TWI633935B - Immobilized conductive material-cnt/tio2 photocatalyst and manufacturing method thereof - Google Patents
Immobilized conductive material-cnt/tio2 photocatalyst and manufacturing method thereof Download PDFInfo
- Publication number
- TWI633935B TWI633935B TW104143644A TW104143644A TWI633935B TW I633935 B TWI633935 B TW I633935B TW 104143644 A TW104143644 A TW 104143644A TW 104143644 A TW104143644 A TW 104143644A TW I633935 B TWI633935 B TW I633935B
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon nanotube
- photocatalyst
- solution
- titanium dioxide
- conductive material
- Prior art date
Links
Landscapes
- Catalysts (AREA)
Abstract
一種掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒包含一固定化光觸媒、一奈米碳管材料及一導電材料。將該導電材料及奈米碳管材料掺雜於該固定化光觸媒,以獲得一掺雜二氧化鈦固定化光觸媒,並將該掺雜二氧化鈦固定化光觸媒固定於一基材上。該奈米碳管為一官能基化奈米碳管,且該官能基化奈米碳管包含羧酸化奈米碳管、醯氯化奈米碳管或其混合物。該掺雜二氧化鈦固定化光觸媒另添加一界面活性劑。 A mixed crystal phase doped titanium dioxide fixed photocatalyst comprising a conductive plastic and a carbon nanotube comprises an immobilized photocatalyst, a carbon nanotube material and a conductive material. The conductive material and the carbon nanotube material are doped on the immobilized photocatalyst to obtain a doped titanium dioxide immobilized photocatalyst, and the doped titanium dioxide immobilized photocatalyst is fixed on a substrate. The carbon nanotube is a monofunctional carbon nanotube, and the functionalized carbon nanotube comprises a carboxylated carbon nanotube, a ruthenium chloride carbon nanotube or a mixture thereof. The doped titanium dioxide immobilized photocatalyst is additionally added with a surfactant.
Description
本發明係關於一種掺雜導電材料〔例如:聚苯胺,PANi〕及奈米碳管〔CNT,carbon nano-tube〕或之混晶相二氧化鈦〔TiO2〕固定化〔immobilized〕光觸媒〔photocatalyst〕及其製造方法;特別是關於一種掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒及其製造方法用於降解鄰苯二甲酸二乙酯〔DEP,diethyl phthalate〕。 The present invention relates to a doped conductive material (for example, polyaniline, PANi) and carbon nanotubes (CNT, carbon nano-tube) or mixed crystal phase titanium dioxide [TiO 2 ] immobilized photocatalyst [photocatalyst] The invention relates to a method for manufacturing a mixed photocatalyst of a doped conductive material and a carbon nanotube, and a method for producing the same, for degrading diethyl phthalate (DEP).
習用奈米碳管/二氧化鈦複合光觸媒材料及其製作方法,如中華民國專利公告第I436945號之〝奈米碳管/二氧化鈦複合光觸媒及其製作方法〞專利,其揭示一種奈米碳管/二氧化鈦複合光觸媒製作方法包含:製備一奈米碳管;表面修飾該奈米碳管,以獲得一改質奈米碳管,且該改質奈米碳管形成表面接枝或形成官能基化;於該改質奈米碳管加入一鈦前驅物,以反應形成一複合光觸媒。該複合光觸媒於可見光下進行降解雙酚A。 Conventional carbon nanotube/titanium dioxide composite photocatalyst material and preparation method thereof, for example, the nano carbon tube/titanium dioxide composite photocatalyst and the preparation method thereof of the Republic of China Patent Publication No. I436945, which discloses a nano carbon tube/titanium dioxide composite The photocatalyst manufacturing method comprises: preparing a carbon nanotube; surface modifying the carbon nanotube to obtain a modified carbon nanotube, and the modified carbon nanotube forms a surface graft or a functionalized group; The modified carbon nanotube is added with a titanium precursor to form a composite photocatalyst. The composite photocatalyst degrades bisphenol A under visible light.
另一習用奈米碳管/二氧化鈦複合光觸媒材料及其製作方法,如中華民國專利公告第I410275號之〝可見光吸收之具二氧化鈦/奈米碳管結構之光觸媒之製備方法以及光觸媒過濾網〞專利,其揭示一種光觸媒製備方法包括步驟:〔a〕、提供基底;〔b〕、形成複數奈米碳管 於基底之表面;〔c〕、提供鈦供給源以及氧供給源;以及〔d〕、形成至少一二氧化鈦層於複數奈米碳管之表面。第I410275號另外揭示一種光觸媒過濾網包括:基底、複數奈米碳管、以及二氧化鈦層。其中複數奈米碳管係位於基底之表面,且其一端係與基底之表面連接,二氧化鈦層係覆於複數奈米碳管之表面。光觸媒過濾網為可見光吸收之光觸媒過濾網,且其二氧化鈦層具有高分布均勻性,因此使其具有高光分解效果。 Another conventional nano carbon tube/titanium dioxide composite photocatalyst material and a preparation method thereof, for example, a method for preparing a photocatalyst with a titanium dioxide/nanocarbon tube structure and a photocatalyst filter network patent for visible light absorption under the Republic of China Patent Publication No. I410275 It discloses a photocatalyst preparation method comprising the steps of: [a] providing a substrate; [b] forming a plurality of carbon nanotubes a surface of the substrate; [c], providing a titanium supply source and an oxygen supply source; and [d] forming at least one titanium dioxide layer on the surface of the plurality of carbon nanotubes. No. I410275 discloses a photocatalyst filter network comprising: a substrate, a plurality of carbon nanotubes, and a titanium dioxide layer. The plurality of carbon nanotubes are located on the surface of the substrate, and one end thereof is connected to the surface of the substrate, and the titanium dioxide layer is coated on the surface of the plurality of carbon nanotubes. The photocatalyst filter is a photocatalyst filter for visible light absorption, and its titanium dioxide layer has high distribution uniformity, so that it has a high photodecomposition effect.
