TWI635270B - Interleaved acousto-optical device scanning for suppression of optical crosstalk - Google Patents

Interleaved acousto-optical device scanning for suppression of optical crosstalk Download PDF

Info

Publication number
TWI635270B
TWI635270B TW106132064A TW106132064A TWI635270B TW I635270 B TWI635270 B TW I635270B TW 106132064 A TW106132064 A TW 106132064A TW 106132064 A TW106132064 A TW 106132064A TW I635270 B TWI635270 B TW I635270B
Authority
TW
Taiwan
Prior art keywords
scan
collinear
scanning
bands
scans
Prior art date
Application number
TW106132064A
Other languages
Chinese (zh)
Other versions
TW201800745A (en
Inventor
蘇利文傑米
蔡文建
雀倫亞維傑尼
強森雷夫
亞札克 布藍德米爾
錫 王馬克
倫永雷克斯
曹凱
Original Assignee
克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 克萊譚克公司 filed Critical 克萊譚克公司
Publication of TW201800745A publication Critical patent/TW201800745A/en
Application granted granted Critical
Publication of TWI635270B publication Critical patent/TWI635270B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts

Abstract

一種掃描一樣本之方法包含同時形成複數個共線性掃描。每一掃描係藉由一聲光裝置(AOD)進行一光點之一掃掠而形成。該等共線性掃描藉由一預定間隔而分離。藉由在垂直於該複數個共線性掃描之一方向上重複該同時形成該等共線性掃描而形成第一複數個掃描帶。該第一複數個掃描帶具有與該預定間隔相同之一掃描帶間間隔。可毗鄰於該第一複數個掃描帶形成第二複數個掃描帶。可在與該第一複數個掃描帶之方向相反之一方向上或在一相同方向上執行形成該第二複數個掃描帶。一種檢驗系統可藉由在一放大率改變器之後包含一繞射光學元件(DOE)路徑來實施此方法。One method of scanning samples involves forming multiple collinear scans simultaneously. Each scan is formed by an acousto-optic device (AOD) scanning one spot by one spot. The collinear scans are separated by a predetermined interval. The first plurality of scanning bands are formed by repeating the simultaneous formation of the collinear scans in a direction perpendicular to one of the plurality of collinear scans. The first plurality of scanning bands have an interval between scanning bands which is the same as the predetermined interval. A second plurality of scanning bands may be formed adjacent to the first plurality of scanning bands. Forming the second plurality of scanning bands may be performed in a direction opposite to the direction of the first plurality of scanning bands or in the same direction. An inspection system can implement this method by including a diffractive optical element (DOE) path after a magnification changer.

Description

用於抑制光學串擾之交錯聲光裝置掃描Scanning of staggered acousto-optic device for suppressing optical crosstalk

本發明闡述抑制光學串擾之聲光裝置掃描技術及系統。The invention describes the scanning technology and system of an acousto-optic device for suppressing optical crosstalk.

