TWI631905B - Method for manufacturing chitin nanofibers-sodium chloride solution - Google Patents

Method for manufacturing chitin nanofibers-sodium chloride solution Download PDF

Info

Publication number
TWI631905B
TWI631905B TW105123168A TW105123168A TWI631905B TW I631905 B TWI631905 B TW I631905B TW 105123168 A TW105123168 A TW 105123168A TW 105123168 A TW105123168 A TW 105123168A TW I631905 B TWI631905 B TW I631905B
Authority
TW
Taiwan
Prior art keywords
chitin
solution
sodium chloride
chitin nanofiber
nanofiber
Prior art date
Application number
TW105123168A
Other languages
Chinese (zh)
Other versions
TW201803461A (en
Inventor
蔡敏郎
劉昌樹
江宛柔
薛智元
Original Assignee
國立臺灣海洋大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣海洋大學 filed Critical 國立臺灣海洋大學
Priority to TW105123168A priority Critical patent/TWI631905B/en
Publication of TW201803461A publication Critical patent/TW201803461A/en
Application granted granted Critical
Publication of TWI631905B publication Critical patent/TWI631905B/en

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本發明係提供一種幾丁質奈米纖維氯化鈉溶液之製造方法,係能夠將一般幾丁質進行結構重組,進以製得直徑明顯小於一般幾丁質的幾丁質奈米纖維,並且,實驗結果顯示,根據所使用超音波處理時間的不同,最終製得之幾丁質奈米纖維的直徑大小、介面電位也會不同;之後,於幾丁質奈米纖維溶液加入0.3%氯化鈉,配製成幾丁質奈米纖維氯化鈉溶液;儘管如此,實驗資料亦同時顯示本發明所製得之各種幾丁質奈米纖維氯化鈉溶液皆相較於一般0.3%的氯化鈉(Control salt)展現出較高的鹹味感知能力,並具有一定的潛力能夠應用在低鈉食品之中。The present invention provides a method for producing a chitin nanofiber sodium chloride solution, which is capable of structurally recombining a general chitin, thereby producing a chitin nanofiber having a diameter significantly smaller than that of a general chitin, and The experimental results show that the diameter and interface potential of the final chitin nanofibers are different depending on the ultrasonic treatment time used; after that, 0.3% chlorination is added to the chitin nanofiber solution. Sodium is formulated into a chitin nanofiber sodium chloride solution; however, the experimental data also shows that the various chitin nanofiber sodium chloride solutions prepared by the present invention are compared with 0.3% of the general chlorine. Control salt exhibits a high salty perception and has the potential to be used in low sodium foods.

Description

幾丁質奈米纖維氯化鈉溶液之製造方法Method for producing chitin nanofiber sodium chloride solution

本發明係關於提升氯化鈉鹹味之相關技術領域,尤指用以將一般幾丁質進行結構重組,再加入氯化鈉,配製成一種幾丁質奈米纖維氯化鈉溶液之製造方法。The invention relates to the technical field related to enhancing the salty taste of sodium chloride, in particular to a method for preparing a chitin nano-fiber sodium chloride solution by structurally recombining general chitin and then adding sodium chloride. .

隨著生活和飲食形態之改變,高血壓病人之年紀係有逐年下降之趨勢。相較於其他惡性疾病,高血壓對人體的攻勢較為緩和,初期甚至沒有明顯症狀,因此極易被忽略。然而,高血壓若沒有適當地控制,將會導致人體罹患其他重大疾病,例如腦中風、心臟病、腎衰竭、和眼睛病變等。因此,降低日常生活中鈉鹽攝取量有其必要性,亦是食品產業需共同努力的目標。With the changes in lifestyle and diet, the age of hypertensive patients has been decreasing year by year. Compared with other malignant diseases, high blood pressure on the human body is more moderate, and there is no obvious symptoms in the initial stage, so it is easily overlooked. However, if not properly controlled, high blood pressure can cause other major diseases, such as stroke, heart disease, kidney failure, and eye lesions. Therefore, it is necessary to reduce the intake of sodium salt in daily life, and it is also the goal of the food industry to work together.

目前食品產業用於食品製造過程的減鈉方法,係主要分為以下四種:(1)使用代鹽(salt substitutes)、(2)使用風味增強劑(taste enhance)、(3)修飾氯化鈉的結構(即減少氯化鈉晶粒尺寸,可以加大氯化鈉的反應表面積,快速的增加鈉濃度,進而提升鹹味感知能力)、以及(4)透過長時間逐步地進行鹽的減量,而不被消費者察覺產品的風味及品質有所差異。其中,代鹽,例如氯化鉀,雖然同樣可以賦予食品具有鹹味,但高含量的氯化鉀會產生顯著的苦味及金屬味;因此,若氯化鉀被使用於在風味平淡的食品中,使用者會顯著感受其苦味及金屬味。另外,風味增強劑(例如麩胺酸鈉,一般稱為味精),因具有鮮味特質故能夠透過活化味蕾細胞中的鮮味感受體的方式,達到提升食品風味之效果。然而,過量攝取味精會造成過動、頭痛等健康問題,因此製造商必須適當地限制味精於產品中的添加量。At present, the sodium reduction method used in the food manufacturing process by the food industry is mainly divided into the following four types: (1) using salt substitutes, (2) using taste enhancer, and (3) modifying chlorination. The structure of sodium (ie, reducing the grain size of sodium chloride, increasing the reaction surface area of sodium chloride, rapidly increasing the sodium concentration, thereby improving the salty taste perception), and (4) gradually reducing the salt through a long period of time. It is not perceived by consumers that the flavor and quality of the product are different. Among them, the salt, such as potassium chloride, can also impart a salty taste to the food, but a high content of potassium chloride produces a significant bitterness and a metallic taste; therefore, if potassium chloride is used in a food having a mild taste, Users will notice the bitterness and metallic taste. Further, the flavor enhancer (for example, sodium glutamate, generally referred to as monosodium glutamate) has an effect of enhancing the flavor of the food by sensitizing the taste sensation in the taste bud cells by virtue of the umami taste. However, excessive intake of MSG can cause health problems such as hyperactivity and headache, so manufacturers must appropriately limit the amount of MSG added to the product.

