TWI635490B - Dram and method for managing power thereof - Google Patents

Dram and method for managing power thereof Download PDF

Info

Publication number
TWI635490B
TWI635490B TW106135703A TW106135703A TWI635490B TW I635490 B TWI635490 B TW I635490B TW 106135703 A TW106135703 A TW 106135703A TW 106135703 A TW106135703 A TW 106135703A TW I635490 B TWI635490 B TW I635490B
Authority
TW
Taiwan
Prior art keywords
sub
arrays
operated
control element
power
Prior art date
Application number
TW106135703A
Other languages
Chinese (zh)
Other versions
TW201909178A (en
Inventor
李忠勳
劉獻文
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Application granted granted Critical
Publication of TWI635490B publication Critical patent/TWI635490B/en
Publication of TW201909178A publication Critical patent/TW201909178A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Dram (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本揭露提供一種動態隨機存取記憶體(DRAM)及其電源管理方法。該DRAM包括複數個記憶庫、一電源、一控制元件。該等記憶庫各包括複數個次陣列。該控制元件經配置以獲得一資訊。該資訊係關於該等次陣列中被操作的次陣列之數量。該控制元件基於該資產生一決定,該決定係輸出多少量的電能,其中該電源基於該控制元件之該決定輸出一結果量的電能。The disclosure provides a dynamic random access memory (DRAM) and a power management method thereof. The DRAM includes a plurality of memory banks, a power source, and a control element. The banks each include a plurality of sub-arrays. The control element is configured to obtain a message. The information is about the number of sub-arrays that were operated in the sub-arrays. The control element generates a decision based on the resource, the decision is how much electric energy is output, and the power source outputs a result amount of electric energy based on the decision of the control element.

Description

動態隨機存取記憶體及其電源管理方法Dynamic random access memory and power management method thereof

本揭露係關於一動態隨機存取記憶體及其方法,尤其係指一種動態隨機存取記憶體之電源管理方法。This disclosure relates to a dynamic random access memory and a method thereof, and more particularly to a power management method for a dynamic random access memory.

半導體記憶體裝置,例如動態隨機存取記憶體(DRAM),將資料儲存在記憶體單元中之一陣列內。記憶體單元通常以行和列排列。一行中的記憶體單元連接在一起成為一字元線,而一列中的記憶體單元連接在一起成為一位元線。DRAM也包含許多需要多於一個電壓之電路以用於操作。電荷幫浦安置於DRAM之中,從外部電壓供應可以產生和穩定DRAM之內部供應電壓。 上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。Semiconductor memory devices, such as dynamic random access memory (DRAM), store data in an array of memory cells. Memory cells are usually arranged in rows and columns. The memory cells in a row are connected to form a word line, and the memory cells in a column are connected to form a bit line. DRAM also contains many circuits that require more than one voltage for operation. The charge pump is placed in the DRAM, and the internal supply voltage of the DRAM can be generated and stabilized from an external voltage supply. The above description of the "prior art" is only for providing background technology. It does not recognize that the above description of the "prior technology" reveals the subject of this disclosure, does not constitute the prior technology of this disclosure, and any description of the "prior technology" above Neither shall be part of this case.

本揭露之一實施例提供一種動態隨機存取記憶體(DRAM)。該DRAM包括複數個記憶庫、一電源、一控制元件。該等記憶庫各包括複數個次陣列。該控制元件經配置以獲得一資訊。該資訊係關於該等次陣列中被操作的次陣列之數量。該控制元件基於該資產生一決定,該決定係輸出多少量的電能,其中該電源基於該控制元件之該決定輸出一結果量的電能。 在一些實施例中,當一數量比大於一比例範圍之一最高端點時,該控制元件決定輸出一第一電能,以及當該數量比小於該比例範圍之一最低端點時,決定輸出小於該第一電能之一第二電能。該數量比為該等次陣列中被操作的次陣列之數量比上該等次陣列之數量的比例。 在一些實施例中,當該數量比小於該比例範圍之該最高端點且大於該比例範圍之該最低端點時,該控制元件決定輸出大於該第二電能及小於該第一電能之一第三電能。 在一些實施例中,該電源包括複數個彼此獨立之電荷幫浦。當該控制元件決定輸出該第一電能時,該控制元件增加該等電荷幫浦中之被致能電荷幫浦之數量。 在一些實施例中,該電源包括複數個彼此獨立之電荷幫浦。當該控制元件決定輸出該第二電能時,該控制元件減少在該等電荷幫浦中之被致能電荷幫浦之數量。 在一些實施例中,該控制元件接收複數個位址,其中該等位址中的每個位址指示哪個次陣列被操作。該控制元件經配置以基於該等位址獲得該資訊。 在一些實施例中,該DRAM還包括一計數器。該計數器經配置以計數在該等次陣列中被操作的次陣列之該位址之一數量,其中該控制元件,基於從該計數器取得的在該等次陣列中被操作的次陣列之該位址之該數量,獲得該資訊。 在一些實施例中,該DRAM包括一分配元件。該分配元件,經配置以依一分配方式,分配該結果量的電能至在該等記憶庫中包括被操作的次陣列之記憶庫,該分配方式包括分配至該包括被操作次陣列的記憶庫的電能的量正相關於被操作的次陣列之數量。 在一些實施例中,該控制元件包括一表,該表經配置以記錄該等位址,以及該分配元件基於記錄於該表中之該等位址分配該結果量的電能。 在一些實施例中,該控制元件包括一組合邏輯。 在一些實施例中,當該等電荷幫浦中的每一者被致能時,該每一者輸出一相同量的電能。 本揭露之另一實施例提供一種動態隨機存取記憶體之電源管理方法。該電源管理方法包括提供複數個記憶庫,該等記憶庫各包括複數個次陣列;獲得一資訊,該資訊係關於在該等次陣列中被操作的次陣列之數量;基於該資訊產生一決定,其中該決定係輸出多少量的電能;以及基於該決定,輸出一結果量的電能。 在一些實施例中,基於該資訊產生該決定包括:當一數量比大於一比例範圍之一最高端點時,決定輸出一第一電能,以及當該數量比小於該比例範圍之一最低端點時,決定輸出小於該第一電能之一第二電能,其中該數量比為該等次陣列中被操作的次陣列之數量比上該等次陣列之數量的比例。 在一些實施例中,基於該資訊產生該決定包括:當該數量比小於該比例範圍之該最高端點且大於該比例範圍之該最低端點時,決定輸出大於該第二電能及小於該第一電能之一第三電能。 在一些實施例中,該電源管理之方法還包括提供複數個電荷幫浦,其中當該數量比大於該比例範圍之該最高端點時,決定輸出該第一電能包括:增加該等電荷幫浦中之被致能電荷幫浦之數量。 在一些實施例中,該電源管理之方法,還包括提供複數個電荷幫浦。當該數量比小於該比例範圍之該最低端點時,決定輸出小於該第一電能之該第二電能包括:減少在該等電荷幫浦中之被致能電荷幫浦之數量。 在一些實施例中,該電源管理之方法,還包括:接收複數個位址,該等位址中的每個位址指示哪個次陣列被操作,其中該獲得該資訊包括:基於該等位址獲得該資訊。 在一些實施例中,該電源管理之方法還包括:計數在該等次陣列中被操作的次陣列之該位址之一數量,其中該基於該等位址獲得該資訊包括:基於在該等次陣列中被操作的次陣列之該位址之該數量,獲得該資訊。 在一些實施例中,該電源管理之方法,還包括依一分配方式,分配該結果量的電能至在該等記憶庫中包括被操作的次陣列之記憶庫,該分配方式包括分配至該包括被操作次陣列的記憶庫的電能的量正相關於被操作的次陣列之數量。 在一些實施例中,該電源管理之方法,還包括記錄該等位址,以及其中該依該分配方式,分配該結果量的電能至在該等記憶庫中包括被操作的次陣列之記憶庫包括:基於記錄於該表中之該等位址分配該結果量的電能。 在本揭露之實施例中,DRAM之一控制元件能夠獲得關於被操作的次陣列之數量之一資訊。除此之外,該控制元件基於該資訊決定輸出多少量的電能,如此,藉著DRAM之電源所輸出之電能是可調整的,因此可以被管理。於是,DRAM可提供一電源管理之功能,且電能的使用上相對有效率。特別是當DRAM之被操作的次陣列之數量相對較低時,電源可以輸出一相對較低之電能。電能的使用上相對有效率。 相比之下,在比較性的DRAM中,該DRAM之致能元件無法獲得關於被操作的次陣列之數量之一資訊。再者,致能元件不能基於該資訊來決定要輸出多少量的電能。因此,由該DRAM中所有的電荷幫浦所輸出之電能是不可調整的,所以不能被管理。結果,DRAM不能提供電源管理之功能,且電能的使用上相對低效。特別是在次陣列中之一個或多個次陣列不操作之情況下,DRAM之電源仍輸出與在所有的次陣列都操作之情況下相同之電能。亦即,該電源輸出比記憶體所需要還多之電能。電能的使用上相對低效。 上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。One embodiment of the present disclosure provides a dynamic random access memory (DRAM). The DRAM includes a plurality of memory banks, a power source, and a control element. The banks each include a plurality of sub-arrays. The control element is configured to obtain a message. The information is about the number of sub-arrays that were operated in the sub-arrays. The control element generates a decision based on the resource, the decision is how much electric energy is output, and the power source outputs a result amount of electric energy based on the decision of the control element. In some embodiments, the control element decides to output a first electric energy when a quantity ratio is greater than one of the highest endpoints of a scale range, and when the quantity ratio is less than one of the lowest endpoints of the scale range, determines that the output is less than One of the first electric energy and the second electric energy. The number ratio is a ratio of the number of sub-arrays operated in the sub-arrays to the number of sub-arrays. In some embodiments, when the quantity ratio is smaller than the highest endpoint of the proportional range and greater than the lowest endpoint of the proportional range, the control element decides to output a quantity greater than the second electric energy and less than one of the first electric energy. Three electrical energy. In some embodiments, the power source includes a plurality of independent charge pumps. When the control element decides to output the first electric energy, the control element increases the number of enabled charge pumps among the charge pumps. In some embodiments, the power source includes a plurality of independent charge pumps. When the control element decides to output the second electric energy, the control element reduces the number of enabled charge pumps among the charge pumps. In some embodiments, the control element receives a plurality of addresses, wherein each of the addresses indicates which sub-array is operated. The control element is configured to obtain the information based on the addresses. In some embodiments, the DRAM further includes a counter. The counter is configured to count one of the addresses of the sub-arrays operated in the sub-arrays, wherein the control element is based on the bit obtained from the counter and of the sub-arrays operated in the sub-arrays The number of addresses to obtain the information. In some embodiments, the DRAM includes a distribution element. The distribution element is configured to distribute the resulting amount of electrical energy to the memory banks including the operated sub-arrays in the memory banks, the allocation method includes the allocation to the memory banks including the operated sub-arrays. The amount of electrical energy is positively related to the number of sub-arrays being operated. In some embodiments, the control element includes a table configured to record the addresses, and the distribution element allocates the resulting amount of electrical energy based on the addresses recorded in the table. In some embodiments, the control element includes a combinational logic. In some embodiments, when each of the charge pumps is enabled, each of them outputs an equal amount of electrical energy. Another embodiment of the present disclosure provides a power management method of a dynamic random access memory. The power management method includes providing a plurality of memory banks, each of which includes a plurality of sub-arrays; obtaining information about the number of sub-arrays operated in the sub-arrays; and generating a decision based on the information. Where the decision is how much power is output; and based on the decision, a result amount of power is output. In some embodiments, generating the decision based on the information includes: when a quantity ratio is greater than one of the highest endpoints of a scale range, determining to output a first electrical energy; and when the quantity ratio is less than one of the lowest endpoints of the scale range At that time, it is decided to output a second power which is less than one of the first power, wherein the quantity ratio is a ratio of the number of sub-arrays operated in the sub-arrays to the number of the sub-arrays. In some embodiments, generating the decision based on the information includes: when the quantity ratio is less than the highest endpoint of the proportional range and greater than the lowest endpoint of the proportional range, determining to output greater than the second electrical energy and less than the first One electrical energy and one third electrical energy. In some embodiments, the power management method further includes providing a plurality of charge pumps, wherein when the quantity ratio is greater than the highest end of the ratio range, deciding to output the first electric energy includes: increasing the charge pumps The number of enabled charge pumps. In some embodiments, the power management method further includes providing a plurality of charge pumps. When the quantity ratio is smaller than the lowest end point of the ratio range, deciding to output the second electric energy smaller than the first electric energy includes reducing the number of the enabled electric charge pumps among the electric charge pumps. In some embodiments, the power management method further includes: receiving a plurality of addresses, each of the addresses indicating which sub-array is operated, wherein the obtaining the information includes: based on the addresses Get that information. In some embodiments, the power management method further includes: counting a number of the addresses of the sub-arrays operated in the sub-arrays, wherein the obtaining the information based on the addresses includes: The information is obtained by the number of addresses of the operated sub-array in the sub-array. In some embodiments, the power management method further includes allocating the resulting amount of power to a memory bank including the operated sub-arrays in the memory banks according to a distribution method, and the distribution method includes allocating to the including The amount of electrical energy of the banks of the operated sub-array is positively related to the number of operated sub-arrays. In some embodiments, the method for power management further includes recording the addresses, and wherein, according to the allocation method, the resulting amount of power is allocated to a memory bank including the operated secondary arrays in the memory banks. Including: allocating the resulting amount of electrical energy based on the addresses recorded in the table. In the embodiment of the present disclosure, one control element of the DRAM can obtain one piece of information about the number of sub-arrays being operated. In addition, the control element decides how much power to output based on the information. In this way, the power output by the power source of the DRAM is adjustable and can therefore be managed. Therefore, DRAM can provide a power management function, and the use of electrical energy is relatively efficient. Especially when the number of sub-arrays operated by the DRAM is relatively low, the power source can output a relatively low power. The use of electrical energy is relatively efficient. In contrast, in a comparative DRAM, the enabling element of the DRAM cannot obtain information about one of the number of sub-arrays being operated. Furthermore, the enabling element cannot determine how much electrical energy to output based on the information. Therefore, the electrical energy output by all the charge pumps in the DRAM is not adjustable and cannot be managed. As a result, DRAM cannot provide power management functions, and the use of electrical energy is relatively inefficient. Especially when one or more of the sub-arrays are not operating, the power of the DRAM still outputs the same power as in the case where all the sub-arrays are operating. That is, the power source outputs more power than the memory requires. The use of electrical energy is relatively inefficient. The technical features and advantages of this disclosure have been outlined quite extensively above, so that the detailed description of this disclosure below can be better understood. Other technical features and advantages that constitute the subject matter of the patent application of this disclosure will be described below. Those with ordinary knowledge in the technical field to which this disclosure belongs should understand that the concepts and specific embodiments disclosed below can be used quite easily to modify or design other structures or processes to achieve the same purpose as this disclosure. Those with ordinary knowledge in the technical field to which this disclosure belongs should also understand that such equivalent constructions cannot be separated from the spirit and scope of this disclosure as defined by the scope of the attached patent application.