另一習用奈米碳管/二氧化鈦複合光觸媒材料及其製作方法,如中華民國專利公告第I354578號之〝三元系MWNT-SiO2-TiO2奈米複合光觸媒材料及其製備方法〞專利,其揭示一種三元系MWNT-SiO2-TiO2奈米複合光觸媒材料及其製備方法,利用溶膠-凝膠法製備三元系MWNT-SiO2-TiO2奈米複合光觸媒材料。首先配製一SiO2-TiO2前驅物及一MWNT懸浮液,將MWNT懸浮液加入SiO2-TiO2前驅物中,配製成一MWNT-SiO2-TiO2凝膠。再於MWNT-SiO2-TiO2凝膠中加入一酸觸媒,形成一黑色MWNT-SiO2-TiO2凝膠,經過老化、乾燥、研磨及鍛燒步驟形成本發明之三元系之MWNT-SiO2-TiO2複合光觸媒材料。 Another conventional nano carbon tube/titanium dioxide composite photocatalyst material and a preparation method thereof, such as the ternary ternary MWNT-SiO2-TiO2 nano composite photocatalyst material of the Republic of China Patent No. I354578 and a preparation method thereof, which discloses a The ternary MWNT-SiO2-TiO2 nanocomposite photocatalyst material and its preparation method were used to prepare ternary MWNT-SiO2-TiO2 nanocomposite photocatalyst material by sol-gel method. First, a SiO2-TiO2 precursor and a MWNT suspension were prepared, and the MWNT suspension was added to the SiO2-TiO2 precursor to prepare a MWNT-SiO2-TiO2 gel. Then, an acid catalyst is added to the MWNT-SiO2-TiO2 gel to form a black MWNT-SiO2-TiO2 gel, which is subjected to aging, drying, grinding and calcining steps to form the ternary MWNT-SiO2-TiO2 of the present invention. Composite photocatalyst material.
另一習用奈米碳管/二氧化鈦複合光觸媒材料及其製作方法,如美國專利第US-9078942號之〝Titanium dioxide,single-walled carbon nanotube composites〞專利申請案,其揭示一種二氧化鈦/單壁奈米碳管〔TiO2/SWCNTs〕複合光觸媒材料塗佈於薄膜濾材〔membrane filters〕及陶磁材料〔ceramic articles〕上,且該二氧化鈦/單壁奈米碳管複合光觸媒材料用於淨化水或空氣。 Another conventional nano carbon tube/titanium dioxide composite photocatalyst material and a method for fabricating the same, such as the titanium oxide/single-walled carbon nanotube composites of US-A-9,078,942, which discloses a titanium dioxide/single-walled nanometer. The carbon nanotube [TiO2/SWCNTs] composite photocatalyst material is coated on a membrane filter and a ceramic article, and the titanium dioxide/single-walled carbon nanotube composite photocatalyst material is used for purifying water or air.
然而,習用奈米碳管/二氧化鈦複合光觸媒材料仍需要改良其本身材料特性,以便適當提升複合奈米碳管 與二氧化鈦材料之光觸媒能力,以期降解各種常見新興環境污染物,例如:鄰苯二甲酸二乙酯〔DEP,俗稱塑化劑〕或其它環境污染物。 However, conventional carbon nanotube/titanium dioxide composite photocatalyst materials still need to improve their own material properties in order to properly upgrade the composite carbon nanotubes. Photocatalytic ability with titanium dioxide materials to degrade various common emerging environmental pollutants such as diethyl phthalate (DEP, commonly known as plasticizer) or other environmental pollutants.
簡言之,習用奈米碳管/二氧化鈦複合光觸媒材料必然存在需要掺雜其它材料,以進一步改善其光觸媒特性的需求。前述中華民國專利公告第I436945號、第I410275號、第I354578號及美國專利第US9078942號僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。 In short, the conventional carbon nanotube/titanium dioxide composite photocatalyst material must have the need to dope other materials to further improve its photocatalytic properties. The foregoing state of the art of the present invention is not limited to the scope of the present invention by reference to the state of the art and the state of the art.
有鑑於此,本發明為了滿足上述技術問題及需求,其提供一種掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒及其製造方法,其將一導電材料及一奈米碳管材料掺雜於一固定化光觸媒,以獲得一掺雜二氧化鈦固定化光觸媒,因此相對於習用複合光觸媒材料及其製造方法可大幅提升其光催化降解效率,並降低其製造成本及時間。 In view of the above, in order to meet the above technical problems and needs, the present invention provides a mixed crystal phase titanium dioxide immobilized photocatalyst doped with a conductive material and a carbon nanotube, and a method for manufacturing the same, which comprises a conductive material and a carbon nanotube The material is doped into an immobilized photocatalyst to obtain a doped titanium dioxide immobilized photocatalyst, so that the photocatalytic degradation efficiency and the manufacturing cost and time can be greatly improved compared with the conventional composite photocatalyst material and the manufacturing method thereof.
本發明之主要目的係提供一種掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒及其製造方法,其將一導電材料及一奈米碳管材料掺雜於一固定化光觸媒,以獲得一掺雜二氧化鈦固定化光觸媒,以達成提升其光催化降解效率之目的。 The main object of the present invention is to provide a mixed crystal phase titanium dioxide immobilized photocatalyst doped with a conductive material and a carbon nanotube, and a method for manufacturing the same, which comprises doping a conductive material and a carbon nanotube material on an immobilized photocatalyst, A doped titanium dioxide immobilized photocatalyst is obtained to achieve the purpose of improving the photocatalytic degradation efficiency.
為了達成上述目的,本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒製造方法包含:製備一奈米碳管溶液;將一鈦源前驅物材料加入至該奈米碳管溶液,以形成一鈦源前驅物與奈米碳管混合溶液;製備一導電材料溶液; 將該導電材料溶液加入至該鈦源前驅物與奈米碳管混合溶液,以形成一光觸媒溶液。 In order to achieve the above object, a method for manufacturing a mixed crystal phase titanium dioxide immobilized photocatalyst comprising a conductive material and a carbon nanotube according to a preferred embodiment of the present invention comprises: preparing a carbon nanotube solution; and adding a titanium source precursor material to The carbon nanotube solution is formed to form a titanium source precursor and a carbon nanotube mixed solution; preparing a conductive material solution; The conductive material solution is added to the titanium source precursor and the carbon nanotube mixed solution to form a photocatalyst solution.