在半導體製作期間,可在晶圓上形成隔離及/或系統缺陷。隔離缺陷(其在晶圓上以一低晶片百分比存在)可由隨機事件導致,諸如,一製造環境中之顆粒污染物之一增加或在製作晶片中使用之程序化學品中之污染之一增加。系統缺陷(其通常在晶圓上以一高晶片百分比存在)可由一光罩上之缺陷導致。一光罩用於使用光微影技術將一積體電路層之一圖案轉印至晶圓上。因此,光罩上之任何缺陷皆可與圖案一起轉印至晶圓之每一晶片。 已開發出自動化檢驗系統來檢驗一晶圓表面(未圖案化及經圖案化兩者)。一檢驗系統通常包含一照射系統及一偵測系統。該照射系統可包含用於產生一光束之一光源(例如,一雷射)及用於使該光束聚焦及掃描之一設備。存在於晶圓表面上之缺陷可散射由照射系統(亦稱為一照射器)提供之入射光。該偵測系統經組態以偵測經散射光並將經偵測光轉換成可量測、計數及顯示之電信號。經偵測信號可由一電腦程式分析以定位並識別晶圓上之缺陷。在以下專利中闡述例示性檢驗系統:1983年7月5日頒予Steigmeier等人之美國專利4,391,524、1984年4月3日頒予Heebner等人之美國專利4,441,124、1986年9月30日頒予Koizumi等人之美國專利4,614,427、1989年12月26日頒予Hayano等人之美國專利4,889,998及1994年5月31日頒予Allemand之美國專利5,317,380,所有該等專利皆以引用之方式併入本文中。 在一目前技術水平照射系統中使用之一或多個組件可使用聲光裝置。舉例而言,圖1A圖解說明一聲光裝置(AOD) 100之一經簡化組態。AOD 100包含一聲音換能器121、一石英板122及一聲吸收體123。一振盪電信號可驅動聲音換能器121並致使其振動。繼而,此振動在石英板122中形成聲波。聲吸收體123經組態以吸收到達石英板122之邊緣之任何聲波。由於該等聲波,至石英板122之傳入光124被繞射至複數個方向128、129及130中。 一經繞射光束自石英板122以取決於光之波長與聲音之波長之相對關係之一角度射出。藉由使頻率自高斜變至低,部分126可具有比部分127高之一頻率。由於部分126具有一較高頻率,因此其使入射光束之一部分繞射通過一較陡角度,如經繞射光束128所展示。由於部分127具有一相對較低頻率,因此其使入射光束之一部分繞射通過一較淺角度,如經繞射光束130所展示。由於部分126與127之間的一中間區段部分具有介於較高頻率與相對較低頻率之間的一頻率,因此其使入射光束之一部分繞射通過一中間角度,如經繞射光束129所展示。此係可如何使用一AOD來使一傳入光束124聚焦於位置125處之一實例。 值得注意地,AOD可比機械裝置(諸如鏡)顯著快地操作。具體而言,AOD可大致在聲波跨越傳入光束所花費之時間(例如,5 ns至100 ns)內繞射傳入光。因此,可以(舉例而言) 6.32毫米/微秒之一速率執行對一樣本(例如,一晶圓或光罩)之一掃描。 圖1B圖解說明經組態以產生一光束並使該光束跨越一樣本109 (諸如一晶圓)掃描之一例示性雙AOD照射系統110。一預掃描AOD 101用於使來自一光源100之入射光以一角度偏轉,其中該角度與射頻(RF)驅動源之頻率成比例。一望遠透鏡102用於將來自預掃描AOD 101之角度掃描轉換成一線性掃描。 一啁啾AOD 104用於使在聲傳播平面中之入射光束聚焦至一掃描平面105上。此藉由憑藉換能器104A使穿過所有RF頻率之斜變比彼等頻率可全部傳播穿過啁啾AOD 104更快而達成。此快速斜變形成一啁啾封包104B。啁啾封包104B然後以聲速傳播穿過啁啾AOD 104。圖1B展示啁啾封包104B在一光點掃掠之開始處之位置,而圖1C圖解說明啁啾封包104B在該光點掃掠之結束處之位置。應注意,在此傳播期間,預掃描AOD 101調整其RF頻率以追蹤AOD 104中之啁啾封包以使光束保持入射於啁啾封包104B上。 一圓柱透鏡103用於使光束聚焦於垂直於聲傳播平面之一平面中。一中繼透鏡106用於在一光瞳平面106A處產生一實光瞳。一放大率改變器107用於調整光點之大小及掃掠之長度。一物鏡108用於使光點聚焦至一樣本109 (諸如一晶圓)上。 圖2圖解說明使用一單個AOD之另一例示性照射系統200。在系統200中,預掃描AOD由一擴束器201替換。因此,此類型之照射系統稱為一「泛光AOD」系統。在此組態中,在AOD 104中產生多個啁啾封包203A及203B。應注意,本文中具有相同元件符號之組件係實質上類似之組件且因此不重複其說明。每一啁啾封包203A及203B產生其自身之光點。因此,物鏡108使兩個光點同時聚焦至樣本109上。雖然在圖2中展示了兩個啁啾封包,但在其他實施例中,可以入射於樣本109上之光點之一對應數目產生額外啁啾封包。 應注意,樣本109通常置放於能夠進行雙向移動之一XY平移載台上。在此組態中,該載台可經移動以便可使射至樣本109上之經聚焦光點(由聚焦光學器件使用經繞射光束形成)沿著相等寬度之毗鄰連續條帶(亦即,光柵掃描線)掃描。1990年3月27日頒予Porter等人且以引用方式併入本文中之美國專利4,912,487闡述包含經組態以提供光柵掃描之一平移載台之例示性照射系統。 圖3圖解說明提供用於多個光點之經散射光之隔離之一習知例示性AOD掃描技術。在此實施例中,在四個時間301、302、303及304期間使四個光點掃描(為易於圖3中之參考,每一光點具有一相同填充圖案)。此四個光點可由包含一AOD之一照射系統產生。在圖3中,該AOD提供一啁啾封包間隔306 (其亦與光點間隔及掃描線段長度相關)。 圖4圖解說明用於圖3中所闡述之技術之一例示性檢驗系統400。在系統400中,一AOD光學路徑(例如,類似於圖2中所展示之光學路徑)可包含用於使由AOD產生之光點聚焦至一樣本401上之一物鏡404。系統400進一步包含一50/50分束器(或其他比率) 405,其可將經散射光402之兩個複本自樣本401上之經掃描光點引導至兩個偵測器陣列408及409。一第一收集路徑與遮罩組406可經組態以將經散射光與一第一組光點隔離並將其輸出提供至偵測器陣列408,而一第二收集路徑與遮罩組407可經組態以將經散射光與一第二組光點隔離並將其輸出提供至偵測器陣列408。應注意,每一遮罩具有一組窗口,每一窗口具有針對一給定PMT (光電倍增管)或其他感測器之一預定寬度。 返回參考圖3,第一組光點由具有實線之方框指示,而一第二組光點由具有點線之方框指示。該等方框之長度對應於用於圖4中之遮罩之一窗口寬度305。因此,舉例而言,在時間301處,可將來自光點310及312之經散射光(使用收集路徑與遮罩組406)與光點311 (使用收集路徑與遮罩組407)隔離。為確保完全涵蓋,提供一遮罩重疊307。 在圖3之掃描技術中,必須滿足兩個要求。第一,PMT窗口寬度305必須小於所要線段長度(其係AOD啁啾封包之間隔,如306所展示)。第二,PMT窗口必須重疊,如重疊307所展示,但必須不能延伸超出所要段長度。此要求確保在任何時間處僅一個光點在一給定遮罩內。假定滿足兩個要求,則圖3之掃描技術可提供經散射光之適當隔離,此乃因在一單個方框中從不存在兩個光點。 然而,此遮罩重疊有時可導致兩個偵測器陣列自相同光點擷取經散射光,如在時間301處之光點313所展示。在時間304期間針對光點314發生一類似狀況。在分析期間必須辨識並考量此經複製資訊,藉此增加了收集系統複雜性。亦應注意,有時一光點不在針對一遮罩指定之區域內,如時間302之區域315及時間303之區域316所展示。在彼等情形中,即使不存在光點,仍必須擷取資訊,藉此浪費了資源。 此外,50/50分束器405不合意地將可用於偵測之光減少一半。為克服此缺點,將需要係2倍高功率之一雷射(光源),藉此增加了檢驗系統之成本。假設已使用最大功率雷射,則使用一50/50分束器之一檢驗系統將需要一大的雷射。如圖2中所展示在AOD中同時具有多個啁啾封包將由於光點彼此相對緊密鄰近而具有高光點間串擾。此外,由於PMT窗口小於所要線段長度,因此需要較多PMT,藉此又進一步增加了檢驗系統成本。 圖5A圖解說明可在無泛光照射之情形下產生多個光點之另一例示性AOD照射系統500。在此實施例中,一繞射光學元件(DOE) 501可安置於放大器改變器107之前以產生複數個光點。雖然圖5A展示產生了三個光點(不同線色彩指示與彼等光點相關聯之不同光束),但其他實施例可產生不同數目個光點。圖5B針對照射系統500圖解說明改變放大器改變器107之放大率對樣本109上之光點大小、光點間隔及掃描長度之影響。應注意,不同填充色彩指示不同光點(且對應於圖5A之不同線色彩)。如圖5B中所展示,大光點520具有與三個位置1、3及5相關聯之間隔,而小光點521具有與三個位置2、3及4相關聯之間隔。位置1中之大光點掃描至位置3,位置3中之大光點掃描至位置5,且位置5中之大光點掃描至位置7。相比而言,位置2中之小光點掃描至位置3,位置3中之小光點掃描至位置4,且位置4中之小光點掃描至位置5。 具有一較小光點大小(較高放大率)使得經散射光與多個光點之適當隔離較困難。舉例而言,圖6A及圖6B圖解說明三個小光點601、602及603 (對應於圖5B中所展示之光點)在時間T1 與T4 之間的例示性掃掠。圖6B將光點601、602及603之掃描表示為相同色彩之方框,其中該等方框表示由於傳播穿過啁啾AOD所致的光點之路徑。圖6B展示存在不同光點之共線性掃描之一重疊(此將針對大光點及小光點兩者發生)。此重疊將導致不合意之光點串擾。 為提供光點之間的適當隔離,藉此最小化串擾,需要額外光學器件及技術。在圖7A及圖7B中所展示之一項實施例中,可在一照射系統中使用一稜鏡705來形成光點之間的適當間隔。2006年7月11日頒予Kvamme且以引用方式併入本文中之美國專利7,075,638闡述此一照射系統。在此系統中,稜鏡705及額外光學器件(諸如一球面像差校正透鏡及一透射透鏡)經定位以使得將來自樣本上之複數個光點之經散射光(例如,與光點701、702及703相關聯之光束)引導至稜鏡705之一特定琢面,如圖7A中所展示。繼而,稜鏡705將每一光束引導至一單獨偵測器。圖7B展示在相關聯檢驗系統之操作期間之光點701、702及703掃描掃掠。稜鏡705 (其係收集器之部分)利用圖7A及圖7B中所展示之一偏移(該偏移由係照射系統之部分之一光柵產生)以合意地增加光點隔離。因此,返回參考圖6B,轉動一光柵將導致光點701、702及703 (及其相關聯掃描)不再沿著x軸共線性(亦即,其將改為以在一水平平面中之偏移掃描形成一對角線)。遺憾地,稜鏡705係針對一特定放大率而設計的。因此,若改變放大率,則必須使用另一稜鏡,藉此添加檢驗系統之成本及設計複雜性。 一樣本表面上之缺陷之準確偵測取決於掃描中之每一光點之正確量測及分析。因此,需要最佳化使用AOD之技術及系統,其確保此等光點之隔離,藉此最小化串擾,同時最小化系統複雜性及成本。During semiconductor fabrication, isolation and / or system defects can be formed on the wafer. Isolation defects, which are present on the wafer at a low wafer percentage, can be caused by random events, such as an increase in one of the particulate contaminants in a manufacturing environment or an increase in one of the contaminations in process chemicals used in the fabrication of the wafer. System defects, which typically exist on the wafer at a high wafer percentage, can be caused by defects on a photomask. A photomask is used to transfer a pattern of an integrated circuit layer onto a wafer using photolithography technology. Therefore, any defect on the photomask can be transferred to each wafer of the wafer together with the pattern. Automated inspection systems have been developed to inspect a wafer surface (both unpatterned and patterned). An inspection system usually includes an irradiation system and a detection system. The illumination system may include a light source (eg, a laser) for generating a light beam and a device for focusing and scanning the light beam. Defects present on the wafer surface can scatter incident light provided by an illumination system (also known as an illuminator). The detection system is configured to detect scattered light and convert the detected light into an electrical signal that can be measured, counted, and displayed. The detected signals can be analyzed by a computer program to locate and identify defects on the wafer. Exemplary inspection systems are described in the following patents: U.S. Patent 4,391,524 issued to Steigmeier et al. On July 5, 1983; U.S. Patent 4,441,124 issued to Heebner et al. On April 3, 1984; and issued on September 30, 1986 Koizumi et al., U.S. Patent 4,614,427, U.S. Patent 4,889,998, issued to Hayano, et al. On December 26, 1989, and U.S. Patent 5,317,380, issued to Allemand on May 31, 1994, all of which are incorporated herein by reference. in. Acousto-optic devices can be used for one or more components used in a state-of-the-art illumination system. For example, FIG. 1A illustrates a simplified configuration of one of an acousto-optic device (AOD) 100. The AOD 100 includes a sound transducer 121, a quartz plate 122 and an sound absorber 123. An oscillating electrical signal can drive the sound transducer 121 and cause it to vibrate. This vibration then forms an acoustic wave in the quartz plate 122. The sound absorber 123 is configured to absorb any sound waves reaching the edge of the quartz plate 122. Due to these sound waves, the incoming light 124 to the quartz plate 122 is diffracted into a plurality of directions 128, 129, and 130. The diffracted light beam is emitted from the quartz plate 122 at an angle that depends on the relative relationship between the wavelength of light and the wavelength of sound. By ramping the frequency from high to low, the portion 126 may have a higher frequency than the portion 127. Because the portion 126 has a higher frequency, it diffracts a portion of the incident beam through a steeper angle, as shown by the diffracted beam 128. Since the portion 127 has a relatively low frequency, it diffracts a portion of the incident light beam through a shallower angle, as shown by the diffracted light beam 130. Since an intermediate section portion between the portions 126 and 127 has a frequency between a higher frequency and a relatively lower frequency, it diffracts a portion of the incident light beam through an intermediate angle, such as the diffracted light beam 129 As shown. This is an example of how an AOD can be used to focus an incoming light beam 124 at position 125. Notably, AOD can operate significantly faster than mechanical devices such as mirrors. Specifically, the AOD may diffract the incoming light approximately within the time (e.g., 5 ns to 100 ns) it takes for the acoustic wave to cross the incoming beam. Thus, one scan of a specimen (eg, a wafer or a photomask) can be performed at, for example, a rate of 6.32 mm / microsecond. FIG. 1B illustrates an exemplary dual AOD illumination system 110 configured to generate a beam and scan the beam across a sample 109 (such as a wafer). A pre-scanned AOD 101 is used to deflect incident light from a light source 100 at an angle, where the angle is proportional to the frequency of a radio frequency (RF) drive source. A telephoto lens 102 is used to convert the angular scan from the pre-scanned AOD 101 into a linear scan. A stack of AOD 104 is used to focus an incident light beam in a sound propagation plane onto a scanning plane 105. This is achieved by using the transducer 104A to make the ramp through all RF frequencies faster than when all frequencies can propagate through the 啁啾 AOD 104. This rapid ramping forms a packet 104B. The radon packet 104B then propagates through the radon AOD 104 at the speed of sound. FIG. 1B shows the location of the scan packet 104B at the beginning of a light spot sweep, and FIG. 1C illustrates the location of the scan packet 104B at the end of the light spot sweep. It should be noted that during this propagation, the pre-scanned AOD 101 adjusts its RF frequency to track the radon packets in the AOD 104 so that the light beam remains incident on the radon packets 104B. A cylindrical lens 103 is used to focus the light beam in a plane perpendicular to the sound propagation plane. A relay lens 106 is used to generate a real pupil at a pupil plane 106A. A magnification changer 107 is used to adjust the size of the light spot and the length of the sweep. An objective lens 108 is used to focus the light spot onto a specimen 109, such as a wafer. FIG. 2 illustrates another exemplary irradiation system 200 using a single AOD. In the system 200, the pre-scanned AOD is replaced by a beam expander 201. Therefore, this type of illumination system is called a "flood AOD" system. In this configuration, a plurality of puppet packets 203A and 203B are generated in AOD 104. It should be noted that components having the same component symbol herein are substantially similar components and therefore their descriptions are not repeated. Each packet 203A and 203B generates its own light spot. Therefore, the objective lens 108 focuses the two light spots on the sample 109 at the same time. Although two chirped packets are shown in FIG. 2, in other embodiments, an additional chirped packet may be generated by a corresponding number of one of the light spots incident on the sample 109. It should be noted that the sample 109 is usually placed on an XY translation stage capable of bidirectional movement. In this configuration, the stage can be moved so that the focused spot (formed by the focusing optics using a diffracted beam) onto sample 109 follows adjacent continuous strips of equal width (i.e., Raster scan line) scan. US Patent 4,912,487, issued to Porter et al. On March 27, 1990 and incorporated herein by reference, describes an exemplary illumination system including a translation stage configured to provide raster scanning. FIG. 3 illustrates one conventional, exemplary AOD scanning technique that provides for the isolation of scattered light for multiple light spots. In this embodiment, four light spots are scanned during four times 301, 302, 303, and 304 (for ease of reference in FIG. 3, each light spot has a same fill pattern). These four light spots can be generated by an illumination system containing an AOD. In FIG. 3, the AOD provides a packet interval 306 (which is also related to the light spot interval and the scan line length). FIG. 4 illustrates an exemplary inspection system 400 for one of the techniques illustrated in FIG. 3. In the system 400, an AOD optical path (eg, similar to the optical path shown in FIG. 2) may include an objective lens 404 for focusing a light spot generated by the AOD onto a sample 401. The system 400 further includes a 50/50 beam splitter (or other ratio) 405 that can direct two copies of the scattered light 402 from the scanned spots on the sample 401 to the two detector arrays 408 and 409. A first collection path and mask set 406 can be configured to isolate the scattered light from a first set of light spots and provide its output to the detector array 408, and a second collection path and mask set 407 It can be configured to isolate the scattered light from a second set of light spots and provide its output to the detector array 408. It should be noted that each mask has a set of windows, each window having a predetermined width for a given PMT (photomultiplier tube) or other sensor. Referring back to FIG. 3, the first group of light points is indicated by a box with a solid line, and the second group of light points is indicated by a box with a dotted line. The lengths of the boxes correspond to a window width 305 used for the mask in FIG. 4. Thus, for example, at time 301, the scattered light from light points 310 and 312 (using a collection path and mask group 406) can be isolated from light point 311 (using a collection path and mask group 407). To ensure complete coverage, a mask overlay 307 is provided. In the scanning technique of Figure 3, two requirements must be met. First, the PMT window width 305 must be less than the desired line segment length (which is the interval between AOD (R) packets, as shown in 306). Second, the PMT window must overlap, as shown in overlap 307, but must not extend beyond the desired segment length. This requirement ensures that only one light spot is within a given mask at any time. Assuming two requirements are met, the scanning technique of FIG. 3 can provide adequate isolation of scattered light because there are never two light spots in a single box. However, this mask overlap can sometimes cause the two detector arrays to capture scattered light from the same spot, as shown by spot 313 at time 301. A similar situation occurs for the light spot 314 during time 304. This replicated information must be identified and considered during analysis, thereby increasing the complexity of the collection system. It should also be noted that sometimes a light point is not within the area designated for a mask, as shown by area 315 at time 302 and area 316 at time 303. In those cases, even if there is no light spot, information must still be retrieved, thereby wasting resources. In addition, the 50/50 beam splitter 405 undesirably reduces the light available for detection by half. To overcome this shortcoming, a laser (light source) that is twice as high power will be required, thereby increasing the cost of the inspection system. Assuming maximum power lasers have been used, a large laser will be required to verify the system using one of the 50/50 beam splitters. As shown in FIG. 2, having multiple puppet packets at the same time in the AOD will have crosstalk between high light points due to the light points being relatively close to each other. In addition, since the PMT window is smaller than the desired line segment length, more PMT is required, thereby further increasing the cost of the inspection system. FIG. 5A illustrates another exemplary AOD irradiation system 500 that can generate multiple light spots without flooding. In this embodiment, a diffractive optical element (DOE) 501 may be placed before the amplifier changer 107 to generate a plurality of light spots. Although FIG. 5A shows that three light spots are generated (different line colors indicate different light beams associated with their light spots), other embodiments may generate different numbers of light spots. FIG. 5B illustrates the effect of changing the magnification of the amplifier changer 107 on the spot size, spot interval, and scan length on the sample 109 for the illumination system 500. It should be noted that different fill colors indicate different light points (and correspond to different line colors of FIG. 5A). As shown in FIG. 5B, the large light spot 520 has an interval associated with the three positions 1, 3, and 5, and the small light spot 521 has an interval associated with the three positions 2, 3, and 4. The large light spot in position 1 is scanned to position 3, the large light spot in position 3 is scanned to position 5, and the large light spot in position 5 is scanned to position 7. In contrast, the small light spot in position 2 is scanned to position 3, the small light spot in position 3 is scanned to position 4, and the small light spot in position 4 is scanned to position 5. Having a smaller spot size (higher magnification) makes proper isolation of scattered light from multiple spots difficult. For example, FIGS. 6A and 6B illustrate 601, 602, and 603 (corresponding to the light spot shown in FIG. 5B of) three small spot at a time T 1 and Example 4 T between the illustrating exemplary sweep. FIG. 6B represents the scans of the light spots 601, 602, and 603 as boxes of the same color, where the boxes represent the paths of the light spots due to propagation through the 啁啾 AOD. FIG. 6B shows that there is an overlap of one of the collinear scans with different light spots (this will happen for both large and small light spots). This overlap will cause undesired light spot crosstalk. To provide proper isolation between light spots, thereby minimizing crosstalk, additional optics and technology are required. In one embodiment shown in FIGS. 7A and 7B, a stack of 705 can be used in an illumination system to form a suitable interval between light spots. US Patent 7,075,638, issued to Kvamme on July 11, 2006 and incorporated herein by reference, illustrates this irradiation system. In this system, 稜鏡 705 and additional optics, such as a spherical aberration correction lens and a transmission lens, are positioned such that scattered light from a plurality of light spots on the sample (e.g., with light spots 701, The beams associated with 702 and 703) are directed to a particular facet of 稜鏡 705, as shown in Figure 7A. The 稜鏡 705 then directs each beam to a separate detector. FIG. 7B shows scanning of light spots 701, 702, and 703 during operation of the associated inspection system. The 稜鏡 705 (which is part of the collector) utilizes an offset shown in Figures 7A and 7B (the offset is generated by a grating of a part of the illumination system) to desirably increase light spot isolation. Therefore, referring back to FIG. 6B, rotating a grating will cause the light spots 701, 702, and 703 (and their associated scans) to no longer be co-linear along the x-axis (i.e., they will instead be offset in a horizontal plane (Shift scan to form a diagonal line). Unfortunately, the 稜鏡 705 is designed for a specific magnification. Therefore, if you change the magnification, you must use another frame to add the cost and design complexity of the inspection system. The accurate detection of defects on the surface of a sample depends on the correct measurement and analysis of each light spot in the scan. Therefore, there is a need to optimize the technology and system using AOD, which ensures the isolation of these light spots, thereby minimizing crosstalk, while minimizing system complexity and cost.