研究結果顯示,不同超音波處理所製得之幾丁質奈米纖維,直徑會隨著處理時間增加而變小,且處理時間增加使幾丁質奈米纖維直徑分布越小;一般而言,直徑越小的幾丁質奈米纖維,其曝露在纖維束表面的胺基(正電荷)較多,故有較強吸附氯離子(負電荷)的能力,增加鈉離子游離於溶液中的機會,使鹹味感知能力增加。因此,本案之發明人極力研究開發用以修飾幾丁質的結構之方法,最終研發完成本發明之一種幾丁質奈米纖維氯化鈉溶液之製造方法;其中,該製造方法係藉由奈米纖維化的方式對幾丁質結構進行重組,提升吸附氯離子(負電荷)的能力,進以獲得具有提升溶液鹹味的能力,另外此混合溶液也因幾丁質奈米纖維表面曝露的游離胺基較少,進而降低溶液澀味的能力。The results show that the diameter of chitin nanofibers produced by different ultrasonic treatments will decrease with the increase of treatment time, and the increase of treatment time will make the diameter distribution of chitin nanofibers smaller; in general, Smaller diameter nanofibers with smaller diameters have more amine groups (positive charges) exposed on the surface of the fiber bundle, so they have stronger ability to adsorb chloride ions (negative charges) and increase the chance of sodium ions being freed in solution. To increase the salty perception. Therefore, the inventors of the present invention have vigorously researched and developed a method for modifying the structure of chitin, and finally developed a method for producing a chitin nanofiber sodium chloride solution of the present invention; wherein the manufacturing method is by nanometer. The fibrillation method reorganizes the chitin structure, enhances the ability to adsorb chloride ions (negative charge), and has the ability to enhance the salty taste of the solution. In addition, the mixed solution is also free amine exposed on the surface of chitin nanofibers. The ability to reduce the astringency of the solution is less.

本發明之主要目的在於提供一種幾丁質奈米纖維氯化鈉溶液之製造方法,係能夠將一般幾丁質進行結構重組,進以製得幾丁質奈米纖維,並且,實驗結果顯示,根據所使用超音波處理時間的不同,最終製得之幾丁質奈米纖維的直徑大小、介面電位也會不同;之後,於幾丁質奈米纖維溶液加入0.3%氯化鈉,配製成幾丁質奈米纖維氯化鈉溶液;儘管如此,實驗資料亦同時顯示本發明所製得之各種幾丁質奈米纖維氯化鈉溶液皆相較於一般0.3%的氯化鈉展現出較高的鹹味感知能力,並具有一定的潛力能夠應用在低鈉食品之中。The main object of the present invention is to provide a method for producing a chitin nanofiber sodium chloride solution, which is capable of structurally recombining a general chitin and preparing a chitin nanofiber, and the experimental results show that Depending on the processing time of the ultrasonic waves used, the diameter and interface potential of the final chitin nanofibers will be different; after that, 0.3% sodium chloride is added to the chitin nanofiber solution to prepare Chitin nanofiber sodium chloride solution; however, the experimental data also show that the various chitin nanofiber sodium chloride solutions prepared by the present invention are compared with the general 0.3% sodium chloride. High salty perception and potential to be applied to low sodium foods.

因此,為了達成上述本發明之目的,本案之發明人係提出一種幾丁質奈米纖維氯化鈉溶液之製造方法,係包括以下步驟:Therefore, in order to achieve the above object of the present invention, the inventors of the present invention have proposed a method for producing a chitin nanofiber sodium chloride solution, which comprises the following steps:

(1)準備一β幾丁質,並將該幾丁質倒入一去離子水之中,以獲得一幾丁質懸浮溶液;(2)利用一超音波破碎機對該幾丁質懸浮溶液進行超音波震盪,用以破壞該幾丁質之氫鍵,以完成一奈米纖維化製程;以及(3)準備一氯化鈉,並將該氯化鈉倒入該完成所述奈米纖維化製程的幾丁質懸浮溶液之中,進而在持續攪拌該氯化鈉的情況下獲得一混合溶液。(1) preparing a beta chitin and pouring the chitin into a deionized water to obtain a chitin suspension solution; (2) using an ultrasonic breaker to the chitin suspension solution Performing ultrasonic oscillation to destroy the hydrogen bond of the chitin to complete a nanofibrosis process; and (3) preparing sodium chloride and pouring the sodium chloride into the finished nanofiber In the chitin suspension solution of the chemical process, a mixed solution is obtained while continuously stirring the sodium chloride.