本發明較佳實施例之該鈦源前驅物材料為異丙氧化鈦。 In the preferred embodiment of the invention, the titanium source precursor material is titanium isopropoxide.
本發明較佳實施例之該奈米碳管為一官能基化奈米碳管,且該官能基化奈米碳管包含羧酸化奈米碳管、醯氯化奈米碳管或其混合物。 In a preferred embodiment of the invention, the carbon nanotube is a monofunctional carbon nanotube, and the functionalized carbon nanotube comprises a carboxylated carbon nanotube, a ruthenium chloride carbon nanotube or a mixture thereof.
本發明較佳實施例之該導電材料為一聚苯胺材料、一聚吡咯材料、一聚噻吩材料或其混合物。 The conductive material of the preferred embodiment of the invention is a polyaniline material, a polypyrrole material, a polythiophene material or a mixture thereof.
本發明較佳實施例之該導電材料溶液另添加一界面活性劑。 In the preferred embodiment of the present invention, the conductive material solution is additionally added with a surfactant.
本發明較佳實施例將該光觸媒溶液加入硝酸製成一光觸媒凝膠。 In a preferred embodiment of the invention, the photocatalyst solution is added to nitric acid to form a photocatalyst gel.
為了達成上述目的,本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒包含:一固定化光觸媒,其為二氧化鈦固定化光觸媒,且該固定化光觸媒具有一第一預定含量;一奈米碳管材料,其具有一第二預定含量;及一導電材料,其具有一第三預定含量;其中將該導電材料及奈米碳管材料掺雜於該固定化光觸媒,以獲得一掺雜二氧化鈦固定化光觸媒,並將該掺雜二氧化鈦固定化光觸媒固定於一基材上。 In order to achieve the above object, the mixed crystal phase titanium dioxide immobilized photocatalyst of the doped conductive material and the carbon nanotube of the preferred embodiment of the present invention comprises: an immobilized photocatalyst, which is a titanium dioxide immobilized photocatalyst, and the immobilized photocatalyst has a a first predetermined content; a carbon nanotube material having a second predetermined content; and a conductive material having a third predetermined content; wherein the conductive material and the carbon nanotube material are doped to the immobilization The photocatalyst is used to obtain a doped titanium dioxide immobilized photocatalyst, and the doped titanium dioxide immobilized photocatalyst is fixed on a substrate.
本發明較佳實施例之該奈米碳管為一官能基化奈米碳管,且該官能基化奈米碳管包含羧酸化奈米碳管、醯氯化奈米碳管或其混合物。 In a preferred embodiment of the invention, the carbon nanotube is a monofunctional carbon nanotube, and the functionalized carbon nanotube comprises a carboxylated carbon nanotube, a ruthenium chloride carbon nanotube or a mixture thereof.
本發明較佳實施例之該導電材料為一聚苯胺材料、一聚吡咯材料、一聚噻吩材料或其混合物。 The conductive material of the preferred embodiment of the invention is a polyaniline material, a polypyrrole material, a polythiophene material or a mixture thereof.
本發明較佳實施例之該掺雜二氧化鈦固定化 光觸媒另添加一界面活性劑。 The doped titanium dioxide immobilization in a preferred embodiment of the invention The photocatalyst is additionally added with a surfactant.
1‧‧‧第一種光觸媒材料 1‧‧‧first photocatalytic material
1’‧‧‧導電材料 1'‧‧‧Electrical materials
1a‧‧‧CNT-COOH材料 1a‧‧‧CNT-COOH material
1b‧‧‧CNT-COOH/TiO2材料 1b‧‧‧CNT-COOH/TiO 2 material
10‧‧‧光觸媒溶液 10‧‧‧Photocatalyst solution
100‧‧‧基材 100‧‧‧Substrate
2‧‧‧第二種光觸媒材料 2‧‧‧Second photocatalyst material
2a‧‧‧CNT-COCl材料 2a‧‧‧CNT-COCl material
2b‧‧‧CNT-COCl/TiO2材料 2b‧‧‧CNT-COCl/TiO 2 material
3‧‧‧第三種光觸媒材料 3‧‧‧The third photocatalyst material
第1(a)至1(e)圖:本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒選擇採用製成〔PANi-CNT-COCl/TiO2及PANi-CNT-COOH/TiO2〕兩種材料之相互作用示意圖。 1(a) to 1(e): a mixed photocatalyst of a doped conductive material and a carbon nanotube in a preferred embodiment of the present invention is selected to be [PANi-CNT-COCl/TiO 2 and Schematic diagram of the interaction of two materials, PANi-CNT-COOH/TiO 2 .
第2圖:本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒添加界面活性劑之示意圖。 Fig. 2 is a schematic view showing the addition of a surfactant to a photocatalyst-immobilized photocatalyst of a doped conductive material and a carbon nanotube in a preferred embodiment of the present invention.
第3圖:本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒與太陽光產生反應機制之示意圖。 Fig. 3 is a schematic view showing the reaction mechanism between the photocatalyst and the sunlight generated by the doped conductive material and the carbon nanotube mixed phase of the preferred embodiment of the present invention.
第4圖:本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒選擇製成光觸媒凝膠,並以溶膠凝膠法之塗佈方式形成在基材上之示意圖。 Figure 4: The doped conductive material and the carbon nanotube mixed phase of the preferred embodiment of the present invention are selected as photocatalyst gels, and are formed on the substrate by a sol-gel method. Schematic diagram.