本揭露之以下說明伴隨併入且組成說明書之一部分的圖式,說明本揭露之實施例,然而本揭露並不受限於該實施例。此外,以下的實施例可適當整合以下實施例以完成另一實施例。 「一實施例」、「實施例」、「例示實施例」、「其他實施例」、「另一實施例」等係指本揭露所描述之實施例可包含特定特徵、結構或是特性,然而並非每一實施例必須包含該特定特徵、結構或是特性。再者,重複使用「在實施例中」一語並非必須指相同實施例,然而可為相同實施例。 為了使得本揭露可被完全理解,以下說明提供詳細的步驟與結構。顯然,本揭露的實施不會限制該技藝中的技術人士已知的特定細節。此外,已知的結構與步驟不再詳述,以免不必要地限制本揭露。本揭露的較佳實施例詳述如下。然而,除了實施方式之外,本揭露亦可廣泛實施於其他實施例中。本揭露的範圍不限於實施方式的內容,而是由申請專利範圍定義。 「一實施例」、「實施例」、「例示實施例」、「其他實施例」、「另一實施例」等係指本揭露所描述之實施例可包含特定特徵、結構或是特性,然而並非每一實施例必須包含該特定特徵、結構或是特性。再者,重複使用「在實施例中」一語並非必須指相同實施例,然而可為相同實施例。 為了使得本揭露可被完全理解,以下說明提供詳細的步驟與結構。顯然,本揭露的實施不會限制該技藝中的技術人士已知的特定細節。此外,已知的結構與步驟不再詳述,以免不必要地限制本揭露。本揭露的較佳實施例詳述如下。然而,除了實施方式之外,本揭露亦可廣泛實施於其他實施例中。本揭露的範圍不限於實施方式的內容,而是由申請專利範圍定義。 圖1為包括一致能元件12之一比較性的動態隨機存取記憶體(dynamic random access memory,DRAM)10之示意圖。參照圖1,DRAM 10除了致能元件12,還包括一電源14和一記憶體16。 記憶體16用以存儲資料。記憶體16包括第一記憶庫(bank)160以及第二記憶庫170,其中第一資料庫160及第二資料庫170都可視為多個記憶體單元中之一陣列。第一記憶庫160包括第一次陣列162以及第二次陣列164。第一次陣列162和第二次陣列164各包括一條或多條字元線。第二記憶庫170包括第三次陣列172以及第四次陣列174。第三次陣列172和第四次陣列174各包括一條或多條字元線。 電源14經配置以提供記憶體16足以讓記憶體16在致能時操作之電能。電源14包括彼此獨立之第一電荷幫浦140、第二電荷幫浦142以及第三電荷幫浦144。在一些實施例中,當第一電荷幫浦140、一第二電荷幫浦142以及一第三電荷幫浦144每一者被致能時,第一電荷幫浦140、一第二電荷幫浦142以及一第三電荷幫浦144每一者輸出相同量之電能。然而,本揭露並不限於此。 致能元件12僅能以相同之方式操作所有的第一電荷幫浦140、第二電荷幫浦142以及第三電荷幫浦144。換言之,致能元件12無法以不同方式個別地操作第一電荷幫浦140、第二電荷幫浦142以及第三電荷幫浦144。例如,當致能元件12致能所有的第一電荷幫浦140、第二電荷幫浦142以及第三電荷幫浦144時,所有的第一電荷幫浦140、第二電荷幫浦142以及第三電荷幫浦144皆被致能,無任一禁能。這種缺點可能係受限於致能元件12的簡單設計而引起。 更詳細地說,致能元件12無法獲得一資訊,該資訊係關於在第一次陣列160、第二次陣列162、第三次陣列170以及第四次陣列172中被操作的次陣列之數量。再者,致能元件12無法基於該資訊決定輸出多少量的電能。因而,致能元件12迫以相同方式操作所有的第一電荷幫浦140、第二電荷幫浦142以及第三電荷幫浦144。如此,由所有的第一電荷幫浦140、第二電荷幫浦142以及第三電荷幫浦144輸出之電能是不能調整的,所以電能無法被管理。結果,DRAM 10不能提供一電源管理功能,電能的使用上相對低效。 特別是當在第一次陣列160、第二次陣列162、第三次陣列170和第四次陣列172中之一個或多個不被操作之情況下,電源14仍輸出與所有的第一次陣列160、第二次陣列162、第三次陣列170和第四次陣列172都被操作時的相同電能,這部分參照圖2至圖4,將詳細描述。亦即,電源14輸出大於記憶體16所需之電能。電能的使用上相對低效。 圖2為圖1所示之比較DRAM 10之一操作示意圖。參照圖2,致能元件12因應於記憶體16一操作事件,例如藉著提供致能信號EN至第一電荷幫浦140、第二電荷幫浦142和第三電荷幫浦144,致能所有的第一電荷幫浦140、第二電荷幫浦142和第三電荷幫浦144。如此,所有的第一電荷幫浦140、第二電荷幫浦142和第三電荷幫浦144皆被致能而合併一起輸出(提供)記憶體16之電能。 圖3為圖1所示之比較DRAM 10另一操作示意圖。參照圖3,致能元件12因應於記憶體16一操作事件,儘管第四次陣列174不被操作,但仍致能所有的第一電荷幫浦140、第二電荷幫浦142以及第三電荷幫浦144。致能元件12使電源14輸出如圖2實施例中所輸出之相同電能。電源14輸出比記憶體16需要更大之電能。電能的使用上相對低效。 圖4為圖1所示之該比較DRAM 10之又另一操作示意圖。參照圖4,致能元件12因應於記憶體16一操作事件,儘管第三次陣列172和第四次陣列174不被操作,但仍致能所有的第一電荷幫浦140、第二電荷幫浦142和第三電荷幫浦144。致能元件12使電源14輸出如圖2實施例中所輸出之相同電能。電源14輸出比記憶體16需要更大之電能。電能的使用上相對低效。 圖5為根據本揭露之一些實施例,包括一控制元件22之動態隨機存取記憶體(DRAM)20示意圖。參照圖5,DRAM 20類似於圖1中所示之DRAM 10,差別在於DRAM 20包括控制元件22,以及DRAM 20包括包含一第一電荷幫浦240、一第二電荷幫浦242和一第三電荷幫浦244的一電源24。 控制元件22經配置以獲得一資訊,該資訊係關於第一次陣列162、第二次陣列164、第三次陣列172和第四次陣列174中之被操作的次陣列之數量。此外,控制元件22基於該資訊產生一決定,該決定係輸出多少量的電能,其細節將描述如下。更詳細地說,控制元件22能以不同的方式,個別地操作第一電荷幫浦240、第二電荷幫浦242和第三電荷幫浦244。例如,當禁能第三電荷幫浦244時,控制元件22可致能第一電荷幫浦240和第二電荷幫浦242。如此,由電源24所輸出之電能的量是可調整的,所以電能可以被管理。於是,DRAM 20可提供電源管理之功能,且電能的使用上相對是有效率的。在本實施例中,控制元件22是位於DRAM 20內中之一元件;然而,本揭露並不限於此。在另一個實施例中,控制元件22是位於DRAM 20外部之DRAM控制器上的一處理器。在一些實施例中,控制元件22是一組合邏輯。 基於控制元件22之決定,電源24經配置以輸出一結果量的電能。例如,如圖6所示,第一電荷幫浦240、第二電荷幫浦42和第三電荷幫浦244合併一起輸出一第一電能。 抑或是,第一電荷幫浦240獨自輸出小於第一電能之一第二電能,而第二電荷幫浦242或第三電荷幫浦244沒有輸出電能。又或者是,第一電荷幫浦240和第二電荷幫浦242合併一起輸出小於第一電能且大於第二電能之一第三電能,而第三電荷幫浦244沒有輸出電能,如圖7和圖8所示。在一實施例中,第一電荷幫浦240、第二電荷幫浦242和第三電荷幫浦244彼此獨立。 圖6為根據本揭露之一些實施例,如圖5所示之DRAM 20之操作示意圖。參照圖6,第一次陣列162、第二次陣列164、第三次陣列172、第四次陣列174被操作。控制元件22獲得一資訊,該資訊係關於被操作的次陣列之數量,且該資訊反映該被操作的次陣列之數量是4。控制元件22,基於反映被操作的次陣列之數量是4之該資訊,決定輸出相對高電能之第一電能。結果,控制元件22藉著致能所有第一電荷幫浦240、第二電荷幫浦242和第三電荷幫浦244,以增加被致能電荷幫浦之數量。第一電荷幫浦240、第二電荷幫浦242和第三電荷幫浦244合併一起輸出至(提供)記憶體16一結果量的電能,例如第一電能。控制元件22決定輸出第一電能所基於的被操作的次陣列之數量的4僅作為範例。同樣地,經配置以輸出第一電能之被致能電荷幫浦之數量的3也僅作為範例。本揭露並不限於此。上述聲明旨在表示當被操作的次陣列之數量相對較多時,由電源24所輸出之電能則相對較多。 在一實施例中,控制元件22經配置以接收一位址,該位址指出被操作的記憶庫之被操作的次陣列。該位址指示哪個記憶庫的哪個次陣列被操作。在圖6之實施例中,控制元件22分別接收第一次陣列162、第二次陣列164、第三次陣列172和第四次陣列174之位址ADDR1、ADDR2、ADDR3、ADDR4。位址ADDR1位於第一次陣列162上,其指示第一記憶庫160之第一次陣列162將被操作;位址ADDR2位於第二次陣列164上,其指示第一記憶庫160之第二次陣列164將被操作,依此類推。在一個實施例中,控制元件22包括用以記錄被操作的次陣列之位址之一表,其經配置以例如記錄位址ADDR1、ADDR2、ADDR3、ADDR4。 不但如此,控制元件22基於該位址,獲得關於被操作的次陣列之數量之該資訊。更詳細地,在一實施例中,控制元件22包括計數器(未示出)。計數器經配置以計數被操作的次陣列之位址之數量。例如,在本實施例中,由於計數器接收到四個不同次陣列162、164、172和174之四個位址ADDR1、ADDR2、ADDR3和ADDR4,所以計數數量為4。如此,控制元件22基於來自該計數器之該計數數量獲得該資訊。 此外,控制元件22基於一數量比與由一最高端點和一最低端點所定義之一比率範圍之間的比較,來決定輸出多少量的電能,其中該數量比為被操作的次陣列的數量比上次陣列之總數的比例。例如,為了易於討論,在接下來的討論中,假設最低端點大約是0.25,而最高端點大約是1。 在本實施例中,控制元件22判斷出一數量比為(4/4),其等於最高端點1,其中該數量比之分母表示次陣列之總數,且該數量比之分子則表示被操作的次陣列之數量。因此,控制元件22決定輸出相對較高電能之一第一電能。 圖7為根據本揭露之一些實施例,如圖5所示之DRAM 20之另一操作示意圖。遵循圖6中之實施例中所述之假設。參照圖7,第四次陣列174不被操作,而第一次陣列162、第二次陣列164和第三次陣列172被操作。控制元件22獲得一資訊,該資訊係關於被操作次陣列之數量,且該資訊反映被操作的次陣列之數量是3。基於反映出被操作的次陣列之數量是3之該資訊,控制元件22決定輸出作為中等電能之一第三電能。結果,控制元件22禁能第三電荷幫浦244,但致能第一電荷幫浦240和第二電荷幫浦242。第一電荷幫浦240和第二電荷幫浦242合併一起輸出(提供)記憶體陣列16該結果量的電能,也就是第三電能。 在一實施例中,控制元件22分別接收第一次陣列162、第二次陣列164和第三次陣列172之位址ADDR1、ADDR2和ADDR3。由於控制元件22沒有接收到位於第四次陣列174上之位址ADDR4,所以控制元件22判斷出第四次陣列174不被操作。由於控制元件22接收到位址ADDR1、ADDR2和ADDR3(這反映會有三個次陣列162、164和174被存取),計數器的計數數量為3。結果,控制元件22基於計數數量的3獲得該資訊。控制元件22判定出數量比為(3/4),其小於最高端點1且大於最低端點0.25,因此控制元件22決定輸出中等電能之第三電能。 圖8為根據本揭露之一些實施例,如圖5所示之DRAM之又另一操作示意圖。仍然遵循在圖6之實施例中所述之假設。參照圖8,第三次陣列172和第四次陣列174不被操作,而第一次陣列162和第二次陣列164被操作。控制元件22獲得一資訊,該資訊係關於被操作的次陣列之數量,且該資訊反映被操作的次陣列之數量是2。基於反映出被操作的次陣列之數量是2之該資訊,控制元件22決定輸出如圖7之實施例中所輸出相同電能之第三電能。於是,控制元件22,藉由禁能第三電荷幫浦244但致能第一電荷幫浦240和第二電荷幫浦242,保持等量之被致能電荷幫浦,如圖7之實施例中。第一電荷幫浦240和第二電荷幫浦242合併一起輸出(提供)記憶體陣列16該結果量的電能,亦即第三電能。 在一實施例中,控制元件22分別接收第一次陣列162和第二次陣列164之位址ADDR1和ADDR2。由於控制元件22沒有接收到位於第四次陣列174上之位址ADDR4和位於第三次陣列172上之位址ADDR3,所以控制元件22判斷出第四次陣列174和第三次陣列172不被操作。由於控制元件22接收到位址ADDR1和ADDR2(這反映會有兩個被存取之次陣列162和164),計數器的計數數量為2。於是,控制元件22基於計數數量的2獲得該資訊。控制元件22判斷出數量比為(2/4),其小於最高端點1且大於最低端點0.25,因此控制元件22決定輸出第三電能 圖9為根據本揭露之一些實施例,如圖5所示之DRAM 20之又再另一操作示意圖。依循在圖6之實施例中所述之假設。參照圖9,在第二次陣列164、第三次陣列172和第四次陣列174不被操作,但第一次陣列162被操作。控制元件22獲得一資訊,該資訊係關於被操作的次陣列之數量,且該資訊反映被操作的次陣列之數量是1。基於反映出被操作的次陣列之數量是2之該資訊,控制元件22決定輸出第二電能。結果,控制元件22,藉由禁能第二電荷幫浦242和第三電荷幫浦244及致能第一電荷幫浦240,減少被致能電荷幫浦之數量。只有第一電荷幫浦240獨自輸出(提供)記憶體陣列16結果量的電能,即第二電能。 在一個實施例中,控制元件22接收第一次陣列162之位址ADDR1。由於控制元件22沒有接收到位於第四次陣列174上之位址ADDR4、位於第三次陣列172上之位址ADDR3和位於第二次陣列164上之位址ADDR2,所以控制元件22判斷出第四次陣列174、第三次陣列172和第二次陣列164不操作。由於控制元件22接收位址ADDR1(這反映會有一個次陣列162要被存取),所以計數器的計數數量為1。如此,控制元件22基於計數數量的1獲得該資訊。控制元件22判定出數量比為(1/4),其等於最低端點0.25,因此控制元件22決定輸出第二電能。 從圖6至圖9之實施例,由於控制元件22能夠獲得一資訊,該資訊係關於被操作的次陣列之數量,且基於該資訊決定輸出多少量的電能,所以藉著電源24所輸出之電能是可調整的,因此可以被管理。於是,DRAM 20可提供一電源管理之功能,且電能的使用上相對有效率。特別是當被操作的次陣列之數量相對較低時,電源24可以輸出相對較低之電能。電能的使用上相對有效率。 圖10是根據本揭露之一些實施例,操作DRAM之一方法30的流程圖。參照圖10,方法30包括操作31、32、34和36。方法30開始於操作31,於其中提供複數個記憶庫。該等記憶庫各包括複數個次陣列。記憶庫用以存儲資料。方法30繼續於操作32,於其中獲得一資訊,該資訊係關於被操作的次陣列之數量。方法30接著到操作34,於其中基於該資訊產生一決定,該決定係輸出多少量的電能。當被操作的次陣列之數量相對較高時,所輸出之電能則相對較大,反之亦然。接續操作34,在操作36中,基於該決定輸出一結果量的電能。藉著使用本揭露之方法30,當被操作的次陣列之數量相對較低時,輸出相對低之電能。電能的使用上相對有效率。 圖11為根據本揭露之一些實施例,如圖10所示方法30之操作32流程圖。參照圖11,操作32包括操作320、322、324、326和328。操作32開始於操作320,於其中判斷一數量比是否大於或等於一比例範圍之一最高端點,其中該數量比係該等次陣列中被操作的次陣列之數量比上該等次陣列之數量的一比例。如果是肯定的話,則操作32進行到操作322,於其中決定輸出一相對較高電能之第一電能。如果是否定的話,則操作32進行至操作324。 在操作324中,判斷該數量比是否小於或等於該比例範圍之一最低端點。如果是肯定的話,則操作32進行到操作326。在操作326中,決定輸出小於該第一電能之一第二電能。如果是否定的話,則操作324進行到操作328,並於其中決定輸出大於第二電能且小於第一電能之一第三電能。 圖12為根據本揭露之一些實施例,還包括一分配元件44之一動態隨機存取存儲器(DRAM)40之示意圖。參照圖12,DRAM 40類似於參照圖5中所繪示出之DRAM 20,差別在於DRAM 40包括分配元件44,以及包括表420之控制元件42外。如前所述,表420用以記錄所接收之位址。此外,表420反映出每個記憶庫中之被操作的次陣列之數量。例如,參照圖7,與圖7之實施例相關聯之表420,如以下表1所示。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> 被操作的次陣列之數量 </td></tr><tr><td> 記憶庫 160 </td><td> 2 </td></tr><tr><td> 記憶庫170 </td><td> 1 </td></tr></TBODY></TABLE>表 1 基於表420,分配元件44用以分配結果量的電能至記憶庫160和記憶庫170。更詳細地,參照圖2,在記憶庫160中被操作的次陣列之數量大於在記憶庫170中之數量。據此,分配元件44分配比第二記憶庫170更多之電能至第一記憶庫160。總而言之,依這樣的分配方式,分配元件44分配結果量的電能至記憶庫。分配至記憶庫的電能的量正相關於被操作的次陣列之數量。 圖13為根據本揭露之一些實施例,操作DRAM之一方法50流程圖。參照圖13,方法50類似於參照圖10所繪示之方法10,差別在於方法50包括操作52、54和56外。在操作52中,接收複數個位址。每個位址指示哪個記憶庫之哪個次陣列被操作。在操作54中,基於該位址,獲得一資訊,該資訊係關於被操作的次陣列之數量。在操作56中,結果量的電能依照一分配方式被分配至記憶庫,該分配方式包括分配至記憶庫的電能的量正相關於被操作的次陣列之數量。 在本揭露中,控制元件22經配置以獲得一資訊,該資訊係關於被操作的次陣列之數量,且基於該資訊決定輸出多少量的電能。如此,由電源24輸出之電能是可調整的,因此可以被管理。結果,DRAM 20可提供一電源管理之功能,且電能的使用上相對有效率。特別是當該被操作的次陣列之數量相對較低時,電源24可以輸出一相對較低之電能。電能的使用上相對有效率。 相比之下,在比較性的DRAM 10中,致能元件12不能獲得一資訊,該資訊係關於被操作的次陣列之數量。再者,致能元件12不能基於該資訊來決定要輸出多少量的電能。所以,由所有的第一電荷幫浦140、第二電荷幫浦142和第三電荷幫浦144輸出之電能是不可調整的,因此不能被管理。結果,DRAM 10不能提供電源管理之功能,且電能的使用上相對低效。特別是在第一次陣列160、第二次陣列162、第三次陣列170和第四次陣列172中之一個或多個不操作之情況下,電源14仍輸出與在所有的第一次陣列160、第二次陣列162、第三次陣列170和第四次陣列172操作之情況下相同之電能。亦即,電源14輸出比記憶體16需要之更多之電能。電能的使用上相對低效。 本揭露之一實施例提供一種DRAM。該DRAM包括複數個記憶庫、一電源、一控制元件。該等記憶庫各包括複數個次陣列。該控制元件經配置以獲得一資訊。該資訊係關於該等次陣列中被操作的次陣列之數量。該控制元件基於該資產生一決定,該決定係輸出多少量的電能,其中該電源基於該控制元件之該決定輸出一結果量的電能。 本揭露之另一實施例提供一種動態隨機存取記憶體之電源管理方法。該電源管理方法包括提供複數個記憶庫,該等記憶庫各包括複數個次陣列;獲得一資訊,該資訊係關於在該等次陣列中被操作的次陣列之數量;基於該資訊,產生一決定,其中該決定係輸出多少量的電能;以及基於該決定,輸出一結果量的電能。 雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。 再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟係包含於本申請案之申請專利範圍內。 The following description of this disclosure is accompanied by the drawings incorporated in and constitutes a part of the description to explain the embodiment of this disclosure, but this disclosure is not limited to this embodiment. In addition, the following embodiments can be appropriately integrated with the following embodiments to complete another embodiment. "One embodiment", "embodiment", "exemplified embodiment", "other embodiment", "another embodiment", etc. refer to the embodiment described in this disclosure may include specific features, structures, or characteristics, however Not every embodiment must include the particular feature, structure, or characteristic. Furthermore, the repeated use of the phrase "in the embodiment" does not necessarily refer to the same embodiment, but may be the same embodiment. In order that this disclosure may be fully understood, the following description provides detailed steps and structures. Obviously, the implementation of this disclosure does not limit the specific details known to those skilled in the art. In addition, the known structures and steps are not described in detail, so as not to unnecessarily limit the present disclosure. The preferred embodiments of the present disclosure are detailed below. However, in addition to the embodiments, the disclosure can be widely implemented in other embodiments. The scope of this disclosure is not limited to the content of the embodiments, but is defined by the scope of patent application. "One embodiment", "embodiment", "exemplified embodiment", "other embodiment", "another embodiment", etc. refer to the embodiment described in this disclosure may include specific features, structures, or characteristics, however Not every embodiment must include the particular feature, structure, or characteristic. Furthermore, the repeated use of the phrase "in the embodiment" does not necessarily refer to the same embodiment, but may be the same embodiment. In order that this disclosure may be fully understood, the following description provides detailed steps and structures. Obviously, the implementation of this disclosure does not limit the specific details known to those skilled in the art. In addition, the known structures and steps are not described in detail, so as not to unnecessarily limit the present disclosure. The preferred embodiments of the present disclosure are detailed below. However, in addition to the embodiments, the disclosure can be widely implemented in other embodiments. The scope of this disclosure is not limited to the content of the embodiments, but is defined by the scope of patent application. FIG. 1 is a schematic diagram of a comparative dynamic random access memory (DRAM) 10 including one of the uniform energy elements 12. Referring to FIG. 1, in addition to the enabling element 12, the DRAM 10 further includes a power source 14 and a memory 16. The memory 16 is used for storing data. The memory 16 includes a first memory bank 160 and a second memory bank 170. The first data bank 160 and the second data bank 170 can both be regarded as an array of a plurality of memory cells. The first memory bank 160 includes a first array 162 and a second array 164. Each of the first array 162 and the second array 164 includes one or more word lines. The second memory bank 170 includes a third array 172 and a fourth array 174. The third array 172 and the fourth array 174 each include one or more word lines. The power source 14 is configured to provide power to the memory 16 sufficient for the memory 16 to operate when enabled. The power source 14 includes a first charge pump 140, a second charge pump 142, and a third charge pump 144 which are independent of each other. In some embodiments, when each of the first charge pump 140, a second charge pump 142, and a third charge pump 144 is enabled, the first charge pump 140, a second charge pump 140, and a second charge pump 144 are each enabled. Each of 142 and a third charge pump 144 outputs the same amount of