610位於基地台611、612、613與614的光學定位範圍621、622、623與624內,因此目標裝置610可以接收到基地台611、612、613與614各自發射的光學定位信號OTS。In the scenario shown in FIG. 6A, the target device 610 moves to the right of FIG. 6A. The host 140 learns that the target device 610 is located at a coarse position of the field 600 through the non-optical positioning signal NOTS transmitted by the base stations 611-618. Therefore, the host 140 can enable/enable the optical positioning device 130 within the preset range of the coarse position of the target device 610 by wireless communication (for example, the optical positioning device 130 of the base stations 611-614 shown in FIG. 6A), and The optical positioning device 130 (e.g., the optical positioning device 130 of the base stations 615-618 shown in Fig. 6A) is closed/disabled. Since the target device 610 is located in the optical positioning ranges 621, 622, 623 and 624 of the base stations 611, 612, 613 and 614, the target device 610 can receive the optical positioning signals OTS respectively transmitted by the base stations 611, 612, 613 and 614. .

在圖6B所示情境中,目標裝置610繼續向圖6B的右方移動。主機140透過基地台611~618所發射的非光學定位信號NOTS而獲知目標裝置610位於場域600的目前粗略位置。因此,主機140可以透過無線通訊方式開啟/致能在目標裝置610的該粗略位置的預設範圍內的光學定位裝置130(例如圖6B所示基地台613~614的光學定位裝置130),以及關閉/禁能在所述預設範圍外的光學定位裝置130(例如圖6B所示基地台611~612的光學定位裝置130與基地台615~618的光學定位裝置130)。由於目標裝置610位於基地台613與614的光學定位範圍623與624內,因此目標裝置610可以接收到基地台613與614各自發射的光學定位信號OTS。In the scenario shown in Figure 6B, target device 610 continues to move to the right of Figure 6B. The host 140 learns that the target device 610 is located at the current coarse position of the field 600 through the non-optical positioning signal NOTS transmitted by the base stations 611-618. Therefore, the host 140 can enable/disable the optical positioning device 130 (eg, the optical positioning device 130 of the base stations 613-614 shown in FIG. 6B) within the preset range of the coarse position of the target device 610 by wireless communication, and The optical positioning device 130 outside the preset range is closed/disabled (for example, the optical positioning device 130 of the base stations 611 to 612 and the optical positioning device 130 of the base stations 615 to 618 shown in FIG. 6B). Since the target device 610 is located within the optical positioning ranges 623 and 624 of the base stations 613 and 614, the target device 610 can receive the optical positioning signals OTS that are each transmitted by the base stations 613 and 614.

在圖6C所示情境中,主機140透過基地台611~618所發射的非光學定位信號NOTS而獲知目標裝置610位於場域600的目前粗略位置。因此,主機140可以透過無線通訊方式開啟/致能在目標裝置610的該粗略位置的預設範圍內的光學定位裝置130(例如圖6C所示基地台613~616的光學定位裝置130),以及關閉/禁能在所述預設範圍外的光學定位裝置130(例如圖6C所示基地台611、612、617與618的光學定位裝置130)。由於目標裝置610位於基地台613、614、615與616的光學定位範圍623、624、625與626內,因此目標裝置610可以接收到基地台613、614、615與616各自發射的光學定位信號OTS。In the scenario shown in FIG. 6C, the host 140 learns that the target device 610 is located at the current coarse position of the field 600 through the non-optical positioning signal NOTS transmitted by the base stations 611-618. Therefore, the host 140 can enable/enable the optical positioning device 130 within the preset range of the coarse position of the target device 610 by wireless communication (for example, the optical positioning device 130 of the base stations 613-616 shown in FIG. 6C), and The optical positioning device 130 (e.g., the optical positioning device 130 of the base stations 611, 612, 617, and 618 shown in Fig. 6C) is closed/disabled. Since the target device 610 is located within the optical positioning ranges 623, 624, 625, and 626 of the base stations 613, 614, 615, and 616, the target device 610 can receive the optical positioning signals OTS transmitted by the base stations 613, 614, 615, and 616, respectively. .