本發明闡述一種掃描一樣本之方法。在此方法中,同時形成複數個共線性掃描。每一掃描係藉由一聲光裝置(AOD)進行一光點之一掃掠而形成。該等共線性掃描藉由一預定間隔而分離。藉由在垂直於該複數個共線性掃描之一方向上重複該同時形成該等共線性掃描而形成第一複數個掃描帶。該第一複數個掃描帶具有與該預定間隔相同之一掃描帶間間隔。 在一項實施例中,該預定間隔係一掃描長度。在另一實施例中,該預定間隔係整數個掃描長度。在又一實施例中,可調整一AOD參數以提供整數個掃描長度作為該預定間隔。 該方法可進一步包含毗鄰於該第一複數個掃描帶形成第二複數個掃描帶。在一項實施例中,毗鄰於除該第一複數個掃描帶之一底半部之外的所有該第一複數個掃描帶形成該第二複數個掃描帶。可在與該第一複數個掃描帶之方向相反之一方向上或在與該第一複數個掃描帶之方向相同之一方向上執行形成該第二複數個掃描帶。 闡述另一種執行一樣本之一掃描之方法。在此方法中,使用一可調整放大率改變器提供一光點大小及一第一掃描長度,藉由一繞射光學元件(DOE)路徑提供一光點分離,且藉由一可程式化聲光裝置(AOD)基於該第一掃描長度提供一第二掃描長度。可使用該光點大小、該光點分離及該第二掃描長度來執行該掃描。 亦闡述一種檢驗系統。此檢驗系統包含第一及第二AOD、一透鏡、一放大率改變器、一第一繞射光學元件(DOE)路徑及一可移動平台。該第一AOD經組態以自一雷射接收一光束且沿著一角度掃描以各種角度引導該光束。該透經組態以將該角度掃描轉換為一線性掃描。該第二AOD經組態以在該線性掃描中接收該光束且產生一掃描,該掃描係一光點之一掃掠,藉此產生複數個共線性光點。該放大率改變器經組態以調整該複數個共線性光點之放大率,藉此產生複數個經調整共線性光點。該第一DOE路徑經組態以複製該複數個經調整共線性光點,藉此產生其間具有一預定間隔之一組共線性掃描。該可移動平台系統經組態以固定一樣本且藉由在該第一DOE路徑產生複數個組之該等共線性掃描時在垂直於該等共線性掃描之一方向上移動來形成第一複數個掃描帶。此移動形成毗鄰組之該等共線性掃描。該第一複數個掃描帶具有等於該預定間隔之一掃描帶間間隔。 該移動平台系統進一步經組態以在平行於該等共線性掃描之一方向上步進且憑藉該第一DOE路徑產生第二複數個掃描帶。在一項實施例中,該第二複數個掃描帶毗鄰於該第一複數個掃描帶而形成。在另一實施例中,該第二複數個掃描帶毗鄰於除該第一複數個掃描帶之一底半部之外的該第一複數個掃描帶而形成。 該預定間隔可係一掃描長度、整數個掃描長度或非整數個掃描。在一項實施例中,該第二AOD係可程式化的以提供用於該第二複數個掃描帶之一可調整掃描長度。 該第二複數個掃描帶可係在與該第一複數個掃描帶之方向相反之一方向上或在與該第一複數個掃描帶之方向相同之一方向上形成的。 該第一DOE路徑係用於法向入射照射或傾斜入射照射。在一項實施例中,該檢驗系統進一步包含:一第二DOE路徑;及一切換組件,其經組態以將該複數個共線性光點引導至該第一DOE路徑及該第二DOE路徑中之一者。 該檢驗系統可進一步包含一歪像束腰中繼器,該歪像束腰中繼器經定位以自該雷射接收該光束且經組態以允許對兩個獨立軸做出調整。 當該雷射包含一個硼酸鋇雷射倍增晶體時,該檢驗系統可進一步包含具有一狹縫之一光束塑形器。該檢驗系統可進一步包含:一光瞳;及一或多個切趾板,其經置放而與該光瞳成操作關係且經組態以將一預定透射輪廓(例如,在x軸及y軸上)提供至該複數個共線性光點。在一項實施例中,該光瞳相對於該第一DOE路徑之物鏡偏心。該檢驗系統亦可包含定位於該放大率改變器與該第一DOE路徑之間的一入射角鏡。該入射角鏡可經組態以調整至該樣本之一入射角。The present invention describes a method for scanning a sample. In this method, a plurality of collinear scans are formed simultaneously. Each scan is formed by an acousto-optic device (AOD) scanning one spot by one spot. The collinear scans are separated by a predetermined interval. The first plurality of scanning bands are formed by repeating the simultaneous formation of the collinear scans in a direction perpendicular to one of the plurality of collinear scans. The first plurality of scanning bands have an interval between scanning bands which is the same as the predetermined interval. In one embodiment, the predetermined interval is a scan length. In another embodiment, the predetermined interval is an integer number of scan lengths. In another embodiment, an AOD parameter can be adjusted to provide an integer number of scan lengths as the predetermined interval. The method may further include forming a second plurality of scan zones adjacent to the first plurality of scan zones. In one embodiment, all of the first plurality of scanning bands adjacent to the bottom half of the first plurality of scanning bands form the second plurality of scanning bands. Forming the second plurality of scanning bands may be performed in a direction opposite to the direction of the first plurality of scanning bands or in the same direction as the direction of the first plurality of scanning bands. Describe another way to perform a scan of a sample. In this method, an adjustable magnification changer is used to provide a spot size and a first scan length, a spot separation is provided by a diffractive optical element (DOE) path, and a programmable sound is provided by a The optical device (AOD) provides a second scan length based on the first scan length. The scan can be performed using the spot size, the spot separation, and the second scan length. A test system is also described. The inspection system includes first and second AODs, a lens, a magnification changer, a first diffractive optical element (DOE) path, and a movable platform. The first AOD is configured to receive a light beam from a laser and guide the light beam at various angles along an angle scan. The transmission is configured to convert the angular scan into a linear scan. The second AOD is configured to receive the beam and generate a scan in the linear scan, the scan being a sweep of one light spot, thereby generating a plurality of collinear light spots. The magnification changer is configured to adjust the magnification of the plurality of collinear points, thereby generating a plurality of adjusted collinear points. The first DOE path is configured to duplicate the plurality of adjusted collinear light spots, thereby generating a set of collinear scans with a predetermined interval therebetween. The movable platform system is configured to fix a sample and form a first plurality by moving in a direction perpendicular to the collinear scans when generating a plurality of sets of the collinear scans on the first DOE path. Scanning tape. This movement forms the collinear scans of adjacent groups. The first plurality of scanning bands have an interval between scanning bands equal to one of the predetermined intervals. The mobile platform system is further configured to step in a direction parallel to one of the collinear scans and generate a second plurality of scan bands by virtue of the first DOE path. In one embodiment, the second plurality of scanning bands are formed adjacent to the first plurality of scanning bands. In another embodiment, the second plurality of scanning bands are formed adjacent to the first plurality of scanning bands except for a bottom half of the first plurality of scanning bands. The predetermined interval may be a scan length, an integer scan length, or a non-integer scan. In one embodiment, the second AOD is programmable to provide an adjustable scan length for one of the second plurality of scan bands. The second plurality of scanning bands may be formed in a direction opposite to the direction of the first plurality of scanning bands or in a direction same as the direction of the first plurality of scanning bands. The first DOE path is used for normal incident illumination or oblique incident illumination. In one embodiment, the inspection system further includes: a second DOE path; and a switching component configured to guide the plurality of collinear light spots to the first DOE path and the second DOE path One of them. The inspection system may further include an anamorphic beam waist repeater positioned to receive the beam from the laser and configured to allow adjustments to two independent axes. When the laser includes a barium borate laser multiplier crystal, the inspection system may further include a beam shaper having a slit. The inspection system may further include: a pupil; and one or more apodizing plates that are placed in operative relationship with the pupil and configured to project a predetermined transmission profile (e.g., on the x-axis and y On the axis) to the plurality of collinear light spots. In one embodiment, the pupil is eccentric with respect to the objective lens of the first DOE path. The inspection system may also include an incident angle mirror positioned between the magnification changer and the first DOE path. The angle of incidence mirror can be configured to adjust to an angle of incidence of the sample.