power. However, this disclosure is not limited to this. The enabling element 12 can only operate all of the first charge pump 140, the second charge pump 142, and the third charge pump 144 in the same manner. In other words, the enabling element 12 cannot individually operate the first charge pump 140, the second charge pump 142, and the third charge pump 144 in different ways. For example, when the enabling element 12 enables all of the first charge pump 140, the second charge pump 142, and the third charge pump 144, all the first charge pumps 140, the second charge pump 142, and the first charge pump 140, All three charge pumps 144 are enabled without any disable. This disadvantage may be caused by the simple design of the enabling element 12. In more detail, the enabling element 12 cannot obtain information about the number of sub-arrays operated in the first array 160, the second array 162, the third array 170, and the fourth array 172. . Furthermore, the enabling element 12 cannot decide how much electric energy to output based on the information. Therefore, the enabling element 12 is forced to operate all of the first charge pump 140, the second charge pump 142, and the third charge pump 144 in the same manner. In this way, the electric energy output by all of the first charge pump 140, the second charge pump 142, and the third charge pump 144 cannot be adjusted, so the power cannot be managed. As a result, the DRAM 10 cannot provide a power management function, and the use of power is relatively inefficient. Especially when one or more of the first array 160, the second array 162, the third array 170, and the fourth array 172 are not operated, the power source 14 still outputs the same output voltage as all the first arrays. The same power when the array 160, the second array 162, the third array 170, and the fourth array 172 are operated. This part will be described in detail with reference to FIGS. 2 to 4. That is, the power source 14 outputs more power than the memory 16 requires. The use of electrical energy is relatively inefficient. FIG. 2 is a schematic diagram of an operation of the comparative DRAM 10 shown in FIG. 1. Referring to FIG. 2, the enabling element 12 responds to an operation event of the memory 16, for example, by providing an enabling signal EN to the first charge pump 140, the second charge pump 142, and the third charge pump 144, all of them are enabled. The first charge pump 140, the second charge pump 142, and the third charge pump 144. In this way, all of the first charge pump 140, the second charge pump 142, and the third charge pump 144 are enabled and combined to output (provide) the power of the memory 16. FIG. 3 is another schematic diagram of the comparison DRAM 10 shown in FIG. 1. Referring to FIG. 3, the enabling element 12 is in response to an operation event of the memory 16. Although the fourth array 174 is not operated, all the first charge pumps 140, the second charge pumps 142, and the third charges are enabled. Bangpu 144. The enabling element 12 causes the power source 14 to output the same electrical energy as that output in the embodiment of FIG. 2. The power source 14 requires more power than the memory 16. The use of electrical energy is relatively inefficient. FIG. 4 is another schematic operation diagram of the comparative DRAM 10 shown in FIG. 1. Referring to FIG. 4, in response to an operation event of the memory 16, although the third array 172 and the fourth array 174 are not operated, all the first charge pumps 140 and the second charge pumps are enabled. PU 142 and third charge pump 144. The enabling element 12 causes the power source 14 to output the same electrical energy as that output in the embodiment of FIG. 2. The power source 14 requires more power than the memory 16. The use of electrical energy is relatively inefficient. FIG. 5 is a schematic diagram of a dynamic random access memory (DRAM) 20 including a control element 22 according to some embodiments of the present disclosure. 5, the DRAM 20 is similar to the DRAM 10 shown in FIG. 1, except that the DRAM 20 includes a control element 22, and the DRAM 20 includes a first charge pump 240, a second charge pump 242, and a third A power source 24 of the charge pump 244. The control element 22 is configured to obtain information about the number of sub-arrays operated in the first array 162, the second array 164, the third array 172, and the fourth array 174. In addition, the control element 22 generates a decision based on the information, and the decision is how much electric energy is output, the details of which will be described below. In more detail, the control element 22 can individually operate the first charge pump 240, the second charge pump 242, and the third charge pump 244 in different ways. For example, when the third charge pump 244 is disabled, the control element 22 may enable the first charge pump 240 and the second charge pump 242. In this way, the amount of power output by the power source 24 is adjustable, so the power can be managed. Therefore, the DRAM 20 can provide a power management function, and the use of power is relatively efficient. In the present embodiment, the control element 22 is one of the elements located in the DRAM 20; however, the disclosure is not limited thereto. In another embodiment, the control element 22 is a processor on a DRAM controller external to the DRAM 20. In some embodiments, the control element 22 is a combinational logic. Based on the decision of the control element 22, the power source 24 is configured to output a resulting amount of power. For example, as shown in FIG. 6, the first charge pump 240, the second charge pump 42, and the third charge pump 244 are combined to output a first electric energy. Alternatively, the first charge pump 240 alone outputs a second power that is less than one of the first power, and the second charge pump 242 or the third charge pump 244 does not output power. Or alternatively, the first charge pump 240 and the second charge pump 242 are combined to output a third power that is less than the first power and larger than the second power, and the third charge pump 244 does not output power, as shown in FIG. Figure 8 shows. In one embodiment, the first charge pump 240, the second charge pump 242, and the third charge pump 244 are independent of each other. FIG. 6 is an operation diagram of the DRAM 20 shown in FIG. 5 according to some embodiments of the present disclosure. Referring to FIG. 6, the first-time array 162, the second-time array 164, the third-time array 172, and the fourth-time array 174 are operated. The control element 22 obtains information about the number of operated sub-arrays, and the information reflects that the number of operated sub-arrays is four. The control element 22 decides to output the first electric energy with a relatively high electric energy based on the information reflecting that the number of operated sub-arrays is four. As a result, the control element 22 increases the number of enabled charge pumps by enabling all of the first charge pumps 240, the second charge pumps 242, and the third charge pumps 244. The first electric charge pump 240, the second electric charge pump 242, and the third electric charge pump 244 are combined to output (provide) a quantity of electric energy to the memory 16, such as the first electric energy. The control element 22 decides 4 that is the number of operated sub-arrays on which the first electric energy is outputted as an example. Similarly, 3, which is the number of enabled charge pumps configured to output the first electrical energy, is only an example. This disclosure is not limited to this. The above statement is intended to indicate that when the number of sub-arrays being operated is relatively large, the power output by the power source 24 is relatively large. In one embodiment, the control element 22 is configured to receive a bit address that indicates the sub-array of the memory bank being operated on. This address indicates which subarray of which bank is operated. In the embodiment of FIG. 6, the control element 22 receives the addresses ADDR1, ADDR2, ADDR3, and ADDR4 of the first array 162, the second array 164, the third array 172, and the fourth array 174, respectively. The address ADDR1 is located on the first array 162, which indicates that the first array 162 of the first bank 160 will be operated; the address ADDR2 is located on the second array 164, which indicates the second time of the first bank 160 The array 164 will be operated, and so on. In one embodiment, the control element 22 includes a table for recording the addresses of the operated sub-arrays, which is configured to record the addresses ADDR1, ADDR2, ADDR3, ADDR4, for example. Moreover, based on the address, the control element 22 obtains this information about the number of sub-arrays operated. In more detail, in one embodiment, the control element 22 includes a counter (not shown). The counter is configured to count the number of addresses of the sub-arrays being operated. For example, in this embodiment, since the counter receives four addresses ADDR1, ADDR2, ADDR3, and ADDR4 of four different sub-arrays 162, 164, 172, and 174, the number of counts is four. As such, the control element 22 obtains the information based on the counted number from the counter. In addition, the control element 22 determines how much electrical energy is output based on a comparison between a quantity ratio and a ratio range defined by a highest endpoint and a lowest endpoint, where the quantity ratio is the The ratio of the number to the total number of the last array. For example, for ease of discussion, in the following discussion, assume that the lowest endpoint is approximately 0.25 and the highest endpoint is approximately 1. In this embodiment, the control element 22 determines that a quantity ratio is (4/4), which is equal to the highest end point 1. The denominator of the quantity ratio represents the total number of the sub-arrays, and the numerator of the quantity ratio represents the operation. The number of secondary arrays. Therefore, the control element 22 decides to output a first electric energy of a relatively high electric energy. FIG. 7 is another operation diagram of the DRAM 20 shown in FIG. 5 according to some embodiments of the present disclosure. The assumptions described in the example in FIG. 6 are followed. Referring to FIG. 7, the fourth-time array 174 is not operated, and the first-time array 162, the second-time array 164, and the third-time array 172 are operated. The control element 22 obtains information about the number of operated sub-arrays, and the information reflects that the number of operated sub-arrays is three. Based on the information reflecting that the number of operated sub-arrays is three, the control element 22 decides to output the third power as one of the medium powers. As a result, the control element 22 disables the third charge pump 244, but enables the first charge pump 240 and the second charge pump 242. The first charge pump 240 and the second charge pump 242 are combined to output (provide) the resulting amount of power of the memory array 16, that is, the third power. In one embodiment, the control element 22 receives the addresses ADDR1, ADDR2, and ADDR3 of the first array 162, the second array 164, and the third array 172, respectively. Since the control element 22 does not receive the address ADDR4 on the fourth array 174, the control element 22 determines that the fourth array 174 is not operated. Since the control element 22 receives the addresses ADDR1, ADDR2, and ADDR3 (this reflects that three sub-arrays 162, 164, and 174 will be accessed), the counter counts to three. As a result, the control element 22 obtains the information based on the counted number of 3. The control element 22 determines that the quantity ratio is (3/4), which is less than the highest end point 1 and greater than the lowest end point 0.25. Therefore, the control element 22 decides to output the third electric energy of medium electric energy. FIG. 8 is still another operation diagram of the DRAM shown in FIG. 5 according to some embodiments of the present disclosure. The assumptions described in the embodiment of FIG. 6 are still followed. Referring to FIG. 8, the third-time array 172 and the fourth-time array 174 are not operated, and the first-time array 162 