第5圖:本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒選擇製成光觸媒溶液,並以水熱法在低溫高壓下形成在基材上之示意圖。 Fig. 5 is a schematic view showing the photocatalyst solution prepared by the doped conductive material and the carbon nanotube mixed crystal phase titanium dioxide fixed photocatalyst in the preferred embodiment of the present invention, and formed on the substrate by hydrothermal method under low temperature and high pressure. .
為了充分瞭解本發明,於下文將舉例較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。 In order to fully understand the present invention, the preferred embodiments of the present invention are described in detail below, and are not intended to limit the invention.
本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒及其製造方法係可適用於各種掺雜奈米碳管/二氧化鈦複合光觸媒相關技術領域,該相關技術領域係屬未脫離本發明之精神與技術領域範圍。本發明較佳實施例採用之導電材料〔例如:聚苯胺或含聚苯胺材料〕及奈米碳管可廣泛取自導電材料及奈米 碳管相關製備技術,但其並非用以限制本發明。 The mixed crystal phase titanium dioxide immobilized photocatalyst of the doped conductive material and the carbon nanotube of the preferred embodiment of the present invention and the manufacturing method thereof are applicable to various technical fields related to the doped carbon nanotube/titanium dioxide composite photocatalyst, and the related art The field is within the spirit and technical scope of the invention. The conductive material (for example: polyaniline or polyaniline-containing material) and the carbon nanotube used in the preferred embodiment of the present invention can be widely taken from conductive materials and nanometers. Carbon tube related preparation techniques, but are not intended to limit the invention.
本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒包含一固定化光觸媒、一奈米碳管材料〔CNT〕及一導電材料。舉例而言,該奈米碳管材料可選自一官能基化奈米碳管材料,而該導電材料為一聚苯胺材料〔Polyaniline,PANi〕、一聚吡咯材料〔Polypyrrole〕、一聚噻吩材料〔Polythiophene〕或其各種混合物。 In the preferred embodiment of the present invention, the doped conductive material and the carbon nanotube mixed phase titanium dioxide immobilized photocatalyst comprise an immobilized photocatalyst, a carbon nanotube material (CNT) and a conductive material. For example, the carbon nanotube material may be selected from a monofunctional carbon nanotube material, and the conductive material is a polyaniline material (Polyaniline, PANi), a polypyrrole material, a polythiophene material. [Polythiophene] or various mixtures thereof.
本發明之混晶相二氧化鈦固定化光觸媒利用添加該官能基化奈米碳管、聚苯胺〔導電塑膠材料〕方式增加其導電性,以便延長電子與電洞對再結合的時間,並將該混晶相二氧化鈦固定化光觸媒產生紅移至可見光範圍。本發明利用添加該官能基化奈米碳管,使光觸媒為增加其表面積且減少TiO2之疏水性,因此其不易團聚,因而具有較好之表面特性,亦可增加其導電性,以允許電子有更多自由路徑移動,以便延長電子-電洞對再結合時間,以允許電洞可與光觸媒表面之H2O、OH-充分反應形成氫氧自由基,因而提升其光催化降解效率。本發明亦利用添加聚苯胺,使光觸媒能有效紅移至可見光,且聚苯胺為一導電材料,亦可使光觸媒增加導電性,以延長電子-電洞對再結合時間。 The mixed crystal phase titanium dioxide immobilized photocatalyst of the present invention increases the conductivity by adding the functionalized carbon nanotubes and polyaniline (conductive plastic material) to prolong the time of recombination of electrons and holes, and mixes the mixture The crystalline phase titanium dioxide immobilized photocatalyst produces a red shift to the visible range. The invention utilizes the addition of the functionalized carbon nanotubes to increase the surface area of the photocatalyst and reduce the hydrophobicity of the TiO 2 , so that it is not easy to agglomerate, thereby having better surface characteristics and increasing its conductivity to allow electrons. There are more free path movements to extend the electron-hole pair recombination time to allow the holes to fully react with H 2 O, OH- on the photocatalyst surface to form hydroxyl radicals, thereby increasing the photocatalytic degradation efficiency. The invention also utilizes the addition of polyaniline to enable the photocatalyst to be effectively red-shifted to visible light, and the polyaniline is a conductive material, which can also increase the conductivity of the photocatalyst to prolong the electron-hole pair recombination time.
本發明另一較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒包含一固定化光觸媒、一奈米碳管材料、一導電材料及一界面活性劑〔SDS,Sodium Dodecyl Sulfate〕。本發明之混晶相二氧化鈦固定化光觸媒利用添加該界面活性劑,使光觸媒於一基材上有良好分佈特性。本發明亦利用添加該界面活性劑方式增加光觸媒與材料之間親水性,使添加材料間及光觸媒可均勻分散,並具有較強鍵結力,如此將固定化光觸媒於可見光 環境下進行光催化以降解水中DEP。 In another preferred embodiment of the present invention, the doped conductive material and the carbon nanotube mixed phase titanium dioxide immobilized photocatalyst comprise an immobilized photocatalyst, a carbon nanotube material, a conductive material and a surfactant (SDS, Sodium Dodecyl Sulfate]. The mixed crystal phase titanium dioxide immobilized photocatalyst of the present invention has the good distribution property of the photocatalyst on a substrate by adding the surfactant. The invention also increases the hydrophilicity between the photocatalyst and the material by adding the surfactant, so that the additive material and the photocatalyst can be uniformly dispersed, and has a strong bonding force, so that the photocatalyst is fixed in visible light. Photocatalysis is carried out under the environment to degrade DEP in water.
本發明第一較佳實施例之掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒製造方法包含:製備一奈米碳管溶液。舉例而言,將異丙醇溶液及官能基化CNT〔例如:15分鐘〕混合,並利用一超音波震盪器進行震盪一預定時間〔例如:15分鐘〕,如此該官能基化CNT均勻分散於溶液中。該官能基化奈米碳管材料包含羧酸化奈米碳管〔CNT-COOH〕、醯氯化奈米碳管〔CNT-COCl〕或其混合物。 The method for manufacturing a mixed crystal phase titanium dioxide immobilized photocatalyst doped with a conductive plastic and a carbon nanotube according to a first preferred embodiment of the present invention comprises: preparing a carbon nanotube solution. For example, an isopropanol solution and a functionalized CNT (for example, 15 minutes) are mixed and oscillated by an ultrasonic oscillator for a predetermined time (for example, 15 minutes), so that the functionalized CNT is uniformly dispersed in In solution. The functionalized carbon nanotube material comprises a carboxylated carbon nanotube (CNT-COOH), a ruthenium chloride carbon nanotube [CNT-COCl] or a mixture thereof.