圖8A圖解說明經組態以產生多個光點並使其跨越一樣本810 (諸如一晶圓)掃描之一經改良雙AOD照射系統800。一預掃描AOD 801用於使來自一光源800之入射光以一角度偏轉,其中該角度與射頻(RF)驅動源之頻率成比例。一望遠透鏡802用於將來自預掃描AOD 801之角度掃描轉換成一線性掃描。 一啁啾AOD 804用於使聲傳播平面中之入射光束聚焦至一掃描平面805上。此藉由憑藉換能器804A使穿過所有RF頻率之斜變比彼等頻率可全部傳播穿過啁啾AOD 804更快而達成。此快速斜變形成一啁啾封包804B。啁啾封包804B然後以聲速傳播穿過啁啾AOD 804。啁啾封包804B之位置在光點掃掠期間跨越啁啾AOD 804傳播(例如,參見圖1B及圖1C之一類似移動)。應注意,在此傳播期間,預掃描AOD 801調整其RF頻率以追蹤AOD 804中之啁啾封包以使光束保持入射於啁啾封包804B上。 一圓柱透鏡803用於使光束聚焦於垂直於聲傳播平面之一平面中。一中繼透鏡806用於在一光瞳平面806A處產生一實光瞳。一放大率改變器807用於調整光點之大小及掃掠之長度。值得注意地,一繞射光學元件(DOE) 808定位於放大率改變器807之後及一物鏡809之前。DOE 808藉由放大率改變器807形成光點輸出之兩個複本,而不改變光點間隔,如下文所闡述。雖然圖8A展示由DOE 808產生三個光點,但其他實施例可具有不同數目個光點。物鏡809用於使多個光點同時聚焦至樣本810上。 圖8B針對照射系統800圖解說明改變放大器改變器807之放大率對樣本810上之光點大小及光點間隔之影響。應注意,不同填充色彩指示不同光點(且對應於圖8A之不同線色彩)。如圖8B中所展示,大光點820及小光點821兩者可具有與三個位置1、3及5相關聯之等同間隔。 圖9A圖解說明三個大光點901、902及903 (對應於圖8B中所展示之光點820)在時間T1 與T4 之間的例示性掃描。圖9A將光點901、902及903之掃掠分別表示為方框911、912及913。圖9B圖解說明三個小光點921、922及923 (對應於圖8B中所展示之光點821)在時間T1 與T4 之間的例示性掃描。圖9B將光點921、922及923之掃描分別表示為方框931、932及933。圖9C展示位置1中之大光點901掃描至位置5,位置9中之大光點902掃描至位置13,且位置17中之大光點903掃描至位置21。相比而言,位置2中之小光點921掃描至位置4,位置10中之小光點922掃描至位置12,且位置18中之小光點923掃描至位置20。因此,三個小光點之掃描可「嵌套」於三個大光點之掃描中。亦即,掃描931、932、933可分別嵌套於掃描911、912及913中。如圖9C中所展示,當收集光學器件經設計以自低放大率組態(大光點)收集光時,其將預設地自高放大率組態(小光點)收集光。 圖10A及圖10B圖解說明在一照射系統中之各種點處針對大光點與小光點之一光點大小及掃描大小比較。如所展示,晶片AOD 804 (參見圖8)產生具有相同光點大小及掃描大小之光點;然而,放大率改變器807改變光點大小及掃描大小兩者。在一項實施例中,大光點及小光點兩者之大小減小;然而,放大率改變器807在此載台處形成大光點與小光點之間的一大小差。應注意,放大率亦改變影像定向(由在掃描中自一側至另一側之光點位置切換展示),此對於一放大器係典型的。DOE 808形成光點之複本,其中如上所述,大光點與小光點之間的掃描位置係相同的,但針對大光點與小光點,掃描之間的間隔不同。具體而言,小光點掃描之間的間隔大於大光點掃描之間的間隔。 圖11A至圖11D圖解說明用於使用圖10B之小光點進行掃描之一技術。值得注意地,此技術可用於法向入射照射以及傾斜入射照射兩者。在此實施例中,完成之掃描(為簡單起見展示兩個光點)形成一共線性虛線。亦即,參考圖11A,掃描1101及1102 (在此情形中自底部至頂部形成)在其間具有一間隔S1。因此,確保了光束之一大空間分離。在一項實施例中,垂直地形成掃描(如所展示)且水平地形成掃描帶。舉例而言,參考圖11B,可藉由以一自左向右移動分別重複掃描1101及1102來形成掃描帶1111及1112。在形成掃描帶(其間具有對應空間S,本文中亦稱為空白區)之後,可在與用於形成先前組掃描帶之方向相反之一方向上以該等空間/空白區形成另一組掃描帶。舉例而言,可自右向左形成掃描帶1120及1121 (為清晰起見僅展示為部分掃描帶),而自左向右形成掃描帶1101及1102 (參見圖11A之箭頭及圖11B中之所得掃描帶)。在一項實施例中,可使定位晶圓之一載台步進(例如)一個掃描光束以形成每一新掃描(亦即,光點行)。在掃描帶交錯完成之後,可以類似於圖11A至圖11C中所闡述之方式之一方式形成額外交錯掃描帶以提供一樣本之一完整掃描,如圖11D (其採取一3光點DOE)中所展示。 應注意,間隔S1可經設計以適合整數個掃描,藉此確保在無複製資訊之情形下對晶圓之一完整掃描。在一項實施例中,可使用下文參考圖14所闡述之一可程式化AOD之一啁啾參數來調整此掃描帶間間隔。由於間隔S1大於一個掃描長度,因此可在做出一個大垂直調整之前做出幾個小垂直調整(例如,一個掃描長度)以形成必要填補掃描帶。 圖12A及圖12B圖解說明在另一照射系統中之各種點處針對大光點與小光點之一光點大小及掃描大小比較。在此實施例中,可使用具有軟體控制之一可程式化AOD 804A。若期望,則此軟體控制允許選擇性地產生一較長掃描。然而,放大率改變器807及DOE 808之功能與上文所闡述之功能相同。亦即,晶片AOD 804 (參見圖8)產生具有相同光點大小及掃描大小之光點;然而,放大率改變器807改變光點大小及掃描大小兩者。DOE 808形成光點之複本。值得注意地,藉由使用可程式化AOD 804A,可增加掃描大小(而非光點大小)。因此,DOE 808可產生其間具有較小間隔之掃描。圖12C展示位置1中之小光點1201掃描至位置5,位置9中之小光點1202掃描至位置13,且位置17中之小光點1203掃描至位置21。值得注意地,掃描1210 (包含光點1201)、1211 (包含光點1202)及1212 (包含光點1203)在其間具有准許確切地一個掃描長度之一間隔。可利用此間隔,如下文所闡述。 應注意,當比較圖10B與圖12B時,包含圖12B之組態之一檢驗系統之處理量將較大。具體而言,實際掃描速率將係相同的。掃描速率與掃描光點之大小及掃描光點之速度成比例。在圖10B及圖12B中,光點之大小及速度係相同的。然而,針對圖12B之組態XY載台將係較慢的,亦即,該設置必定較長,此乃因其仍必須等待較長掃描完成。另外,針對圖12B,掃描帶之高度係較大的,如圖10A、圖10B、圖12A及圖12B中所展示之每段之像素數目所指示,在此實施例中其係每掃描皆650個像素,惟圖12B之組態外,其係每掃描1950個像素。應注意,當提供一較大光點大小時,產生一對應較快速度,且一較小光點大小對應於一較慢速度。因此,在圖10A及圖10B中,大光點行進其掃描所花費之時間量與小光點行進其掃描所花費之時間量相同。然而,參考圖12A及圖12B,由於掃描大小較大(亦即,掃描長度較長),則與大光點行進其掃描所花費之時間相比,小光點行進其掃描所花費之時間較長(1950個像素對650個像素)。處理量基於可多快地掃描晶圓之一特定區域,此將由掃描之速度及光點大小決定。使XY載台開始及停止以形成掃描帶係附加項,此乃因光點掃描並非係在彼等時期期間進行的。因此,藉由減少掃描帶之數目且因此減少必須使XY載台停止及開始之次數來減少附加項改良檢驗系統之處理量,如圖12B所圖解說明。此外,在掃描之間設置預掃描AOD及其他各種電子器件亦花費時間。因此,可藉由延長掃描來避免甚至更多附加項,例如,如圖12B中所展示。峰值資料速率始終係在光點正移動時數位化像素之速率。因此,針對圖10A、圖10B、圖12A及圖12B中所展示之組態中之任一者,峰值資料速率係相同的。然而,平均資料速率(其始終低於峰值資料速率)將基於附加項而變化。因此,圖12B中所展示之組態提供圖10A、圖10B、圖12A及12B中所展示之組態中之最快平均資料速率(且最接近於峰值資料速率)。 圖13A至圖13D圖解說明用於使用圖12B之小光點進行掃描之一技術。在此實施例中,完成之掃描(為簡單起見展示三個光點)亦形成一共線性虛線,其中掃描之間具有小空間。亦即,參考圖13A,掃描1301及1302 (在此情形中自底部至頂部形成)在其間具有一間隔S2。間隔S2小於間隔S1,然而,仍確保使用間隔S2對光束之充足空間分離。間隔S1及間隔S2由啁啾AOD中之掃描之長度控制,且在間隔等於掃描之長度(掃描大小)時得以最佳化。 在一項實施例中,垂直地形成掃描(如所展示)且水平地形成掃描帶。舉例而言,參考圖13B,可藉由以一自左向右移動分別重複掃描1301、1302及1303來形成掃描帶1310、1311及1312。在形成掃描帶(其間具有對應空間S2)之後,可在與用於形成先前組掃描帶之方向相反之一方向上以該等空間/空白區形成另一組掃描帶。舉例而言,可自右向左形成掃描帶1320、1321及1322 (為清晰起見僅展示為部分掃描帶),而以一自左向右圖案形成掃描帶1310、1311及1312 (參見圖13A之箭頭及圖13B中之所得掃描帶)。再次,可使定位晶圓之一載台步進(例如)一個掃描光束。在掃描帶交錯完成之後,可以類似於圖13A至圖13C中所闡述之方式之一方式形成額外交錯掃描帶以提供一樣本之一完整掃描。由於間隔S2等於一個掃描長度,因此可在做出一個大垂直調整之前做出一個小垂直調整(例如,一個掃描長度或若干掃描光束)以形成必要填補掃描帶。在圖13D中所展示之一項實施例中,載台可步進5個掃描光束(例如,視域(FOV)之1 2/3)。在另一實施例中,且參考圖13B,代替在完成掃描帶1310、1311及1312之後向上移動一個掃描長度,下一及所有後續垂直調整可係由箭頭1350展示之調整。應注意,此填補圖案取決於光點之數目,例如,針對一5光點圖案,留下2個空白區;針對一7光點圖案,留下3個空白區。因此,一般而言,毗鄰於除第一複數個掃描帶之一底半部之外的所有第一複數個掃描帶形成第二複數個掃描帶。此填補圖案提供完整涵蓋,惟掃描帶1310與1311之間的空間除外。在此組態中,掃描帶1311將然後指定晶圓上之第一所關注區域。此技術可應用於利用更多光點之其他組態。 圖14圖解說明可將經散射光與多個光點隔離之一例示性檢驗系統1400。值得注意地,系統1400可使用法向入射照射或傾斜入射照射。如熟習此項技術者所已知,某些缺陷最佳係使用法向入射照射來照射而其他缺陷最佳係使用傾斜入射照射來照射。值得注意地,多個收集器1430A、1430B、1430C可在不重新組態之情形下使用法向入射照射或傾斜入射照射收集來自一樣本1421 (諸如一晶圓)之經散射光。具體而言,如下文進一步詳細地闡述,收集器1430A、1430B及1430C中不需要放大率改變,此乃因照射光學器件係如圖9C所闡述而組態以使所有光點重疊。 在檢驗系統1400中,可將來自一雷射1401之光引導至一歪像束腰中繼器(AWR) 1402。可包含柱狀透鏡、稜鏡、光柵或球面組件(機動或非機動)之AWR 1402提供對光點大小做出調整以考量到雷射束腰參數之變化以及系統製作及對準公差之能力。一項較佳實施例利用允許對兩個獨立軸做出調整之歪像組件。AWR 1402將其輸出提供至一準直透鏡1403。 準直透鏡1403將其輸出提供至一光束塑形器1405。光束塑形器1405用於在一預掃描AOD 1406之入口處調整光束之大小。此外,若雷射1401包含一雷射BBO (硼酸鋇)倍增晶體,則由於該BBO晶體,光束塑形器1405亦可包含一狹縫以調節該光束。光束塑形器1405中之此狹縫可實施為一標準狹縫或可包含一或多個切趾板或鋸齒狀狹縫以改良其功能。 光束塑形器1405將其輸出提供至預掃描AOD 1406。預掃描AOD 1406在偏轉模式中使用且連同望遠透鏡1407及歪像擴束器1408一起使用以相對於一啁啾AOD 1409定位光束並使該光束掃描。預掃描AOD 1406使雷射光束掃描通過一角度。一透鏡1407將來自預掃描AOD 1406之角度掃描轉換成一線性平移掃描。透鏡1407可實施為一望遠鏡、擴束器、中繼透鏡、聚焦透鏡、物鏡或此項技術中已知之任何其他適當光學組件。一歪像擴束器1408用於將來自預掃描AOD 1406及望遠鏡1407之圓形輸出轉換成一橢圓形狀。歪像擴束器1408可包含柱狀透鏡、稜鏡、光柵或球面組件。應注意,由歪像擴束器1408提供之橢圓形光束對於適應啁啾AOD 1409之製作中之限制(具體而言,繞射聲柱之高度)可係必需的。 啁啾AOD 1409用於使雷射光束在聲傳播方向上聚焦並使雷射光束掃描。啁啾AOD 1409之一換能器經組態以產生一信號,該信號產生在一啁啾AOD 1409之長度上自一開始位置傳播至一結束位置之一啁啾封包。在一項較佳實施例中,啁啾AOD 1409及預掃描AOD 1406可以軟體程式化以改良系統處理量,如上文在圖12A及圖12B中所闡述。 可將啁啾AOD 1409之輸出提供至組件1410 (諸如一圓柱透鏡、一中繼透鏡、多個視野光闌/狹縫及偏光組件)。圓柱透鏡用於使掃描光束在垂直於啁啾AOD 1409之掃描運動之軸上聚焦。中繼透鏡用於在下游組件1414及1413 (下文所闡述)之位置處形成一實光瞳。該等視野光闌及狹縫用於濾除來自啁啾AOD 1409及預掃描AOD 1406之不期望繞射階以及濾除來自其他組件(雷射1401至組件1410)之任何不期望經散射光。另外,該等狹縫用作視野光闌以適應所需線長度之改變。該等偏光組件可包含用以既過濾一特定偏光又產生一特定偏光之組件,諸如一布魯斯特(Brewster)板偏光器、一線柵偏光器、一稜鏡或提供類似功能性之任何其他組件。該等偏光組件亦可包含用以變更偏光之組件,諸如一半波板、四分之一波板或提供類似功能性之其他板。此等偏光組件用於提供用於檢驗基板之多個偏光選項。 組件1410將其輸出提供至一或多個切趾板1413。切趾板1413用於回應於由正檢驗之樣本提供之挑戰而改變系統光學點擴展函數之形狀。可透過使用鋸齒狀薄片金屬組件、點密度組件、塗層或此項技術中已知之其他方法來達成切趾功能。在一項實施例中,切趾板1413可在X軸及Y軸上具有對點擴展函數之獨立控制。 切趾板1413將其輸出提供至一個零階過濾狹縫1414。狹縫1414用於自光學路徑移除零階。零階狹縫1414將其輸出提供至一放大率改變器1415。放大率改變器1415用於調整總體照射光學器件系統放大率。如此一來,此改變樣本1421處之光點之大小、光點速度及掃描長度。 一入射角鏡1416係用於改變至晶圓之入射角之一可調整鏡。當系統放大率係小且光點大小係大時,光瞳之所得數值孔徑(NA)係小的。因此,入射角鏡1416可經調整以增加檢驗光束之入射角(自晶圓法線)。當系統放大率係大且光點大小係小時,入射角鏡經定位以減小檢驗光束之入射角(自晶圓法線)。此可調整性提供過濾重複結構、檢驗速度及缺陷信號雜訊比之益處。 入射角鏡1416將其輸出提供至一光束分流器1417。光束分流器1417用於在傾斜入射照射路徑、法向入射照射路徑或傾斜及法向入射路徑之間進行選擇。 在傾斜入射路徑中,光束分流器1417將其輸出提供至一DOE 1418。DOE 1418用於形成掃描光束之多個複本,如先前所闡述。 DOE 1418將其輸出提供至一傾斜固定放大鏡(Oblique fixed magnification) 1419。傾斜固定放大鏡1419用於將DOE 1418位置處之實光瞳成像至一物鏡1420之入射光瞳。物鏡1420用於使光束聚焦至正檢驗之基板上。 在法向入射路徑中,光束分流器1417將其輸出提供至一轉向鏡1425。轉向鏡1425將其輸出提供至法向入射歪像擴束器1426。歪像擴束器1426可包含柱狀透鏡、稜鏡、光柵或球面組件。歪像擴束器1426用於在一個軸上擴張光束或相反地在一個軸上縮小光束。此擴張/縮小靈活性提供過濾重複結構、檢驗速度及缺陷信號雜訊比之益處。 歪像擴束器1426將其輸出提供至一法向入射DOE 1427。法向入射DOE 1427用於形成掃描光束之多個複本,如先前所闡述。 法向入射DOE 1427將其輸出提供至一法向入射固定放大鏡1428。法向入射固定放大鏡1428用於將DOE 1427之位置處之實光瞳成像至一物鏡1422之入射光瞳。物鏡1422用於使光點聚焦至樣本上以用於法向入射通道。 法向入射固定放大鏡1428透過一轉向鏡將其輸出提供至一NI (法向入射)光束塑形器改變器1429。NI光束塑形器改變器1429用於多個功能。其具有用作孔隙、鏡及分束器之多個板。此等分束器可經組態以具有透射與反射之多個比率(例如,50/50、100/0、80/20等)。此等分束器亦可在一空間意義上具有多個透射與反射輪廓以達成一收集通道1430A之各種組態。經散射光之收集並不限於通過法向入射物鏡1422之光。亦可透過額外收集通道1430B及1430C來達成自晶圓收集光。 樣本1421可由一可移動平台1431固定。在一項實施例中,可移動平台1431可包含一卡盤、至少一線性馬達(提供x-y移動)及一心軸馬達(提供旋轉)(選用)。可移動平台1431可由一中央控制與資料獲取電腦1432經由一馬達控制線纜1433來控制。應注意,可移動平台1431正垂直於掃描(亦即,光點之掃掠)之方向移動。在一項較佳實施例中,可移動平台1431可連續地移動,此乃因掃描相對於平台之速度要快得多(例如,針對一掃描大約數微秒對針對平台為數秒)。中央控制與資料獲取電腦1432可自收集器1430A、1430B及1430C接收輸入。 如圖15A及圖15B中所展示,一入射角調整器1501協同放大率改變器一起使用以提供至基板1504之多個傾斜入射角。圖15A圖解說明用於低放大率、大光點、低NA (由1502A指示)組態之一選用組態。在此情形中,使調整器1501移動(展示為降低而較靠近物鏡1503)以提供至基板1504之一較高入射角。圖15B展示高放大率、小光點、高NA (由1502B指示)組態,其中調整器1501處於其正常位置中。此位置可用於所有放大率選項。 如上文所闡述,可程式化啁啾AOD及定位於放大率改變器之後的DOE在一第一方向(在此情形中,為垂直)上形成掃描,而可移動平台1431及中央控制與資料獲取電腦1432在垂直於第一方向之一第二方向(在此情形中,一水平方向)上形成掃描之掃描帶。掃描光點之數目等於掃描帶之數目。包含此組態之一檢驗系統可提供毗鄰共線性掃描之間的靈活間隔以消除光點串擾。此外,由於DOE提供光點之間的間隔,因此可使用低廉的非成像收集器。 上文所闡述之本發明之結構及方法之各種實施例僅係對本發明之原理之說明且不意欲將本發明之範疇限於所闡述之特定實施例。舉例而言,雖然該等實施例係與預定數目個光點一起闡述的,但一照射系統或一檢驗系統之其他實施例可包含不同數目個光點。因此,本發明僅由以下申請專利範圍及其等效內容限制。8A illustrates one modified dual AOD illumination system 800 configured to generate multiple light spots and scan across a sample 810 (such as a wafer). A pre-scanned AOD 801 is used to deflect incident light from a light source 800 at an angle, where the angle is proportional to the frequency of a radio frequency (RF) drive source. A telephoto lens 802 is used to convert the angular scan from the pre-scanned AOD 801 into a linear scan. A stack of AOD 804 is used to focus the incident light beam in the sound propagation plane onto a scanning plane 805. This is achieved by using the transducer 804A to make the ramp through all RF frequencies faster than when all frequencies can propagate through the 啁啾 AOD 804. This rapid ramping forms a packet 804B. The radon packet 804B then propagates through the radon AOD 804 at the speed of sound. The location of the radon packet 804B propagates across the radon AOD 804 during the spot sweep (see, for example, see one of Figures 1B and 1C for a similar movement). It should be noted that during this propagation, the pre-scanned AOD 801 adjusts its RF frequency to track the puppet packet in AOD 804 so that the beam remains incident on the puppet packet 804B. A cylindrical lens 803 is used to focus the light beam in a plane perpendicular to the sound propagation plane. A relay lens 806 is used to generate a real pupil at a pupil plane 806A. A magnification changer 807 is used to adjust the size of the light spot and the length of the sweep. Notably, a diffractive optical element (DOE) 808 is positioned after the magnification changer 807 and before an objective lens 809. DOE 808 uses the magnification changer 807 to form two copies of the light spot output without changing the light spot interval, as explained below. Although FIG. 8A shows that three light spots are generated by DOE 808, other embodiments may have a different number of light spots. The objective lens 809 is used to focus a plurality of light spots on the sample 810 at the same time. FIG. 8B illustrates the effect of changing the magnification of the amplifier changer 807 on the spot size and spot spacing on the sample 810 for the illumination system 800. It should be noted that different fill colors indicate different light points (and correspond to different line colors of FIG. 8A). As shown in FIG. 8B, both the large light spot 820 and the small light spot 821 may have equivalent intervals associated with the three positions 1, 3, and 5. FIG 9A illustrates three large light spots 901, 902 and 903 (corresponding to the light spot 820 shown in Figure 8B of) an exemplary scanning between times T 1 and T 4 in. FIG. 9A shows the sweeps of light spots 901, 902, and 903 as blocks 911, 912, and 913, respectively. Figure 9B illustrates three small point of light 921, 922 and 923 (corresponding to the light spot 821 shown in Figure 8B of) at time T 1 and the exemplary scanning between 4 T. FIG. 9B shows the scans of the light spots 921, 922, and 923 as boxes 931, 932, and 933, respectively. FIG. 9C shows that the large light spot 901 in position 1 is scanned to position 5, the large light spot 902 in position 9 is scanned to position 13, and the large light spot 903 in position 17 is scanned to position 21. In contrast, the small light spot 921 in position 2 is scanned to position 4, the small light spot 922 in position 10 is scanned to position 12, and the small light spot 923 in position 18 is scanned to position 20. Therefore, a scan of three small light spots can be "nested" in a scan of three large light spots. That is, scans 931, 932, and 933 may be nested in scans 911, 912, and 913, respectively. As shown in FIG. 9C, when the collection optics are designed to collect light from a low magnification configuration (large light spot), it will preset to collect light from a high magnification configuration (small light spot). FIG. 10A and FIG. 10B illustrate comparison of a light spot size and a scan size for a large light spot and a small light spot at various points in an illumination system. As shown, wafer AOD 804 (see FIG. 8) produces light spots with the same spot size and scan size; however, the magnification changer 807 changes both the spot size and scan size. In one embodiment, the size of both the large light spot and the small light spot is reduced; however, the magnification changer 807 forms a size difference between the large light spot and the small light spot at the stage. It should be noted that the magnification also changes the orientation of the image (switching the display from the position of the light spot from one side to the other during scanning), which is typical for an amplifier system. DOE 808 forms a duplicate of the light spot. As described above, the scanning position between the large light spot and the small light spot is the same, but the interval between scans is different for the large light spot and the small light spot. Specifically, the interval between small light spot scans is larger than the interval between large light spot scans. 11A to 11D illustrate one technique for scanning using the small light spot of FIG. 10B. Notably, this technique can be used for both normal incidence and oblique incidence illumination. In this embodiment, the completed scan (showing two light spots for simplicity) forms a collinear dashed line. That is, referring to FIG. 11A, scans 1101 and 1102 (formed from bottom to top in this case) have a space S1 therebetween. Therefore, a large spatial separation of one of the light beams is ensured. In one embodiment, the scans are formed vertically (as shown) and the scan bands are formed horizontally. For example, referring to FIG. 11B, the scanning strips 1111 and 1112 can be formed by repeating scanning 1101 and 1102 with a movement from left to right, respectively. After forming a scanning zone (with a corresponding space S therebetween, also referred to herein as a blank area), another group of scanning zones can be formed in such a space / blank area in a direction opposite to the direction used to form the previous group of scanning zones . For example, scanning bands 1120 and 1121 can be formed from right to left (shown as partial scanning bands for clarity), and scanning bands 1101 and 1102 can be formed from left to right (see arrows in FIG. 11A and FIG. 11B). Scanning tape obtained). In one embodiment, one of the stages of the positioning wafer may be caused to step, for example, one scan beam to form each new scan (i.e., a row of light spots). After the scanning band interleaving is completed, an additional interlaced scanning band may be formed in a manner similar to that illustrated in FIGS. 11A to 11C to provide a complete scan of the sample, as shown in FIG. 11D (which takes a 3-point DOE) As shown. It should be noted that the interval S1 can be designed to fit an integer number of scans, thereby ensuring a complete scan of one of the wafers without copying information. In one embodiment, one of the programmable AOD parameters described below with reference to FIG. 14 can be used to adjust the interval between the scanning bands. Since the interval S1 is larger than one scan length, several small vertical adjustments (for example, one scan length) can be made before a large vertical adjustment is made to form the necessary fill scan band. FIG. 12A and FIG. 12B illustrate comparison of a light spot size and a scan size for one of a large light spot and a small light spot at various points in another illumination system. In this embodiment, a programmable AOD 804A with software control can be used. If desired, this software control allows selectively generating a longer scan. However, the functions of the magnification changer 807 and DOE 808 are the same as those explained above. That is, the wafer AOD 804 (see FIG. 8) generates light spots having the same light spot size and scan size; however, the magnification changer 807 changes both the light spot size and the scan size. DOE 808 forms a copy of the light spot. Notably, by using the programmable AOD 804A, the scan size (instead of spot size) can be increased. Therefore, DOE 808 can produce scans with a small interval between them. FIG. 12C shows that the small light spot 1201 in position 1 is scanned to position 5, the small light spot 1202 in position 9 is scanned to position 13, and the small light spot 1203 in position 17 is scanned to position 21. Notably, scans 1210 (including light spot 1201), 1211 (including light spot 1202), and 1212 (including light spot 1203) have an interval between them that allows exactly one scan length. This interval can be utilized as explained below. It should be noted that when comparing FIG. 10B and FIG. 12B, the processing capacity of one inspection system including the configuration of FIG. 12B will be larger. Specifically, the actual scan rate will be the same. The scanning rate is proportional to the size of the scanning spot and the speed of the scanning spot. In FIGS. 10B and 12B, the size and speed of the light spots are the same. However, the XY stage for the configuration of FIG. 12B will be