and the second-time array 164 are operated. The control element 22 obtains information about the number of sub-arrays being operated, and the information reflects that the number of sub-arrays being operated is two. Based on the information reflecting that the number of operated sub-arrays is two, the control element 22 decides to output the third power with the same power as the output in the embodiment of FIG. 7. Therefore, the control element 22, by disabling the third charge pump 244 but enabling the first charge pump 240 and the second charge pump 242, maintains an equal amount of the enabled charge pump, as shown in the embodiment of FIG. 7 in. The first charge pump 240 and the second charge pump 242 are combined to output (provide) the resulting amount of power of the memory array 16, that is, the third power. In one embodiment, the control element 22 receives the addresses ADDR1 and ADDR2 of the first array 162 and the second array 164, respectively. Since the control element 22 does not receive the address ADDR4 on the fourth array 174 and the address ADDR3 on the third array 172, the control element 22 determines that the fourth array 174 and the third array 172 are not operating. Since the control element 22 receives the addresses ADDR1 and ADDR2 (this reflects that there will be two accessed sub-arrays 162 and 164), the counter counts to two. The control element 22 then obtains this information based on the counted number of two. The control element 22 determines that the quantity ratio is (2/4), which is less than the highest end point 1 and greater than the lowest end point 0.25. Therefore, the control element 22 decides to output the third power. FIG. 9 shows some embodiments according to the present disclosure, as shown in FIG. 5. The DRAM 20 is shown as yet another operation. Follow the assumptions described in the embodiment of FIG. 6. Referring to FIG. 9, the second array 164, the third array 172, and the fourth array 174 are not operated, but the first array 162 is operated. The control element 22 obtains information about the number of sub-arrays being operated, and the information reflects that the number of sub-arrays being operated is one. Based on the information reflecting that the number of operated sub-arrays is two, the control element 22 decides to output the second power. As a result, the control element 22 reduces the number of enabled charge pumps by disabling the second charge pump 242 and the third charge pump 244 and enabling the first charge pump 240. Only the first charge pump 240 independently outputs (provides) the amount of power of the memory array 16 as the second power. In one embodiment, the control element 22 receives the address ADDR1 of the first array 162. Since the control element 22 does not receive the address ADDR4 on the fourth array 174, the address ADDR3 on the third array 172, and the address ADDR2 on the second array 164, the control element 22 determines that the The quad array 174, the third array 172, and the second array 164 are not operational. Since the control element 22 receives the address ADDR1 (this reflects that there will be a sub-array 162 to be accessed), the counter counts as one. As such, the control element 22 obtains the information based on the counted number of 1. The control element 22 determines that the quantity ratio is (1/4), which is equal to the lowest endpoint 0.25, so the control element 22 decides to output the second electric energy. From the embodiment of FIG. 6 to FIG. 9, since the control element 22 can obtain information, the information is about the number of sub-arrays being operated, and based on the information, it determines how much electric energy is output. The electrical energy is adjustable so it can be managed. Therefore, the DRAM 20 can provide a power management function, and the use of power is relatively efficient. Especially when the number of operated sub-arrays is relatively low, the power source 24 can output relatively low power. The use of electrical energy is relatively efficient. FIG. 10 is a flowchart of a method 30 of operating a DRAM according to some embodiments of the disclosure. Referring to FIG. 10, the method 30 includes operations 31, 32, 34, and 36. The method 30 begins at operation 31 in which a plurality of banks are provided. The banks each include a plurality of sub-arrays. Memory is used to store data. The method 30 continues with operation 32 in which it obtains information about the number of sub-arrays being operated on. The method 30 then proceeds to operation 34, where a decision is generated based on the information, the decision being how much electrical energy is output. When the number of operated sub-arrays is relatively high, the power output is relatively large, and vice versa. Continuing with operation 34, in operation 36, a result amount of power is output based on the decision. By using the method 30 of the present disclosure, when the number of operated sub-arrays is relatively low, relatively low power is output. The use of electrical energy is relatively efficient. FIG. 11 is a flowchart of operations 32 of the method 30 shown in FIG. 10 according to some embodiments of the present disclosure. 11, operation 32 includes operations 320, 322, 324, 326, and 328. Operation 32 begins at operation 320, in which it is determined whether a quantity ratio is greater than or equal to one of the highest endpoints of a range of ratios, where the quantity ratio is the number of sub-arrays operated in the sub-arrays compared to the number of sub-arrays A proportion of the quantity. If it is affirmative, operation 32 proceeds to operation 322, where it is decided to output a first electrical energy of a relatively high electrical energy. If negative, operation 32 proceeds to operation 324. In operation 324, it is determined whether the number ratio is less than or equal to one of the lowest endpoints of the ratio range. If yes, operation 32 proceeds to operation 326. In operation 326, it is determined to output a second power that is less than one of the first power. If it is negative, operation 324 proceeds to operation 328, where it is decided to output a third power that is greater than the second power and less than one of the first power. FIG. 12 is a schematic diagram of a dynamic random access memory (DRAM) 40 including an allocation element 44 according to some embodiments of the present disclosure. Referring to FIG. 12, the DRAM 40 is similar to the DRAM 20 shown in FIG. 5 except that the DRAM 40 includes a distribution element 44 and a control element 42 including a table 420. As mentioned before, the table 420 is used to record the received addresses. In addition, table 420 reflects the number of sub-arrays operated in each bank. For example, referring to FIG. 7, a table 420 associated with the embodiment of FIG. 7 is shown in Table 1 below.         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> </ td> <td> Number of sub-arrays operated on </ td> </ tr > <tr> <td> Memory 160 </ td> <td> 2 </ td> </ tr> <tr> <td> Memory 170 </ td> <td> 1 </ td> </ tr > </ TBODY> </ TABLE> Table 1 Based on the table 420, the distribution element 44 is used to distribute the resulting amount of power to the memory 160 and the memory 170. In more detail, referring to FIG. 2, the number of sub-arrays operated in the memory bank 160 is greater than the number in the memory bank 170. Accordingly, the distribution element 44 distributes more power to the first memory bank 160 than the second memory bank 170. All in all, according to such a distribution method, the distribution element 44 distributes the resulting amount of electric energy to the memory bank. The amount of power allocated to the memory bank is positively related to the number of sub-arrays being operated. FIG. 13 is a flowchart of a method 50 of operating a DRAM according to some embodiments of the disclosure. Referring to FIG. 13, the method 50 is similar to the method 10 illustrated with reference to FIG. 10, except that the method 50 includes operations 52, 54, and 56. In operation 52, a plurality of addresses are received. Each address indicates which subarray of which bank is operated. In operation 54, based on the address, information is obtained, which information is about the number of sub-arrays being operated on. In operation 56, the resulting amount of electrical energy is allocated to the memory bank according to an allocation method that includes that the amount of electrical energy allocated to the memory bank is positively related to the number of sub-arrays being operated. In the present disclosure, the control element 22 is configured to obtain information about the number of sub-arrays being operated, and based on the information, decide how much power to output. In this way, the electrical energy output by the power source 24 is adjustable and can therefore be managed. As a result, the DRAM 20 can provide a power management function, and the use of electrical energy is relatively efficient. Especially when the number of the operated sub-arrays is relatively low, the power source 24 can output a relatively low power. The use of electrical energy is relatively efficient. In contrast, in the comparative DRAM 10, the enabling element 12 cannot obtain information about the number of sub-arrays being operated. Furthermore, the enabling element 12 cannot determine how much electrical energy to output based on the information. Therefore, the electric energy output by all of the first charge pump 140, the second charge pump 142, and the third charge pump 144 is not adjustable and therefore cannot be managed. As a result, the DRAM 10 cannot provide a power management function, and the use of power is relatively inefficient. Especially in the case where one or more of the first array 160, the second array 162, the third array 170, and the fourth array 172 are not operated, the power source 14 still outputs the same output voltage as all the first arrays. 160, the second array 162, the third array 170, and the fourth array 172 operate with the same power. That is, the power source 14 outputs more power than the memory 16 requires. The use of electrical energy is relatively inefficient. An embodiment of the present disclosure provides a DRAM. The DRAM includes a plurality of memory banks, a power source, and a control element. The banks each include a plurality of sub-arrays. The control element is configured to obtain a message. The information is about the number of sub-arrays that were operated in the sub-arrays. The control element generates a decision based on the resource, the decision is how much electric energy is output, and the power source outputs a result amount of electric energy based on the decision of the control element. Another embodiment of the present disclosure provides a power management method of a dynamic random access memory. The power management method includes providing a plurality of memory banks, each of which includes a plurality of sub-arrays; obtaining an information about the number of sub-arrays operated in the sub-arrays; and generating a A decision, wherein the decision is how much power is output; and based on the decision, a result amount of power is output. Although the disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and substitutions can be made without departing from the spirit and scope of the disclosure as defined by the scope of the patent application. For example, many of the processes described above can be implemented in different ways, and many of the processes described above can be replaced with other processes or combinations thereof. Moreover, the scope of the present application is not limited to the specific embodiments of the processes, machinery, manufacturing, material compositions, means, methods and steps described in the description. Those skilled in the art can understand from the disclosure of this disclosure that according to this disclosure, they can use existing, or future developmental processes, machinery, manufacturing, materials that have the same functions or achieve substantially the same results as the corresponding embodiments described herein. Composition, means, method, or step. Accordingly, such processes, machinery, manufacturing, material compositions, means, methods, or steps are included in the scope of the patent application of this application.       

