TWI633183B - Bioparticle capture chipset - Google Patents

Bioparticle capture chipset Download PDF

Info

Publication number
TWI633183B
TWI633183B TW106120708A TW106120708A TWI633183B TW I633183 B TWI633183 B TW I633183B TW 106120708 A TW106120708 A TW 106120708A TW 106120708 A TW106120708 A TW 106120708A TW I633183 B TWI633183 B TW I633183B
Authority
TW
Taiwan
Prior art keywords
spoiler
block
microchannel
plate body
wafer
Prior art date
Application number
TW106120708A
Other languages
Chinese (zh)
Other versions
TW201905195A (en
Inventor
黃忠諤
陳聖文
丁建文
黃盈翔
陳明
Original Assignee
曦醫生技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曦醫生技股份有限公司 filed Critical 曦醫生技股份有限公司
Priority to TW106120708A priority Critical patent/TWI633183B/en
Application granted granted Critical
Publication of TWI633183B publication Critical patent/TWI633183B/en
Publication of TW201905195A publication Critical patent/TW201905195A/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本發明提供一種用於捕捉目標生物微粒的生物微粒捕捉晶片組。該生物微粒捕捉晶片組包含一對具有一微流道的透明載體,及一位於該微流道的擾流微結構,兩片透明載體上交錯之擾流微結構讓流經該微流道的液態檢體產生擾流效果,而均勻地流經該微流道並被捕捉於該微流道。此外,因該晶片組本體為透明材料製成,因此被捕捉於該微流道的目標生物微粒可直接於該微流道進行全方位的觀測分析。 The present invention provides a bioparticle capture wafer set for capturing target biological particles. The bioparticle capture wafer set comprises a pair of transparent carriers having a microchannel, and a spoiler microstructure located in the microchannel, and the interspersed microstructures on the two transparent carriers are allowed to flow through the microchannel The liquid sample produces a spoiler effect and flows uniformly through the microchannel and is captured in the microchannel. In addition, since the wafer assembly body is made of a transparent material, the target biological particles captured in the micro flow channel can be subjected to omnidirectional observation analysis directly from the micro flow channel.

Description

生物微粒捕捉晶片組 Bioparticle capture chipset

本發明是有關於一種微粒捕捉晶片,特別是指一種生物微粒捕捉晶片。 The present invention relates to a particle capture wafer, and more particularly to a biological particle capture wafer.

目前的母體內胎兒染色體生物檢測大致可區分為侵入式檢測跟非侵入檢測方式。以羊膜穿刺術進行母體內胎兒染色體檢測的侵入式檢查為例,是需先取自於發育中之胎兒周圍的羊水,因為羊水中含有胎兒的皮膚和其他發育過程中脫落的樣本細胞,因此,檢驗時可針對這些細胞中之染色體來檢測。而非侵入式檢查一般則為抽取少量母體週邊血液以進行胎兒染色體檢測。由於侵入式檢測方式是直接取自胎兒的完整細胞為檢體,所以準確性無庸置疑,不過侵入式檢測仍有0.1~0.2%流產的風險,而非侵入式檢查之最大優點就是安全,但是仍有準確率的問題需要克服。 The current fetal chromosome bioassay in the mother can be roughly classified into invasive detection and non-invasive detection. For example, amniocentesis is an invasive examination of fetal chromosome detection in the mother. It is taken from the amniotic fluid surrounding the developing fetus because the amniotic fluid contains the skin of the fetus and other sample cells that are shed during development. The test can be performed on the chromosomes in these cells. Non-invasive examinations typically involve the extraction of a small amount of maternal peripheral blood for fetal chromosome detection. Since the invasive detection method is a complete sample taken directly from the fetus, the accuracy is unquestionable, but the invasive detection still has a risk of abortion of 0.1 to 0.2%. The biggest advantage of the non-invasive examination is safety, but still Problems with accuracy need to be overcome.