slower, that is, the setting must be longer because it still has to wait for longer scans to complete. In addition, for FIG. 12B, the height of the scanning band is relatively large, as indicated by the number of pixels in each segment shown in FIGS. 10A, 10B, 12A, and 12B. In this embodiment, it is 650 per scan. The number of pixels, except for the configuration of FIG. 12B, is 1950 pixels per scan. It should be noted that when a larger spot size is provided, a corresponding faster speed is generated, and a smaller spot size corresponds to a slower speed. Therefore, in FIGS. 10A and 10B, the amount of time it takes for a large light spot to travel its scan is the same as the amount of time it takes for a small light spot to travel its scan. However, referring to FIG. 12A and FIG. 12B, since the scan size is large (that is, the scan length is longer), compared with the time spent by a large light spot to travel its scan, the time taken by a small light spot to travel its scan is longer. Long (1950 pixels vs. 650 pixels). The throughput is based on how quickly a specific area of the wafer can be scanned, which will be determined by the scanning speed and spot size. Starting and stopping the XY stage to form a scanning strip system add-on is because the light spot scanning is not performed during their period. Therefore, by reducing the number of scanning bands and therefore the number of times the XY stage must be stopped and started, the throughput of the additional improved inspection system is reduced, as illustrated in FIG. 12B. In addition, it takes time to set up prescan AOD and various other electronic devices between scans. Therefore, even more additional items can be avoided by extending the scan, for example, as shown in Figure 12B. The peak data rate is always the rate at which a pixel is digitized when the light spot is moving. Therefore, the peak data rate is the same for any of the configurations shown in FIGS. 10A, 10B, 12A, and 12B. However, the average data rate (which is always lower than the peak data rate) will vary based on additional terms. Therefore, the configuration shown in FIG. 12B provides the fastest average data rate (and closest to the peak data rate) in the configurations shown in FIGS. 10A, 10B, 12A, and 12B. 13A to 13D illustrate one technique for scanning using the small light spot of FIG. 12B. In this embodiment, the completed scan (three light spots are shown for simplicity) also forms a collinear dashed line, with a small space between the scans. That is, referring to FIG. 13A, scans 1301 and 1302 (formed from bottom to top in this case) have a space S2 therebetween. The interval S2 is smaller than the interval S1, however, it is still ensured that a sufficient space of the light beam is separated using the interval S2. The interval S1 and the interval S2 are controlled by the scan length in the AOD, and are optimized when the interval is equal to the scan length (scan size). In one embodiment, the scans are formed vertically (as shown) and the scan bands are formed horizontally. For example, referring to FIG. 13B, the scanning strips 1310, 1311, and 1312 can be formed by repeatedly scanning 1301, 1302, and 1303 with a movement from left to right. After the scanning bands are formed with the corresponding space S2 therebetween, another group of scanning bands can be formed in such a space / blank area in a direction opposite to the direction used to form the previous group of scanning bands. For example, scanning bands 1320, 1321, and 1322 can be formed from right to left (shown as partial scanning bands for clarity), and scanning bands 1310, 1311, and 1312 can be formed in a left to right pattern (see FIG. 13A Arrow and the resulting scan band in Figure 13B). Again, one of the stages of the positioning wafer can be made to step, for example, a scanning beam. After the scanning band interleaving is completed, an additional interlaced scanning band may be formed in a manner similar to that illustrated in FIGS. 13A-13C to provide a full scan of the sample. Since the interval S2 is equal to one scan length, a small vertical adjustment (for example, one scan length or several scanning beams) can be made before a large vertical adjustment is made to form the necessary fill scan band. In one embodiment shown in FIG. 13D, the stage can step 5 scanning beams (eg, 1 2/3 of the field of view (FOV)). In another embodiment, and referring to FIG. 13B, instead of moving up one scan length after completing the scanning strips 1310, 1311, and 1312, the next and all subsequent vertical adjustments may be adjustments shown by arrows 1350. It should be noted that the filling pattern depends on the number of light spots, for example, for a 5 light spot pattern, 2 blank areas are left; for a 7 light spot pattern, 3 blank areas are left. Therefore, in general, all the first plurality of scanning bands adjacent to the bottom half of one of the first plurality of scanning bands form the second plurality of scanning bands. This fill pattern provides complete coverage, except for the space between the scanning strips 1310 and 1311. In this configuration, the scanning strip 1311 will then specify the first area of interest on the wafer. This technique can be applied to other configurations that utilize more light spots. FIG. 14 illustrates one exemplary inspection system 1400 that can isolate scattered light from multiple light spots. Notably, the system 1400 may enable normal or oblique incident illumination. As is known to those skilled in the art, some defects are best irradiated using normal incident radiation and other defects are best irradiated using oblique incident radiation. Notably, multiple collectors 1430A, 1430B, 1430C can use normal incidence or oblique incidence illumination to collect scattered light from a sample 1421, such as a wafer, without reconfiguration. Specifically, as explained in further detail below, no change in magnification is required in the collectors 1430A, 1430B, and 1430C, because the illumination optics are configured as illustrated in FIG. 9C so that all light spots overlap. In the inspection system 1400, light from a laser 1401 can be directed to an anamorphic beam waist repeater (AWR) 1402. The AWR 1402, which can include cylindrical lenses, chirps, gratings, or spherical components (motorized or non-motorized), provides the ability to adjust the spot size to take into account changes in laser beam waist parameters and system fabrication and alignment tolerances. A preferred embodiment utilizes an anamorphic assembly that allows adjustments to two independent axes. The AWR 1402 provides its output to a collimating lens 1403. The collimating lens 1403 provides its output to a beam shaper 1405. The beam shaper 1405 is used to adjust the beam size at the entrance of a pre-scanned AOD 1406. In addition, if the laser 1401 includes a laser BBO (barium borate) multiplier crystal, the beam shaper 1405 may also include a slit to adjust the beam due to the BBO crystal. This slit in the beam shaper 1405 may be implemented as a standard slit or may include one or more apodized or jagged slits to improve its function. The beam shaper 1405 provides its output to a pre-scanned AOD 1406. The pre-scanned AOD 1406 is used in a deflection mode and in conjunction with a telephoto lens 1407 and an anamorphic beam expander 1408 to position and scan the beam relative to a stack of AOD 1409. The pre-scanned AOD 1406 scans the laser beam through an angle. A lens 1407 converts the angular scan from the pre-scanned AOD 1406 into a linear translation scan. The lens 1407 may be implemented as a telescope, a beam expander, a relay lens, a focusing lens, an objective lens, or any other suitable optical component known in the art. An anamorphic beam expander 1408 is used to convert the circular output from the pre-scanned AOD 1406 and the telescope 1407 into an elliptical shape. The anamorphic beam expander 1408 may include a lenticular lens, chirped, grating, or spherical component. It should be noted that the elliptical beam provided by the anamorphic beam expander 1408 may be necessary to meet the limitations in the production of 啁啾 AOD 1409 (specifically, the height of the diffraction acoustic column).啁啾 AOD 1409 is used to focus the laser beam in the direction of sound propagation and to scan the laser beam. One of the 啁啾 AOD 1409 transducers is configured to generate a signal that is generated over a length of 啁啾 AOD 1409 and propagates from one start position to one 啁啾 packet. In a preferred embodiment, the 啁啾 AOD 1409 and the pre-scanned AOD 1406 can be software programmed to improve system throughput, as explained above in FIGS. 12A and 12B. The output of the 啁啾 AOD 1409 can be provided to the module 1410 (such as a cylindrical lens, a relay lens, multiple field diaphragms / slits, and a polarizing module). A cylindrical lens is used to focus the scanning beam on an axis perpendicular to the scanning motion of the 啁啾 AOD 1409. The relay lens is used to form a solid pupil at the positions of the downstream components 1414 and 1413 (explained below). These field diaphragms and slits are used to filter out unwanted diffraction orders from the 啁啾 AOD 1409 and pre-scanned AOD 1406 and to filter out any unwanted scattered light from other components (laser 1401 to component 1410). In addition, these slits are used as field diaphragms to accommodate changes in the required line length. The polarizing components may include components to both filter a specific polarized light and generate a specific polarized light, such as a Brewster plate polarizer, a wire grid polarizer, a stack, or any other component that provides similar functionality. These polarizing components may also include components for changing polarized light, such as half-wave plates, quarter-wave plates, or other plates that provide similar functionality. These polarizers are used to provide multiple polarizing options for inspecting substrates. The component 1410 provides its output to one or more apodes 1413. The apodization plate 1413 is used to change the shape of the optical point spread function of the system in response to the challenge provided by the sample being tested. Apodization can be achieved through the use of serrated sheet metal components, dot density components, coatings, or other methods known in the art. In one embodiment, the toe plate 1413 can have independent control of the point spread function on the X-axis and Y-axis. The apodized plate 1413 provides its output to a zero-order filter slit 1414. The slit 1414 is used to remove the zeroth order from the optical path. The zero-order slit 1414 provides its output to a magnification changer 1415. The magnification changer 1415 is used to adjust the magnification of the overall illumination optics system. As a result, the size of the light spot at the sample 1421, the speed of the light spot, and the scanning length are changed. An incident angle mirror 1416 is an adjustable mirror for changing the incident angle to the wafer. When the system magnification is small and the spot size is large, the resulting numerical aperture (NA) of the pupil is small. Therefore, the incident angle mirror 1416 can be adjusted to increase the incident angle (from the wafer normal) of the inspection beam. When the system magnification is large and the spot size is small, the incident angle mirror is positioned to reduce the incident angle of the inspection beam (from the wafer normal). This adjustability provides the benefits of filtering repetitive structures, inspection speed, and defect signal-to-noise ratio. The angle of incidence mirror 1416 provides its output to a beam splitter 1417. The beam splitter 1417 is used to select between an oblique incidence irradiation path, a normal incidence illumination path, or an oblique and normal incidence path. In the oblique incidence path, the beam splitter 1417 provides its output to a DOE 1418. DOE 1418 is used to form multiple copies of a scanning beam, as previously explained. DOE 1418 provides its output to an oblique fixed magnification 1419. The oblique fixed magnifying lens 1419 is used to image the real pupil at the position of the DOE 1418 to the incident pupil of an objective lens 1420. The objective lens 1420 is used to focus the light beam on the substrate under inspection. In the normal incidence path, the beam splitter 1417 provides its output to a turning mirror 1425. The turning mirror 1425 provides its output to a normal incident anamorphic beam expander 1426. The anamorphic beam expander 1426 may include a lenticular lens, chirped, grating, or spherical component. The anamorphic beam expander 1426 is used to expand the light beam on one axis or conversely reduce the light beam on one axis. This expansion / reduction flexibility provides the benefits of filtering repetitive structures, inspection speed, and defect signal-to-noise ratio. The anamorphic beam expander 1426 provides its output to a normal incidence DOE 1427. The normal incidence DOE 1427 is used to form multiple copies of the scanning beam, as previously explained. The normal incidence DOE 1427 provides its output to a normal incidence fixed magnifier 1428. The normal incident fixed magnifying lens 1428 is used to image the real pupil at the position of the DOE 1427 to the incident pupil of an objective lens 1422. The objective lens 1422 is used to focus the light spot on the sample for a normal incidence channel. The normal incidence fixed magnifier 1428 provides its output to a NI (normal incidence) beam shaper changer 1429 through a turning mirror. The NI beam shaper changer 1429 serves multiple functions. It has multiple plates serving as apertures, mirrors, and beam splitters. These beam splitters can be configured to have multiple ratios of transmission and reflection (e.g., 50/50, 100/0, 80/20, etc.). These beam splitters can also have multiple transmission and reflection profiles in a spatial sense to achieve various configurations of a collection channel 1430A. The collection of scattered light is not limited to light that passes through the objective lens 1422 in a normal direction. Collecting light from the wafer can also be achieved through additional collection channels 1430B and 1430C. The sample 1421 can be fixed by a movable platform 1431. In one embodiment, the movable platform 1431 may include a chuck, at least one linear motor (providing xy movement), and a spindle motor (providing rotation) (optional). The movable platform 1431 can be controlled by a central control and data acquisition computer 1432 via a motor control cable 1433. It should be noted that the movable platform 1431 is moving perpendicular to the direction of scanning (ie, the sweep of the light spot). In a preferred embodiment, the movable platform 1431 can move continuously because the scanning speed is much faster relative to the platform (for example, about a few microseconds for a scan versus several seconds for the platform). The central control and data acquisition computer 1432 can receive input from the collectors 1430A, 1430B, and 1430C. As shown in FIGS. 15A and 15B, an incident angle adjuster 1501 is used in conjunction with a magnification changer to provide a plurality of oblique incident angles to the substrate 1504. 15A illustrates an optional configuration for a low magnification, large light spot, low NA (indicated by 1502A) configuration. In this case, the adjuster 1501 is moved (shown lowered closer to the objective lens 1503) to provide a higher incidence angle to the substrate 1504. Figure 15B shows a high magnification, small light spot, high NA (indicated by 1502B) configuration with the adjuster 1501 in its normal position. This position is available for all magnification options. As explained above, the programmable AOD and the DOE positioned behind the magnification changer form a scan in a first direction (vertical in this case), while the movable platform 1431 and the central control and data acquisition The computer 1432 forms a scanning strip in a second direction (in this case, a horizontal direction) perpendicular to the first direction. The number of scanning spots is equal to the number of scanning bands. An inspection system that includes this configuration provides flexible spacing between adjacent collinear scans to eliminate light spot crosstalk. In addition, because the DOE provides spacing between light spots, an inexpensive non-imaging collector can be used. The various embodiments of the structure and method of the present invention set forth above are merely illustrative of the principles of the present invention and are not intended to limit the scope of the present invention to the specific embodiments set forth. For example, although the embodiments are described with a predetermined number of light spots, other embodiments of an illumination system or an inspection system may include a different number of light spots. Therefore, the present invention is limited only by the scope of the following patent applications and their equivalents.