10‧‧‧DRAM
12‧‧‧致能元件
14‧‧‧電源
16‧‧‧記憶體
140‧‧‧第一電荷幫浦
142‧‧‧第二電荷幫浦
144‧‧‧第三電荷幫浦
160‧‧‧第一記憶庫
162‧‧‧第一次陣列
164‧‧‧第二次陣列
170‧‧‧第二記憶庫
172‧‧‧第三次陣列
174‧‧‧第四次陣列
EN‧‧‧致能信號
20‧‧‧DRAM
22‧‧‧控制元件
24‧‧‧電源
240‧‧‧第一電荷幫浦
242‧‧‧第二電荷幫浦
244‧‧‧第三電荷幫浦
ADDR1‧‧‧位址
ADDR2‧‧‧位址
ADDR3‧‧‧位址
/EN‧‧‧禁能信號
30‧‧‧方法
31‧‧‧操作
32‧‧‧操作
34‧‧‧操作
36‧‧‧操作
320‧‧‧操作
322‧‧‧操作
324‧‧‧操作
326‧‧‧操作
328‧‧‧操作
40‧‧‧DRAM
42‧‧‧控制元件
44‧‧‧分配元件
420‧‧‧表
50‧‧‧方法
52‧‧‧操作
54‧‧‧操作
56‧‧‧操作
10‧‧‧DRAM
12‧‧‧Enable element
14‧‧‧ Power
16‧‧‧Memory
140‧‧‧first charge pump
142‧‧‧Second Charge Pump
144‧‧‧Third Charge Pump
160‧‧‧The first memory bank
162‧‧‧First array
164‧‧‧Second Array
170‧‧‧Second Memory Bank
172‧‧‧ Third array
174‧‧‧ Fourth array
EN‧‧‧Enable signal
20‧‧‧DRAM
22‧‧‧Control element
24‧‧‧ Power
240‧‧‧first charge pump
242‧‧‧Second Charge Pump
244‧‧‧Third Charge Pump
ADDR1‧‧‧Address
ADDR2‧‧‧Address
ADDR3‧‧‧Address
/ EN‧‧‧ Disable signal
30‧‧‧Method
31‧‧‧Operation
32‧‧‧Operation
34‧‧‧Operation
36‧‧‧Operation
320‧‧‧ Operation
322‧‧‧ Operation
324‧‧‧ Operation
326‧‧‧operation
328‧‧‧operation
40‧‧‧DRAM
42‧‧‧Control element
44‧‧‧ Distributing components
420‧‧‧Table
50‧‧‧method
52‧‧‧Operation
54‧‧‧operation
56‧‧‧Operation