於上述之幾丁質奈米纖維氯化鈉溶液的製造方法中,較佳地,第三幾丁質奈米纖維氯化鈉溶液(CNF60)提升鹹味的效果最好。In the above method for producing a chitin nanofiber sodium chloride solution, preferably, the third chitin nanofiber sodium chloride solution (CNF60) has the best effect of enhancing salty taste.

為了能夠更清楚地描述本發明所提出之一種幾丁質奈米纖維氯化鈉溶液之製造方法,以下將配合圖式,詳盡說明本發明之較佳實施例。In order to more clearly describe a method for producing a chitin nanofiber sodium chloride solution of the present invention, a preferred embodiment of the present invention will be described in detail below with reference to the drawings.

首先圖1,係為一般β幾丁質之掃描式電子顯微鏡攝像圖。其中,圖1之攝像圖係利掃式電子顯微鏡之下拍攝一般β幾丁質而得。如圖所示,一般β幾丁質未經奈米纖維化處理時,其結構係為長條狀。First, Fig. 1 is a scanning electron microscope image of a general β chitin. Among them, the camera image of Fig. 1 is obtained by taking a general β chitin under a scanning electron microscope. As shown in the figure, when β-chitin is generally not treated with nanofibers, its structure is elongated.

請參閱圖2,為本發明幾丁質奈米纖維氯化鈉溶液之製造方法的步驟流程圖。如圖2所示,本發明幾丁質奈米纖維氯化鈉溶液之製造方法係包括以下步驟: 步驟(S01):準備一β幾丁質,並將該幾丁質倒入一去離子水之中,以獲得一幾丁質懸浮溶液; 步驟(S02):利用一超音波破碎機對該幾丁質懸浮溶液進行超音波震盪,用以破壞該幾丁質之氫鍵,以完成一奈米纖維化製程;以及 步驟(S03):準備一氯化鈉,並將該氯化鈉倒入該完成所述奈米纖維化製程的幾丁質懸浮溶液之中,進而在持續攪拌該氯化鈉的情況下獲得一混合溶液。Please refer to FIG. 2, which is a flow chart of the steps of the method for producing the chitin nanofiber sodium chloride solution of the present invention. As shown in FIG. 2, the manufacturing method of the chitin nanofiber sodium chloride solution of the present invention comprises the following steps: Step (S01): preparing a β chitin and pouring the chitin into a deionized water. In the step of obtaining a chitin suspension solution; step (S02): ultrasonically oscillating the chitin suspension solution by using an ultrasonic breaker to destroy the hydrogen bond of the chitin to complete the a rice fiberizing process; and a step (S03): preparing sodium chloride, and pouring the sodium chloride into the chitin suspension solution for completing the nanofibrillation process, thereby continuously stirring the chlorination In the case of sodium, a mixed solution is obtained.

於此,必須補充說明的是,於步驟(S02)之中,該超音波破碎機的一功率為20 kHz、200 W;並且,於該步驟(2)之中,該超音波破碎機的一處理時間可為30分鐘、45分鐘、或60分鐘,同時,該超音波破碎機的一設定脈衝時間被設為作用9秒停止4秒,之後,以一離心機進行一離心轉速係對應地被設為12,000 rpm並運轉20分鐘後取上清液,進而分別獲得一第一幾丁質奈米纖維溶液(CNF30)、一第二幾丁質奈米纖維溶液(CNF45)、以及一第三幾丁質奈米纖維溶液(CNF60)。Here, it must be additionally noted that, in the step (S02), a power of the ultrasonic breaker is 20 kHz, 200 W; and, in the step (2), one of the ultrasonic breakers The processing time can be 30 minutes, 45 minutes, or 60 minutes. At the same time, a set pulse time of the ultrasonic breaker is set to act for 9 seconds to stop for 4 seconds. Thereafter, a centrifugal speed is performed by a centrifuge. After setting to 12,000 rpm and running for 20 minutes, the supernatant was taken to obtain a first chitin nanofiber solution (CNF30), a second chitin nanofiber solution (CNF45), and a third. Butyl nanofiber solution (CNF60).

