TWI634871B - Ultrasound image detection method - Google Patents

Ultrasound image detection method Download PDF

Info

Publication number
TWI634871B
TWI634871B TW106113350A TW106113350A TWI634871B TW I634871 B TWI634871 B TW I634871B TW 106113350 A TW106113350 A TW 106113350A TW 106113350 A TW106113350 A TW 106113350A TW I634871 B TWI634871 B TW I634871B
Authority
TW
Taiwan
Prior art keywords
angle
wave
plane waves
plane
waves
Prior art date
Application number
TW106113350A
Other languages
Chinese (zh)
Other versions
TW201838593A (en
Inventor
張堂振
曾瑋中
林峰舟
葉宗鑫
Original Assignee
佳世達科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佳世達科技股份有限公司 filed Critical 佳世達科技股份有限公司
Priority to TW106113350A priority Critical patent/TWI634871B/en
Application granted granted Critical
Publication of TWI634871B publication Critical patent/TWI634871B/en
Publication of TW201838593A publication Critical patent/TW201838593A/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

超音波影像偵測方法包含同時發射複數個第一平面波;接收該些第一平面波被物體所反射的至少一個第一反射波;依據至少一個第一反射波,同時發射複數個第二平面波;接收該些第二平面波被物體所反射的至少一個第二反射波;及依據至少一個第二反射波,利用複數個決策平面波以決定物體的角度或位置。兩相鄰第一平面波夾第一角度,兩相鄰第二平面波夾第二角度,第一角度大於第二角度。The ultrasonic image detecting method includes simultaneously transmitting a plurality of first plane waves; receiving at least one first reflected wave reflected by the object by the first plane wave; simultaneously transmitting a plurality of second plane waves according to the at least one first reflected wave; receiving The at least one second reflected wave reflected by the object by the second plane wave; and the plurality of decision plane waves are used to determine an angle or a position of the object according to the at least one second reflected wave. The two adjacent first plane waves sandwich the first angle, and the two adjacent second plane waves sandwich the second angle, and the first angle is greater than the second angle.

Description

超音波影像偵測方法Ultrasonic image detection method

本發明揭露一種超音波影像偵測方法,尤指一種具有高速偵測功能的超音波影像偵測方法。The invention discloses a method for detecting ultrasonic images, in particular to a method for detecting ultrasonic images with high-speed detection function.

隨著醫療技術的日新月異,超音波的探測技術也越來越成熟。一般而言,超音波的探測方式會利用具有發射超音波訊號的探頭,對皮膚以下發射超音波訊號。並且,超音波訊號的探頭還會利用反射的超音波訊號,判斷皮膚以下肉眼不可視的物體之形狀和位置,以進行各種醫療用途。With the rapid development of medical technology, the detection technology of ultrasonic waves is becoming more and more mature. In general, the ultrasonic detection method uses a probe that emits an ultrasonic signal to emit an ultrasonic signal below the skin. In addition, the ultrasonic signal probe uses the reflected ultrasonic signal to determine the shape and position of the object that is invisible to the naked eye for various medical purposes.

傳統超音波探頭發射超音波訊號的方式為利用多個壓電裝置依序發射出超音波訊號,每一個角度的超音波訊號會對應一條掃描線的方向。並且,超音波探頭會根據對應掃描線的方向的超音波訊號及其反射訊號,進行影像辨識及物體偵測。然而,傳統超音波探頭的偵測機制,必須要使用多個角度的偵測模式才能將物體的位置以及角度進行辨識。並且,超音波探頭將超音波訊號發送至物體,再接收到由物體反射的超音波訊號需要(2r/c)的時間。其中r為超音波訊號探測深度,而c為音速。因此,在傳統超音波探頭中,若考慮M個探測角度以及N條掃描線,則總共需要M×N×(2r/c)的時間,當M及N變大時,偵測物體所花費的處理時間將會非常驚人。The traditional ultrasonic probe emits ultrasonic signals by sequentially transmitting ultrasonic signals by using a plurality of piezoelectric devices, and the ultrasonic signals of each angle correspond to the direction of one scanning line. Moreover, the ultrasonic probe performs image recognition and object detection according to the ultrasonic signal corresponding to the direction of the scan line and its reflected signal. However, the detection mechanism of the traditional ultrasonic probe must use multiple angle detection modes to identify the position and angle of the object. Moreover, the ultrasonic probe sends the ultrasonic signal to the object, and then receives the ultrasonic signal reflected by the object (2r/c). Where r is the ultrasonic signal detection depth and c is the speed of sound. Therefore, in the conventional ultrasonic probe, if M detection angles and N scanning lines are considered, a total of M × N × (2r / c) time is required, and when M and N become large, the cost of detecting an object is required. Processing time will be amazing.

本發明一實施例提出一種超音波影像偵測方法,包含同時發射與表面之夾角相異的複數個第一平面波;接收該些第一平面波被物體所反射的至少一個第一反射波;依據至少一個第一反射波,同時發射與表面之夾角相異的複數個第二平面波;接收該些第二平面波被物體所反射的至少一個第二反射波;及依據至少一個第二反射波,利用複數個決策平面波以決定物體的角度或位置。兩相鄰第一平面波夾第一角度,兩相鄰第二平面波夾第二角度,第一角度大於第二角度。An embodiment of the present invention provides a method for detecting an ultrasonic image, comprising simultaneously transmitting a plurality of first plane waves different from an angle of a surface; and receiving at least one first reflected wave reflected by the object by the first plane wave; a first reflected wave simultaneously emitting a plurality of second plane waves different from an angle of the surface; receiving at least one second reflected wave reflected by the object by the second plane wave; and using the complex number according to the at least one second reflected wave Plane plane waves to determine the angle or position of the object. The two adjacent first plane waves sandwich the first angle, and the two adjacent second plane waves sandwich the second angle, and the first angle is greater than the second angle.