針對前述之非侵入式檢查,目前在市場上推廣最積極的就屬無創產前診斷(NIPD,Non-Invasive Prenatal diagnosis)。NIPD是以游離胎兒DNA(cffDNA,cell-free fetal DNA)為篩檢樣本。cffDNA是少部分來自胎盤細胞凋亡代謝後形成的不完整DNA片段(~60-200bp),隨之游離在母體血液中。由於cffDNA為DNA片段,必須佐以數學演算法來試圖拼湊出胎兒完整DNA序列,這當中cffDNA的濃度成為關鍵因素。濃度過低時,則會有造成檢測失敗或偽陰性(false-negative)的可能。而前述的NIPD,目前的研究也指出孕婦外週血中存在胎兒細胞,以胎兒有核紅血球細胞(fetal nucleated red blood cells,fNRBCs)或是胎盤滋養層細胞(trophoblast)作為胎兒染色體檢查,能同時具備安全與高正確性兩大優點。 For the aforementioned non-invasive examination, the most active promotion in the market is Non-Invasive Prenatal Diagnosis (NIPD). NIPD is free fetal DNA (cffDNA, cell-free fetal) DNA) is a screening sample. cffDNA is a small part of the incomplete DNA fragment (~60-200 bp) formed by apoptosis of placental cells, which is then released in the maternal blood. Since cffDNA is a DNA fragment, it is necessary to use mathematical algorithms to try to piece together the complete DNA sequence of the fetus, in which the concentration of cffDNA is a key factor. When the concentration is too low, there is a possibility of detecting failure or false-negative. The aforementioned NIPD, the current study also pointed out that there are fetal cells in the peripheral blood of pregnant women, fetal nucleated red blood cells (fNRBCs) or placental trophoblast cells (trophoblast) as fetal chromosome examination, can simultaneously It has two major advantages: safety and high correctness.

目前的研究中針對胎兒細胞如有核紅血球富集的方式,主要仍以流式細胞儀分離純化為主,但這些有核紅血球大部分為母源性,胎源性較低,也有研究指出高密度梯度分離液可顯著提高胎兒細胞的產量。為相關研究與捕捉技術皆非透明或半透明材料所構成,因此不利於觀察與分析被捕捉之細胞。 In the current study, the method of enrichment of fetal cells such as nucleated red blood cells is mainly based on flow cytometry. However, most of these nucleated red blood cells are maternal, and the fe birth is low. Density gradient separations can significantly increase fetal cell yield. It is composed of non-transparent or translucent materials for related research and capture technologies, so it is not conducive to observing and analyzing the captured cells.

因此,本發明之目的,即在提供一種用於捕捉目標生物微粒並可全方位觀測該被捕捉後之目標生物微粒的生物微粒捕捉晶片組。 Accordingly, it is an object of the present invention to provide a bioparticle capture wafer set for capturing target biological particles and for omnidirectional observation of the captured target biological particles.

於是,本發明生物微粒捕捉晶片組,包含一晶片本體, 該晶片本體界定出至少一具有相對遠離的一入口及一出口的微流道,並具有一位於該至少一微流道的擾流微結構,且該晶片本體為透明材料所構成。 Thus, the bioparticle capture wafer set of the present invention comprises a wafer body, The wafer body defines at least one microchannel having a relatively distant inlet and an outlet, and has a spoiler microstructure located in the at least one microchannel, and the wafer body is made of a transparent material.

本發明之功效在於:利用於微流道的擾流微結構,讓流經該微流道的檢體液產生擾流效果,而均勻地流經該微流道並被捕捉於該擾流微結構。此外,再進一步讓該晶片本體為透明的特性,因此可讓被捕捉於該微流道的目標生物微粒直接於該微流道進行全方位的觀測。 The effect of the invention is that the spoiler microstructure of the microchannel is used to generate a spoiler effect on the sample fluid flowing through the microchannel, and uniformly flows through the microchannel and is captured in the spoiler microstructure. . In addition, the wafer body is further made transparent, so that the target biological particles captured in the microchannel can be observed in all directions directly from the microchannel.