繼續地,將20 kHz、200 W超音波處理30、45、60分鐘之幾丁質奈米纖維之濃度及去乙醯度之數據整理於表(一)之中。表(一)中所述之Chitin為未經超音波處理之幾丁質、CNF30為經超音波處理30分鐘之第一幾丁質奈米纖維溶液、CNF45為經超音波處理45分鐘之第二幾丁質奈米纖維溶液、以及CNF60為經超音波處理60分鐘之第三幾丁質奈米纖維溶液。由表(一),可以發現經30、45、60分鐘超音波處理之奈米纖維濃度分別為0.28 mg/mL、0.33 mg/mL、及0.29 mg/mL,表示經不同時間超音波處理之奈米纖維的濃度差異性小。接著,以紅外線光譜法測定CNF30、CNF45、CNF60之去乙醯度,其去乙醯度會由原本的23.15%分別改變至21.59%、22.30%及20.54%,但統計上無顯著差異。 表(一) a 在數據上標之字母若為不同,表示統計上有明顯差異(p < 0.05)。Continuing, the data of the concentration of the chitin nanofibers and the degree of deacetylation of 20 kHz, 200 W ultrasonic treatment for 30, 45, and 60 minutes are compiled in Table (1). Chitin described in Table (1) is chitin without ultrasonic treatment, CNF30 is the first chitin nanofiber solution treated by ultrasonic for 30 minutes, and CNF45 is treated by ultrasonic for 45 minutes. The chitin nanofiber solution and CNF60 are the third chitin nanofiber solution which has been ultrasonically treated for 60 minutes. From Table (1), it can be found that the nanofiber concentrations of ultrasonic treatment at 30, 45, and 60 minutes were 0.28 mg/mL, 0.33 mg/mL, and 0.29 mg/mL, respectively, indicating that the ultrasonic treatment was performed at different times. The difference in concentration of rice fiber is small. Next, the deacetylation degree of CNF30, CNF45, and CNF60 was determined by infrared spectroscopy, and the degree of deacetylation was changed from 23.15% to 21.59%, 22.30%, and 20.54%, respectively, but there was no statistically significant difference. Table I) a If the letters on the data are different, there is a statistically significant difference (p < 0.05).

接著,將20 kHz、200 W超音波處理30、45、60分鐘之幾丁質奈米纖維分別製作穿透式電子顯微鏡樣本,以穿透式電子顯微鏡拍攝該CNF30、CNF45和CNF60之外觀形態,分別得圖3、4和5,之後利用image J軟體計算其直徑列於表(二)。由表(二)中,可以發現CNF30、CNF45、以及CNF60的直徑分別為9.34±2.58 nm、5.61±1.49 nm、以及5.14±1.46 nm,表示直徑會隨著超音波處理時間增加而下降。 表(二) a~b 在數據上標之字母若為不同,表示統計上有明顯差異(p < 0.05)。Next, 20 kHz, 200 W ultrasonic treatment of 30, 45, 60 minutes of chitin nanofibers were made into a transmission electron microscope sample, and the appearance of the CNF30, CNF45 and CNF60 was taken by a transmission electron microscope. Figures 3, 4, and 5, respectively, are then calculated using the image J software and listed in Table (2). From Table (2), it can be found that the diameters of CNF30, CNF45, and CNF60 are 9.34±2.58 nm, 5.61±1.49 nm, and 5.14±1.46 nm, respectively, indicating that the diameter decreases as the ultrasonic processing time increases. Table II) If a~b is different in the data superscript, there is a statistically significant difference (p < 0.05).

請參閱圖3,係為CNF30之穿透式電子顯微鏡攝像圖。其中,圖2之攝像圖係利用穿透式電子顯微鏡拍攝該CNF30而得。進一步地,由圖2可以發現到,上述步驟(S01)至步驟(S02)係以超音波處理該幾丁質懸浮溶液30分鐘;如此,當該幾丁質懸浮溶液經過奈米纖維化以後,其結構係完成重組並形成一第一幾丁質奈米纖維溶液,用以對幾丁質的結構進行修飾之目的。明顯地,經過結構修飾之後,幾丁質奈米纖維的直徑大小係小於一般幾丁質。Please refer to FIG. 3, which is a transmission electron microscope image of CNF30. The image of FIG. 2 is obtained by photographing the CNF 30 using a transmission electron microscope. Further, it can be found from FIG. 2 that the above steps (S01) to (S02) are ultrasonically treating the chitin suspension solution for 30 minutes; thus, after the chitin suspension solution is subjected to nanofibrillation, The structure is reorganized and a first chitin nanofiber solution is formed for the purpose of modifying the chitin structure. Obviously, after structural modification, the diameter of the chitin nanofibers is smaller than that of general chitin.

請參閱圖4,係為CNF45之穿透式電子顯微鏡攝像圖。其中,圖3之攝像圖係利用穿透式電子顯微鏡拍攝該CNF45而得。進一步地,由圖3可以發現到,係以45分鐘處理該幾丁質懸浮溶液;如此,當該幾丁質懸浮溶液經過奈米纖維化以後,其結構係完成重組並形成一第二幾丁質奈米纖維溶液,達到對幾丁質的結構進行修飾之目的。明顯地,經過結構修飾之後,幾丁質奈米纖維的直徑大小係小於一般幾丁質。Please refer to FIG. 4, which is a transmission electron microscope image of CNF45. The image of FIG. 3 is obtained by photographing the CNF 45 using a transmission electron microscope. Further, it can be found from FIG. 3 that the chitin suspension solution is treated in 45 minutes; thus, when the chitin suspension solution undergoes nanofibrillation, its structure is reorganized and forms a second batch. The nanofiber solution is used to modify the structure of chitin. Obviously, after structural modification, the diameter of the chitin nanofibers is smaller than that of general chitin.