第1圖係為本發明之超音波探測系統100之實施例的架構圖。超音波探測系統100包含超音波探頭10,用以接觸表面11。表面11可為任何平面,例如皮膚表面。超音波探測系統100,可利用超音波探頭10偵測表面11以下之肉眼不可視的物體之位置以及角度,例如超音波探頭10可用來偵測在皮膚以下的長形或針狀物體之位置以及角度。超音波探頭10包含複數個收發器TS1至TSN、緩存裝置12、以及處理器13。複數個收發器TS1至TSN的每一個收發器可耦接於緩存裝置12。緩存裝置12可耦接於處理器13。每一個收發器可以同時發射不同方向的平面波。舉例而言,收發器TS1可以發射方向S1的平面波。收發器TS2可以發射方向S2的平面波。收發器TS3可以發射方向S3的平面波。收發器TSN可以發射方向SN的平面波。N為正整數。緩存裝置12可為任何形式的資料儲存裝置,例如記憶體。處理器13可為任何具有訊號處理功能的裝置,例如中央處理器、微處理器、或是可程式化邏輯運算單元等等。在超音波探測系統100中,處理器13可設置於超音波探頭10內,但本發明不限於此。舉例而言,處理器13可為超音波機台內的處理裝置,而超音波探頭10可用有線或是無線的方式連線於超音波機台,因此超音波機台內的處理裝置可以解析並處理超音波探頭10所偵測的訊號。在本實施例中,超音波探頭10會同時發射不同角度的平面波。換句話說,與表面11夾角相異的多個平面波將會由超音波探頭10同時發射。因此,超音波探頭10可以同時對表面11之下的空間進行不同角度的偵測,故具有快速擷取物體角度或位置的功能。以下將詳述超音波探頭10之收發器的結構、發送特定角度之平面波的原理、以及如何偵測物體的方法。1 is an architectural diagram of an embodiment of the ultrasonic sounding system 100 of the present invention. The ultrasonic sounding system 100 includes an ultrasonic probe 10 for contacting the surface 11. Surface 11 can be any plane, such as a skin surface. The ultrasonic sounding detection system 100 can use the ultrasonic probe 10 to detect the position and angle of an object that is invisible to the naked eye below the surface 11. For example, the ultrasonic probe 10 can be used to detect the position and angle of the elongated or needle-like object below the skin. . The ultrasonic probe 10 includes a plurality of transceivers TS1 to TSN, a buffer device 12, and a processor 13. Each of the plurality of transceivers TS1 through TSN may be coupled to the cache device 12. The cache device 12 can be coupled to the processor 13. Each transceiver can simultaneously transmit plane waves in different directions. For example, the transceiver TS1 can transmit a plane wave in the direction S1. The transceiver TS2 can transmit a plane wave in the direction S2. The transceiver TS3 can transmit a plane wave in the direction S3. The transceiver TSN can transmit a plane wave in the direction SN. N is a positive integer. The cache device 12 can be any form of data storage device, such as a memory. The processor 13 can be any device having a signal processing function, such as a central processing unit, a microprocessor, or a programmable logic unit. In the ultrasonic sounding system 100, the processor 13 may be disposed within the ultrasonic probe 10, but the invention is not limited thereto. For example, the processor 13 can be a processing device in the ultrasonic machine, and the ultrasonic probe 10 can be wired or wirelessly connected to the ultrasonic machine, so that the processing device in the ultrasonic machine can be analyzed and The signal detected by the ultrasonic probe 10 is processed. In the present embodiment, the ultrasonic probe 10 simultaneously emits plane waves of different angles. In other words, a plurality of plane waves different in angle from the surface 11 will be simultaneously emitted by the ultrasonic probe 10. Therefore, the ultrasonic probe 10 can simultaneously detect the space under the surface 11 at different angles, so that it has the function of quickly capturing the angle or position of the object. The structure of the transceiver of the ultrasonic probe 10, the principle of transmitting a plane wave of a specific angle, and a method of detecting an object will be described in detail below.

第2圖係為超音波探頭10中,收發器TSN的架構圖。於此說明,超音波探頭10中的收發器TS1至TSN可為相同結構的收發器,為了簡化描述,第2圖僅以收發器TSN的結構為代表進行說明。收發器TSN包含訊號產生裝置14以及壓電裝置ELE1至ELEM,其中M可為大於2的正整數。訊號產生裝置14可連接於處理器13。因此,處理器13可以控制訊號產生裝置14產生不同的電壓以驅動壓電裝置ELE1至ELEM。舉例而言,在第2圖中,訊號產生裝置14可產生第一組訊號,第一組訊號包含了電壓訊號SE1、電壓訊號SE2、電壓訊號SE3、…、至電壓訊號SEM。壓電裝置ELE1至ELEM可被第一組訊號驅動以產生複數個波WAV1至WAVM。例如,壓電裝置ELE1可被電壓訊號SE1驅動以產生波WAV1、壓電裝置ELE2可被電壓訊號SE2驅動以產生波WAV2、壓電裝置ELE3可被電壓訊號SE3驅動以產生波WAV3、壓電裝置ELEM可被電壓訊號SEM驅動以產生波WAVM。並且,在第一組訊號中,電壓訊號SE1至電壓訊號SEM的延遲時間不同。以第2圖的實施例而言,電壓訊號SE2相較於電壓訊號SE1具有一個延遲時間、電壓訊號SE3相較於電壓訊號SE2具有一個延遲時間,依此類推。由於電壓訊號SE1至電壓訊號SEM的延遲時間不同,因此驅動壓電裝置ELE1至ELEM的時間也不同。在第2圖中,壓電裝置ELE1會先產生波WAV1,隨後,壓電裝置ELE2再產生波WAV2,隨後,壓電裝置ELE2再產生波WAV3,依此類推。由於波WAV1至波WAVM的產生時間不同,因此波WAV1至波WAVM的波前(Wave Front)之位置也會不同。這些波WAV1至波WAVM的波前之切線即可合成第一平面波BFW。Figure 2 is an architectural diagram of the transceiver TSN in the ultrasonic probe 10. As described herein, the transceivers TS1 to TSN in the ultrasonic probe 10 may be transceivers of the same configuration. For simplification of description, FIG. 2 is only representative of the structure of the transceiver TSN. The transceiver TSN includes a signal generating device 14 and piezoelectric devices ELE1 to ELEM, where M can be a positive integer greater than two. The signal generating device 14 is connectable to the processor 13. Therefore, the processor 13 can control the signal generating device 14 to generate different voltages to drive the piezoelectric devices ELE1 to ELEM. For example, in FIG. 2, the signal generating device 14 can generate a first group of signals, and the first group of signals includes a voltage signal SE1, a voltage signal SE2, a voltage signal SE3, ..., and a voltage signal SEM. The piezoelectric devices ELE1 to ELEM can be driven by the first set of signals to generate a plurality of waves WAV1 to WAVM. For example, the piezoelectric device ELE1 can be driven by the voltage signal SE1 to generate the wave WAV1, the piezoelectric device ELE2 can be driven by the voltage signal SE2 to generate the wave WAV2, and the piezoelectric device ELE3 can be driven by the voltage signal SE3 to generate the wave WAV3, the piezoelectric device The ELEM can be driven by a voltage signal SEM to generate a wave WAVM. Moreover, in the first group of signals, the delay time of the voltage signal SE1 to the voltage signal SEM is different. In the embodiment of FIG. 2, the voltage signal SE2 has a delay time compared to the voltage signal SE1, the voltage signal SE3 has a delay time compared to the voltage signal SE2, and so on. Since the delay time of the voltage signal SE1 to the voltage signal SEM is different, the time for driving the piezoelectric devices ELE1 to ELEM is also different. In Fig. 2, the piezoelectric device ELE1 first generates the wave WAV1, and then the piezoelectric device ELE2 regenerates the wave WAV2, and then the piezoelectric device ELE2 regenerates the wave WAV3, and so on. Since the generation time of the wave WAV1 to the wave WAVM is different, the position of the wave front of the wave WAV1 to the WAVM is different. The first plane wave BFW can be synthesized by the tangential line of the wavefront of these waves WAV1 to WAVM.