2‧‧‧晶片本體 2‧‧‧chip body

21‧‧‧微流道 21‧‧‧microchannel

241‧‧‧第二板本體 241‧‧‧Second board body

242‧‧‧第二擾流塊 242‧‧‧Second spoiler block

211‧‧‧入口 211‧‧‧ entrance

212‧‧‧出口 212‧‧‧Export

22‧‧‧擾流微結構 22‧‧‧Spoiler microstructure

23‧‧‧第一載板 23‧‧‧First carrier

231‧‧‧第一板本體 231‧‧‧ first board body

232‧‧‧第一擾流塊 232‧‧‧First spoiler block

24‧‧‧第二載板 24‧‧‧second carrier

25‧‧‧接合部 25‧‧‧ joints

26‧‧‧粗化微結構 26‧‧‧ rough microstructure

27‧‧‧配體層 27‧‧‧ Ligand layer

100‧‧‧板體 100‧‧‧ board

101‧‧‧透明層 101‧‧‧ transparent layer

d1、d2‧‧‧距離 D1, d2‧‧‧ distance

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是說明本發明生物微粒捕捉晶片組之實施例的俯視示意圖;圖2是圖1中a-a割線的局部剖視示意;圖3是說明本發明該實施例的製作流程示意圖;圖4是說明該實施例之該等第一、二擾流塊的另一製作流程示意圖;圖5說明該實施例進一步包含一粗化微結構的示意圖;圖6說明該實施例進一步包含一配體層的示意圖。 Other features and advantages of the present invention will be apparent from the embodiments of the present invention. FIG. 1 is a schematic plan view showing an embodiment of the biological particle capturing wafer set of the present invention; FIG. 2 is a secant line of FIG. FIG. 3 is a schematic view showing the manufacturing process of the first and second spoiler blocks of the embodiment; FIG. 5 is a schematic view showing another embodiment of the first and second spoiler blocks of the embodiment; Further included is a schematic diagram of a roughened microstructure; FIG. 6 illustrates a schematic diagram of the embodiment further comprising a ligand layer.

在本發明被詳細描述前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.

本發明的生物微粒捕捉晶片組是可用於捕捉於一液態檢體內的目標生物微粒。該液態檢體可是一來自於動物的體液,例如血液、淋巴液、唾液、尿液等,但不在此限制。而該目標生物微粒可以是特定的細胞,例如胎兒有核紅血球細胞(fetal nucleated red blood cells,fNRBC)、胎兒滋養層細胞(trophoblast)、循環腫瘤細胞(circulating tumor cells,CTC)、病毒或細菌等,並無特別限制。 The bioparticle capture wafer set of the present invention is a target biological particle that can be used to capture a liquid sample. The liquid sample may be a body fluid derived from an animal, such as blood, lymph, saliva, urine, etc., but is not limited thereto. The target biological particle may be a specific cell, such as fetal nucleated red blood cells (fNRBC), fetal trophoblast cells, circulating tumor cells (CTC), viruses or bacteria, etc. There are no special restrictions.

參閱圖1、2本發明生物微粒捕捉晶片組的一實施例包含一晶片本體2。其中,圖2是圖1中a-a割線的局部剖視示意圖。該晶片本體2由透明材料構成,界定出多條微流道21,且每一條微流道21具有相對遠離的一入口211及一出口212,並具有一位於該微流道21的擾流微結構22。要說明的是,該晶片本體2的微流道21也可以是單條,且當該微流道21為多條時,該等微流道21之間可以是彼此獨立,也可以是彼此相連通,於本實施例是以該晶片本體2界定出多條可彼此連通的微流道21為例說明。 Referring to Figures 1 and 2, an embodiment of the biological particle capture wafer set of the present invention comprises a wafer body 2. 2 is a partial cross-sectional view of the a-a secant line of FIG. 1. The wafer body 2 is made of a transparent material, and defines a plurality of microchannels 21, and each of the microchannels 21 has an inlet 211 and an outlet 212 that are relatively far apart, and has a turbulent flow located in the microchannel 21. Structure 22. It should be noted that the micro flow channel 21 of the wafer body 2 may also be a single strip. When the micro flow channel 21 is plural, the micro flow channels 21 may be independent of each other or may be connected to each other. In this embodiment, the wafer body 2 defines a plurality of microchannels 21 that can communicate with each other as an example.