請參閱圖5,係為CNF60之穿透式電子顯微鏡攝像圖。其中,圖4之攝像圖係利用穿透式電子顯微鏡拍攝該CNF60而得。進一步地,由圖4可以發現到,係以60分鐘處理該幾丁質懸浮溶液;如此,當該幾丁質懸浮溶液經過奈米纖維化以後,其結構係完成重組並形成一第三幾丁質奈米纖維溶液,達到對幾丁質的結構進行修飾之目的。明顯地,經過結構修飾之後,幾丁質奈米纖維的直徑大小係小於一般幾丁質。Please refer to FIG. 5, which is a transmission electron microscope image of CNF60. The image of FIG. 4 is obtained by photographing the CNF 60 using a transmission electron microscope. Further, it can be found from FIG. 4 that the chitin suspension solution is treated in 60 minutes; thus, when the chitin suspension solution undergoes nanofibrillation, the structure is recombined and forms a third batch. The nanofiber solution is used to modify the structure of chitin. Obviously, after structural modification, the diameter of the chitin nanofibers is smaller than that of general chitin.

於此,必須補充說明的是,所述之幾丁質奈米纖維氯化鈉溶液之製造方法,其中,所述步驟(1)係包括以下詳細步驟: 步驟(S011):取來一魷魚軟骨,以烘箱乾燥之,再以一粉碎機粉碎乾燥後的該魷魚軟骨,進而得到一魷魚軟骨粉末;及 步驟(S012):在室溫的環境下對該魷魚軟骨粉末去除脂蛋白後,再進行強鹼處理,之後即獲得該β幾丁質。Herein, the method for producing the chitin nanofiber sodium chloride solution, wherein the step (1) comprises the following detailed steps: Step (S011): taking a squid cartilage Drying in an oven, pulverizing the dried squid cartilage with a pulverizer to obtain a squid cartilage powder; and step (S012): removing the lipoprotein from the squid cartilage powder at room temperature, and then performing Treatment with a strong base, after which the β chitin is obtained.

進一步地,所述步驟(S012)係包括以下詳細步驟: 步驟(S121):備好50克的該魷魚軟骨粉末,並將該魷魚軟骨粉末加入500 mL的采酮溶液(0.5%)之中並攪拌24小時,以完成一脂蛋白去除製程; 步驟(S122):將完成所述脂蛋白去除製程的該魷魚軟骨粉末加入至500 mL的氫氧化鈉溶液之中,攪拌24小時後即獲得所述β幾丁質。Further, the step (S012) comprises the following detailed steps: Step (S121): Prepare 50 grams of the salmon cartilage powder, and add the salmon cartilage powder to a 500 mL testosterone solution (0.5%) and Stirring for 24 hours to complete a lipoprotein removal process; Step (S122): adding the salmon cartilage powder that completes the lipoprotein removal process to 500 mL of sodium hydroxide solution, and obtaining the said after stirring for 24 hours Beta chitin.

接著,將CNF30、CNF45、以及CNF60濃度在0.3、0.15及0.075 mg/mL,分別加入0.01%、0.05%及0.1%之氯化鈉進行界面電位分析,數據整理於表(三)之中。由表(三)可以發現CNF30、CNF45、以及CNF60在加入氯化鈉後,界面電位皆有下降的現象。並且CNF30、CNF45、以及CNF60在加入0.01%氯化鈉後,CNF30、CNF45、以及CNF60界面電位會由30~37 mV下降至20~25 mV;並且,在加入0.05%氯化鈉後,CNF30、CNF45、以及CNF60之界面電位會降至17~21 mV;在加入0.1%氯化鈉後CNF30、CNF45及CNF60之界面電位會降至13~16 mV。由此結果可以看出,幾丁質奈米纖維氯化鈉溶液於氯化鈉濃度為0.01%至0.1%會隨著鹽濃度的增加而使界面電位下降。 表(三) Next, the concentration of CNF30, CNF45, and CNF60 at 0.3, 0.15, and 0.075 mg/mL were added to 0.01%, 0.05%, and 0.1% sodium chloride for interfacial potential analysis, and the data were compiled in Table (3). From Table (3), it can be found that CNF30, CNF45, and CNF60 have a decrease in interface potential after the addition of sodium chloride. And CNF30, CNF45, and CNF60, after adding 0.01% sodium chloride, the interfacial potential of CNF30, CNF45, and CNF60 will decrease from 30~37 mV to 20~25 mV; and, after adding 0.05% sodium chloride, CNF30, The interface potential of CNF45 and CNF60 will decrease to 17~21 mV; the interface potential of CNF30, CNF45 and CNF60 will decrease to 13~16 mV after adding 0.1% sodium chloride. From this result, it can be seen that the sodium chitin nanofiber sodium chloride solution having a sodium chloride concentration of 0.01% to 0.1% causes the interface potential to decrease as the salt concentration increases. Table (3)