第3圖係為超音波探頭10中,合成第一平面波BFW的示意圖。如前述提及,由於波WAV1至波WAVM的波前位置不同,因此這些波WAV1至波WAVM的波前之切線可合成第一平面波BFW。並且,由於本發明的第一平面波BFW為線性,因此波WAV1至波WAVM被產生的時間差要相同。舉例而言,在第3圖中,波WAV1的波前之切線時間點與波WAV2的波前之切線時間點的時間差為D1。波WAV2的波前之切線時間點與波WAV3的波前之切線時間點的時間差為D2。D1相等於D2。由於波WAV1至波WAVM被產生的時間差要相同,因此,在第2圖中,電壓訊號SE1至電壓訊號SEM驅動壓電裝置ELE1至ELEM之兩相鄰壓電裝置的時間差也要相同。換句話說,電壓訊號SE2相較於電壓訊號SE1之延遲時間、與電壓訊號SE3相較於電壓訊號SE2之延遲時間也要相同。如此,壓電裝置ELE1至ELEM產生出來的波WAV1至WAVM所合成的第一平面波BFW係為線性。並且,改變電壓訊號SE1至電壓訊號SEM的延遲時間即可控制合成出來之第一平面波BFW與表面11的夾角。Fig. 3 is a schematic diagram showing the synthesis of the first plane wave BFW in the ultrasonic probe 10. As mentioned above, since the wavefront positions of the wave WAV1 to the wave WAVM are different, the tangent of the wavefront of these waves WAV1 to WAVM can synthesize the first plane wave BFW. Also, since the first plane wave BFW of the present invention is linear, the time difference between the wave WAV1 and the wave WAVM is the same. For example, in FIG. 3, the time difference between the tangential time point of the wavefront of the wave WAV1 and the tangential time point of the wavefront of the wave WAV2 is D1. The time difference between the tangential time point of the wavefront of the wave WAV2 and the tangential time point of the wavefront of the wave WAV3 is D2. D1 is equal to D2. Since the time difference between the wave WAV1 and the wave WAVM is the same, in FIG. 2, the time difference between the voltage signal SE1 and the voltage signal SEM driving the two adjacent piezoelectric devices of the piezoelectric devices ELE1 to ELEM is also the same. In other words, the delay time of the voltage signal SE2 compared to the voltage signal SE1 is the same as the delay time of the voltage signal SE3 compared to the voltage signal SE2. Thus, the first plane wave BFW synthesized by the waves WAV1 to WAVM generated by the piezoelectric devices ELE1 to ELEM is linear. Moreover, by changing the delay time of the voltage signal SE1 to the voltage signal SEM, the angle between the synthesized first plane wave BFW and the surface 11 can be controlled.

第4圖係為超音波探頭10,發射複數個第一平面波BFW1至BFWN的示意圖。下文將描述超音波探頭10如何快速地偵測物體Obj的方法。首先,超音波探頭10會同時發射與表面11之夾角相異的複數個第一平面波BFW1至BFWN,其中兩相鄰第一平面波夾第一角度。例如,超音波探頭10同時發射的第一平面波BFW1至BFWN中,第一平面波BFW1與表面11之夾角為θ1(後文稱為,夾角θ1)。第一平面波BFW2與BFW1之夾角為θ2(後文稱為,夾角θ2)。第一平面波BFW3與BFW2之夾角為θ3(後文稱為,夾角θ3),依此類推。在第4圖中,物體Obj可為長型或針狀物體,與表面11夾一個角度。超音波探頭10發射了N個第一平面波BFW1至BFWN後,部分的第一平面波將會被物體Obj反射,而產生至少一個第一反射波。超音波探頭10之收發器TS1至TSN接收了至少一個第一反射波後,處理器13將會產生對應於物體Obj的第一偵測角度。然而,第一偵測角度僅為一種粗略的估計角度,原因為僅有少部分的第一平面波會被物體Obj反射,因此角度估測的誤差值較大。為了進一步增加角度估測的準確性,超音波探頭10可進行下文的步驟。Figure 4 is a schematic diagram of the ultrasonic probe 10 transmitting a plurality of first plane waves BFW1 to BFWN. A method of how the ultrasonic probe 10 detects the object Obj quickly will be described below. First, the ultrasonic probe 10 simultaneously emits a plurality of first plane waves BFW1 to BFWN different from the angle of the surface 11, wherein two adjacent first plane waves sandwich the first angle. For example, in the first plane waves BFW1 to BFWN simultaneously emitted by the ultrasonic probe 10, the angle between the first plane wave BFW1 and the surface 11 is θ1 (hereinafter referred to as an angle θ1). The angle between the first plane wave BFW2 and BFW1 is θ2 (hereinafter referred to as the angle θ2). The angle between the first plane wave BFW3 and BFW2 is θ3 (hereinafter referred to as the angle θ3), and so on. In Fig. 4, the object Obj may be a long or needle-like object, at an angle to the surface 11. After the ultrasonic probe 10 emits the N first plane waves BFW1 to BFWN, part of the first plane wave will be reflected by the object Obj to generate at least one first reflected wave. After the transceivers TS1 to TSN of the ultrasonic probe 10 receive the at least one first reflected wave, the processor 13 will generate a first detection angle corresponding to the object Obj. However, the first detection angle is only a rough estimated angle because only a small portion of the first plane wave is reflected by the object Obj, so the angle estimation error value is large. In order to further increase the accuracy of the angle estimation, the ultrasonic probe 10 can perform the following steps.