100‧‧‧聲光裝置(AOD)/光源100‧‧‧AOD and light source

101‧‧‧預掃描聲光裝置101‧‧‧pre-scan acousto-optic device

102‧‧‧望遠透鏡102‧‧‧ Telephoto lens

103‧‧‧圓柱透鏡103‧‧‧ cylindrical lens

104‧‧‧啁啾聲光裝置/聲光裝置104‧‧‧ 啁啾 Sound and Light Device

104A‧‧‧換能器104A‧‧‧ Transducer

104B‧‧‧啁啾封包104B‧‧‧ 啁啾 Package

105‧‧‧掃描平面105‧‧‧scan plane

106‧‧‧中繼透鏡106‧‧‧ relay lens

106A‧‧‧光瞳平面106A‧‧‧ pupil plane

107‧‧‧放大率改變器/放大器改變器107‧‧‧Magnifier / Amplifier Changer

108‧‧‧物鏡108‧‧‧ Objective

109‧‧‧樣本109‧‧‧sample

121‧‧‧聲音換能器121‧‧‧ sound transducer

122‧‧‧石英板122‧‧‧Quartz Plate

123‧‧‧聲吸收體123‧‧‧ sound absorber

124‧‧‧傳入光/傳入光束124‧‧‧Incoming light / Incoming light

125‧‧‧位置125‧‧‧Location

126‧‧‧部分126‧‧‧part

127‧‧‧部分127‧‧‧part

128‧‧‧方向128‧‧‧ direction

129‧‧‧方向129‧‧‧ direction

130‧‧‧方向130‧‧‧ direction

200‧‧‧照射系統/系統200‧‧‧ irradiation system / system

201‧‧‧擴束器201‧‧‧ Beam Expander

203A‧‧‧啁啾封包203A‧‧‧ 啁啾 Package

203B‧‧‧啁啾封包203B‧‧‧ 啁啾

301‧‧‧時間301‧‧‧time

302‧‧‧時間302‧‧‧time

303‧‧‧時間303‧‧‧time

304‧‧‧時間304‧‧‧time

305‧‧‧窗口寬度305‧‧‧window width

306‧‧‧啁啾封包間隔306‧‧‧ 啁啾 packet interval

307‧‧‧重疊307‧‧‧ overlapping

310‧‧‧光點310‧‧‧ Light Spot

311‧‧‧光點311‧‧‧light spot

312‧‧‧光點312‧‧‧light spot

313‧‧‧光點313‧‧‧light spot

314‧‧‧光點314‧‧‧light spot

315‧‧‧區域315‧‧‧area

316‧‧‧區域316‧‧‧area

400‧‧‧檢驗系統/系統400‧‧‧Inspection system / system

401‧‧‧樣本401‧‧‧sample

402‧‧‧經散射光402‧‧‧Scattered light

404‧‧‧物鏡404‧‧‧ Objective

405‧‧‧50/50分束器405‧‧‧50 / 50 beam splitter

406‧‧‧第一收集路徑與遮罩組/收集路徑與遮罩組406‧‧‧First collection path and mask set / collection path and mask set

407‧‧‧第二收集路徑與遮罩組/收集路徑與遮罩組407‧‧‧Second collection path and mask set / collection path and mask set

408‧‧‧偵測器陣列408‧‧‧ Detector Array

409‧‧‧偵測器陣列409‧‧‧ Detector Array

500‧‧‧聲光裝置照射系統/照射系統500‧‧‧ acousto-optic device irradiation system / irradiation system

501‧‧‧繞射光學元件(DOE)501‧‧‧diffractive optics (DOE)

520‧‧‧大光點520‧‧‧Big Light Spot

521‧‧‧小光點521‧‧‧small light spot

601‧‧‧小光點/光點601‧‧‧small light spot / light spot

602‧‧‧小光點/光點602‧‧‧small light spot / light spot

603‧‧‧小光點/光點603‧‧‧small light spot / light spot

701‧‧‧光點701‧‧‧light spot

702‧‧‧光點702‧‧‧light spot

703‧‧‧光點703‧‧‧light spot

705‧‧‧稜鏡705‧‧‧ 稜鏡

800‧‧‧經改良雙聲光裝置照射系統/照射系統/光源800‧‧‧ Improved dual acousto-optic device irradiation system / irradiation system / light source

801‧‧‧預掃描聲光裝置801‧‧‧pre-scan acousto-optic device

802‧‧‧望遠透鏡802‧‧‧ Telephoto lens

803‧‧‧圓柱透鏡803‧‧‧ cylindrical lens

804‧‧‧啁啾聲光裝置804‧‧‧ 啁啾 Sound and Light Device

804A‧‧‧換能器/可程式化聲光裝置804A‧‧‧Transducer / programmable acousto-optic device

804B‧‧‧啁啾封包804B‧‧‧ 啁啾 Bag

805‧‧‧掃描平面805‧‧‧scanning plane

806‧‧‧中繼透鏡806‧‧‧ relay lens

806A‧‧‧光瞳平面806A‧‧‧ pupil plane

807‧‧‧放大率改變器/放大器改變器807‧‧‧Magnifier / Amplifier Changer

808‧‧‧繞射光學元件(DOE)808‧‧‧ Diffractive Optical Element (DOE)

809‧‧‧物鏡809‧‧‧ Objective

810‧‧‧樣本810‧‧‧sample

820‧‧‧大光點/光點820‧‧‧Big Light Spot / Light Spot

821‧‧‧小光點/光點821‧‧‧Small light spot / light spot

901‧‧‧大光點/光點901‧‧‧big light spot / light spot

902‧‧‧大光點/光點902‧‧‧big light spot / light spot

903‧‧‧大光點/光點903‧‧‧big light spot / light spot

911‧‧‧方框/掃描911‧‧‧box / scan

912‧‧‧方框/掃描912‧‧‧box / scan

913‧‧‧方框/掃描913‧‧‧box / scan

921‧‧‧小光點/光點921‧‧‧small light spot / light spot

922‧‧‧小光點/光點922‧‧‧Small light spot / light spot

923‧‧‧小光點/光點923‧‧‧small light spot / light spot

931‧‧‧方框/掃描931‧‧‧box / scan

932‧‧‧方框/掃描932‧‧‧box / scan

933‧‧‧方框/掃描933‧‧‧box / scan

1101‧‧‧掃描/掃描帶1101‧‧‧scan / scan tape

1102‧‧‧掃描/掃描帶1102‧‧‧Scan / Scan Tape

1111‧‧‧掃描帶1111‧‧‧Scanning tape

1112‧‧‧掃描帶1112‧‧‧Scanning tape

1120‧‧‧掃描帶1120‧‧‧Scanning tape

1121‧‧‧掃描帶1121‧‧‧Scanning tape

1201‧‧‧小光點/光點1201‧‧‧small light spot / light spot

1202‧‧‧小光點/光點1202‧‧‧small light spot / light spot

1203‧‧‧小光點/光點1203‧‧‧small light spot / light spot

1210‧‧‧掃描1210‧‧‧Scan

1211‧‧‧掃描1211‧‧‧Scan

1212‧‧‧掃描1212‧‧‧Scan

1301‧‧‧掃描1301‧‧‧Scan

1302‧‧‧掃描1302‧‧‧Scan

1303‧‧‧掃描1303‧‧‧Scan

1310‧‧‧掃描帶1310‧‧‧Scanning tape

1311‧‧‧掃描帶1311‧‧‧Scanning tape

1312‧‧‧掃描帶1312‧‧‧Scanning tape

1320‧‧‧掃描帶1320‧‧‧Scanning tape

1321‧‧‧掃描帶1321‧‧‧Scanning tape

1322‧‧‧掃描帶1322‧‧‧Scanning tape

1350‧‧‧箭頭1350‧‧‧arrow

1400‧‧‧檢驗系統/系統1400‧‧‧Inspection system / system

1401‧‧‧雷射1401‧‧‧Laser

1402‧‧‧歪像束腰中繼器(AWR)1402‧‧‧Amorphous Beam Repeater (AWR)

1403‧‧‧準直透鏡1403‧‧‧Collimating lens

1405‧‧‧光束塑形器1405‧‧‧Beam Shaper

1406‧‧‧預掃描聲光裝置/預掃描1406‧‧‧pre-scan acousto-optic device / pre-scan

1407‧‧‧望遠透鏡/透鏡/望遠鏡1407‧‧‧ Telephoto lens / lens / telescope

1408‧‧‧歪像擴束器1408‧‧‧anamorphic beam expander

1409‧‧‧啁啾聲光裝置1409‧‧‧ 啁啾 Sound and Light Device

1410‧‧‧組件1410‧‧‧components

1413‧‧‧組件/切趾板1413‧‧‧Component / Toe Plate

1414‧‧‧組件/零階過濾狹縫/零階狹縫1414‧‧‧component / zero-order filter slit / zero-order slit

1415‧‧‧放大率改變器1415‧‧‧Magnifier

1416‧‧‧入射角鏡1416‧‧‧incident angle mirror

1417‧‧‧光束分流器1417‧‧‧Beam Splitter

1418‧‧‧繞射光學元件1418‧‧‧ Diffractive Optical Elements

1419‧‧‧傾斜固定放大鏡1419‧‧‧Tilt Fixed Magnifier

1420‧‧‧物鏡1420‧‧‧ Objective

1421‧‧‧樣本1421‧‧‧Sample

1422‧‧‧物鏡/法向入射物鏡1422‧‧‧ Objective / Normal Incident Objective

1425‧‧‧轉向鏡1425‧‧‧Steering mirror

1426‧‧‧歪像擴束器1426‧‧‧Aberrated beam expander

1427‧‧‧法向入射繞射光學元件/繞射光學元件1427‧‧‧normal incidence diffraction optics / diffraction optics

1428‧‧‧法向入射固定放大鏡1428‧‧‧Normal Incident Magnifier

1429‧‧‧NI (法向入射)光束塑形器改變器1429‧‧‧NI (normal incidence) beam shaper changer

1430A‧‧‧收集器/收集通道1430A‧‧‧collector / collection channel

1430B‧‧‧收集器/收集通道1430B‧‧‧collector / collection channel

1430C‧‧‧收集器/收集通道1430C‧‧‧collector / collection channel

1431‧‧‧可移動平台1431‧‧‧Mobile platform

1432‧‧‧中央控制與資料獲取電腦1432‧‧‧ Central Control and Data Acquisition Computer

1433‧‧‧馬達控制線纜1433‧‧‧Motor control cable

1501‧‧‧入射角調整器/調整器1501‧‧‧ incident angle adjuster / adjuster

1502A‧‧‧低數值孔徑1502A‧‧‧Low NA

1502B‧‧‧高數值孔徑1502B‧‧‧High numerical aperture

1503‧‧‧物鏡1503‧‧‧ Objective

1504‧‧‧基板1504‧‧‧ substrate

圖1A圖解說明一聲光裝置(AOD)之一經簡化組態。 圖1B圖解說明經組態以產生一光束並使該光束跨越一樣本(諸如一晶圓)掃描之一例示性雙AOD照射系統。 圖1C圖解說明一啁啾封包在圖1B中所展示之雙AOD照射系統之一光點掃掠之結束處之位置。 圖2圖解說明使用一單個AOD之另一例示性照射系統。 圖3圖解說明提供用於多個光點之經散射光之隔離之一習知例示性AOD掃描技術。 圖4圖解說明用於圖3中所闡述之技術之一例示性檢驗系統。 圖5A圖解說明可在無泛光照射之情形下產生多個光點之另一例示性AOD照射系統。 圖5B針對圖5A中所展示之照射系統圖解說明改變放大器改變器之放大率對一樣本上之光點大小、光點間隔及掃描長度之影響。 圖6A及圖6B圖解說明三個小光點之例示性掃掠。 圖7A及圖7B圖解說明可如何連同一照射系統一起使用一稜鏡來在收集器光學器件形成光點之一適當隔離。 圖8A圖解說明經組態以產生多個光點並使其跨越一樣本掃描之一經改良雙AOD照射系統。 圖8B針對圖8A中所展示之照射系統圖解說明改變放大器改變器之放大率對樣本上之光點大小及光點間隔之影響。 圖9A及圖9B圖解說明由圖8A中所展示之照射系統產生之三個大光點及三個小光點之例示性掃描。圖9C圖解說明圖9A及圖9B中所展示之大光點及小光點之掃描之疊加。 圖10A及圖10B圖解說明在一照射系統中之各種點處針對大光點與小光點之一光點大小及掃描大小比較。 圖11A至圖11D圖解說明用於使用圖10B之小光點進行掃描之一技術。 圖12A、圖12B及圖12C圖解說明在另一照射系統中之各種點處針對大光點與小光點之一光點大小及掃描大小比較。 圖13A至圖13D圖解說明用於使用圖12B之小光點進行掃描之一技術。 圖14圖解說明可將經散射光與多個光點隔離之一例示性檢驗系統。 圖15A及圖15B圖解說明可如何在一傾斜照射系統中改變入射角。FIG. 1A illustrates a simplified configuration of an acousto-optic device (AOD). FIG. 1B illustrates an exemplary dual AOD irradiation system configured to generate a light beam and scan the light beam across a specimen such as a wafer. FIG. 1C illustrates the position of a stack of packets at the end of a light spot sweep of the dual AOD illumination system shown in FIG. 1B. Figure 2 illustrates another exemplary irradiation system using a single AOD. FIG. 3 illustrates one conventional, exemplary AOD scanning technique that provides for the isolation of scattered light for multiple light spots. FIG. 4 illustrates an exemplary inspection system for the technique illustrated in FIG. 3. FIG. 5A illustrates another exemplary AOD irradiation system that can generate multiple light spots without flooding. FIG. 5B illustrates the effect of changing the magnification of the amplifier changer on the spot size, spot interval, and scan length for the illumination system shown in FIG. 5A. 6A and 6B illustrate an exemplary sweep of three small light spots. Figures 7A and 7B illustrate how a stack can be used with the same illumination system to form a proper isolation of one of the light spots in the collector optics. FIG. 8A illustrates a modified dual AOD irradiation system configured to generate multiple light spots and span one of a sample scan. FIG. 8B illustrates the effect of changing the magnification of the amplifier changer on the spot size and spot spacing on the sample for the illumination system shown in FIG. 8A. 9A and 9B illustrate an exemplary scan of three large light spots and three small light spots generated by the illumination system shown in FIG. 8A. FIG. 9C illustrates the superposition of the scanning of the large light spot and the small light spot shown in FIGS. 9A and 9B. FIG. 10A and FIG. 10B illustrate comparison of a light spot size and a scan size for a large light spot and a small light spot at various points in an illumination system. 11A to 11D illustrate one technique for scanning using the small light spot of FIG. 10B. 12A, 12B, and 12C illustrate comparisons of light spot sizes and scan sizes for a large light spot and a small light spot at various points in another illumination system. 13A to 13D illustrate one technique for scanning using the small light spot of FIG. 12B. FIG. 14 illustrates one exemplary inspection system that can isolate scattered light from multiple light spots. 15A and 15B illustrate how the angle of incidence can be changed in an oblique illumination system.

Claims (26)

一種用於檢驗一樣本之檢驗系統,該檢驗系統包含: 一可移動平台系統,其經組態以固定該樣本; 一照射系統,其經組態以同時產生沿著一共線性掃描線對準之複數個共線性掃描,使得每一掃描係藉由沿著該共線性掃描線之一聲光裝置(AOD)之一光點之一掃掠(sweep)而形成,且使得該複數個共線性掃描經引導至該經固定之樣本上且分開一預定間隔;及 一控制器,其經組態以控制該可移動平台系統,使得該經固定之樣本相對於該照射系統在垂直於該共線性掃描線之一方向上重複地步進且與該複數個共線性掃描之產生配合,使得藉由在垂直於該共線性掃描線之一方向上重複產生該複數個共線性掃描而形成第一複數個掃描帶(swaths),該第一複數個掃描帶具有該預定間隔之一掃描帶間間隔。An inspection system for inspecting a sample, the inspection system includes: a movable platform system configured to fix the sample; an irradiation system configured to simultaneously produce alignments along a collinear scan line A plurality of collinear scans, such that each scan is formed by sweeping one of a light spot of an acousto-optic device (AOD) along the collinear scan line, and the plurality of collinear scans are Guided onto the fixed sample and separated by a predetermined interval; and a controller configured to control the movable platform system such that the fixed sample is perpendicular to the collinear scan line relative to the illumination system Repeatedly step in one direction and cooperate with the generation of the plurality of collinear scans, so that by repeatedly generating the plurality of collinear scans in a direction perpendicular to the one of the collinear scan lines, a first plurality of swaths are formed ), The first plurality of scanning bands have an interval between scanning bands of one of the predetermined intervals. 如請求項1之檢驗系統,其中該照射系統進一步經組態以同時產生該複數個共線性掃描,使得每一掃描具有一掃描長度,且使得該預定間隔等於該掃描長度。The inspection system of claim 1, wherein the irradiation system is further configured to generate the plurality of collinear scans simultaneously, so that each scan has a scan length, and the predetermined interval is equal to the scan length. 如請求項1之檢驗系統,其中該照射系統進一步經組態以同時產生該複數個共線性掃描,使得每一掃描具有一掃描長度,且使得該預定間隔等於整數個掃描長度。The inspection system of claim 1, wherein the irradiation system is further configured to generate the plurality of collinear scans simultaneously, so that each scan has a scan length, and the predetermined interval is equal to an integer number of scan lengths. 如請求項3之檢驗系統,其中該AOD係可程式化且經組態使得該整數個掃描長度可藉由調整該可程式化之AOD之一啁啾而調整。The inspection system of claim 3, wherein the AOD is programmable and configured such that the integer scan length can be adjusted by adjusting one of the programmable AODs. 如請求項1之檢驗系統,其中該控制器進一步經組態以控制該可移動平台系統,使得該複數個共線性掃描形成毗鄰於該第一複數個掃描帶之第二複數個掃描帶。The inspection system of claim 1, wherein the controller is further configured to control the movable platform system such that the plurality of collinear scans form a second plurality of scan bands adjacent to the first plurality of scan bands. 如請求項1之檢驗系統,其中該控制器進一步經組態以控制該可移動平台系統,使得該複數個共線性掃描形成毗鄰於除該第一複數個掃描帶之一底半部之外的所有該第一複數個掃描帶之第二複數個掃描帶。The inspection system of claim 1, wherein the controller is further configured to control the movable platform system such that the plurality of collinear scans form a border adjacent to the bottom half except for one of the first plurality of scan bands All the second plurality of scanning bands of the first plurality of scanning bands. 如請求項6之檢驗系統,其中該控制器進一步經組態以控制該可移動平台系統,使得該第二複數個掃描帶係藉由在該第一複數個掃描帶之形成期間利用之方向之一相反方向上移動該樣本而形成。The inspection system of claim 6, wherein the controller is further configured to control the movable platform system such that the second plurality of scanning bands are in a direction that is utilized during the formation of the first plurality of scanning bands. It is formed by moving the sample in the opposite direction. 如請求項6之檢驗系統,其中該控制器進一步經組態以控制該可移動平台系統,使得該第二複數個掃描帶係藉由在該第一複數個掃描帶之形成期間利用之方向之一相同方向上移動該樣本而形成。The inspection system of claim 6, wherein the controller is further configured to control the movable platform system such that the second plurality of scanning bands are in a direction that is utilized during formation of the first plurality of scanning bands It is formed by moving the sample in the same direction. 一種方法,其包含: 自一雷射接收一光束且沿著一角度掃描以各種角度引導該光束; 將該角度掃描轉換為一線性掃描; 在該線性掃描中接收該光束且產生一掃描,該掃描係一光點之一掃掠,藉此產生複數個共線性光點; 調整該複數個共線性光點之一放大率,藉此產生複數個經調整共線性光點; 複製該複數個經調整共線性光點,使得該等共線性光點之每一毗鄰對分開一預定光點間隔,藉此同時產生沿著一共線性掃描線對準之一組共線性掃描且該組共線性掃描其間具有一預定掃描間隔;及 藉由在垂直於該共線性掃描線之一方向上移動一樣本來形成第一複數個掃描帶,該移動該樣本致使該複數個組之該等共線性掃描形成毗鄰組之該等共線性掃描,該第一複數個掃描帶具有等於該預定掃描間隔之一掃描帶間間隔,藉此在該調整之後執行該複製促進控制該複數個共線性光點之一大小而不改變在該等共線性光點之每一毗鄰對之間的該預定光點間隔。A method comprising: receiving a light beam from a laser and guiding the light beam at various angles along an angle scan; converting the angle scan into a linear scan; receiving the light beam and generating a scan in the linear scan, the The scanning system sweeps one of the light spots, thereby generating a plurality of collinear light spots; adjusting the magnification of one of the plurality of collinear lights, thereby generating a plurality of adjusted collinear lights; copying the plurality of adjusted Collinear light spots, such that each adjacent pair of these collinear light spots is separated by a predetermined light spot interval, thereby simultaneously generating a group of collinear scans aligned along a collinear scan line, and the group of collinear scans having A predetermined scan interval; and forming a first plurality of scan bands by moving a sample in a direction perpendicular to one of the collinear scan lines, the moving the sample causes the collinear scans of the plurality of groups to form adjacent groups of the Iso-collinear scanning, the first plurality of scanning bands having an interval between scanning bands equal to one of the predetermined scanning intervals, whereby the copy promotion control is performed after the adjustment One of a plurality of co-linear without changing the spot size of the light spot in the predetermined interval between each adjacent pair of the light spot such collinearity. 如請求項9之方法,其中移動該樣本包含在平行於該組共線性掃描之一方向上步進該樣本且接著在垂直於該共線性掃描線之一方向上移動該樣本,使得該等組之該等共線性掃描形成毗鄰於該第一複數個掃描帶之第二複數個掃描帶。The method of claim 9, wherein moving the sample includes stepping the sample in a direction parallel to the set of collinear scans and then moving the sample in a direction perpendicular to the set of collinear scans such that the groups of the The isocollinear scan forms a second plurality of scan bands adjacent to the first plurality of scan bands. 如請求項10之方法,其中同時產生該組共線性掃描包含掃掠該等共線性光點,使得該第一複數個掃描帶及該第二複數個掃描帶具有一掃描長度,且使得該預定掃描間隔等於整數個掃描長度。The method of claim 10, wherein generating the set of collinear scans simultaneously includes sweeping the collinear points, so that the first plurality of scanning bands and the second plurality of scanning bands have a scanning length, and the predetermined The scan interval is equal to an integer number of scan lengths. 如請求項11之方法,其中步進該樣本包含在平行於該組共線性掃描之該方向上將該樣本移動一調整距離,使得該第二複數個掃描帶毗鄰於除該第一複數個掃描帶之一底半部之外的該第一複數個掃描帶而形成。The method of claim 11, wherein stepping the sample comprises moving the sample by an adjustment distance in the direction parallel to the set of collinear scans, so that the second plurality of scan bands are adjacent to the first plurality of scans. The first plurality of scanning strips are formed outside the bottom half of one of the strips. 如請求項10之方法,其中同時產生該組共線性掃描包含掃掠該等共線性光點,使得該第一複數個掃描帶具有一第一掃描長度且該第二複數個掃描帶具有不同於該第一掃描長度之一第二掃描長度。The method of claim 10, wherein generating the set of collinear scans simultaneously includes sweeping the collinear light spots, so that the first plurality of scanning bands have a first scanning length and the second plurality of scanning bands have One of the first scan lengths is a second scan length. 如請求項10之方法,其中形成該第二複數個掃描帶包含在形成該第一複數個掃描帶期間所利用之方向之一相反方向上移動該樣本。The method of claim 10, wherein forming the second plurality of scanning zones includes moving the sample in a direction opposite to one of directions utilized during forming the first plurality of scanning zones. 如請求項10之方法,其中形成該第二複數個掃描帶包含在形成該第一複數個掃描帶期間所利用之方向之一相同方向上移動該樣本。The method of claim 10, wherein forming the second plurality of scanning zones includes moving the sample in the same direction as one of directions utilized during forming the first plurality of scanning zones. 如請求項9之方法,其中複製該複數個經調整共線性光點包含將該複數個經調整共線性光點分流至一法向入射照射路徑或一傾斜入射照射路徑。The method of claim 9, wherein copying the plurality of adjusted collinear spots includes shunting the plurality of adjusted collinear spots to a normal incident irradiation path or an oblique incident irradiation path. 如請求項9之方法,其中複製該複數個經調整共線性光點包含將該複數個經調整共線性光點分流至一傾斜入射照射路徑。The method of claim 9, wherein copying the plurality of adjusted collinear points includes shunting the plurality of adjusted collinear points to an oblique incident illumination path. 如請求項9之方法,其中複製該複數個經調整共線性光點包含控制一切換組件以引導該複數個經調整共線性光點至一法向入射照射路徑及一傾斜入射照射路徑之一者。The method of claim 9, wherein copying the plurality of adjusted collinear light spots includes controlling a switching component to guide the plurality of adjusted collinear light spots to one of a normal incident illumination path and an oblique incident illumination path . 如請求項9之方法,其進一步包含在以該等各種角度引導該光束之前對自該雷射接收該光束之兩個獨立軸做出調整。The method of claim 9, further comprising making adjustments to two independent axes receiving the light beam from the laser before directing the light beam at the various angles. 如請求項9之方法,其進一步包含使用一個硼酸鋇雷射倍增晶體而產生該光束,及使該光束通過具有一狹縫之一光束塑形器。The method of claim 9, further comprising generating the beam using a barium borate laser doubling crystal, and passing the beam through a beam shaper having a slit. 如請求項9之方法,其進一步包括利用一光瞳及經置放而與該光瞳成操作關係之一或多個切趾板以將一預定透射輪廓提供至該複數個共線性光點。The method of claim 9, further comprising using a pupil and one or more apodization plates placed in operational relationship with the pupil to provide a predetermined transmission profile to the plurality of collinear light spots. 如請求項21之方法,其中利用該一或多個切趾板包括組態該一或多個切趾板以在一x軸及一y軸上提供一相同透射輪廓。The method of claim 21, wherein using the one or more apodization plates includes configuring the one or more apodization plates to provide an identical transmission profile on an x-axis and a y-axis. 如請求項21之方法,其中利用該一或多個切趾板包括組態該一或多個切趾板以在一x軸及一y軸上提供一不同透射輪廓。The method of claim 21, wherein using the one or more apodization plates includes configuring the one or more apodization plates to provide a different transmission profile on an x-axis and a y-axis. 如請求項21之方法,其中利用該一或多個切趾板包括組態該一或多個切趾板以提供一可程式化透射輪廓。The method of claim 21, wherein utilizing the one or more apodization plates includes configuring the one or more apodization plates to provide a programmable transmission profile. 如請求項21之方法,其中利用該光瞳包括使該光瞳相對於一第一繞射光學元件(DOE)路徑之物鏡偏心。The method of claim 21, wherein using the pupil comprises decentering the pupil relative to an objective lens of a first diffractive optical element (DOE) path. 如請求項9之方法,其進一步包括利用一入射角鏡以調整至該樣本之一入射角。The method of claim 9, further comprising using an incident angle lens to adjust to an incident angle of the sample.
TW106132064A 2013-03-15 2014-03-14 Interleaved acousto-optical device scanning for suppression of optical crosstalk TWI635270B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/844,576 US9395340B2 (en) 2013-03-15 2013-03-15 Interleaved acousto-optical device scanning for suppression of optical crosstalk
US13/844,576 2013-03-15

Publications (2)

Publication Number Publication Date
TW201800745A TW201800745A (en) 2018-01-01
TWI635270B true TWI635270B (en) 2018-09-11

Family

ID=51521277

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106132064A TWI635270B (en) 2013-03-15 2014-03-14 Interleaved acousto-optical device scanning for suppression of optical crosstalk
TW103109302A TWI604189B (en) 2013-03-15 2014-03-14 Interleaved acousto-optical device scanning for suppression of optical crosstalk

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW103109302A TWI604189B (en) 2013-03-15 2014-03-14 Interleaved acousto-optical device scanning for suppression of optical crosstalk

Country Status (4)

Country Link
US (2) US9395340B2 (en)
KR (1) KR102095080B1 (en)
TW (2) TWI635270B (en)
WO (1) WO2014151159A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9395340B2 (en) * 2013-03-15 2016-07-19 Kla-Tencor Corporation Interleaved acousto-optical device scanning for suppression of optical crosstalk
US9546962B2 (en) * 2014-02-12 2017-01-17 Kla-Tencor Corporation Multi-spot scanning collection optics
US9864173B2 (en) * 2015-04-21 2018-01-09 Kla-Tencor Corporation Systems and methods for run-time alignment of a spot scanning wafer inspection system
US9891175B2 (en) * 2015-05-08 2018-02-13 Kla-Tencor Corporation System and method for oblique incidence scanning with 2D array of spots
US10067069B2 (en) * 2016-03-11 2018-09-04 Smart Vision Lights Machine vision systems incorporating polarized electromagnetic radiation emitters
US10481101B2 (en) * 2017-01-23 2019-11-19 Applied Materials Israel Ltd. Asymmetrical magnification inspection system and illumination module
US10996540B2 (en) * 2018-04-26 2021-05-04 Mycronic AB Compact alpha-BBO acousto-optic deflector with high resolving power for UV and visible radiation
CN112368625B (en) 2018-07-02 2023-10-24 巴塞罗纳大学 Multi-point illuminator, confocal filter, confocal microscope, and method of operating same
CN113874790A (en) * 2019-03-29 2021-12-31 迈康尼股份公司 Long sweep length DUV microlithographic beam scanning acousto-optic deflector and optics design

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236454B1 (en) * 1997-12-15 2001-05-22 Applied Materials, Inc. Multiple beam scanner for an inspection system
US6248988B1 (en) * 1998-05-05 2001-06-19 Kla-Tencor Corporation Conventional and confocal multi-spot scanning optical microscope
US6879390B1 (en) * 2000-08-10 2005-04-12 Kla-Tencor Technologies Corporation Multiple beam inspection apparatus and method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391524A (en) 1981-03-16 1983-07-05 Rca Corporation Method for determining the quality of light scattering material
US4441124A (en) 1981-11-05 1984-04-03 Western Electric Company, Inc. Technique for inspecting semiconductor wafers for particulate contamination
JPS60220940A (en) 1983-05-20 1985-11-05 Hitachi Ltd Automatic examining unit for foreign object
US4889998A (en) 1987-01-29 1989-12-26 Nikon Corporation Apparatus with four light detectors for checking surface of mask with pellicle
US4912487A (en) 1988-03-25 1990-03-27 Texas Instruments Incorporated Laser scanner using focusing acousto-optic device
US5317380A (en) 1991-02-19 1994-05-31 Inspex, Inc. Particle detection method and apparatus
JP3237452B2 (en) * 1995-04-20 2001-12-10 富士ゼロックス株式会社 Image writing device
US6081325A (en) 1996-06-04 2000-06-27 Kla-Tencor Corporation Optical scanning system for surface inspection
US6208411B1 (en) * 1998-09-28 2001-03-27 Kla-Tencor Corporation Massively parallel inspection and imaging system
US6636301B1 (en) * 2000-08-10 2003-10-21 Kla-Tencor Corporation Multiple beam inspection apparatus and method
WO2002014846A2 (en) * 2000-08-10 2002-02-21 Kla-Tencor Corporation Multiple beam inspection apparatus and method
JP4472931B2 (en) 2001-05-03 2010-06-02 ケーエルエー−テンカー コーポレイション System and method for causing a light beam to scan an entire sample
US6639201B2 (en) 2001-11-07 2003-10-28 Applied Materials, Inc. Spot grid array imaging system
US7049586B2 (en) * 2002-02-21 2006-05-23 Applied Material Israel, Ltd. Multi beam scanning with bright/dark field imaging
US6809808B2 (en) 2002-03-22 2004-10-26 Applied Materials, Inc. Wafer defect detection system with traveling lens multi-beam scanner
US7130039B2 (en) * 2002-04-18 2006-10-31 Kla-Tencor Technologies Corporation Simultaneous multi-spot inspection and imaging
JP2004077714A (en) * 2002-08-15 2004-03-11 Fuji Xerox Co Ltd Optical scanner
US7489393B2 (en) * 2005-03-02 2009-02-10 Kla-Tencor Technologies Corporation Enhanced simultaneous multi-spot inspection and imaging
GB0617945D0 (en) 2006-09-12 2006-10-18 Ucl Business Plc Imaging apparatus and methods
US8194301B2 (en) * 2008-03-04 2012-06-05 Kla-Tencor Corporation Multi-spot scanning system and method
US9395340B2 (en) * 2013-03-15 2016-07-19 Kla-Tencor Corporation Interleaved acousto-optical device scanning for suppression of optical crosstalk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236454B1 (en) * 1997-12-15 2001-05-22 Applied Materials, Inc. Multiple beam scanner for an inspection system
US6248988B1 (en) * 1998-05-05 2001-06-19 Kla-Tencor Corporation Conventional and confocal multi-spot scanning optical microscope
US6879390B1 (en) * 2000-08-10 2005-04-12 Kla-Tencor Technologies Corporation Multiple beam inspection apparatus and method

Also Published As

Publication number Publication date
US20140260640A1 (en) 2014-09-18
KR102095080B1 (en) 2020-03-31
US20160290971A1 (en) 2016-10-06
TW201800745A (en) 2018-01-01
TWI604189B (en) 2017-11-01
TW201502494A (en) 2015-01-16
WO2014151159A1 (en) 2014-09-25
US9395340B2 (en) 2016-07-19
US10060884B2 (en) 2018-08-28
KR20150132283A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
TWI635270B (en) Interleaved acousto-optical device scanning for suppression of optical crosstalk
US9970883B2 (en) Multi-spot scanning collection optics
US7365834B2 (en) Optical system for detecting anomalies and/or features of surfaces
US9208553B2 (en) Image synchronization of scanning wafer inspection system
US9891175B2 (en) System and method for oblique incidence scanning with 2D array of spots
KR102207666B1 (en) Scanning Type EUV mask pattern image measuring device
JP2005517906A (en) System for detecting surface anomalies and / or shapes
US6775051B2 (en) Systems and methods for scanning a beam of light across a specimen
JP4041854B2 (en) Imaging apparatus and photomask defect inspection apparatus
JP4810053B2 (en) Multiple beam inspection apparatus and method
JP6001383B2 (en) Defect inspection method and apparatus using the same
JP2007334212A (en) Inspection method and device for photomask
JP2001099613A (en) Oblique incidence interferometer device
JP2007212903A (en) Optical element, optical module, optical device, observation device, and imaging apparatus