最後,本案發明人以鹹味評分法完成了鹹味評分實驗。實驗中係由未經訓練的20人品嚐0.3 mg/mL、0.15 mg/mL及0.075 mg/mL之幾丁質奈米纖維溶液(分別為稀釋倍數1、2、4倍)及分別加入0.3%氯化鈉配製成幾丁質奈米纖維氯化鈉溶液,然後進行鹹味評分;其中,評分方式採7分制:1分表示無味道,2分表示非常不鹹,3分表示不鹹,4分表示鹹度適中,5分表示有點鹹,6分表示鹹,7分表示非常鹹。如表(四)所載之鹹味評分統計數據顯示,本發明所製得之濃度為0.075 mg/mL、0.15 mg/mL、0.3 mg/mL之CNF30、CNF45、及CNF60與加入氯化鈉濃度為0.3%的CNF30、CNF45、及CNF60,18種不同濃度之CNF30、CNF45、及CNF60相較於一般0.3%的氯化鈉(Control salt)展現出較高的鹹味感知能力。其中,以CNF60提升鹹味的效果最好。而在澀味方面,可以發現未加入氯化鈉的幾丁質懸浮溶液之澀味較強,加入氯化鈉後澀味會下降,此結果可以證明幾丁質奈米纖維會以帶正電的胺基靜電吸附帶有負電的氯離子,增加鈉離子游離於溶液中的機會,使鹹味增加,同時因為幾丁質奈米纖維分子鏈上的胺基吸附氯離子,因此曝露在幾丁質奈米纖維表面的游離胺基較少,使澀味下降。 表(四) a~c 在相同樣品濃度下,數據上標之字母若為不同,表示統計上有明顯差異(p < 0.05)。Finally, the inventor of the case completed the salty taste scoring experiment with the salty taste score method. In the experiment, 20 untrained people were used to taste 0.3 mg/mL, 0.15 mg/mL and 0.075 mg/mL chitin nanofiber solutions (diluted by 1, 2, 4 times, respectively) and 0.3% respectively. Sodium chloride is formulated into a chitin nanofiber sodium chloride solution, and then subjected to a salty taste score; wherein the scoring method is 7 points: 1 point means no taste, 2 points means very salty, 3 points means not salty, 4 points means moderate saltiness, 5 points means a bit salty, 6 points means salty, and 7 points means very salty. As shown in Table (4), the salty taste score statistics show that the concentration of CNF30, CNF45, and CNF60 prepared by the present invention is 0.075 mg/mL, 0.15 mg/mL, and 0.3 mg/mL, and the concentration of sodium chloride added is 0.3% of CNF30, CNF45, and CNF60, 18 different concentrations of CNF30, CNF45, and CNF60 exhibited higher salty taste perception than 0.3% of normal sodium chloride (Control Salt). Among them, the effect of enhancing the salty taste with CNF60 is the best. In terms of astringency, it can be found that the chitin suspension solution without adding sodium chloride has a strong astringency, and the astringency is decreased after the addition of sodium chloride. This result can prove that the chitin nanofibers are positively charged. The amine-based electrostatic adsorption of negatively charged chloride ions increases the chance that sodium ions will be freed in solution, increasing salty taste, and because the amine groups on the molecular chain of chitin nanofibers adsorb chloride ions, they are exposed to chitin. The surface of the nanofibers has less free amine groups, which reduces the astringency. Table (4) A~c At the same sample concentration, if the letters on the data superscript are different, there is a statistically significant difference (p < 0.05).

如此,上述說明係已完整且清楚地揭示本發明之幾丁質奈米纖維氯化鈉溶液之製造方法,並且,經由上述,吾人可以得知本發明係具有下列之優點:本發明之幾丁質奈米纖維氯化鈉溶液之製造方法係能夠將一般幾丁質進行結構重組,進以製得直徑明顯小於一般幾丁質溶液。並且,實驗結果顯示,根據所使用超音波處理時間的不同,最終製得之幾丁質奈米纖維氯化鈉溶液的直徑大小、介面電位也會不同;儘管如此,實驗資料亦同時顯示本發明所製得之各種幾丁質奈米纖維氯化鈉溶液皆相較於一般0.3%的氯化鈉(Control salt)展現出較高的鹹味感知能力,並具有一定的潛力能夠應用在低鈉食品之中。Thus, the above description has completely and clearly disclosed the method for producing the chitin nanofiber sodium chloride solution of the present invention, and, through the above, we can know that the present invention has the following advantages: the present invention The method for producing the nanometer cellulose sodium chloride solution is capable of structurally recombining the general chitin, thereby producing a solution having a diameter significantly smaller than that of a general chitin solution. Moreover, the experimental results show that the diameter and interface potential of the finally prepared chitin nanofiber sodium chloride solution are different depending on the ultrasonic treatment time used; however, the experimental data also show the present invention. The various chitin nanofiber sodium chloride solutions obtained have higher salty taste perception than the general 0.3% sodium chloride control, and have certain potential for application in low sodium foods. Among them.

必須加以強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。It is to be understood that the foregoing detailed description of the embodiments of the present invention is not intended to Both should be included in the scope of the patent in this case.

<本發明>
S01~S03‧‧‧方法步驟
<present invention>
S01~S03‧‧‧ method steps

圖1為一般β幾丁質之掃描式電子顯微鏡攝像圖; 圖2係為本發明幾丁質奈米纖維氯化鈉溶液之製造方法的步驟流程圖; 圖3為CNF30之穿透式電子顯微鏡攝像圖; 圖4為CNF45之穿透式電子顯微鏡攝像圖;以及 圖5為CNF60之穿透式電子顯微鏡攝像圖。1 is a scanning electron microscope image of a general β chitin; FIG. 2 is a flow chart of a method for producing a chitin nanofiber sodium chloride solution of the present invention; FIG. 3 is a transmission electron microscope of CNF30. Fig. 4 is a transmission electron microscope image of CNF45; and Fig. 5 is a transmission electron microscope image of CNF60.