第5圖係為超音波探頭10,發射複數個第二平面波BFW1’至BFWN’的示意圖。如前文所述,超音波探頭10取得誤差值較大的第一偵測角度後,可再同時發射與表面11之夾角相異的複數個第二平面波BFW1’至BFWN’,其中兩相鄰第二平面波夾第二角度。例如,超音波探頭10同時發射的第二平面波BFW1’至BFWN’中,第二平面波BFW1’與表面11之夾角為θ1’(後文稱為,夾角θ1’)。第二平面波BFW2’與BFW1’之夾角為θ2’(後文稱為,夾角θ2’)。第二平面波BFW3’與BFW2’之夾角為θ3’(後文稱為,夾角θ3’),依此類推。超音波探頭10發射了N個第二平面波BFW1’至BFWN’後,部分的第二平面波將會被物體Obj反射,而產生至少一個第二反射波。超音波探頭10之收發器TS1至TSN接收了至少一個第二反射波後,處理器13將會產生對應於物體Obj的第二偵測角度。於此說明,兩相鄰第一平面波夾的角度會大於兩相鄰第二平面波夾的角度。換句話說,超音波探頭10所發射的第二平面波BFW1’至BFWN’相較於第一平面波BFW1至BFWN更為緊密。例如,以數值而言,第4圖之夾角θ2會大於第5圖之夾角θ2’,第4圖之夾角θ3會大於第5圖之夾角θ3’,依此類推。因此,第二偵測角度的誤差值會比第一偵測角度要小,原因在於超音波探頭10因發射了較為緊密的第二平面波BFW1’至BFWN’,因此被物體Obj反射之第二平面波的數量會變多,將導致超音波探頭10在判斷物體Obj之位置或角度的結果或更加精確。並且,第二平面波BFW1’至BFWN’的產生方式類似於第2圖及第3圖所述之第一平面波BFW1至BFWN的產生方式,故於此將不再贅述。以下將說明超音波探頭10如何利用被物體Obj反射之第二平面波判斷物體Obj之位置或角度的方法。Fig. 5 is a schematic diagram of the ultrasonic probe 10 for transmitting a plurality of second plane waves BFW1' to BFWN'. As described above, after obtaining the first detection angle with a large error value, the ultrasonic probe 10 can simultaneously emit a plurality of second plane waves BFW1' to BFWN' different from the angle of the surface 11, wherein two adjacent The second plane wave clamps the second angle. For example, in the second plane waves BFW1' to BFWN' simultaneously emitted by the ultrasonic probe 10, the angle between the second plane wave BFW1' and the surface 11 is θ1' (hereinafter referred to as an angle θ1'). The angle between the second plane wave BFW2' and BFW1' is θ2' (hereinafter referred to as the angle θ2'). The angle between the second plane wave BFW3' and BFW2' is θ3' (hereinafter referred to as the angle θ3'), and so on. After the ultrasonic probe 10 emits N second plane waves BFW1' to BFWN', a portion of the second plane wave will be reflected by the object Obj to generate at least one second reflected wave. After the transceivers TS1 to TSN of the ultrasonic probe 10 receive the at least one second reflected wave, the processor 13 will generate a second detection angle corresponding to the object Obj. As illustrated herein, the angle of the two adjacent first plane wave clips is greater than the angle of the two adjacent second plane wave clips. In other words, the second plane waves BFW1' to BFWN' emitted by the ultrasonic probe 10 are closer than the first plane waves BFW1 to BFWN. For example, numerically, the angle θ2 of Fig. 4 will be larger than the angle θ2' of Fig. 5, the angle θ3 of Fig. 4 will be larger than the angle θ3' of Fig. 5, and so on. Therefore, the error value of the second detection angle is smaller than the first detection angle because the ultrasonic probe 10 emits a relatively tight second plane wave BFW1' to BFWN', so the second plane wave reflected by the object Obj The number will increase, which will result in the result of the ultrasonic probe 10 determining the position or angle of the object Obj or more accurately. Further, the second plane waves BFW1' to BFWN' are generated in a manner similar to the manner in which the first plane waves BFW1 to BFWN described in Figs. 2 and 3 are generated, and thus will not be described again. A method of judging whether the position or angle of the object Obj is determined by the second plane wave reflected by the object Obj will be described below.

第6圖係為超音波探頭10中,內存之複數個決策平面波P1至PQ及其夾角的示意圖。於前文所述,超音波探頭10會發射N個第二平面波BFW1’至BFWN’,而部分的第二平面波將會被物體Obj反射以形成至少一個第二反射波。超音波探頭10的收發器TS1至TSN接收到至少一個第二反射波後,可將至少一個第二反射波轉換為電訊號。處理器13可進一步處理至少一個第二反射波所對應的電訊號,並解析出至少一個第二反射波的反射角度。處理器13亦可將至少一個第二反射波所對應的電訊號及其反射角度儲存於緩存裝置12中,以供計算出物體Obj對應之最佳角度使用。於此,處理器13可利用訊號決策邊界演算法(Signal Decision Boundary Algorithm)來取得物體Obj對應之最佳角度。舉例而言,處理器13可內存許多的決策平面波P1至PQ之角度。決策平面波P1至PQ示意如第6圖,其中Q可為大於2的正整數。決策平面波P1與表面11之夾角為Pθ1(後文稱為,夾角Pθ1)。決策平面波P2與P1之夾角為Pθ2(後文稱為,夾角Pθ2)。決策平面波P3與P2之夾角為Pθ3(後文稱為,夾角Pθ3),依此類推。應當理解的是,上述的夾角Pθ1、夾角Pθ2、夾角Pθ3…以及對應的決策平面波編號可以用電磁資料的方式儲存在處理器13中。換句話說,決策平面波P1至PQ並不是實體由收發器發送的平面波,而是以虛擬化數位電磁資料的方式儲存於處理器13中,以用於根據至少一個第二反射波來決定物體Obj的最佳角度。本發明的決策平面波P1至PQ的數量可為大於第二平面波BFW1’至BFWN’的數量,換言之,Q可大於N。亦即,決策平面波P1至PQ中之兩相鄰決策平面波所夾第三角度(例如夾角Pθ1、夾角Pθ2、夾角Pθ3)可小於前述之兩相鄰第二平面波所夾的第二角度。換句話說,決策平面波P1至PQ的排列方式可以比第二平面波BFW1’至BFWN’更緊密,以精確地根據至少一個第二反射波的訊號決定物體Obj的最佳角度。如何根據第二反射波決定物體Obj的最佳角度之方法描述於下文。Figure 6 is a schematic diagram of a plurality of decision plane waves P1 to PQ and their included angles in the ultrasonic probe 10. As described above, the ultrasonic probe 10 emits N second plane waves BFW1' to BFWN', and a portion of the second plane wave will be reflected by the object Obj to form at least one second reflected wave. After the transceivers TS1 to TSN of the ultrasonic probe 10 receive the at least one second reflected wave, the at least one second reflected wave can be converted into an electrical signal. The processor 13 can further process the electrical signal corresponding to the at least one second reflected wave and parse the reflection angle of the at least one second reflected wave. The processor 13 can also store the electrical signal corresponding to the at least one second reflected wave and its reflection angle in the buffer device 12 for calculating the optimal angle corresponding to the object Obj. Here, the processor 13 can use the Signal Decision Boundary Algorithm to obtain the optimal angle corresponding to the object Obj. For example, processor 13 may store a number of decision plane waves P1 to PQ angles. The decision plane waves P1 to PQ are illustrated as Figure 6, where Q can be a positive integer greater than two. The angle between the decision plane wave P1 and the surface 11 is Pθ1 (hereinafter referred to as the angle Pθ1). The angle between the decision plane wave P2 and P1 is Pθ2 (hereinafter referred to as the angle Pθ2). The angle between the decision plane wave P3 and P2 is Pθ3 (hereinafter referred to as the angle Pθ3), and so on. It should be understood that the above-mentioned included angle Pθ1, the included angle Pθ2, the included angle Pθ3, and the corresponding decision plane wave number may be stored in the processor 13 by electromagnetic data. In other words, the decision plane waves P1 to PQ are not plane waves transmitted by the transceiver by the entity, but are stored in the processor 13 in the form of virtualized digital electromagnetic data for determining the object Obj according to the at least one second reflected wave. The best angle. The number of decision plane waves P1 to PQ of the present invention may be greater than the number of second plane waves BFW1' to BFWN', in other words, Q may be greater than N. That is, the third angle (for example, the angle Pθ1, the angle Pθ2, and the angle Pθ3) of the two adjacent decision plane waves in the decision plane waves P1 to PQ may be smaller than the second angle sandwiched by the two adjacent second plane waves. In other words, the decision plane waves P1 to PQ can be arranged more closely than the second plane waves BFW1' to BFWN' to accurately determine the optimum angle of the object Obj based on the signal of the at least one second reflected wave. A method of determining the optimum angle of the object Obj based on the second reflected wave is described below.