詳細的說,該晶片本體2具有一第一載板23、一第二載板24,及一用於連接該第一、二載板23、24的接合部25。 In detail, the wafer body 2 has a first carrier 23, a second carrier 24, and a joint portion 25 for connecting the first and second carrier plates 23, 24.

其中,該第一載板23具有一第一板本體231及多個自該第一板本體231凸伸且透光的第一擾流塊232,該第二載板24具有一第二板本體241及多個自該第二板本體241凸伸且透光的第二擾流塊242。該第一、二板本體231、241以具有該等第一、二擾流塊232、242的表面彼此相向連接而共同界定出該等微流道21,且該等第一、二擾流塊232、242分別位於該等微流道21中,而於該每一條微流道21共同構成該擾流微結構22。 The first carrier 23 has a first board body 231 and a plurality of first spoilers 232 protruding from the first board body 231 and transmitting light. The second carrier 24 has a second board body. 241 and a plurality of second spoilers 242 protruding from the second plate body 241 and transmitting light. The first and second plate bodies 231, 241 are mutually connected to each other with the surfaces of the first and second spoiler blocks 232, 242 to mutually define the micro flow channels 21, and the first and second spoiler blocks 232, 242 are respectively located in the microchannels 21, and the perturbation microstructures 22 are collectively formed in each of the microchannels 21.

該第一、二板本體231、241可以是由透明的高分子材料,例如聚甲基丙烯酸甲酯(PMMA)、聚甲基矽氧烷(PDMS),或聚碳酸酯(PC)等,或是玻璃等透明材料構成。該等第一、二擾流塊232、242則是選自與該第一、二板本體231、241不同的透明材料,例如透明光阻(SU8)、四乙氧基矽烷(Tetra Ethyl-Ortho-Silicate,TEOS),或旋塗式玻璃(spin-on-glass,SOG)等其中一者所製成,且該等第一、二擾流塊232、242的結構可為方形、梯形、三角形,或是半圓形。藉由該等第一、二擾流塊232、242的設置可讓流經該微流道21的液態檢體產生擾流效果,而得以讓該液態檢體可更均勻的流經該微流道21。圖1、2是以該等第一、二擾流塊232、242的結構為梯形作說明,然實際實施時不以此形狀為限。 The first and second plate bodies 231, 241 may be made of a transparent polymer material such as polymethyl methacrylate (PMMA), polymethyl siloxane (PDMS), or polycarbonate (PC), or It is made of a transparent material such as glass. The first and second spoiler blocks 232, 242 are selected from transparent materials different from the first and second plate bodies 231, 241, such as transparent photoresist (SU8), tetraethoxy decane (Tetra Ethyl-Ortho) -Silicate, TEOS), or spin-on-glass (SOG), etc., and the first and second spoiler blocks 232, 242 can be square, trapezoidal, or triangular. Or semicircular. The arrangement of the first and second spoiler blocks 232, 242 allows a liquid sample flowing through the microchannel 21 to generate a spoiler effect, thereby allowing the liquid sample to flow more uniformly through the microfluid. Road 21. 1 and 2 are diagrams in which the structures of the first and second spoiler blocks 232 and 242 are trapezoidal, but the actual implementation is not limited to this shape.