Claims (7)

一種幾丁質奈米纖維氯化鈉溶液之製造方法,係包括以下步驟:(1)準備一β幾丁質,並將該幾丁質倒入一去離子水之中,以獲得一幾丁質懸浮溶液;(2)利用一超音波破碎機對該幾丁質懸浮溶液進行超音波震盪,用以破壞該幾丁質分子間之氫鍵,以完成一奈米纖維化製程;以及(3)準備一氯化鈉,並將該氯化鈉倒入該完成所述奈米纖維化製程的幾丁質懸浮溶液之中,進而在持續攪拌該氯化鈉的情況下獲得一具有一特定氯化鈉濃度的一幾丁質奈米纖維氯化鈉溶液,且該特定氯化鈉濃度為0.01%~0.3%。 A method for producing a chitin nanofiber sodium chloride solution comprises the steps of: (1) preparing a beta chitin and pouring the chitin into a deionized water to obtain a few a suspension solution; (2) ultrasonically oscillating the chitin suspension solution with an ultrasonic breaker to destroy hydrogen bonds between the chitin molecules to complete a nanofibrillation process; and (3) Preparing sodium chloride, and pouring the sodium chloride into the chitin suspension solution for completing the nanofibrillation process, thereby obtaining a specific chlorine while continuously stirring the sodium chloride A sodium butadiene fiber sodium chloride solution having a sodium concentration, and the specific sodium chloride concentration is 0.01% to 0.3%. 如申請專利範圍第1項所述之幾丁質奈米纖維氯化鈉溶液之製造方法,其中,所述步驟(1)係包括以下詳細步驟:(11)取來一魷魚軟骨,以烘箱乾燥之,再以一粉碎機粉碎乾燥後的該魷魚軟骨,進而得到一魷魚軟骨粉末;及(12)在室溫的環境下對該魷魚軟骨粉末去除脂蛋白後,再進行強鹼處理,之後即獲得該β幾丁質。 The method for producing a chitin nanofiber sodium chloride solution according to claim 1, wherein the step (1) comprises the following detailed steps: (11) taking a squid cartilage and drying it in an oven. Then, the dried squid cartilage is pulverized by a pulverizer to obtain a squid cartilage powder; and (12) the lipoprotein is removed from the squid cartilage powder at room temperature, and then subjected to a strong alkali treatment, and then The beta chitin is obtained. 如申請專利範圍第2項所述之幾丁質奈米纖維氯化鈉溶液之製造方法,其中,所述步驟(12)係包括以下詳細步驟: (121)備好50克的該魷魚軟骨粉末,並將該魷魚軟骨粉末加入500mL濃度為0.5%的采酮溶液之中並攪拌24小時,以完成一脂蛋白去除製程;及(122)將完成所述脂蛋白去除製程的該魷魚軟骨粉末加入至500mL的氫氧化鈉溶液之中,攪拌24小時後即獲得所述β幾丁質。 The method for producing a chitin nanofiber sodium chloride solution according to claim 2, wherein the step (12) comprises the following detailed steps: (121) Prepare 50 g of the squid cartilage powder, and add the squid cartilage powder to 500 mL of a 0.5% concentration testosterone solution and stir for 24 hours to complete a lipoprotein removal process; and (122) will be completed The salmon cartilage powder of the lipoprotein removal process was added to 500 mL of a sodium hydroxide solution, and the β chitin was obtained after stirring for 24 hours. 如申請專利範圍第1項所述之幾丁質奈米纖維氯化鈉溶液之製造方法,其中,該幾丁質懸浮溶液具有一特定體積,且該特定體積為150毫升。 The method for producing a chitin nanofiber sodium chloride solution according to claim 1, wherein the chitin suspension solution has a specific volume, and the specific volume is 150 ml. 如申請專利範圍第1項所述之幾丁質奈米纖維氯化鈉溶液之製造方法,其中,於該步驟(2)之中,該超音波破碎機的一功率為20kHz、200W;並且,於該步驟(2)之中,該超音波破碎機的一處理時間可為30分鐘、45分鐘、或60分鐘,同時,該超音波破碎機的一設定脈衝時間被設為作用9秒停止4秒,之後,以一離心機進行一離心轉速係對應地被設為12,000rpm並運轉20分鐘後取上清液,進而獲得一第一幾丁質奈米纖維溶液(CNF30)、一第二幾丁質奈米纖維溶液(CNF45)、以及一第三幾丁質奈米纖維溶液(CNF60)其中,該第一幾丁質奈米纖維溶液(CNF30)、該第二幾丁質奈米纖維溶液(CNF45)、以及該第三幾丁質奈米纖維溶液(CNF60)分別具有一去乙醯度,且該去乙醯度分別為21.59%、22.30%、以及20.54%。 The method for producing a chitin nanofiber sodium chloride solution according to claim 1, wherein in the step (2), a power of the ultrasonic breaker is 20 kHz, 200 W; In the step (2), a processing time of the ultrasonic breaker can be 30 minutes, 45 minutes, or 60 minutes, and a set pulse time of the ultrasonic breaker is set to act for 9 seconds to stop 4 Second, after that, a centrifugation speed is performed in a centrifuge, and the supernatant is set to 12,000 rpm for 20 minutes, and then the supernatant is taken to obtain a first chitin nanofiber solution (CNF30) and a second number. Butyl nanofiber solution (CNF45) and a third chitin nanofiber solution (CNF60), wherein the first chitin nanofiber solution (CNF30) and the second chitin nanofiber solution (CNF45), and the third chitin nanofiber solution (CNF60) respectively have a deacetylation degree, and the deacetylation degree is 21.59%, 22.30%, and 20.54%, respectively. 如申請專利範圍第5項所述之幾丁質奈米纖維氯化鈉溶液之製造方法,其中,該第一幾丁質奈米纖維溶液(CNF30)、該第二幾丁質奈米纖維溶液(CNF45)、以及該第三幾丁質奈米纖維溶液(CNF60)具有一介面電位,且該介面電位分別為33.10~37.30mV、30.17~36.20mV、以及31.03~32.43mV。 The method for producing a chitin nanofiber sodium chloride solution according to claim 5, wherein the first chitin nanofiber solution (CNF30) and the second chitin nanofiber solution are used. (CNF45) and the third chitin nanofiber solution (CNF60) have an interface potential, and the interface potentials are 33.10 to 37.30 mV, 30.17 to 36.20 mV, and 31.03 to 32.43 mV, respectively. 如申請專利範圍第5項所述之幾丁質奈米纖維氯化鈉溶液之製造方法,其中,該第一幾丁質奈米纖維溶液(CNF30)、該第二幾丁質奈米纖維溶液(CNF45)、和該第三幾丁質奈米纖維溶液(CNF60)分別具有一直徑,且該直徑分別為9.34±2.58nm、5.61±1.49nm、以及5.14±1.46nm。The method for producing a chitin nanofiber sodium chloride solution according to claim 5, wherein the first chitin nanofiber solution (CNF30) and the second chitin nanofiber solution are used. (CNF45), and the third chitin nanofiber solution (CNF60) have a diameter, respectively, and the diameters are 9.34±2.58 nm, 5.61±1.49 nm, and 5.14±1.46 nm, respectively.
TW105123168A 2016-07-22 2016-07-22 Method for manufacturing chitin nanofibers-sodium chloride solution TWI631905B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105123168A TWI631905B (en) 2016-07-22 2016-07-22 Method for manufacturing chitin nanofibers-sodium chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105123168A TWI631905B (en) 2016-07-22 2016-07-22 Method for manufacturing chitin nanofibers-sodium chloride solution