第7圖係為超音波探頭10中,依據第二反射波RWAV,利用複數個決策平面波P1至PQ及其夾角所產生最佳角度的示意圖。如前文提及,在第二平面波BFW1’至BFWN’由超音波探頭10發射出去後,某些第二平面波會被物體Obj反射,以形成第二反射波。為了描述簡化,第7圖用了第二反射波RWAV以代表第二平面波被物體Obj反射的方向。如第7圖所示,第二反射波RWAV會被超音波探頭10接收。接著,超音波探頭10會緩存第二反射波RWAV的反射角度,並將處理器13內存的決策平面波P1至PQ分組,以產生複數組的決策平面波。舉例而言,第一組的決策平面波可為P1、P4、P7…。第二組的決策平面波可為P2、P5、P8…。第三組的決策平面波可為P3、P6、P9…。接著,處理器13可比對第二反射波RWAV對應的反射角度與該些組的決策平面波對應的複數個決策角度,以由該些組的決策平面波中,選擇一組最佳的決策平面波以符合物體Obj的角度或位置。舉例而言,處理器13可先將第一組的決策平面波P1、P4、P7…的角度與第二反射波RWAV對應的反射角度比對。再將第二組的決策平面波P1、P4、P7…的角度與第二反射波RWAV對應的反射角度比對。再將第三組的決策平面波P3、P6、P9…的角度與第二反射波RWAV對應的反射角度比對。以本實施例而言,在第一組的決策平面波中,決策平面波P1的角度與第二反射波RWAV對應的反射角度相近。因此,處理器13將會判斷對應物體Obj的最佳角度為決策平面波P1與表面11的夾角Pθ1。換句話說,根據第二反射波RWAV,處理器13最後決定物體Obj的最佳角度為夾角Pθ1。在較佳實施例中,若處理器13所使用的決策平面波的數量很大(Q很大),表示決策平面波的排列非常密集。處理器13最後決定物體Obj的最佳角度之準確率會進一步地提升。理論上,物體Obj的最佳角度即為物體Obj之法向量的角度。並且,由最佳角度即可推算出物體Obj入射於表面11的角度。舉例而言,當最佳角度為夾角Pθ1時,物體Obj入射於表面11的角度趨近於(90 0- Pθ1)。並且,在物理意義上,最佳角度表示物體Obj之法向量的角度,因此當平面波以最佳角度射出時,若物體Obj在平面波的偵測範圍之內,物體Obj會以趨近於垂直方向反射其平面波而幾乎不會有折射的偏移現象。 Fig. 7 is a schematic diagram showing the optimum angle generated by the plurality of decision plane waves P1 to PQ and their included angles in the ultrasonic probe 10 according to the second reflected wave RWAV. As mentioned before, after the second plane waves BFW1' to BFWN' are emitted by the ultrasonic probe 10, some of the second plane waves are reflected by the object Obj to form a second reflected wave. For the sake of simplification, Fig. 7 uses the second reflected wave RWAV to represent the direction in which the second plane wave is reflected by the object Obj. As shown in Fig. 7, the second reflected wave RWAV is received by the ultrasonic probe 10. Next, the ultrasonic probe 10 buffers the reflection angle of the second reflected wave RWAV, and groups the decision plane waves P1 to PQ stored in the processor 13 to generate a complex array of decision plane waves. For example, the decision wave of the first group may be P1, P4, P7, . The decision wave of the second group can be P2, P5, P8.... The decision wave of the third group can be P3, P6, P9.... Then, the processor 13 compares the reflection angles corresponding to the second reflected wave RWAV with the plurality of decision angles corresponding to the decision plane waves of the groups, to select a set of optimal decision plane waves from the decision plane waves of the groups to meet The angle or position of the object Obj. For example, the processor 13 may first compare the angles of the decision wave waves P1, P4, P7, . . . of the first group with the reflection angles corresponding to the second reflected wave RWAV. Then, the angles of the decision plane waves P1, P4, P7, ... of the second group are compared with the reflection angles corresponding to the second reflected wave RWAV. Then, the angles of the decision plane waves P3, P6, P9, ... of the third group are compared with the reflection angles corresponding to the second reflected wave RWAV. In the present embodiment, in the decision wave of the first group, the angle of the decision plane wave P1 is close to the reflection angle corresponding to the second reflected wave RWAV. Therefore, the processor 13 will judge that the optimum angle of the corresponding object Obj is the angle Pθ1 between the decision plane wave P1 and the surface 11. In other words, based on the second reflected wave RWAV, the processor 13 finally determines that the optimum angle of the object Obj is the angle Pθ1. In the preferred embodiment, if the number of decision plane waves used by the processor 13 is large (Q is large), the arrangement of the decision plane waves is very dense. The accuracy of the processor 13 finally determining the optimal angle of the object Obj is further enhanced. In theory, the optimal angle of the object Obj is the angle of the normal vector of the object Obj. Further, the angle at which the object Obj is incident on the surface 11 can be estimated from the optimum angle. For example, when the optimum angle is the angle Pθ1, the angle at which the object Obj is incident on the surface 11 approaches (90 0 - Pθ1). Moreover, in the physical sense, the optimal angle represents the angle of the normal vector of the object Obj, so when the plane wave is emitted at the optimal angle, if the object Obj is within the detection range of the plane wave, the object Obj will approach the vertical direction. It reflects its plane wave with almost no deflection of the refraction.

第8圖係為超音波探頭10中,依據最佳角度發射最佳平面波OptBFW1至OptBFWN至物體Obj的示意圖。如前文提及,超音波探頭10最後會依據至少一個第二反射波,以決定最佳角度。接著,超音波探頭10會依據最佳角度,發射最佳平面波OptBFW1至OptBFWN至物體Obj。舉例而言,在本實施例中,最佳角度為夾角Pθ1。因此,超音波探頭10會同時發射最佳平面波OptBFW1至OptBFWN。並且,最佳平面波OptBFW1至OptBFWN與表面11之夾角為Pθ1。由於所有的最佳平面波OptBFW1至OptBFWN的前進方向與物體Obj實質上垂直,因此,在物體Obj反射範圍內的最佳平面波會被以接近於垂直方向反射,以形成多個最佳反射波。超音波探頭10接收到多個最佳反射波後,即可根據這些最佳反射波進行物體Obj之影像的強化。最終,超音波探頭10不僅可以快速地辨識物體Obj的位置或是角度,亦可進行物體Obj之影像的強化,讓使用者可以在短時間內看到清晰且精確的超音波影像。Fig. 8 is a schematic diagram showing the optimum plane wave OptBFW1 to OptBFWN to the object Obj according to the optimum angle in the ultrasonic probe 10. As mentioned before, the ultrasonic probe 10 will ultimately rely on at least one second reflected wave to determine the optimum angle. Next, the ultrasonic probe 10 transmits the optimal plane waves OptBFW1 to OptBFWN to the object Obj according to the optimum angle. For example, in the present embodiment, the optimum angle is the angle Pθ1. Therefore, the ultrasonic probe 10 simultaneously transmits the optimum plane waves OptBFW1 to OptBFWN. Further, the angle between the optimum plane waves OptBFW1 to OptBFWN and the surface 11 is P?1. Since the forward direction of all the optimal plane waves OptBFW1 to OptBFWN is substantially perpendicular to the object Obj, the optimum plane wave within the reflection range of the object Obj is reflected in a direction close to the vertical direction to form a plurality of optimal reflected waves. After the ultrasonic probe 10 receives a plurality of optimal reflected waves, the image of the object Obj can be enhanced based on the optimal reflected waves. In the end, the ultrasonic probe 10 can not only quickly recognize the position or angle of the object Obj, but also enhance the image of the object Obj, so that the user can see clear and accurate ultrasonic images in a short time.