配合參閱圖3,前述該實施例的製作方法是先於兩片透 明的板體100表面形成一由透明光阻(SU8)、四乙氧基矽烷(Tetra Ethyl-Ortho-Silicate,TEOS),或旋塗式玻璃(spin-on-glass,SOG)等透明材料構成的透明層101後,接著再配合該透明材料的特性,利用微影或蝕刻等方式移除預定部分的該透明層100後,即可分別於該兩片透明的板體100上形成如圖2所示的該等第一、二擾流塊232、242,及分別位於該等第一、二擾流塊232、242外側的接合部25,而形成該第一、二載板23、24。接著利用透明黏膠將該第一、二板本體231、241以該接合部25相對黏接後,即可完成該生物微粒捕捉晶片組的製作。 Referring to FIG. 3, the manufacturing method of the foregoing embodiment is preceded by two pieces. The surface of the plate body 100 is formed of a transparent material such as a transparent photoresist (SU8), a Tetra Ethyl-Ortho-Silicate (TEOS), or a spin-on-glass (SOG). After the transparent layer 101 is further combined with the characteristics of the transparent material, the predetermined portion of the transparent layer 100 is removed by lithography or etching, and then formed on the two transparent plates 100 respectively. The first and second spoiler blocks 232, 242 are shown, and the joint portions 25 located outside the first and second spoiler blocks 232, 242, respectively, to form the first and second carrier plates 23, 24. Then, the first and second plate bodies 231 and 241 are relatively bonded to each other by the bonding portion 25 by using a transparent adhesive, thereby completing the production of the biological particle capturing chip set.

續參閱圖2,較佳地,任相鄰的第一、二擾流塊232、242的相鄰兩邊的距離d1為目標生物微粒的2倍直徑,且該等第一、二擾流塊232、242至相對的該第二、一板本體241、231的表面的距離d2為該目標生物微粒的2倍直徑。藉由該等距離d1、d2的控制,可讓該微流道21中相鄰的該等第一、二擾流塊232、242之間,與該等第一、二擾流塊232、242至相對的該第二、一板本體241、231之間形成一連通的捕捉空間,因此,當該等目標生物微粒流經該捕捉空間時即會被捕捉。被捕捉於該微流道21內的該等目標生物微粒,因為該晶片本體2為透明,因此可直接透過該晶片本體2進行全方位的觀察,不須像習知使用之捕捉分離目標生物微粒的晶片為不透明或半透明,若要觀察目標生物微粒時還會有需將該 等目標生物微粒自該晶片取出的缺點。 Referring to FIG. 2, preferably, the distance d1 of the adjacent two sides of any adjacent first and second spoiler blocks 232, 242 is twice the diameter of the target biological particles, and the first and second spoiler blocks 232, 242 The distance d2 to the surface of the opposing second and a plate bodies 241, 231 is twice the diameter of the target biological particle. By the control of the equal distances d1 and d2, the first and second spoiler blocks 232 and 242 adjacent to the micro flow channel 21 and the first and second spoiler blocks 232 and 242 can be arranged. A connected capture space is formed between the opposing second and a plate bodies 241, 231, and thus the target biological particles are captured as they flow through the capture space. The target biological particles captured in the microchannel 21 are transparent to the wafer body 2, so that the wafer body 2 can be directly observed through the wafer body 2 without the need to capture the target biological particles as conventionally used. The wafer is opaque or translucent, and it is necessary to observe the target biological particles. The disadvantage of taking the target biological particles out of the wafer.

此外,參閱圖4,要說明的是,該等第一、二擾流塊232、242除了可利用前述之方法形成之外,也可以利用蝕刻或噴砂等方式分別自該兩個板體100的表面向下移除預定部分的該等板體100的材料,形成該等第一、二擾流塊232、242及該等接合部25,也可得到具有如圖2所示之該第一、二載板23、24,只是以此方式形成的該等第一、二擾流塊232、242與該第一、二板本體231、241具有相同的構成材料。 In addition, referring to FIG. 4, it should be noted that the first and second spoiler blocks 232 and 242 may be formed by using the foregoing methods, or may be separately etched or sandblasted from the two boards 100. The surface of the board 100 is removed from the predetermined portion, and the first and second spoilers 232, 242 and the joints 25 are formed, and the first, as shown in FIG. The second carrier plates 23, 24 are only the same constituent materials of the first and second spoiler blocks 232, 241 formed in this manner.