Publications (2)

Publication Number Publication Date
TW201803461A TW201803461A (en) 2018-02-01
TWI631905B true TWI631905B (en) 2018-08-11

Family

ID=62013978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105123168A TWI631905B (en) 2016-07-22 2016-07-22 Method for manufacturing chitin nanofibers-sodium chloride solution

Country Status (1)

Country Link
TW (1) TWI631905B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100484416C (en) * 2002-07-08 2009-05-06 岳静 Health table salt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100484416C (en) * 2002-07-08 2009-05-06 岳静 Health table salt

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Fan Y et al., Biomacromolecules. 2008 Jul;9(7):1919-23. *
J Busch et al., Trends in Food Science & Technology.2013 Jan,29:31-34. *
Nata IF et al., Carbohydr Polym. 2012 Nov 6;90(4):1509-14. *
P Luck et al., Food Hydrocolloids.2015, 48:174-178. *

Also Published As

Publication number Publication date
TW201803461A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
Zhou et al. Effects of calcium ion on gel properties and gelation of tilapia (Oreochromis niloticus) protein isolates processed with pH shift method
JP2007535948A5 (en)
Jiang et al. Impact of ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction on rheological, structural, and functional properties of Akebia trifoliata (Thunb.) Koidz. seed protein isolates
JP2017528149A (en) Hypoallergenic soy oligopeptide with reduced bitterness, preparation method thereof, and use thereof
JP2018508231A5 (en)
WO2016173222A1 (en) Hypoallergenic, odor-reduced fish protein oligopeptide, industrialized preparation method for same, and applications thereof
JPWO2013073404A1 (en) Rice protein composition and method for producing the same
TWI631905B (en) Method for manufacturing chitin nanofibers-sodium chloride solution
JP2015119683A (en) Rice protein composition having reduced accumulation of cadmium
JP5112992B2 (en) Method for producing rice starch
Yu et al. Ultrasound accelerates pickling of reduced-sodium salted duck eggs: An insight into the effect on physicochemical, textural and structural properties
JP2008531054A (en) Multi-anion treated soy protein and method for preparing the substance
JP2007523883A5 (en)
JPS60160865A (en) Production of food having salt reducing action
TWI565659B (en) method for manufacturing formulated salt
JP4570949B2 (en) Method for producing yeast-derived glucan
CN107641159B (en) Production process of low-viscosity whitening carrageenan
JPWO2005078114A1 (en) Method for producing yeast-derived glucan
WO2020220194A1 (en) Preparation method for iron-aluminum composite bone char fluoride removal agent and prepared fluoride removal agent
JP6832734B2 (en) How to make protein-reduced cooked rice
JPS5986640A (en) Chitin suspension and production thereof
JP6497740B2 (en) β-chitin nanofiber and method for producing the same
JP2020010602A (en) TORULA YEAST-DERIVED β-GLUCAN
JP2018164450A (en) Konjak powder and manufacturing method of the same
JP3407125B2 (en) Yeast material and its manufacturing method