本發明的超音波影像偵測方法相較於傳統的超音波影像偵測方法,具有快速判斷物體Obj的位置或角度的功能,因此可以快速地成像。原理詳述於下。在傳統的超音波影像偵測方法中,成像或是影像加強需要M×N×(2r/c)的時間,其中r為超音波訊號探測深度,c為音速,M為探測角度的數量,N為掃描線的數量。當M及N變大時,花費的時間將會非常驚人。而在本發明中,超音波探頭10會先同時發射多個第一平面波,並接收至少一個第一反射波。在這個步驟所花的時間最多為(2r/c)。接著,超音波探頭10會同時發射多個第二平面波,並接收至少一個第二反射波。在這個步驟所花的時間最多為(2r/c)。接著,依據最佳角度,超音波探頭10會同時發射多個最佳平面波,並接收多個最佳反射波。在這個步驟所花的時間最多為(2r/c)。因此,由於本發明的超音波影像偵測方法所花費的時間最多為3×(2r/c),相較於傳統需要M×N×(2r/c)時間的超音波影像偵測方法,具有大幅度降低處理時間的功效,這個功效也將導致超音波影像的幀速率(Frame Rate)不會大幅度地降低。Compared with the conventional ultrasonic image detecting method, the ultrasonic image detecting method of the present invention has a function of quickly determining the position or angle of the object Obj, and thus can be quickly imaged. The principle is detailed below. In the traditional ultrasonic image detection method, imaging or image enhancement requires M×N×(2r/c) time, where r is the ultrasonic signal detection depth, c is the sound speed, and M is the number of detection angles, N Is the number of scan lines. When M and N get bigger, the time spent will be amazing. In the present invention, the ultrasonic probe 10 first transmits a plurality of first plane waves simultaneously and receives at least one first reflected wave. The time spent in this step is at most (2r/c). Next, the ultrasonic probe 10 simultaneously emits a plurality of second plane waves and receives at least one second reflected wave. The time spent in this step is at most (2r/c). Then, according to the optimal angle, the ultrasonic probe 10 simultaneously emits a plurality of optimal plane waves and receives a plurality of optimal reflected waves. The time spent in this step is at most (2r/c). Therefore, since the time required for the ultrasonic image detecting method of the present invention is at most 3×(2r/c), compared with the conventional ultrasonic image detecting method requiring M×N×(2r/c) time, Significantly reduce the processing time, this effect will also cause the frame rate of the ultrasound image will not be greatly reduced.

第9圖係為超音波影像偵測方法的流程圖。超音波影像偵測方法包含步驟S901至步驟S906。然而,任何步驟的合理變更或是修改都屬於本發明所揭露的範疇。步驟S901至步驟S906描述如下。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 步驟S901: </td><td> 同時發射與表面11之夾角相異的複數個第一平面波BFW1至BFWN; </td></tr><tr><td> 步驟S902: </td><td> 接收該些第一平面波BFW1至BFWN被物體Obj所反射的至少一個第一反射波; </td></tr><tr><td> 步驟S903: </td><td> 依據至少一個第一反射波,同時發射與表面11之夾角相異的 複數個第二平面波BFW1’至BFWN’; </td></tr><tr><td> 步驟S904: </td><td> 接收該些第二平面波BFW1’至BFWN’被物體Obj所反射的至少一個第二反射波RWAV; </td></tr><tr><td> 步驟S905: </td><td> 依據至少一個第二反射波RWAV,利用複數個決策平面波P1至PQ以決定物體Obj的角度或位置; </td></tr><tr><td> 步驟S906: </td><td> 依據該些決策平面波P1至PQ的偵測結果,發射最佳平面波OptBFW1至OptBFWN至物體Obj,並返回步驟S903。 </td></tr></TBODY></TABLE>Figure 9 is a flow chart of the ultrasonic image detection method. The ultrasonic image detecting method includes steps S901 to S906. However, any reasonable changes or modifications of the steps are within the scope of the invention. Steps S901 to S906 are described as follows.  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Step S901: </td><td> Simultaneously emit a complex number that differs from the surface 11 First plane waves BFW1 to BFWN; </td></tr><tr><td> Step S902: </td><td> receiving at least one of the first plane waves BFW1 to BFWN reflected by the object Obj a reflected wave; </td></tr><tr><td> Step S903: </td><td> according to at least one first reflected wave, simultaneously emitting a plurality of seconds different from the angle of the surface 11 Plane waves BFW1' to BFWN'; </td></tr><tr><td> Step S904: </td><td> receiving at least one of the second plane waves BFW1' to BFWN' reflected by the object Obj Second reflected wave RWAV; </td></tr><tr><td> Step S905: </td><td> Depending on the at least one second reflected wave RWAV, a plurality of decision plane waves P1 to PQ are used to determine the object Angle or position of Obj; </td></tr><tr><td> Step S906: </td><td> According to the detection results of the decision plane waves P1 to PQ, the best plane wave OptBFW1 to OptBFWN is transmitted. Go to the object Obj and return to step S903. </td></tr></TBODY></TABLE>

步驟S901至步驟S906的詳細說明已於前文中描述,故於此將不再贅述。應當理解的是,前文所述之物體Obj可為隨著時間而變動其角度或位置的物體。因此,步驟S903至步驟S906可構成一個執行迴圈,以使超音波探頭10對隨時間移動的物體進行連續不斷地偵測操作。並且,在本發明中,由於超音波探頭10可以參考前次所偵測的角度而調整下次發射出的平面波角度,因此可以達到較為精確的角度偵測,並同時發射最佳角度的多個最佳平面波來進行物體之影像的加強。The detailed description of steps S901 to S906 has been described in the foregoing, and thus will not be described again. It should be understood that the object Obj described above may be an object that changes its angle or position over time. Therefore, steps S903 to S906 may constitute an execution loop to cause the ultrasonic probe 10 to continuously detect an object moving over time. Moreover, in the present invention, since the ultrasonic probe 10 can adjust the angle of the plane wave emitted next time with reference to the previously detected angle, it is possible to achieve more accurate angle detection and simultaneously transmit multiple angles of the optimal angle. The best plane wave is used to enhance the image of the object.