圖7是依據本發明一實施例繪示的一種定位系統於障礙地形的操作情境示意圖。圖7所示定位系統包括一個目標裝置710、四個非光學定位裝置以及四個光學定位裝置。圖7所示基地台720、730、740與750的任何一個配置了一個非光學定位裝置與一個光學定位裝置。圖7所示目標裝置710可以參照圖1與圖2所示實施例中關於目標裝置110的相關說明。請參照圖7,場域760與場域770分別是長寬皆為五公尺的房間。在場域760和場域770之間包括通道與牆壁,且在場域內配置有多個基地台。基地台720、730、740與750的任何一個可以包括圖1所示非光學定位裝置120與光學定位裝置130。場域760具有基地台720與基地台730,場域770具有基地台740與基地台750。基地台720、730、740與750的非光學定位裝置120可以提供非光學定位信號NOTS至場域760與場域770中。主機140透過基地台720、730、740與750所發射的非光學定位信號NOTS而獲知目標裝置710位於場域760與場域770的粗略位置。依據主機140的控制,基地台720、730、740與750中的光學定位裝置130分別選擇性地提供光學定位信號721、731、741與751,以對目標裝置710進行光學定位。光學定位信號721、731、741與751的定位範圍例如是5-7公尺,為扇型分布,並且會受到牆壁等障礙物所遮蔽和阻擋。FIG. 7 is a schematic diagram of an operation scenario of a positioning system on an obstacle terrain according to an embodiment of the invention. The positioning system shown in Figure 7 includes a target device 710, four non-optical positioning devices, and four optical positioning devices. Any of the base stations 720, 730, 740 and 750 shown in Fig. 7 is provided with a non-optical positioning device and an optical positioning device. The target device 710 shown in FIG. 7 can refer to the related description of the target device 110 in the embodiment shown in FIGS. 1 and 2. Referring to FIG. 7, the field 760 and the field 770 are respectively a room having a length and a width of five meters. A channel and a wall are included between the field 760 and the field 770, and a plurality of base stations are disposed in the field. Any of the base stations 720, 730, 740, and 750 can include the non-optical positioning device 120 and the optical positioning device 130 shown in FIG. The field 760 has a base station 720 and a base station 730, and the field 770 has a base station 740 and a base station 750. The non-optical positioning device 120 of the base stations 720, 730, 740, and 750 can provide a non-optical positioning signal NOTS into the field 760 and the field 770. The host 140 learns that the target device 710 is located at a coarse location of the field 760 and the field 770 through the non-optical positioning signals NOTS transmitted by the base stations 720, 730, 740, and 750. In accordance with control by host 140, optical positioning devices 130 in base stations 720, 730, 740, and 750, respectively, selectively provide optical positioning signals 721, 731, 741, and 751 for optical positioning of target device 710. The positioning ranges of the optical positioning signals 721, 731, 741, and 751 are, for example, 5-7 meters, are fan-shaped, and are blocked and blocked by obstacles such as walls.

在圖7所示情境中,目標裝置710從場域760向圖7的右方移動至場域770。當目標裝置710位於場域760中時,主機140透過基地台720、730、740與750所發射的非光學定位信號NOTS而獲知目標裝置710位於場域760的粗略位置。主機140可以透過無線通訊方式開啟/致能在目標裝置710的粗略位置的預設範圍內的光學定位裝置130(例如圖7所示基地台720、730中的光學定位裝置130),以及關閉/禁能在所述預設範圍外的光學定位裝置130(例如圖7所示基地台740、750的光學定位裝置130)。因此,基地台720、730中的光學定位裝置130分別提供光學定位信號721、731,以便於目標裝置710進行光學定位。In the scenario shown in FIG. 7, target device 710 moves from field 760 to the right of FIG. 7 to field 770. When the target device 710 is located in the field 760, the host 140 learns that the target device 710 is located at a coarse location of the field 760 through the non-optical positioning signals NOTS transmitted by the base stations 720, 730, 740, and 750. The host 140 can enable/disable the optical positioning device 130 (eg, the optical positioning device 130 in the base stations 720, 730 shown in FIG. 7) within a preset range of the coarse position of the target device 710 by wireless communication, and turn off/ Optical positioning device 130 (e.g., optical positioning device 130 of base station 740, 750 shown in Figure 7) is disabled outside of the predetermined range. Accordingly, the optical positioning devices 130 in the base stations 720, 730 provide optical positioning signals 721, 731, respectively, to facilitate optical positioning of the target device 710.

接著,目標裝置710從場域760移動到場域770中。當目標裝置710位於場域770中時,主機140透過基地台720、730、740與750所發射的非光學定位信號NOTS而獲知目標裝置710位於場域770的粗略位置。主機140可以透過無線通訊方式開啟/致能在目標裝置710的粗略位置的預設範圍內的光學定位裝置130(例如圖7所示基地台740、750中的光學定位裝置130),以及關閉/禁能在所述預設範圍外的光學定位裝置130(例如圖7所示基地台720、730的光學定位裝置130)。因此,基地台740、750中的光學定位裝置130分別提供光學定位信號341、351,以便於目標裝置710進行光學定位。Next, target device 710 moves from field 760 into field 770. When the target device 710 is located in the field 770, the host 140 learns that the target device 710 is located at a coarse location of the field 770 through the non-optical positioning signals NOTS transmitted by the base stations 720, 730, 740, and 750. The host 140 can enable/disable the optical positioning device 130 (eg, the optical positioning device 130 in the base stations 740, 750 shown in FIG. 7) within a predetermined range of the coarse position of the target device 710 by wireless communication, and turn off / Optical positioning devices 130 (e.g., optical positioning devices 130 of base stations 720, 730 shown in Figure 7) are disabled outside of the predetermined range. Accordingly, the optical positioning devices 130 in the base stations 740, 750 provide optical positioning signals 341, 351, respectively, to facilitate optical positioning of the target device 710.

由於光學定位信號721、731、741與751會受到牆壁的阻擋,因此目標裝置710在通過通道時會有一段時間不在光學定位信號731和光學定位信號741的定位範圍內(亦即無法進行光學定位),導致目標裝置710不能被連續追蹤。因此,基地台720、730、740與/或750中的非光學定位裝置120可以提供非光學定位信號NOTS。非光學定位信號NOTS例如是Wi-Fi信號,其定位範圍例如是20-30公尺。由於Wi-Fi信號的有效範圍較大,並且Wi-Fi信號具折射、反射、繞射與漫射特性,較不受障礙物影響。在目標裝置710通過場域760與場域770之間的通道而不在光學定位信號的範圍內時,主機(例如圖1所示主機140)與目標裝置710可以利用Wi-Fi信號不間斷地追蹤目標裝置710的位置。Since the optical positioning signals 721, 731, 741 and 751 are blocked by the wall, the target device 710 may not be in the positioning range of the optical positioning signal 731 and the optical positioning signal 741 for a period of time when passing through the channel (ie, optical positioning cannot be performed). ), causing the target device 710 not to be continuously tracked. Thus, the non-optical positioning device 120 in the base stations 720, 730, 740, and/or 750 can provide a non-optical positioning signal NOTS. The non-optical positioning signal NOTS is, for example, a Wi-Fi signal, and its positioning range is, for example, 20 to 30 meters. Due to the large effective range of Wi-Fi signals, and Wi-Fi signals with refraction, reflection, diffraction and diffusion characteristics, they are less affected by obstacles. When the target device 710 passes the channel between the field 760 and the field 770 and is not within the range of the optical positioning signal, the host (eg, the host 140 shown in FIG. 1) and the target device 710 can continuously track using the Wi-Fi signal. The location of the target device 710.

圖8是依照本發明的另一實施例繪示的一種定位系統800的裝置方塊示意圖。請參照圖8,定位系統800可以包括一個目標裝置810、至少一個非光學定位裝置820、多個光學定位裝置830以及一個主機840。圖8所示目標裝置810、光學定位裝置830以及主機840可以參照於圖1與圖2所示實施例中關於目標裝置110、光學定位裝置130以及主機140的相關說明來類推,故不再贅述。在圖8所示實施例中,非光學定位裝置820可以包括壓力感測地墊(未繪示)。壓力感測地墊通過無線通訊方式耦接至主機840。壓力感測地墊(非光學定位裝置820)配置於場域中,以便感測目標裝置810於場域的粗略位置,進而產生非光學定位信號NOTS給主機840。主機840依照非光學定位信號NOTS來判斷目標裝置810於所述場域的粗略位置。FIG. 8 is a block diagram of a positioning system 800 according to another embodiment of the invention. Referring to FIG. 8, the positioning system 800 can include a target device 810, at least one non-optical positioning device 820, a plurality of optical positioning devices 830, and a host 840. The target device 810, the optical positioning device 830, and the host 840 shown in FIG. 8 can be analogized with reference to the related descriptions of the target device 110, the optical positioning device 130, and the host 140 in the embodiment shown in FIG. 1 and FIG. 2, and therefore will not be described again. . In the embodiment shown in FIG. 8, the non-optical positioning device 820 can include a pressure sensing floor mat (not shown). The pressure sensing floor mat is coupled to the host 840 by wireless communication. A pressure sensing floor mat (non-optical positioning device 820) is disposed in the field to sense the coarse position of the target device 810 in the field, thereby generating a non-optical positioning signal NOTS to the host 840. The host 840 determines the coarse position of the target device 810 in the field in accordance with the non-optical positioning signal NOTS.

具體來說,當目標裝置810及/或使用者於場域中移動時,目標裝置810及/或使用者會對壓力感測地墊施加壓力。壓力感測地墊(非光學定位裝置820)可將感測到的有效壓力轉換為非光學定位信號NOTS(例如是電訊號),並通過無線通訊方式將非光學定位信號NOTS提供給主機840。主機840依照非光學定位信號NOTS來判斷目標裝置810於所述場域的粗略位置(相當於圖2所示步驟S230)。後續關於主機840透過光學定位裝置820所發射的光學定位信號OTS以判斷目標裝置810於場域的精確位置,請詳參圖2所示步驟S240與S250以及圖5所示步驟S510與S520的相關說明來類推,故不再贅述。Specifically, when the target device 810 and/or the user moves in the field, the target device 810 and/or the user applies pressure to the pressure sensing floor mat. The pressure sensing floor mat (non-optical positioning device 820) can convert the sensed effective pressure to a non-optical positioning signal NOTS (eg, an electrical signal) and provide the non-optical positioning signal NOTS to the host 840 by wireless communication. The host 840 determines the coarse position of the target device 810 in the field according to the non-optical positioning signal NOTS (corresponding to step S230 shown in FIG. 2). Subsequently, regarding the optical positioning signal OTS transmitted by the host 840 through the optical positioning device 820 to determine the precise position of the target device 810 in the field, please refer to steps S240 and S250 shown in FIG. 2 and steps S510 and S520 shown in FIG. The description is analogous, so it will not be described again.

圖9是依據本發明另一實施例繪示的一種判斷目標裝置的粗略位置的流程圖。圖2所示步驟S230可以參照圖9的相關說明。請參照圖1與圖9。於步驟S910中,壓力感測地墊(非光學定位裝置820)可以感測目標裝置810於場域的粗略位置,而產生非光學定位信號NOTS給主機840。接著,於步驟S920中,主機840可以依照壓力感測地墊(非光學定位裝置820)的非光學定位信號NOTS來判斷目標裝置810於所述場域的粗略位置。FIG. 9 is a flow chart of determining a rough position of a target device according to another embodiment of the present invention. Step S230 shown in FIG. 2 can refer to the related description of FIG. Please refer to FIG. 1 and FIG. 9. In step S910, the pressure sensing floor mat (non-optical positioning device 820) may sense the coarse position of the target device 810 in the field to generate a non-optical positioning signal NOTS to the host 840. Next, in step S920, the host 840 can determine the coarse position of the target device 810 in the field according to the non-optical positioning signal NOTS of the pressure sensing ground pad (non-optical positioning device 820).

綜上所述,上述諸實施例所述的定位系統與定位方法基於配置非光學定位裝置與光學定位裝置於場域中以獲得目標裝置的粗略位置,有效提升定位範圍。透過動態致能與禁能光學定位裝置,降低定位系統的功率消耗。In summary, the positioning system and the positioning method described in the above embodiments are based on configuring the non-optical positioning device and the optical positioning device in the field to obtain a rough position of the target device, thereby effectively improving the positioning range. Reduce the power consumption of the positioning system through dynamic enabling and disabling optical positioning devices.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧定位系統
110‧‧‧目標裝置
120‧‧‧光學定位裝置
130‧‧‧非光學定位裝置
140‧‧‧主機
300‧‧‧場域
310‧‧‧目標裝置
311~319‧‧‧基地台
320‧‧‧預設範圍
600‧‧‧場域
610‧‧‧目標裝置
611~618‧‧‧基地台
621~626‧‧‧光學定位範圍
710‧‧‧目標裝置
720、730、740、750‧‧‧基地台
721、731、741、751‧‧‧光學定位信號
760、770‧‧‧場域
800‧‧‧定位系統
810‧‧‧目標裝置
820‧‧‧非光學定位裝置
830‧‧‧光學定位裝置
840‧‧‧主機
NOTS‧‧‧非光學定位信號
OTS‧‧‧光學定位信號
S210~S250、S410~S420、S510~S520、S910~S920‧‧‧步驟
100‧‧‧ Positioning System
110‧‧‧ Target device
120‧‧‧Optical positioning device
130‧‧‧Non-optical positioning device
140‧‧‧Host
300‧‧‧ Fields
310‧‧‧ Target device
311~319‧‧‧ base station
320‧‧‧Preset range
600‧‧ ‧ field
610‧‧‧ Target device
611~618‧‧‧ base station
621~626‧‧‧Optical positioning range
710‧‧‧ Target device
720, 730, 740, 750‧‧‧ base stations
721, 731, 741, 751‧‧‧ optical positioning signals
760, 770‧‧ field
800‧‧‧ Positioning System
810‧‧‧ Target device
820‧‧‧Non-optical positioning device
830‧‧‧Optical positioning device
840‧‧‧Host
NOTS‧‧‧Non optical positioning signal
OTS‧‧‧ optical positioning signal
S210~S250, S410~S420, S510~S520, S910~S920‧‧‧ steps

圖1是依據本發明的一實施例繪示的一種定位系統的裝置方塊示意圖。 圖2是依據本發明一實施例繪示的一種定位方法的流程示意圖。 圖3是依據本發明一實施例繪示的一種定位系統的操作情境圖。 圖4是依據本發明一實施例繪示的一種判斷目標裝置的粗略位置的流程示意圖。 圖5是依據本發明一實施例繪示的一種判斷目標裝置的精確位置的流程示意圖。 圖6A、圖6B與圖6C是依據本發明另一實施例繪示的一種定位系統的動態致能與禁能的操作情境圖。 圖7是依據本發明一實施例繪示的一種定位系統於障礙地形的操作情境圖。 圖8是依照本發明的另一實施例繪示的一種定位系統的裝置方塊示意圖。 圖9是依據本發明另一實施例繪示的一種判斷目標裝置的粗略位置的流程示意圖。FIG. 1 is a block diagram of a device for positioning a system according to an embodiment of the invention. FIG. 2 is a schematic flow chart of a positioning method according to an embodiment of the invention. FIG. 3 is an operational scenario diagram of a positioning system according to an embodiment of the invention. FIG. 4 is a schematic flow chart of determining a rough position of a target device according to an embodiment of the invention. FIG. 5 is a schematic flow chart of determining a precise position of a target device according to an embodiment of the invention. 6A, FIG. 6B and FIG. 6C are operational diagrams of dynamic enabling and disabling of a positioning system according to another embodiment of the invention. FIG. 7 is an operational scenario diagram of a positioning system on an obstacle terrain according to an embodiment of the invention. FIG. 8 is a block diagram of an apparatus for positioning a system according to another embodiment of the invention. FIG. 9 is a flow chart showing the rough position of a target device according to another embodiment of the present invention.

Claims (16)

一種定位系統,包括: 一目標裝置; 至少一非光學定位裝置,配置於一場域中,用以提供一非光學定位信號; 多個光學定位裝置,配置於所述場域中,其中該些光學定位裝置的任何一個用以選擇性地提供一光學定位信號至該場域中;以及 一主機,耦接至所述目標裝置,其中所述主機依據所述非光學定位信號而判斷所述目標裝置於所述場域的一粗略位置,所述主機從該些光學定位裝置中選擇在所述粗略位置的一預設範圍內的一或多個經擇光學定位裝置,所述主機動態地致能所述一或多個經擇光學定位裝置,以及所述主機動態地禁能該些光學定位裝置中在所述預設範圍外的其餘光學定位裝置。A positioning system comprising: a target device; at least one non-optical positioning device disposed in a field to provide a non-optical positioning signal; a plurality of optical positioning devices disposed in the field, wherein the optical Any one of the positioning devices for selectively providing an optical positioning signal to the field; and a host coupled to the target device, wherein the host determines the target device according to the non-optical positioning signal At a rough location of the field, the host selects one or more selected optical positioning devices from the optical positioning devices within a predetermined range of the coarse position, the host dynamically enabling The one or more selected optical positioning devices, and the host dynamically disable the remaining optical positioning devices outside the predetermined range of the optical positioning devices. 如申請專利範圍第1項所述的定位系統,其中所述主機通過一無線通訊方式耦接至所述目標裝置以進行一雙向信號傳輸。The positioning system of claim 1, wherein the host is coupled to the target device by a wireless communication method to perform a bidirectional signal transmission. 如申請專利範圍第1項所述的定位系統,其中所述主機通過一無線通訊方式耦接至所述多個光學定位裝置,以控制所述多個光學定位裝置的任何一個是否提供該光學定位信號至該場域中。The positioning system of claim 1, wherein the host is coupled to the plurality of optical positioning devices by a wireless communication method to control whether any one of the plurality of optical positioning devices provides the optical positioning Signal to the field. 如申請專利範圍第1項所述的定位系統,其中所述一或多個經擇光學定位裝置同時發射所述光學定位信號至該場域中。The positioning system of claim 1, wherein the one or more selected optical positioning devices simultaneously transmit the optical positioning signal to the field. 如申請專利範圍第1項所述的定位系統,其中所述至少一非光學定位信號包括一射頻信號,所述主機解碼所述目標裝置所接收的所述射頻信號,通過所述射頻信號的信號強度計算所述目標裝置於所述場域的所述粗略位置。The positioning system of claim 1, wherein the at least one non-optical positioning signal comprises a radio frequency signal, and the host decodes the radio frequency signal received by the target device, and the signal of the radio frequency signal The intensity calculates the approximate location of the target device at the field. 如申請專利範圍第1項所述的定位系統,其中所述至少一非光學定位裝置包括一壓力感測地墊,所述壓力感測地墊感測所述目標裝置於所述場域的所述粗略位置而產生所述非光學定位信號給所述主機,所述主機依照所述非光學定位信號來判斷所述目標裝置於所述場域的所述粗略位置。The positioning system of claim 1, wherein the at least one non-optical positioning device comprises a pressure sensing floor mat, the pressure sensing floor mat sensing the rough of the target device in the field Positioning the non-optical positioning signal to the host, the host determining the coarse position of the target device in the field according to the non-optical positioning signal. 如申請專利範圍第1項所述的定位系統,其中所述主機依據所述目標裝置接收的所述一或多個經擇光學定位裝置所發出的所述光學定位信號而判斷所述目標裝置於所述場域的一精確位置。The positioning system of claim 1, wherein the host determines the target device according to the optical positioning signal sent by the one or more selected optical positioning devices received by the target device An exact location of the field. 如申請專利範圍第7項所述的定位系統,其中所述主機解碼所述目標裝置所接收的所述多個光學定位信號,並通過所述多個光學定位信號的信號強度計算所述目標裝置於所述場域的所述精確位置。The positioning system of claim 7, wherein the host decodes the plurality of optical positioning signals received by the target device, and calculates the target device by signal strengths of the plurality of optical positioning signals The precise location of the field. 一種定位方法,適用於一定位系統,所述定位系統包括一目標裝置、一主機、至少一非光學定位裝置以及多個光學定位裝置,所述定位方法包括: 配置至少一非光學定位裝置於一場域中,其中所述至少一非光學定位裝置用以提供一非光學定位信號; 配置多個光學定位裝置於所述場域中,其中該些光學定位裝置的任何一個用以選擇性地提供一光學定位信號至該場域中;以及 依據所述非光學定位信號判斷所述目標裝置於所述場域的一粗略位置; 從該些光學定位裝置中選擇在所述粗略位置的一預設範圍內的一或多個經擇光學定位裝置; 動態地致能所述一或多個經擇光學定位裝置;以及 動態地禁能該些光學定位裝置中在所述預設範圍外的其餘光學定位裝置。A positioning method is applicable to a positioning system, the positioning system includes a target device, a host, at least one non-optical positioning device, and a plurality of optical positioning devices, and the positioning method comprises: configuring at least one non-optical positioning device in one field a field, wherein the at least one non-optical positioning device is configured to provide a non-optical positioning signal; a plurality of optical positioning devices are disposed in the field, wherein any one of the optical positioning devices is configured to selectively provide a Optically locating the signal to the field; and determining, according to the non-optical positioning signal, a rough position of the target device in the field; selecting a predetermined range of the coarse position from the optical positioning devices One or more selected optical positioning devices; dynamically enabling the one or more selected optical positioning devices; and dynamically disabling remaining optical positioning of the optical positioning devices outside the predetermined range Device. 如申請專利範圍第9項所述的定位方法,其中所述主機通過一無線通訊方式耦接至所述目標裝置以進行一雙向信號傳輸。The positioning method of claim 9, wherein the host is coupled to the target device by a wireless communication method to perform a bidirectional signal transmission. 如申請專利範圍第9項所述的定位方法,其中所述主機通過一無線通訊方式耦接至所述多個光學定位裝置,以控制所述多個光學定位裝置是否提供該光學定位信號至該場域中。The positioning method of claim 9, wherein the host is coupled to the plurality of optical positioning devices by a wireless communication method to control whether the plurality of optical positioning devices provide the optical positioning signal to the In the field. 如申請專利範圍第9項所述的定位方法,其中所述一或多個經擇光學定位裝置同時發射所述光學定位信號至該場域中。The positioning method of claim 9, wherein the one or more selected optical positioning devices simultaneously transmit the optical positioning signal to the field. 如申請專利範圍第9項所述的定位方法,其中所述至少一非光學定位信號包括一射頻信號,而所述判斷所述目標裝置於所述場域的所述粗略位置的步驟包括: 解碼所述目標裝置所接收的所述射頻信號;以及 通過所述射頻信號的信號強度,計算所述目標裝置於所述場域的所述粗略位置。The positioning method of claim 9, wherein the at least one non-optical positioning signal comprises a radio frequency signal, and the step of determining the target device in the coarse position of the field comprises: decoding The radio frequency signal received by the target device; and calculating, by the signal strength of the radio frequency signal, the coarse position of the target device in the field. 如申請專利範圍第9項所述的定位方法,其中所述至少一非光學定位裝置包括一壓力感測地墊,而所述判斷所述目標裝置於所述場域的所述粗略位置的步驟包括: 由所述壓力感測地墊感測所述目標裝置於所述場域的所述粗略位置,而產生所述非光學定位信號給所述主機;以及 由所述主機依照所述非光學定位信號來判斷所述目標裝置於所述場域的所述粗略位置。The positioning method of claim 9, wherein the at least one non-optical positioning device comprises a pressure sensing floor mat, and the step of determining the target device in the coarse position of the field comprises : sensing, by the pressure sensing floor mat, the coarse position of the target device in the field to generate the non-optical positioning signal to the host; and following the non-optical positioning signal by the host Determining the rough location of the target device in the field. 如申請專利範圍第9項所述的定位方法,更包括: 依據所述目標裝置接收的所述一或多個經擇光學定位裝置所發出的所述光學定位信號判斷所述目標裝置於所述場域的一精確位置。The positioning method of claim 9, further comprising: determining, according to the optical positioning signal sent by the one or more selected optical positioning devices received by the target device, the target device A precise location of the field. 如申請專利範圍第15項所述的定位方法,其中所述判斷所述目標裝置於所述場域的所述精確位置的步驟包括: 解碼所述目標裝置所接收的所述多個光學定位信號;以及 通過所述多個光學定位信號的信號強度計算所述目標裝置於所述場域的所述精確位置。The positioning method of claim 15, wherein the determining the precise position of the target device in the field comprises: decoding the plurality of optical positioning signals received by the target device And calculating, by the signal strength of the plurality of optical positioning signals, the precise position of the target device in the field.
TW107107339A 2018-03-06 2018-03-06 A positioning system and a positioning method TWI636274B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107107339A TWI636274B (en) 2018-03-06 2018-03-06 A positioning system and a positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107107339A TWI636274B (en) 2018-03-06 2018-03-06 A positioning system and a positioning method

Publications (2)

Publication Number Publication Date
TWI636274B true TWI636274B (en) 2018-09-21
TW201939067A TW201939067A (en) 2019-10-01

Family

ID=64452833

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107107339A TWI636274B (en) 2018-03-06 2018-03-06 A positioning system and a positioning method

Country Status (1)

Country Link
TW (1) TWI636274B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112269159A (en) * 2020-11-26 2021-01-26 Oppo(重庆)智能科技有限公司 Indoor positioning method and device, server and readable storage medium
US11460912B2 (en) 2019-11-24 2022-10-04 XRSpace CO., LTD. System and method related to data fusing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383446A (en) * 2013-04-09 2013-11-06 北京半导体照明科技促进中心 Indoor positioning method, device and system based on visible light and light source
CN203615131U (en) * 2013-11-21 2014-05-28 重庆市绿庆科技有限公司 An automatic switching LED lamp
CN106403955A (en) * 2016-10-13 2017-02-15 北京国承万通信息科技有限公司 Positioning method and positioning system
CN107218933A (en) * 2016-03-22 2017-09-29 赫克斯冈技术中心 Construction site origin reference location

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383446A (en) * 2013-04-09 2013-11-06 北京半导体照明科技促进中心 Indoor positioning method, device and system based on visible light and light source
CN203615131U (en) * 2013-11-21 2014-05-28 重庆市绿庆科技有限公司 An automatic switching LED lamp
CN107218933A (en) * 2016-03-22 2017-09-29 赫克斯冈技术中心 Construction site origin reference location
CN106403955A (en) * 2016-10-13 2017-02-15 北京国承万通信息科技有限公司 Positioning method and positioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11460912B2 (en) 2019-11-24 2022-10-04 XRSpace CO., LTD. System and method related to data fusing
CN112269159A (en) * 2020-11-26 2021-01-26 Oppo(重庆)智能科技有限公司 Indoor positioning method and device, server and readable storage medium

Also Published As

Publication number Publication date
TW201939067A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
US10206059B1 (en) Positioning system and positioning method
US20230130857A1 (en) Systems and methods for rfid tag locating using constructive interference
Ma et al. Foglight: Visible light-enabled indoor localization system for low-power IoT devices
US11934086B2 (en) Method and device for adjusting projected image
KR20170091914A (en) Device and operating method thereof
CN104837200A (en) Azimuthal orientation-based positioning and monitoring device and indoor positioning system
KR20160071305A (en) Apparatus for providing indoor location information using beacons and method thereof
CN105472566A (en) Indoor positioning system and method
TWI636274B (en) A positioning system and a positioning method
CN106211079A (en) The indoor orientation method of RSSI based on iBeacons node range finding and system
KR20170019380A (en) Localization using converged platforms
US9226114B2 (en) Method and system of incorporating passive-based proximity data for position determination
Chen et al. Smartphone-based indoor positioning technologies
JP2018530764A (en) Occurrence of transitions between positioning modes
CN106412816A (en) Positioning method, apparatus and server
WO2017013304A1 (en) Positioning method
CN109298791A (en) Terminal control method, device, storage medium and mobile terminal
US10425131B2 (en) Beacon localization for a client device in wireless environment applications
JP2023174771A (en) Directed emitter/sensor for electromagnetic tracking in augmented reality systems
WO2017068230A1 (en) Positioning method
KR20160090199A (en) Apparatus and method for measuring indoor position using wireless signal
KR20170083124A (en) Position calculation using bluetooth low energy
KR102052519B1 (en) Indoor Positioning Method and Apparatus Based on Bluetooth Low Energy
CN105979581B (en) A kind of indoor orientation method based on difference power
CN112188616A (en) Indoor positioning method based on acoustic perception