承上,本發明第一較佳實施例之掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒製造方法包含:將一鈦源前驅物材料〔例如:異丙氧化鈦,TTIP〕加入至該奈米碳管溶液,以形成一鈦源前驅物與奈米碳管混合溶液。舉例而言,將TTIP加入至該奈米碳管溶液,,並利用一超音波震盪器進行震盪一預定時間〔例如:15分鐘〕,如此TTIP均勻分散於溶液中。 The method for manufacturing a mixed crystal phase titanium dioxide immobilized photocatalyst comprising a conductive plastic and a carbon nanotube according to a first preferred embodiment of the present invention comprises: a titanium source precursor material (eg, titanium isopropoxide, TTIP) The carbon nanotube solution is added to form a titanium source precursor and a carbon nanotube mixed solution. For example, TTIP is added to the carbon nanotube solution and oscillated using an ultrasonic oscillator for a predetermined period of time (eg, 15 minutes) such that the TTIP is uniformly dispersed in the solution.
承上,本發明第一較佳實施例之掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒製造方法包含:製備一導電材料溶液。舉例而言,選取適量苯胺鹽酸〔例如:0.26g、0.52g或1.04g〕溶解於硝酸溶液〔例如:70mL之0.4M HNO3〕,以製成一第一導電材料溶液,即苯胺溶液;接著,選取適量過硫酸銨〔ASP〕〔例如:0.57g、1.14g或2.28g〕溶解硝酸溶液〔例如:10mL之0.4M HNO3〕,以製成一第二導電材料溶液,即過硫酸銨溶液。 The method for manufacturing a mixed crystal phase titanium dioxide immobilized photocatalyst doped with a conductive plastic and a carbon nanotube according to the first preferred embodiment of the present invention comprises: preparing a conductive material solution. For example, an appropriate amount of aniline hydrochloric acid (for example: 0.26 g, 0.52 g or 1.04 g) is dissolved in a nitric acid solution (for example, 70 mL of 0.4 M HNO 3 ) to prepare a first conductive material solution, that is, an aniline solution; An appropriate amount of ammonium persulfate [ASP] (for example: 0.57 g, 1.14 g or 2.28 g) is dissolved in a nitric acid solution (for example, 10 mL of 0.4 M HNO 3 ) to prepare a second conductive material solution, that is, an ammonium persulfate solution. .
承上,本發明第一較佳實施例之掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒製造方法包含:將該第一導電材料溶液及第二導電材料溶液加入至該鈦源前驅物與奈米碳管混合溶液,以形成一第一光觸媒溶液。舉例而言,將該鈦源前驅物與奈米碳管混合溶液置於 一磁石攪拌器上,並置於約4℃之冰浴中,加入該第一導電材料溶液以高速攪拌一預定時間〔例如:1小時〕,再將該第二導電材料溶液亦利用一滴管裝置緩慢滴入,並攪拌數小時,直至溶液顏色由透明轉至帶有金屬光澤之深綠色,即完成該第一光觸媒溶液。 The method for manufacturing a mixed crystal phase titanium dioxide immobilized photocatalyst doped with a conductive plastic and a carbon nanotube according to the first preferred embodiment of the present invention comprises: adding the first conductive material solution and the second conductive material solution to the titanium The source precursor is mixed with a carbon nanotube to form a first photocatalyst solution. For example, placing the titanium source precursor and the carbon nanotube mixed solution a magnetic stirrer is placed in an ice bath at about 4 ° C, and the first conductive material solution is added to be stirred at a high speed for a predetermined time (for example, 1 hour), and the second conductive material solution is also slowly used by a dropper device. The first photocatalyst solution was completed by dropping and stirring for several hours until the color of the solution was changed from transparent to dark green with metallic luster.
本發明另一較佳實施例之掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒製造方法包含:將該第一光觸媒溶液加入硝酸製成一第一光觸媒凝膠。舉例而言,將該第一光觸媒溶液置於一磁石攪拌器上,加入硝酸溶液〔例如:80mL之0.4M HNO3〕,以高速攪拌數小時至凝膠狀,即完成該第一光觸媒凝膠。 In another preferred embodiment of the present invention, a method for manufacturing a mixed crystal phase titanium dioxide immobilized photocatalyst comprising a conductive plastic and a carbon nanotube comprises: adding the first photocatalyst solution to nitric acid to form a first photocatalyst gel. For example, the first photocatalyst solution is placed on a magnet stirrer, and a nitric acid solution (for example, 80 mL of 0.4 M HNO 3 ) is added, and stirred at a high speed for several hours to a gel form, that is, the first photocatalyst gel is completed. .
另外,本發明第二較佳實施例之掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒製造方法包含:製備一奈米碳管溶液。舉例而言,將異丙醇溶液及官能基化CNT〔例如:15分鐘〕混合,並利用一超音波震盪器進行震盪一預定時間〔例如:15分鐘〕,如此該官能基化CNT均勻分散於溶液中。該官能基化奈米碳管材料包含羧酸化奈米碳管〔CNT-COOH〕、醯氯化奈米碳管〔CNT-COCl〕或其混合物。 In addition, the method for manufacturing a mixed crystal phase titanium dioxide immobilized photocatalyst doped with a conductive plastic and a carbon nanotube according to a second preferred embodiment of the present invention comprises: preparing a carbon nanotube solution. For example, an isopropanol solution and a functionalized CNT (for example, 15 minutes) are mixed and oscillated by an ultrasonic oscillator for a predetermined time (for example, 15 minutes), so that the functionalized CNT is uniformly dispersed in In solution. The functionalized carbon nanotube material comprises a carboxylated carbon nanotube (CNT-COOH), a ruthenium chloride carbon nanotube [CNT-COCl] or a mixture thereof.
承上,本發明第二較佳實施例之掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒製造方法包含:將一鈦源前驅物材料〔例如:異丙氧化鈦,TTIP〕加入至該奈米碳管溶液,以形成一鈦源前驅物與奈米碳管混合溶液。舉例而言,將TTIP加入至該奈米碳管溶液,,並利用一超音波震盪器進行震盪一預定時間〔例如:15分鐘〕,如此TTIP均勻分散於溶液中。 The method for manufacturing a mixed crystal phase titanium dioxide immobilized photocatalyst comprising a conductive plastic and a carbon nanotube according to a second preferred embodiment of the present invention comprises: a titanium source precursor material (eg, titanium isopropoxide, TTIP) The carbon nanotube solution is added to form a titanium source precursor and a carbon nanotube mixed solution. For example, TTIP is added to the carbon nanotube solution and oscillated using an ultrasonic oscillator for a predetermined period of time (eg, 15 minutes) such that the TTIP is uniformly dispersed in the solution.
承上,本發明第二較佳實施例之掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒製造方法包含:製備一導電材料溶液,且該導電材料溶液添加該界面 活性劑。舉例而言,選取適量苯胺鹽酸〔例如:0.26g、0.52g或1.04g〕溶解於硝酸溶液〔例如:70mL之0.4M HNO3〕及界面活性劑水溶液〔例如:3CMC SDS〕,以製成一第一導電材料/界面活性劑溶液,即含界面活性劑苯胺溶液;接著,選取適量過硫酸銨〔ASP〕〔例如:1.14g〕溶解硝酸溶液〔例如:10mL之0.4M HNO3〕及界面活性劑水溶液,以製成一第二導電材料/界面活性劑溶液,即含界面活性劑過硫酸銨溶液。 The method for manufacturing a mixed crystal phase titanium dioxide immobilized photocatalyst doped with a conductive plastic and a carbon nanotube according to a second preferred embodiment of the present invention comprises: preparing a conductive material solution, and adding the surfactant to the conductive material solution. For example, an appropriate amount of aniline hydrochloric acid (for example, 0.26 g, 0.52 g, or 1.04 g) is dissolved in a nitric acid solution (for example, 70 mL of 0.4 M HNO 3 ) and an aqueous surfactant solution (for example, 3 CMC SDS) to prepare a a first conductive material/surfactant solution, that is, a surfactant-containing aniline solution; and then, an appropriate amount of ammonium persulfate [ASP] (for example, 1.14 g) is dissolved in a nitric acid solution (for example, 10 mL of 0.4 M HNO 3 ) and interfacial activity. The aqueous solution is prepared to form a second conductive material/surfactant solution, that is, a surfactant-containing ammonium persulfate solution.
承上,本發明第二較佳實施例之掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒製造方法包含:將該第一導電材料/界面活性劑溶液及第二導電材料/界面活性劑溶液加入至該鈦源前驅物與奈米碳管混合溶液,以形成一第二光觸媒溶液。舉例而言,將該鈦源前驅物與奈米碳管混合溶液置於一磁石攪拌器上,並置於約4℃之冰浴中,加入該第一導電材料/界面活性劑溶液以高速攪拌一預定時間〔例如:1小時〕,再將該第二導電材料/界面活性劑溶液亦利用一滴管裝置緩慢滴入,並攪拌數小時,直至溶液顏色由透明轉至帶有金屬光澤之深綠色,即完成該第二光觸媒溶液。 The method for manufacturing a mixed crystal phase titanium dioxide immobilized photocatalyst doped with a conductive plastic and a carbon nanotube according to a second preferred embodiment of the present invention comprises: the first conductive material/surfactant solution and the second conductive material/ The surfactant solution is added to the titanium source precursor and the carbon nanotube mixed solution to form a second photocatalyst solution. For example, the titanium source precursor and the carbon nanotube mixed solution are placed on a magnet stirrer and placed in an ice bath at about 4 ° C, and the first conductive material/surfactant solution is added to stir at a high speed. For a predetermined time (for example, 1 hour), the second conductive material/surfactant solution is also slowly dropped by a dropper device and stirred for several hours until the color of the solution changes from transparent to dark green with metallic luster. That is, the second photocatalyst solution is completed.
本發明另一較佳實施例之掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒製造方法包含:將該第二光觸媒溶液加入硝酸製成一第二光觸媒凝膠。舉例而言,將該第二光觸媒溶液置於一磁石攪拌器上,加入硝酸溶液〔例如:80mL之0.4M HNO3〕,以高速攪拌數小時至凝膠狀,即完成該第二光觸媒凝膠。 In another preferred embodiment of the present invention, a method for fabricating a mixed crystal phase titanium dioxide immobilized photocatalyst comprising a conductive plastic and a carbon nanotube comprises: adding the second photocatalyst solution to nitric acid to form a second photocatalyst gel. For example, the second photocatalyst solution is placed on a magnet stirrer, and a nitric acid solution (for example, 80 mL of 0.4 M HNO 3 ) is added, and stirred at a high speed for several hours to gel, that is, the second photocatalyst gel is completed. .
第1(a)至1(e)圖揭示本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒選擇採用製成兩種材料〔PANi-CNT-COOH/TiO2及PANi-CNT-COCl/TiO2〕之相互作用示意圖。請參照第1(a)、1(b)及1(d) 圖所示,本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒選擇採用製成一第一種光觸媒材料1〔PANi-CNT-COOH/TiO2〕,其由CNT材料形成CNT-COOH材料1a,並由該CNT-COOH材料1a再形成CNT-COOH/TiO2材料1b,再由該CNT-COOH/TiO2材料1b再形成該第一種光觸媒材料1。請參照第1(a)、1(c)及1(e)圖所示,本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒選擇採用製成一第二種光觸媒材料2〔PANi-CNT-COCl/TiO2〕,其由CNT材料形成CNT-COCl材料2a,並由該CNT-COCl材料2a再形成CNT-COCl/TiO2材料2b,再由該CNT-COCl/TiO2材料2b再形成該第二種光觸媒材料2。 1(a) to 1(e) show that the doped conductive material and the carbon nanotube mixed phase of the preferred embodiment of the present invention are selected from two types of materials [PANi-CNT-COOH/ Schematic diagram of the interaction between TiO 2 and PANi-CNT-COCl/TiO 2 ]. Referring to FIGS. 1(a), 1(b) and 1(d), the doped conductive material and the carbon nanotube mixed crystal phase titanium dioxide immobilized photocatalyst according to the preferred embodiment of the present invention are selected to be one. a first photocatalyst material 1 [PANi-CNT-COOH/TiO 2 ] which forms a CNT-COOH material 1a from a CNT material, and further forms a CNT-COOH/TiO 2 material 1b from the CNT-COOH material 1a, and The CNT-COOH/TiO 2 material 1b re-forms the first photocatalyst material 1. Referring to Figures 1(a), 1(c) and 1(e), the doped conductive material and the carbon nanotube mixed crystal phase titanium dioxide immobilized photocatalyst according to a preferred embodiment of the present invention are selected to be a second photocatalyst material 2 [PANi-CNT-COCl/TiO 2 ], which forms a CNT-COCl material 2a from a CNT material, and further forms a CNT-COCl/TiO 2 material 2b from the CNT-COCl material 2a, and then The second photocatalyst material 2 is formed by the CNT-COCl/TiO 2 material 2b.
第2圖揭示本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒添加界面活性劑之示意圖。請參照第2圖所示,本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒選擇添加該界面活性劑,以製成一第三種光觸媒材料3。 FIG. 2 is a schematic view showing the addition of a photocatalyst-added photocatalyst to a mixed-phase titanium dioxide doped conductive material and a carbon nanotube according to a preferred embodiment of the present invention. Referring to FIG. 2, in the preferred embodiment of the present invention, the doped conductive material and the carbon nanotube mixed phase titanium dioxide immobilized photocatalyst are selected to add the surfactant to form a third photocatalyst material 3.
第3圖揭示本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒與太陽光產生反應機制之示意圖。請參照第3圖所示,本發明較佳實施例之第一種光觸媒材料1掺雜一導電材料1’,且該第一種光觸媒材料1與太陽光產生反應,並顯示該第一種光觸媒材料1之銳鈦礦晶相〔anatase〕轉換至金紅石晶相〔rutile〕。 FIG. 3 is a schematic view showing a reaction mechanism between a doped conductive material and a carbon nanotube mixed phase titanium dioxide immobilized photocatalyst and a solar light according to a preferred embodiment of the present invention. Referring to FIG. 3, a first photocatalyst material 1 of the preferred embodiment of the present invention is doped with a conductive material 1', and the first photocatalyst material 1 reacts with sunlight, and the first photocatalyst is displayed. The anatase phase of material 1 is converted to the rutile crystal phase.
第4圖揭示本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒選擇製成光觸媒凝膠,並以溶膠凝膠法之塗佈方式形成在基材上之示意圖。請參照第4圖所示,本發明較佳實施例選擇一基材100,其包含玻璃材料、活性碳材料、二氧化矽材料、聚合 物材料、碳纖維材料、高孔隙陶瓷材料、不鏽鋼材料或聚合纖維材料,例如:棉花纖維或碳化棉纖維〔Carbonized cotton fibers,CCFs〕。將一光觸媒溶液10旋塗於該基材100上,以便進行溶膠凝膠法之固定化技術。溶膠凝膠法之固定化技術包含浸鍍法〔Dip coating〕、噴墨法〔Inkjet printing〕、噴塗法〔Spread coating〕或旋鍍法〔Spin coating〕。 Figure 4 is a view showing a preferred embodiment of the present invention, a doped conductive material and a carbon nanotube mixed crystal phase titanium dioxide immobilized photocatalyst selected into a photocatalyst gel, and formed on a substrate by a sol-gel coating method. Schematic diagram. Referring to FIG. 4, a preferred embodiment of the present invention selects a substrate 100 comprising a glass material, an activated carbon material, a cerium oxide material, and polymerization. Materials, carbon fiber materials, high-porosity ceramic materials, stainless steel materials or polymeric fiber materials, such as: cotton fibers or carbonized cotton fibers (CCFs). A photocatalyst solution 10 is spin-coated on the substrate 100 to carry out the immobilization technique of the sol-gel method. The immobilization technique of the sol-gel method includes a dip coating method, an ink jet method, a spray coating method, or a spin coating method.
舉例而言,本發明較佳實施例選擇聚丙烯顆粒〔polypropylene,PP〕、聚乙烯〔polythene,PE〕、聚乙烯醇〔polyvinyl alcohol,PVA〕或聚苯胺〔Polyaniline,PANI〕。 For example, in a preferred embodiment of the invention, polypropylene particles (PP), polyethylene (polythene, PE), polyvinyl alcohol (PVA) or polyaniline (PANI) are selected.
第5圖揭示本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒選擇製成光觸媒溶液,並以水熱法在低溫高壓下形成在基材上之示意圖。請參照第5圖所示,本發明較佳實施例之掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒選擇採用一水熱塗佈法。 FIG. 5 is a schematic view showing the photocatalyst solution prepared by the doped conductive material and the carbon nanotube mixed crystal phase titanium dioxide fixed photocatalyst in the preferred embodiment of the present invention, and formed on the substrate by hydrothermal method under low temperature and high pressure. . Referring to FIG. 5, the mixed crystal phase titanium dioxide immobilized photocatalyst of the doped conductive material and the carbon nanotube of the preferred embodiment of the present invention is selected by a hydrothermal coating method.
本發明另一較佳實施例之掺雜導電塑膠及奈米碳管之混晶相二氧化鈦固定化光觸媒可選擇添加一氧化劑〔例如:過氧化氫,H2O2〕,以便有效提升其催化降解效果。 In another preferred embodiment of the present invention, the doped conductive plastic and the carbon nanotube mixed phase titanium dioxide immobilized photocatalyst may be optionally added with an oxidant (for example: hydrogen peroxide, H 2 O 2 ) to effectively enhance its catalytic degradation. effect.
前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。本案著作權限制使用於中華民國專利申請用途。 The foregoing preferred embodiments are merely illustrative of the invention and the technical features thereof, and the techniques of the embodiments can be carried out with various substantial equivalent modifications and/or alternatives; therefore, the scope of the invention is subject to the appended claims. The scope defined by the scope shall prevail. The copyright limitation of this case is used for the purpose of patent application in the Republic of China.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104143644A TWI633935B (en) | 2015-12-24 | 2015-12-24 | Immobilized conductive material-cnt/tio2 photocatalyst and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104143644A TWI633935B (en) | 2015-12-24 | 2015-12-24 | Immobilized conductive material-cnt/tio2 photocatalyst and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201722556A TW201722556A (en) | 2017-07-01 |
TWI633935B true TWI633935B (en) | 2018-09-01 |
Family
ID=60047293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104143644A TWI633935B (en) | 2015-12-24 | 2015-12-24 | Immobilized conductive material-cnt/tio2 photocatalyst and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI633935B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111489897B (en) * | 2019-01-25 | 2022-06-21 | 清华大学 | Photocatalytic structure and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201318969A (en) * | 2011-11-07 | 2013-05-16 | Nat Univ Kaohsiung | CNTs/TiO2 hybrid photocatalyst and manufacturing method thereof |
-
2015
- 2015-12-24 TW TW104143644A patent/TWI633935B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201318969A (en) * | 2011-11-07 | 2013-05-16 | Nat Univ Kaohsiung | CNTs/TiO2 hybrid photocatalyst and manufacturing method thereof |
Non-Patent Citations (4)
Title |
---|
Ayesha Kausar, "Polyaniline Composites with Nanodiamond, Carbon nanotube and Silver Nanoparticle: Preparation and Properties ", Kausar A. American Journal of Polymer Science & Engineering,vol.3, pages 149-160, 2015/09/29. * |
Ayesha Kausar, "Polyaniline Composites with Nanodiamond, Carbon nanotube and Silver Nanoparticle: Preparation and Properties ", Kausar A. American Journal of Polymer Science & Engineering,vol.3, pages 149-160, 2015/09/29. |
Debasis Ghosh et al., "Synthesis and Characterisations of TiO2 Coated Multiwalled Carbon Nanotubes/Graphene/Polyaniline Nanocomposite for Supercapacitor Applications ", Open Journal of Applied Sciences, vol. 2, pages 70-77, 2012/12/31. * |
Jumi Yun et al., "Improvement of NO Gas Sensing Properties of Polyaniline/MWCNT Composite by Photocatalytic Effect of TiO2", Journal of Nanomaterials, Article ID 184345, 6 pages, 2013/12/31. * |
Also Published As
Publication number | Publication date |
---|---|
TW201722556A (en) | 2017-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications | |
Kallawar et al. | Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges | |
Balachandran et al. | Facile construction of heterostructured BiVO4–ZnO and its dual application of greater solar photocatalytic activity and self-cleaning property | |
Reddy et al. | Nanocarbons-supported and polymers-supported titanium dioxide nanostructures as efficient photocatalysts for remediation of contaminated wastewater and hydrogen production | |
CN104153123B (en) | A kind of flexible TiOx nano fibrous membrane and preparation method thereof | |
Liu et al. | Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2 | |
Song et al. | Advances in electrospun TiO2 nanofibers: Design, construction, and applications | |
Jyothi et al. | Non-metal (oxygen, sulphur, nitrogen, boron and phosphorus)-doped metal oxide hybrid nanostructures as highly efficient photocatalysts for water treatment and hydrogen generation | |
Saito et al. | Niobium-complex-based syntheses of sodium niobate nanowires possessing superior photocatalytic properties | |
Liu et al. | Cellulose‐nanowhisker‐templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities | |
Zhou et al. | Engineering hierarchical porous oxygen-deficient TiO2 fibers decorated with BiOCl nanosheets for efficient photocatalysis | |
Liang et al. | Enhanced dye photocatalysis and recycling abilities of semi-wrapped TiO2@ carbon nanofibers formed via foaming agent driving | |
Dai et al. | Template-free fabrication of hierarchical macro/mesoporpous SnS2/TiO2 composite with enhanced photocatalytic degradation of Methyl Orange (MO) | |
Sharon et al. | Titania based nanocomposites as a photocatalyst: A review | |
CN104609465B (en) | The method that a kind of Barium metatitanate. doping multi-walled carbon nano-tubes prepares hud typed high dielectric filler | |
CN102600907A (en) | Polypyrrole-sensitized hollow titanium dioxide nanometer photocatalyst and preparation method thereof | |
CN103691433A (en) | Ag-doped TiO2 material, and preparation method and application thereof | |
CN102179216B (en) | Method for preparing biomimetic alpha-Fe2O3/TiO2 nano composite material | |
Wang et al. | Preparation of TiO2 hollow microspheres by a novel vesicle template method and their enhanced photocatalytic properties | |
KR20190041570A (en) | Nanocomposite material and method thereof | |
CN104439276B (en) | A kind of quick method and product preparing hollow porous silica/argentum nano composite material | |
CN105731535A (en) | Preparation method of zinc oxide/titanium dioxide composite nanomaterial | |
CN104150459A (en) | Chemical method of compounding carbon nano tube/titanium dioxide composite porous aggregate | |
CN102205238A (en) | Method for preparing MWCNTs/ZnO (multi-wall carbon nano tubes/zinc oxide) nanometer composite material | |
CN106861733A (en) | Core shell structure TiOx nano piece/SiC nano fiber and preparation method |