綜上所述,本發明提供了一種超音波影像偵測方法,具有大幅度降低物體成像之處理時間的功效。超音波探頭會同時發射較為分散的第一平面波,以估測出粗略的物體角度。超音波探頭會根據參考前次所偵測的粗略之物體角度,調整下次發射出的第二平面波角度,以使第二平面波的分布較為集中。並且,超音波探頭會進一步根據較為集中之第二平面波所反射的第二反射波,利用多個決策平面波偵測出最佳角度。最後,超音波探頭會同時發射最佳角度的多個最佳平面波來進行物體之影像的加強。因此,將較於傳統超音波影像偵測方法需要線性成長的處理時間(M×N×(2r/c)),本發明的超音波影像偵測方法需要的處理時間僅為固定的短時間(3×(2r/c))即可。因此,本發明的超音波影像偵測方法,可讓使用者在短時間內看到清晰且精確的超音波影像。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。In summary, the present invention provides an ultrasonic image detecting method, which has the effect of greatly reducing the processing time of object imaging. The ultrasonic probe simultaneously emits a relatively scattered first plane wave to estimate a rough object angle. The ultrasonic probe adjusts the angle of the second plane wave emitted next time according to the rough object angle detected by the previous reference, so that the distribution of the second plane wave is concentrated. Moreover, the ultrasonic probe further detects the optimal angle by using a plurality of decision plane waves according to the second reflected wave reflected by the relatively concentrated second plane wave. Finally, the ultrasonic probe simultaneously emits multiple optimal plane waves at the optimal angle to enhance the image of the object. Therefore, the processing time required for the ultrasonic image detection method of the present invention is only a fixed short time (M×N×(2r/c)) compared to the conventional ultrasonic image detection method. 3 × (2r / c)) can be. Therefore, the ultrasonic image detecting method of the present invention allows the user to see clear and accurate ultrasonic images in a short time. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100‧‧‧超音波探測系統
10‧‧‧超音波探頭
11‧‧‧表面
Obj‧‧‧物體
BFW、BFW1至BFWN、BFW1’至BFWN’‧‧‧平面波
θ1至θ3、θ1’至θ3’‧‧‧夾角
12‧‧‧緩存裝置
13‧‧‧處理器
TS1至TSN‧‧‧收發器
S1至SN‧‧‧方向
SE1至SEM‧‧‧電壓訊號
ELE1至ELEM‧‧‧壓電裝置
14‧‧‧訊號產生裝置
WAV1至WAVM‧‧‧波
D1及D2‧‧‧時間差
P1至PQ‧‧‧決策平面波
Pθ1至Pθ4‧‧‧夾角
RWAV‧‧‧反射波
OptBFW1至OptBFWN‧‧‧最佳平面波
S901至S906‧‧‧步驟
100‧‧‧Ultonic detection system
10‧‧‧Ultrasonic probe
11‧‧‧ surface
Obj‧‧ objects
BFW, BFW1 to BFWN, BFW1' to BFWN'‧‧‧ plane wave θ1 to θ3, θ1' to θ3'‧‧‧ angle
12‧‧‧ Cache device
13‧‧‧ Processor
TS1 to TSN‧‧‧ transceiver
S1 to SN‧‧ direction
SE1 to SEM‧‧‧ voltage signal
ELE1 to ELEM‧‧‧ piezoelectric devices
14‧‧‧Signal generating device
WAV1 to WAVM‧‧‧ waves
D1 and D2‧‧ ‧ time difference
P1 to PQ‧‧‧ decision plane wave
Pθ1 to Pθ4‧‧‧ angle
RWAV‧‧‧ reflected wave
OptBFW1 to OptBFWN‧‧‧ Best Plane Wave
S901 to S906‧‧‧ steps

第1圖係為本發明之超音波探測系統之實施例的架構圖。 第2圖係為第1圖的超音波探頭中,收發器的架構圖。 第3圖係為第1圖的超音波探頭中,合成第一平面波的示意圖。 第4圖係為第1圖的超音波探頭,發射複數個第一平面波的示意圖。 第5圖係為第1圖的超音波探頭,發射複數個第二平面波的示意圖。 第6圖係為第1圖的超音波探頭中,內存之複數個決策平面波及其夾角的示意圖。 第7圖係為第1圖的超音波探頭中,依據第二反射波,利用複數個決策平面波及其夾角所產生最佳角度的示意圖。 第8圖係為第1圖的超音波探頭中,依據最佳角度發射最佳平面波至物體的示意圖。 第9圖係為本發明之超音波影像偵測方法的流程圖。Figure 1 is an architectural diagram of an embodiment of the ultrasonic sounding system of the present invention. Figure 2 is a block diagram of the transceiver in the ultrasonic probe of Figure 1. Fig. 3 is a schematic view showing the synthesis of the first plane wave in the ultrasonic probe of Fig. 1. Figure 4 is a schematic diagram of the ultrasonic probe of Figure 1, transmitting a plurality of first plane waves. Figure 5 is a schematic diagram of the ultrasonic probe of Figure 1, transmitting a plurality of second plane waves. Figure 6 is a schematic diagram of a plurality of decision plane waves and their included angles in the ultrasonic probe of Fig. 1. Fig. 7 is a schematic diagram showing the optimum angle generated by a plurality of decision plane waves and their included angles in the ultrasonic probe of Fig. 1 according to the second reflected wave. Figure 8 is a schematic diagram of the ultrasonic wave probe of Fig. 1 for transmitting an optimum plane wave to an object according to an optimum angle. Figure 9 is a flow chart of the ultrasonic image detecting method of the present invention.

Claims (10)