參閱實施方式與申請專利範圍合併考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號係指相同的元件。 圖1為包括一致能元件之一比較性的動態隨機存取存儲器(DRAM)之示意圖。 圖2為圖1所示之該比較DRAM之一操作示意圖。 圖3為圖1所示之該比較DRAM之另一操作示意圖。 圖4為圖1所示之該比較DRAM之又另一操作示意圖。 圖5為根據本揭露之一些實施例,包括一控制元件之動態隨機存取記憶體(DRAM)示意圖。 圖6為根據本揭露之一些實施例,如圖5所示之DRAM之操作示意圖。 圖7為根據本揭露之一些實施例,如圖5所示之DRAM之另一操作示意圖。 圖8為根據本揭露之一些實施例,如圖5所示之DRAM之又另一操作示意圖。 圖9為根據本揭露之一些實施例,如圖5所示之DRAM之又再另一操作示意圖。 圖10是根據本揭露之一些實施例,一操作一DRAM之方法流程圖。 圖11為根據本揭露之一些實施例,如圖10所示方法之操作流程圖。。 圖12為根據本揭露之一些實施例,還包括一分配元件之一動態隨機存取存儲器(DRAM)之示意圖。 圖13為根據本揭露之一些實施例,一操作一DRAM之方法流程圖。When referring to the drawings combined with the embodiments and the scope of the patent application, the disclosure in this application can be understood more fully. The same component symbols in the drawings refer to the same components. FIG. 1 is a schematic diagram of a comparative dynamic random access memory (DRAM) including one uniform energy element. FIG. 2 is a schematic diagram of an operation of the comparative DRAM shown in FIG. 1. FIG. 3 is another schematic operation diagram of the comparative DRAM shown in FIG. 1. FIG. 4 is another schematic operation diagram of the comparative DRAM shown in FIG. 1. FIG. 5 is a schematic diagram of a dynamic random access memory (DRAM) including a control element according to some embodiments of the present disclosure. FIG. 6 is a schematic diagram of the operation of the DRAM shown in FIG. 5 according to some embodiments of the present disclosure. FIG. 7 is another operation diagram of the DRAM shown in FIG. 5 according to some embodiments of the present disclosure. FIG. 8 is still another operation diagram of the DRAM shown in FIG. 5 according to some embodiments of the present disclosure. FIG. 9 is still another operation diagram of the DRAM shown in FIG. 5 according to some embodiments of the present disclosure. FIG. 10 is a flowchart of a method of operating a DRAM according to some embodiments of the present disclosure. FIG. 11 is an operation flowchart of the method shown in FIG. 10 according to some embodiments of the present disclosure. . FIG. 12 is a schematic diagram of a dynamic random access memory (DRAM), which further includes an allocation element according to some embodiments of the disclosure. FIG. 13 is a flowchart of a method of operating a DRAM according to some embodiments of the present disclosure.

Claims (20)

一種動態隨機存取記憶體(DRAM),包括:複數個記憶庫,該等記憶庫各包括複數個次陣列;一電源;以及一控制元件,經配置以獲得一資訊,該資訊係關於該等次陣列中被操作的次陣列之數量,且該控制元件基於該資訊產生一決定,該決定係輸出多少量的電能,其中該電源基於該控制元件之該決定輸出一結果量的電能。A dynamic random access memory (DRAM) includes: a plurality of memory banks, each of which includes a plurality of secondary arrays; a power source; and a control element configured to obtain an information about the information The number of sub-arrays operated in the sub-array, and the control element generates a decision based on the information, the decision is how much electric energy is output, wherein the power source outputs a result amount of electric energy based on the decision of the control element. 如請求項1所述之DRAM,其中當一數量比大於一比例範圍之一最高端點時,該控制元件決定輸出一第一電能,以及當該數量比小於該比例範圍之一最低端點時,決定輸出小於該第一電能之一第二電能,其中該數量比為該等次陣列中被操作的次陣列之數量比上該等次陣列之數量的比例。The DRAM according to claim 1, wherein the control element decides to output a first electric energy when a quantity ratio is greater than one of the highest endpoints of a scale range, and when the quantity ratio is less than one of the lowest endpoints of the scale range , It is determined to output less than one of the first electric energy, wherein the quantity ratio is a ratio of the number of sub-arrays operated in the sub-arrays to the number of the sub-arrays. 如請求項2所述之DRAM,其中當該數量比小於該比例範圍之該最高端點且大於該比例範圍之該最低端點時,該控制元件決定輸出大於該第二電能及小於該第一電能之一第三電能。The DRAM according to claim 2, wherein when the quantity ratio is smaller than the highest endpoint of the proportional range and greater than the lowest endpoint of the proportional range, the control element decides to output greater than the second power and less than the first One of the third electrical energy. 如請求項2所述之DRAM,其中該電源包括複數個彼此獨立之電荷幫浦,其中當該控制元件決定輸出該第一電能時,該控制元件增加該等電荷幫浦中之被致能電荷幫浦之數量。The DRAM according to claim 2, wherein the power source comprises a plurality of independent charge pumps, and when the control element decides to output the first electric energy, the control element increases the enabled charges in the charge pump Number of pumps. 如請求項2所述之DRAM,其中該電源包括複數個彼此獨立之電荷幫浦,其中當該控制元件決定輸出該第二電能時,該控制元件減少該等電荷幫浦中之被致能電荷幫浦之數量。The DRAM according to claim 2, wherein the power source includes a plurality of independent charge pumps, and when the control element decides to output the second electric energy, the control element reduces the enabled charges in the charge pumps Number of pumps. 如請求項1所述之DRAM,其中該控制元件接收複數個位址,其中該等位址中的每個位址指示哪個次陣列被操作,其中該控制元件經配置以基於該等位址獲得該資訊。The DRAM of claim 1, wherein the control element receives a plurality of addresses, wherein each of the addresses indicates which sub-array is operated, and wherein the control element is configured to obtain based on the addresses The information. 如請求項6所述之DRAM,還包括:一計數器,經配置以計數在該等次陣列中被操作的次陣列之該位址之一數量,其中該控制元件,基於從該計數器取得的在該等次陣列中被操作的次陣列之該位址之該數量,獲得該資訊。The DRAM according to claim 6, further comprising: a counter configured to count one of the addresses of the sub-arrays that are operated in the sub-arrays, wherein the control element is based on the current value obtained from the counter. The information is obtained by the number of addresses of the sub-arrays being operated in the sub-arrays. 如請求項6所述之DRAM,還包括:一分配元件,經配置以依一分配方式,分配該結果量的電能至在該等記憶庫中包括被操作的次陣列之記憶庫,該分配方式包括分配至該包括被操作次陣列的記憶庫的電能的量正相關於被操作的次陣列之數量。The DRAM according to claim 6, further comprising: a distribution element configured to distribute the resulting amount of electric energy to a memory bank including the operated secondary array in the memory banks, the allocation method The amount of power including the memory allocated to the memory bank including the operated sub-array is positively related to the number of operated sub-arrays. 如請求項8所述之DRAM,其中該控制元件包括一表,該表經配置以記錄該等位址,以及該分配元件基於記錄於該表中之該等位址分配該結果量的電能。The DRAM according to claim 8, wherein the control element includes a table configured to record the addresses, and the distribution element allocates the resulting amount of power based on the addresses recorded in the table. 如請求項1所述之DRAM,其中該控制元件包括一組合邏輯。The DRAM according to claim 1, wherein the control element comprises a combinational logic. 如請求項4所述之DRAM,其中當該等電荷幫浦中的每一者被致能時,該每一者輸出一相同量的電能。The DRAM according to claim 4, wherein when each of the charge pumps is enabled, each of them outputs a same amount of electric energy. 一種動態隨機存取記憶體之電源管理方法,包括:提供複數個記憶庫,該等記憶庫各包括複數個次陣列;獲得一資訊,該資訊係關於在該等次陣列中被操作的次陣列之數量;基於該資訊,產生一決定,其中該決定係輸出多少量的電能;以及基於該決定,輸出一結果量的電能。A power management method for dynamic random access memory includes: providing a plurality of memory banks, each of which includes a plurality of sub-arrays; obtaining an information about the sub-arrays operated in the sub-arrays Based on the information, a decision is generated, wherein the decision is how much power is output; and based on the decision, a result amount of power is output. 如請求項12所述之電源管理方法,其中該基於該資訊,產生該決定包括:當一數量比大於一比例範圍之一最高端點時,決定輸出一第一電能,以及當該數量比小於該比例範圍之一最低端點時,決定輸出小於該第一電能之一第二電能,其中該數量比為該等次陣列中被操作的次陣列之數量比上該等次陣列之數量的比例。The power management method according to claim 12, wherein the generating the decision based on the information includes: when a quantity ratio is greater than one of the highest endpoints of a scale range, determining to output a first electric energy, and when the quantity ratio is less than When one of the lowest end points of the scale range is determined to output less than one of the first electric energy, the quantity ratio is a ratio of the number of sub-arrays operated in the sub-arrays to the number of sub-arrays. . 如請求項13所述之電源管理方法,其中該基於該資訊,產生該決定包括:當該數量比小於該比例範圍之該最高端點且大於該比例範圍之該最低端點時,決定輸出大於該第二電能及小於該第一電能之一第三電能。The power management method according to claim 13, wherein the generating the decision based on the information includes: when the quantity ratio is less than the highest endpoint of the proportional range and greater than the lowest endpoint of the proportional range, determining an output greater than The second power and a third power smaller than the first power. 如請求項13所述之電源管理方法,還包括:提供複數個電荷幫浦,其中當該數量比大於該比例範圍之該最高端點時,決定輸出該第一電能包括:增加該等電荷幫浦中之被致能電荷幫浦之數量。The power management method according to claim 13, further comprising: providing a plurality of charge pumps, wherein when the quantity ratio is greater than the highest endpoint of the ratio range, deciding to output the first electric energy includes: increasing the charge pumps The number of activated charge pumps in Puzhong. 如請求項13所述之電源管理方法,還包括:提供複數個電荷幫浦,其中當該數量比小於該比例範圍之該最低端點時,決定輸出小於該第一電能之該第二電能包括:減少在該等電荷幫浦中之被致能電荷幫浦之數量。The power management method according to claim 13, further comprising: providing a plurality of charge pumps, wherein when the quantity ratio is smaller than the lowest end point of the ratio range, determining to output the second electric energy smaller than the first electric energy includes : Reduce the number of enabled charge pumps in these charge pumps. 如請求項12所述之電源管理方法,還包括:接收複數個位址,該等位址中的每個位址指示哪個次陣列被操作,其中該獲得該資訊包括:基於該等位址獲得該資訊。The power management method according to claim 12, further comprising: receiving a plurality of addresses, each of the addresses indicating which sub-array is operated, wherein the obtaining the information includes: obtaining based on the addresses The information. 如請求項17所述之電源管理方法,還包括:計數在該等次陣列中被操作的次陣列之該位址之一數量,其中該基於該等位址獲得該資訊包括:基於在該等次陣列中被操作的次陣列之該位址之該數量,獲得該資訊。The power management method according to claim 17, further comprising: counting one of the addresses of the sub-arrays operated in the sub-arrays, wherein obtaining the information based on the addresses includes: The information is obtained by the number of addresses of the operated sub-array in the sub-array. 如請求項17所述之電源管理方法,還包括:依一分配方式,分配該結果量的電能至在該等記憶庫中包括被操作的次陣列之記憶庫,該分配方式包括分配至該包括被操作次陣列的記憶庫的電能的量正相關於被操作的次陣列之數量。The power management method according to claim 17, further comprising: allocating the resulting amount of power to a memory bank including the operated sub-arrays in the memory banks according to a distribution method, and the distribution method includes allocating to the including The amount of electrical energy of the banks of the operated sub-array is positively related to the number of operated sub-arrays. 如請求項19所述之電源管理方法,還包括:記錄該等位址於一表中,以及其中該依該分配方式,分配該結果量的電能至在該等記憶庫中包括被操作的次陣列之記憶庫包括:基於記錄於該表中之該等位址分配該結果量的電能。The power management method as described in claim 19, further comprising: recording the addresses in a table, and wherein according to the allocation method, allocating the resulting amount of electric energy to include the operated times in the memories The memory bank of the array includes: allocating the resulting amount of power based on the addresses recorded in the table.
TW106135703A 2017-07-24 2017-10-18 Dram and method for managing power thereof TWI635490B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/657,592 2017-07-24
US15/657,592 US10141043B1 (en) 2017-07-24 2017-07-24 DRAM and method for managing power thereof

Publications (2)

Publication Number Publication Date
TWI635490B true TWI635490B (en) 2018-09-11
TW201909178A TW201909178A (en) 2019-03-01

Family

ID=64315592

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106135703A TWI635490B (en) 2017-07-24 2017-10-18 Dram and method for managing power thereof

Country Status (3)

Country Link
US (1) US10141043B1 (en)
CN (1) CN109300497B (en)
TW (1) TWI635490B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978137B1 (en) * 2020-02-19 2021-04-13 Nany A Technology Corporation Memory device and method of operating the same
US11641160B1 (en) * 2022-05-11 2023-05-02 Nanya Technology Corporation Power providing circuit and power providing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905999A (en) * 1996-04-29 1999-05-18 International Business Machines Corporation Cache sub-array arbitration
US7023260B2 (en) * 2003-06-30 2006-04-04 Matrix Semiconductor, Inc. Charge pump circuit incorporating corresponding parallel charge pump stages and method therefor
CN1262012C (en) * 2002-03-26 2006-06-28 株式会社东芝 Semiconductor integrated circuit
US20140208156A1 (en) * 2010-01-28 2014-07-24 Naveen Muralimanohar Memory access methods and apparatus
TW201437805A (en) * 2013-03-29 2014-10-01 Wistron Corp Electronic apparatus and power management method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356500B1 (en) * 2000-08-23 2002-03-12 Micron Technology, Inc. Reduced power DRAM device and method
KR100859412B1 (en) * 2006-11-16 2008-09-22 주식회사 하이닉스반도체 Semiconductor integrated circuit
US7840821B2 (en) * 2007-05-18 2010-11-23 Globalfoundries Inc. Method and apparatus for monitoring energy consumption of an electronic device
KR101096225B1 (en) * 2008-08-21 2011-12-22 주식회사 하이닉스반도체 Semiconductor memory device and driving method thereof
JP5742508B2 (en) * 2011-06-27 2015-07-01 富士通セミコンダクター株式会社 Semiconductor memory, system, and operation method of semiconductor memory
JP6050804B2 (en) * 2014-11-28 2016-12-21 力晶科技股▲ふん▼有限公司 Internal power supply voltage auxiliary circuit, semiconductor memory device, and semiconductor device
KR20160068394A (en) * 2014-12-05 2016-06-15 에스케이하이닉스 주식회사 Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905999A (en) * 1996-04-29 1999-05-18 International Business Machines Corporation Cache sub-array arbitration
CN1262012C (en) * 2002-03-26 2006-06-28 株式会社东芝 Semiconductor integrated circuit
US7023260B2 (en) * 2003-06-30 2006-04-04 Matrix Semiconductor, Inc. Charge pump circuit incorporating corresponding parallel charge pump stages and method therefor
US20140208156A1 (en) * 2010-01-28 2014-07-24 Naveen Muralimanohar Memory access methods and apparatus
US9361955B2 (en) * 2010-01-28 2016-06-07 Hewlett Packard Enterprise Development Lp Memory access methods and apparatus
TW201437805A (en) * 2013-03-29 2014-10-01 Wistron Corp Electronic apparatus and power management method

Also Published As

Publication number Publication date
TW201909178A (en) 2019-03-01
US10141043B1 (en) 2018-11-27
CN109300497A (en) 2019-02-01
CN109300497B (en) 2020-10-02

Similar Documents

Publication Publication Date Title
KR102048762B1 (en) Method, device and system for refreshing dynamic random access memory(dram)
Seyedzadeh et al. Counter-based tree structure for row hammering mitigation in DRAM
US8386701B2 (en) Apparatus and method for multi-level cache utilization
US9214216B2 (en) Semiconductor device and operation method thereof
US8358554B2 (en) Semiconductor memory device performing partial self refresh and memory system including same
JP4470185B2 (en) Semiconductor memory device
US20150146494A1 (en) Partial access mode for dynamic random access memory
US9129704B2 (en) Semiconductor memory devices and semiconductor systems including the same
CN104102586B (en) A kind of method, apparatus of address of cache processing
TWI635490B (en) Dram and method for managing power thereof
CN106055495B (en) Method for controlling semiconductor device
KR100515072B1 (en) Semiconductor memory device for saving power consumption in refresh operation
US7746718B2 (en) Semiconductor memory, operating method of semiconductor memory, memory controller, and system
KR102389232B1 (en) Refresh control device and system including the same
US20110007592A1 (en) Semiconductor storage device and refresh control method thereof
US11356081B2 (en) Average interval generator
TW529025B (en) Semiconductor memory device and control method for its update action, and method for setting specific area of storage cell array for implementing
US10318188B2 (en) Method of controlling memory cell access based on safe address mapping
US9640240B2 (en) Partial access mode for dynamic random access memory
TW202234401A (en) Effective dram interleaving for asymmetric size channels or ranks while supporting improved partial array self-refresh
JP7008410B2 (en) Memory controller and method
TWI493568B (en) Memory device
US9627026B1 (en) Refresh control device
US20180025769A1 (en) Refresh control circuit and memory device including the same
US12062391B2 (en) Apparatus and method for controlling refresh operation