較佳地,參閱圖5,無論該等第一、二擾流塊232、242的形成方式為何,本發明該實施例對應位於該微流道21內,且未形成該等第一、二擾流塊232、242的該第一、二板本體231、241的表面還可進一步利用蝕刻、噴砂等方式進行粗化而形成一粗化微結構26。利用該等粗化微結構26可進一步增加該等目標生物微粒於該微流道21內的接觸面積,而提升目標生物微粒捕捉效率。 Preferably, referring to FIG. 5, regardless of the manner in which the first and second spoiler blocks 232, 242 are formed, the embodiment of the present invention is located in the micro flow channel 21, and the first and second disturbances are not formed. The surfaces of the first and second plate bodies 231 and 241 of the flow blocks 232 and 242 may be further roughened by etching, sand blasting or the like to form a roughened microstructure 26. The use of the roughened microstructures 26 further increases the contact area of the target biological particles within the microchannels 21, thereby improving the target bioparticle capture efficiency.

此外,參閱圖6,本發明生物微粒捕捉晶片組的該實施例還可進一步在位於該微流道21內的該第一、二板本體231、241的表面、或是該等第一、二擾流塊232、242的表面,或是該等粗化微結構26表面的其中至少一者,塗佈一層可與該等目標生物微粒作用的配體層27,例如該配體層27可為有鏈黴抗生物素蛋白產生配體層,可與被捕捉目標生物微粒產生親和作用,而可更精確的捕 捉目標生物微粒。於圖6中是以該配體層27形成於該等粗化微結構26為例作說明。 In addition, referring to FIG. 6, the embodiment of the biological particle trapping wafer set of the present invention may further be on the surface of the first and second plate bodies 231, 241 located in the micro flow channel 21, or the first and second surfaces. The surface of the spoiler blocks 232, 242, or at least one of the surfaces of the roughened microstructures 26, is coated with a layer of ligand 27 that can interact with the target biological particles, for example, the ligand layer 27 can be Streptavidin produces a ligand layer that can affinity with the captured target biological particles for more precise capture Capture target biological particles. In FIG. 6, the description is made by taking the ligand layer 27 formed on the roughened microstructures 26.

綜上所述,本發明利用於該微流道21設置具有擾流及捕捉微粒特性的擾流微結構22,讓流經該微流道21的檢體液產生擾流效果,而均勻地流經該微流道21並被該擾流微結構22捕捉,此外,由於本發明該晶片本體2為透明,因此可讓被捕捉於該微流道21的目標生物微粒直接於該微流道21進行全方位的觀測;再者,本發明還可進一步於該微流道21內形成一粗化微結構26,並還可於該粗化微結構26進一步形成配體層27,藉由該粗化微結構26可增加該等目標生物微粒於該微流道21內的接觸面積,提升目標生物微粒捕捉效率,而再搭配該配體層27則可更精確的捕捉該等目標生物微粒,故確實可達成本發明之目的。 In summary, the present invention utilizes the microchannel 21 to provide a spoiler microstructure 22 having spoiler and trapping particle characteristics, so that the sample fluid flowing through the microchannel 21 has a spoiler effect and uniformly flows through The microchannel 21 is captured by the spoiler microstructure 22. Further, since the wafer body 2 of the present invention is transparent, the target biological particles trapped in the microchannel 21 can be directly subjected to the microchannel 21. In addition, the present invention can further form a roughened microstructure 26 in the microchannel 21, and further form a ligand layer 27 on the roughened microstructure 26, by the roughening. The microstructure 26 can increase the contact area of the target biological particles in the microchannel 21, and improve the capture efficiency of the target biological particles, and the ligand layer 27 can more accurately capture the target biological particles, so The cost can be achieved for the purpose of the invention.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the equivalent equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still The scope of the invention is covered.

Claims (6)

一種生物微粒捕捉晶片組,用於捕捉目標生物微粒,包含:一晶片本體,該晶片本體界定出至少一具有相對遠離的一入口及一出口的微流道,並具有一位於該至少一微流道的擾流微結構,且該晶片本體為由透明材料構成,其中,該晶片本體具有一第一載板及一第二載板,該第一載板具有一第一板本體及多個自該第一板本體凸伸且透光的第一擾流塊,該第二載板具有一第二板本體及多個自該第二板本體凸伸且透光的第二擾流塊,該第一板本體與該第二板本體分別以具有該等第一擾流塊與該等第二擾流塊的表面彼此連接而共同界定出該至少一微流道,該等第一擾流塊與該等第二擾流塊位於該至少一微流道中,而共同構成該擾流微結構,且該第一板本體及該第二板本體與該等第一擾流塊及該等第二擾流塊可由相同或不同材料構成;該第一板本體及該第二板本體位於該至少一微流道的表面還分別具有一粗化微結構;該生物微粒捕捉晶片組還具有一形成於該等粗化微結構表面,並可與該目標生物微粒鍵結的配體層。 A biological particle capture wafer set for capturing target biological particles, comprising: a wafer body defining at least one microchannel having an inlet and an outlet relatively far away, and having at least one microflow The first slab has a first slab and a second slab. The first slab has a first slab and a plurality of slabs. a first spoiler block that protrudes and transmits light from the first plate body, the second carrier plate has a second plate body and a plurality of second spoiler blocks protruding from the second plate body and transmitting light, The first board body and the second board body are respectively connected to each other with the surfaces of the first spoiler block and the second spoiler block to define the at least one micro flow channel, and the first spoiler block And the second spoiler block is located in the at least one micro flow channel to jointly form the spoiler microstructure, and the first board body and the second board body and the first spoiler block and the second The spoiler block may be composed of the same or different materials; the first plate body and the second The body is located on the surface of the at least one microchannel and further has a roughened microstructure; the biological particle capturing wafer set further has a ligand formed on the surface of the roughened microstructure and bonded to the target biological particle Floor. 如請求項1所述的生物微粒捕捉晶片組,其中,該等第一擾流塊及該等第二擾流塊的側視結構可為方形、梯形、三角形,或是半圓形。 The bioparticle capture wafer set of claim 1, wherein the first spoiler block and the second spoiler block have a side view structure that is square, trapezoidal, triangular, or semi-circular. 如請求項1所述的生物微粒捕捉晶片組,其中,該第一板本體及該第二板本體與該等第一擾流塊及該等第二擾流塊是由不同材料構成,且該等第一擾流塊及該等第二擾流 塊的材料選自透明光阻、四乙氧基矽烷,或旋塗式玻璃。 The bioparticle capture chip set of claim 1, wherein the first plate body and the second plate body and the first spoiler block and the second spoiler block are made of different materials, and Waiting for the first spoiler block and the second spoiler The material of the block is selected from the group consisting of transparent photoresist, tetraethoxy decane, or spin-on glass. 如請求項1所述的生物微粒捕捉晶片組,其中,該等第一擾流塊及該等第二擾流塊至相對的該第二板本體及該第一板本體的表面的距離為該目標生物微粒的2倍直徑。 The biological particle capture chip set of claim 1, wherein the distance between the first spoiler block and the second spoiler block to the opposite surface of the second plate body and the first plate body is 2 times the diameter of the target biological particles. 如請求項4所述的生物微粒捕捉晶片組,其中,任相鄰的第一擾流塊及該等第二擾流塊的相鄰兩邊的距離為該目標生物微粒的2倍直徑。 The biological particle capturing wafer set according to claim 4, wherein a distance between adjacent ones of the adjacent first spoiler blocks and the second spoiler blocks is twice the diameter of the target biological particles. 如請求項1所述的生物微粒捕捉晶片組,其中,該晶片本體界定出多條具有相對遠離的一入口及一出口的微流道,且每一條微流道中具有一擾流微結構。 The bioparticle capture wafer set of claim 1, wherein the wafer body defines a plurality of microchannels having an inlet and an outlet that are relatively distant, and each of the microchannels has a spoiler microstructure.
TW106120708A 2017-06-21 2017-06-21 Bioparticle capture chipset TWI633183B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106120708A TWI633183B (en) 2017-06-21 2017-06-21 Bioparticle capture chipset

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106120708A TWI633183B (en) 2017-06-21 2017-06-21 Bioparticle capture chipset

Publications (2)

Publication Number Publication Date
TWI633183B true TWI633183B (en) 2018-08-21
TW201905195A TW201905195A (en) 2019-02-01

Family

ID=63959831

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106120708A TWI633183B (en) 2017-06-21 2017-06-21 Bioparticle capture chipset

Country Status (1)

Country Link
TW (1) TWI633183B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200714890A (en) * 2005-10-03 2007-04-16 Far East College A micro-channel apparatus making uniform flux-mixing
TWI295730B (en) * 2004-11-25 2008-04-11 Ind Tech Res Inst Microfluidic chip for sample assay and method thereof
TW200819387A (en) * 2006-10-19 2008-05-01 Univ Yuan Ze Micro-reacting device having a micro-channel flow-guiding block

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI295730B (en) * 2004-11-25 2008-04-11 Ind Tech Res Inst Microfluidic chip for sample assay and method thereof
TW200714890A (en) * 2005-10-03 2007-04-16 Far East College A micro-channel apparatus making uniform flux-mixing
TW200819387A (en) * 2006-10-19 2008-05-01 Univ Yuan Ze Micro-reacting device having a micro-channel flow-guiding block

Also Published As

Publication number Publication date
TW201905195A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
JP6752338B2 (en) Microfluidic methods and systems for isolating particle clusters
US9733250B2 (en) Device for capturing circulating cells
Chen et al. Rare cell isolation and analysis in microfluidics
CN103865752B (en) Circulating tumor cell is caught and classify magnetic micro-fluidic chip and manufacture thereof and use
JP2019191190A (en) Method, composition, and system for microfluidic assay
US9733165B2 (en) Methods and apparatus for the isolation and enrichment of circulating tumor cells
CN103087899B (en) Aptamer-based microfluidic chip capable of capturing cancer cells and preparation thereof as well as separation method of cancer cells
Talebjedi et al. Exploiting microfluidics for extracellular vesicle isolation and characterization: potential use for standardized embryo quality assessment
US20100273675A1 (en) Methods for detecting fetal abnormality
US20070059719A1 (en) Business methods for prenatal Diagnosis
US20070059781A1 (en) System for size based separation and analysis
US20070059680A1 (en) System for cell enrichment
US7939034B2 (en) Method and tool for collecting blood plasma
CN103977468A (en) System and method for separating and removing circulating tumor cell and blood platelet in blood
WO2011063416A2 (en) Microfluidic devices for the capture of biological sample components
US10350602B2 (en) Devices for separating constituents in a sample and methods for use thereof
CN108795685B (en) Microfluidic chip, manufacturing method thereof and fetal nucleated red blood cell capturing and releasing method
TWI633183B (en) Bioparticle capture chipset
Masuda et al. Cancer cell separator using size-dependent filtration in microfluidic chip
CN109097243A (en) Biological particle captures chipset
TWM552032U (en) Bio-particle capture chipset
CN206986156U (en) Biological particle catches chipset
TWM581591U (en) Microchannel chip having slack flow block with small aperture, and microchannel structure
TWM583855U (en) Micro-runner chip and micro-runner structure with uneven structure
Paiva et al. Development of a microfluidic device for the isolation of tumour-derived extracellular vesicles