一種超音波影像偵測方法,包含: 同時發射與一表面之夾角相異的複數個第一平面波,其中兩相鄰第一平面波夾一第一角度; 接收該些第一平面波被一物體所反射的至少一第一反射波; 依據該至少一第一反射波,同時發射與該表面之夾角相異的複數個第二平面波,其中兩相鄰第二平面波夾一第二角度; 接收該些第二平面波被該物體所反射的至少一第二反射波;及 依據該至少一第二反射波,利用複數個決策平面波以決定該物體的一角度或一位置; 其中第一角度大於該第二角度。An ultrasonic image detecting method includes: simultaneously transmitting a plurality of first plane waves different from an angle of a surface, wherein two adjacent first plane waves are clamped by a first angle; and receiving the first plane waves is reflected by an object At least one first reflected wave according to the at least one first reflected wave, simultaneously emitting a plurality of second plane waves different from the angle of the surface, wherein two adjacent second plane waves are sandwiched by a second angle; receiving the first And at least one second reflected wave reflected by the object; and determining, according to the at least one second reflected wave, a plurality of decision plane waves to determine an angle or a position of the object; wherein the first angle is greater than the second angle . 如請求項1所述之方法,另包含: 依據該些決策平面波的一偵測結果,發射一最佳平面波至該物體; 其中該最佳平面波的一前進方向與該物體實質上垂直。The method of claim 1, further comprising: transmitting an optimal plane wave to the object according to a detection result of the decision plane waves; wherein a forward direction of the optimal plane wave is substantially perpendicular to the object. 如請求項1所述之方法,其中該些決策平面波中之兩相鄰決策平面波夾一第三角度,且該第三角度小於該第二角度。The method of claim 1, wherein two of the decision plane waves are sandwiched by a third angle, and the third angle is smaller than the second angle. 如請求項1所述之方法,另包含: 緩存該至少一第二反射波的之每一第二反射波對應的一反射角度; 產生複數組的決策平面波,其中每一組的決策平面波包含複數個決策平面波;及 比對該每一第二反射波對應的該反射角度與該些組的決策平面波對應的複數個決策角度,以由該些組的決策平面波中,選擇一組最佳的決策平面波以符合該物體的該角度或該位置。The method of claim 1, further comprising: buffering a reflection angle corresponding to each of the second reflected waves of the at least one second reflected wave; generating a complex array of decision plane waves, wherein each group of decision plane waves includes a complex number a decision plane wave; and a plurality of decision angles corresponding to the reflection angle corresponding to each of the second reflected waves and the decision plane waves of the groups, to select a set of optimal decisions from the decision plane waves of the groups The plane wave conforms to the angle or the position of the object. 如請求項1所述之方法,另包含: 在接收該些第一平面波對應的該至少一第一反射波後,產生對應於該物體的一第一偵測角度;及 在接收該些第二平面波對應的該至少一第二反射波後,產生對應於該物體的一第二偵測角度; 其中該第二偵測角度的一誤差值小於該第一偵測角度的一誤差值。The method of claim 1, further comprising: after receiving the at least one first reflected wave corresponding to the first plane waves, generating a first detection angle corresponding to the object; and receiving the second After the at least one second reflected wave corresponding to the plane wave, a second detection angle corresponding to the object is generated; wherein an error value of the second detection angle is smaller than an error value of the first detection angle. 如請求項1所述之方法,其中該些第一平面波中之每一第一平面波係由複數個壓電裝置產生,該些壓電裝置係使用一第一組訊號驅動,且該第一組訊號的延遲時間不同。The method of claim 1, wherein each of the first plane waves is generated by a plurality of piezoelectric devices, the piezoelectric devices are driven by a first group of signals, and the first group The delay time of the signal is different. 如請求項6所述之方法,其中該第一組訊號係由一訊號產生裝置產生,且該第一組訊號驅動該些壓電裝置中之兩相鄰壓電裝置的時間差相同,以透過該些壓電裝置合成該每一第一平面波。The method of claim 6, wherein the first group of signals is generated by a signal generating device, and the first group of signals drives the two adjacent ones of the piezoelectric devices to have the same time difference to transmit the same The piezoelectric devices synthesize each of the first plane waves. 如請求項1所述之方法,其中該些第二平面波中之每一第二平面波係由複數個壓電裝置產生,該些壓電裝置係使用一第二組訊號驅動,且該第二組訊號的延遲時間不同。The method of claim 1, wherein each of the second planar waves is generated by a plurality of piezoelectric devices, the piezoelectric devices are driven by a second group of signals, and the second group The delay time of the signal is different. 如請求項8所述之方法,其中該第二組訊號係由一訊號產生裝置產生,且該第二組訊號驅動該些壓電裝置中之兩相鄰壓電裝置的時間差相同,以透過該些壓電裝置以合成該每一第二平面波。The method of claim 8, wherein the second group of signals is generated by a signal generating device, and the second group of signals drives the two adjacent ones of the piezoelectric devices to have the same time difference to transmit the same Some piezoelectric devices to synthesize each of the second plane waves. 如請求項1所述之方法,其中該些決策平面波之每一決策平面波係對應驅動複數個壓電裝置所用之一組不同延遲時間的訊號。The method of claim 1, wherein each of the decision plane waves of the plurality of decision plane waves corresponds to a group of different delay time signals used by the plurality of piezoelectric devices.
TW106113350A 2017-04-21 2017-04-21 Ultrasound image detection method TWI634871B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106113350A TWI634871B (en) 2017-04-21 2017-04-21 Ultrasound image detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106113350A TWI634871B (en) 2017-04-21 2017-04-21 Ultrasound image detection method

Publications (2)

Publication Number Publication Date
TWI634871B true TWI634871B (en) 2018-09-11
TW201838593A TW201838593A (en) 2018-11-01

Family

ID=64452818

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106113350A TWI634871B (en) 2017-04-21 2017-04-21 Ultrasound image detection method

Country Status (1)

Country Link
TW (1) TWI634871B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102920476A (en) * 2011-08-11 2013-02-13 深圳迈瑞生物医疗电子股份有限公司 Ultrasonic imaging method and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102920476A (en) * 2011-08-11 2013-02-13 深圳迈瑞生物医疗电子股份有限公司 Ultrasonic imaging method and device

Also Published As

Publication number Publication date
TW201838593A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US10722215B2 (en) Ultrasound diagnostic device and ultrasound diagnostic device control method
US20170181725A1 (en) Joint ultrasound imaging system and method
US20160135688A1 (en) Object information acquiring apparatus
WO2021056498A1 (en) Ultrasound imaging method and system, and computer readable storage medium
US20030236462A1 (en) Ultrasound quantification in real-time using acoustic data in more than two dimensions
EP3099243A1 (en) An ultrasound imaging system and an ultrasound imaging method
JP6263447B2 (en) Ultrasonic diagnostic apparatus and program
JP2006271523A (en) Ultrasonic diagnostic apparatus
JP2004053360A (en) Ultrasonic imaging system
CN107080556B (en) Ultrasonic image detection method and system
US20090099455A1 (en) Ultrasound diagnosis method and apparatus
US20140330128A1 (en) Signal processing apparatus and method
JP2015136449A (en) Ultrasonic diagnostic apparatus and beam forming method
US20150369909A1 (en) Image sensor for large area ultrasound mapping
TWI634871B (en) Ultrasound image detection method
JP2012029718A (en) Ultrasonic probe adapter, ultrasonic diagnostic system, and ultrasonograph
WO2021039640A1 (en) Ultrasonic inspection device and ultrasonic inspection method
US20200330077A1 (en) Ultrasound diagnostic apparatus and method for controlling ultrasound diagnostic apparatus
US11116481B2 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
US10792014B2 (en) Ultrasound inspection apparatus, signal processing method for ultrasound inspection apparatus, and recording medium
JP6718520B2 (en) Ultrasonic diagnostic apparatus and method for controlling ultrasonic diagnostic apparatus
JP6663029B2 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
JP7434529B2 (en) Ultrasonic diagnostic device, control method for ultrasonic diagnostic device, and processor for ultrasonic diagnostic device
KR20080085424A (en) Ultrasound system and method for forming ultrasound image
JP7091676B2 (en) Ultrasonic flaw detection method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees